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Abstract

We propose a novel way of embedding functional smart contract languages into the Coq proof

assistant using meta-programming techniques. Our framework allows for developing the meta-theory of

smart contract languages using the deep embedding and provides a convenient way for reasoning about

concrete contracts using the shallow embedding. The proposed approach allows to make a connection

between the two embeddings in a form of a soundness theorem. As an instance of our approach

we develop an embedding of the Oak smart contract language in Coq and verify several important

properties of a crowdfunding contract. The developed techniques are applicable to all functional smart

contract languages.

1 Introduction

The concept of blockchain-based smart contracts has evolved in several ways since its appear-
ance. Starting from the restricted and non Turing complete Bitcoin script1 designed to validate
transactions, the idea of smart contracts expanded to fully featured languages like Solidity
running on the Ethereum Virtual Machine (EVM).2 Recent research on the smart contract
verification discovered the presence of multiple vulnerabilities in many smart contract written
in Solidity [3, 6]. Several times the issues in smart contract implementations resulted in huge
financial losses (for example, the DAO contract and the Parity multi-sig wallet on Ethereum).
The setup for smart contracts is quite unique: once deployed, they cannot be changed and
any small mistake in the contract logic may lead to serious financial consequences. This shows
not only the importance of formal verification of smart contracts, but also the importance of
principled programming language design. Next generation smart contract languages tends to
employ the functional programming paradigm. A number of blockchain implementations have
already adopted certain variations of functional languages as an underlying smart contract
language. These languages range from minimalistic and low-level (Simplicity [5], Michelson3)
to fully-featured OCaml- and Haskell-like languages (Liquidity [2], Plutus4). There is a very
good reason for this tendency. Statically typed functional programming languages can rule out
many mistakes. Moreover, due to the absence (or more precise control) of side effects programs
in functional languages behave as mathematical functions that makes reasoning about them
easier. However, one cannot hope to perform only stateless computations: the state is inherent
for blockchains. One way to approach this is to limit the ways of changing the state. While
Solidity allows arbitrary state modifications at any point of execution, many modern smart
contract languages represent smart contract execution as a function from a current state to a
new state. This functional nature of modern smart contract languages makes them well-suited
for formal reasoning.

∗This work is supported by the Concordium Blockchain Research Center, Aarhus University, Denmark.
1 Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf
2 Ethereum’s white paper: https://github.com/ethereum/wiki/wiki/White-Paper
3 https://www.michelson-lang.com/
4 https://cardanodocs.com/technical/plutus/introduction/
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The Ethereum Virtual Machine and the Solidity smart contract language remains one of the
most used platforms for writing smart contacts. Due to the permissiveness of the underlying
execution model and complexity of the language verification in this setting is quite challenging.
On the other hand, many new generation languages such as Oak,5 Liquidity and Scilla, offer a
different execution model and a type system allowing to rule out many errors by means of type
checking. Of course, many important properties are not possible to capture even with powerful
type systems of functional smart contract languages. For that reason, to provide even higher
guarantees, such as functional correctness, one has to resort to stronger type systems/logics for
reasoning about programs and employ deductive verification techniques. Among various tools
for that purpose proof assistants provide a versatile solution for that problem.

Proof assistants, or interactive theorem provers are tools that allow for stating and proving
theorems by interacting with users. Proof assistants often offer some degree of proof automation
by implementing decision and semi-decision procedures, or interacting with automated theorem
provers (SAT and SMT solvers). Some proof assistants allow for writing user-defined automa-
tion scripts, or write extensions using a plug-in system. This is especially important, since
many problems in the verification of programming languages are undecidable and providing
users with a convenient way of interactive proving while retaining a possibility to do automatic
reasoning makes proof assistants very flexible tools for verification of smart contracts.

Existing formalisations of functional smart contract languages mostly focus on meta-theory6

with the exception of Scilla [7], which features verification of particular smart contracts in
Coq by means of shallow embedding by hand. Simplicity [5] is a low-level combinator based
functional language and its formalisation allows for translating from deep to shallow embeddings
for purposes of meta-theoretic reasoning. None of these developments combine deep and shallow
embeddings for a high-level functional smart contract language in one framework or provide
an automatic way of converting smart contracts to Coq programs for convenient verification of
concrete smart contract. We are making a step towards this direction by allowing for deep and
shallow embeddings to coexist and interact in Coq.

The contributions of this paper are the following: (1) we develop an approach allowing
for developing in one framework the meta-theory of smart contract languages and convenient
reasoning about concrete contracts; (2) we combine deep and shallow embedings using the
metaprogramming facilities of the MetaCoq plug-in [1]; (3) as an instance of our approach
we define the syntax and semantics of the Oak language (the deep embedding) and the cor-
responding translation of Oak programs into Coq functions (the shallow embedding); (4) we
prove properties of a crowdfunding contract given as a deep embedding (abstract syntax tree)
of an Oak program. We discuss details of our approach in Section 2 and provide an example of
a crowdfunding contract in Section 3.

2 Our approach

There are various ways of reasoning about properties of a functional programming language in
a proof assistant. First, let us split the properties in two groups: meta-theoretical properties
(properties of a language itself) and properties of programs written in the language. Since
we are focused on functional smart contract languages and many proof assistants come with
a built-in functional language, it is reasonable to assume that we can reuse the programming

5 The Oak language is an ML-style functional smart contract language with Elm-like syntax. Oak is currently
under development at the Concordium foundation.

6 Michelson meta-theory: https://gitlab.com/nomadic-labs/mi-cho-coq/

Plutus core meta-theory: https://github.com/input-output-hk/plutus/tree/master/metatheory

Simplicity meta-theory: https://github.com/ElementsProject/simplicity/tree/master/Coq.
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Figure 1: The structure of the framework

language of a proof assistant to express smart contracts and reason about their properties. A
somewhat similar approach is taken by the authors of the hs-to-coq library [8], which translates
total Haskell programs to Coq by means of source-to-source transformation. Unfortunately, in
this case it is impossible to reason about the correctness of the translation.

We would like to have two representations of functional programs within the same frame-
work: a deep embedding in the form of an abstract syntax tree (AST), and a shallow embedding
as a Coq function. While the deep embedding is suitable for meta-theoretical reasoning, the
shallow embedding is convenient for proving properties of concrete programs. We use the meta-
programming facilities of the MetaCoq plug-in [1] to connect the two ways of reasoning about
functional programs.

The overview of the structure of the framework is given in Figure 1. As opposed to source-
to-source translations in the style hs-to-coq[8] and coq-of-ocaml7 we would like for all the
non-trivial transformations to happen in Coq. This makes it possible to reason within Coq
about the translation and formalize the required meta-theory for the language. That is, we
start with an AST of a program in a smart contract language implemented in Haskell, OCaml
or some other language, then we generate an AST represented using the constructors of the
corresponding inductive type in Coq (deep embedding) by printing the desugared AST of the
program. By printing we mean a recursive procedure of converting the AST into a string
consisting of the constructors of our Coq representation. The main idea is that this procedure
should be as simple as possible and does not involve any non-trivial manipulations, since it will
be a part of a trusted code base. If any non-trivial transformations are required, they should
happen within the Coq implementation.

MetaCoq allows us to convert an AST represented as an inductive type into a Coq term.
Thus, starting with the syntax of a program in our functional language, through a series of
transformations we produce a MetaCoq AST, which is then interpreted into a program in
Coq’s Gallina language (shallow embedding). The transformations include conversion from the
named to the nameless representation (if required) and translation into the MetaCoq AST. The
deep embedding also serves as input for developing meta-theory of the smart contract language.

As an instance of our approach we develop an embedding of the Oak smart contract lan-
guage to Coq.8 The semantics of Oak is given as a definitional interpreter. This gives us
an executable semantics for the language. The interpreter is implemented in an environment-
passing style and works both with named and nameless representations of variables. To be able
to interpret general fixpoints we evaluate fixpoints applications in the environment extended
with the closure corresponding to the recursive call. Due to the potential non-termination, we
define our interpreter using a fuel idiom: by structural recursion on an additional argument (a

7 The coq-of-ocaml github page: https://github.com/clarus/coq-of-ocaml
8 Our Coq development https://github.com/annenkov/FMBC19-artefact/, including examples from Section 3
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(* Defining AST using customised notations *)

(* Brackets [\ \] delimit the scope of global *)

(* definitions and [| |] the scope of programs *)

Definition state_syn : global_dec :=
[\ record State :=
{ balance : Money ;

donations : Map;
owner : Money;
deadline : Nat;
done : Bool;
goal : Money } \].

Make Inductive (trans_global_dec state_syn).

Definition action_syn : global_dec :=
[\ data Action :=

Transfer : Address → Money → Action

| Empty : Action; \].

Make Inductive (trans_global_dec action_syn).

Definition result_syn : global_dec :=
[\ data Result :=

Res : State → Action → Result

| Error : Result; \].

Make Inductive (trans_global_dec result_syn).

Definition msg_syn : global_dec :=
[\ data Msg :=

Donate : Msg

| GetFunds : Msg

| Claim : Msg; \].

Make Inductive (trans_global_dec msg_syn).

Definition crowdfunding : expr :=
[| \c : Ctx ⇒ \s : State ⇒ \m : Msg ⇒

let bal : Money := balance s in

let now : Nat := cur_time c in

let tx_amount : Money := amount c in

let sender : Address := ctx_from c in

let own : Address := owner s in

let accs : Map := donations s in

case m : Msg return Result of

| GetFunds →
if (own == sender) && (deadline s < now) && (goal s ≤bal)
then Res (mkState 0 accs own (deadline s) True (goal s))

(Transfer bal sender)
else Error : Result

| Donate → if now ≤deadline s then

(case (mfind accs sender) : Maybe return Result of

| Just v →
let newmap : Map := madd sender (v + tx_amount) accs in

Res (mkState (tx_amount + bal) newmap own

(deadline s) (done s) (goal s)) Empty

| Nothing →
let newmap : Map := madd sender tx_amount accs in

Res (mkState (tx_amount + bal) newmap own

(deadline s) (done s) (goal s)) Empty)
else Error : Result

| Claim →
if (deadline s < now) && (bal < goal s) && ( done s) then

(case (mfind accs sender) : Maybe return Result of

| Just v → let newmap : Map := madd sender 0 accs in

Res (mkState (bal−v) newmap own

(deadline s) (done s) (goal s)) (Transfer v sender)
| Nothing → Error)

else Error : Result

|].

Make Definition entry :=
Eval compute in (expr_to_term (indexify crowdfunding)).

Figure 2: The crowdfunding contract

natural number).
Since the development of the meta-theory of Coq itself is one of the aims of the MetaCoq we

can use this development to show that the semantics of our functional language agrees with its
translation to MetaCoq (on terminating programs) and our interpreter is sound with respect to
the embedding. We compare the results of evaluation of Oak expressions with the weak head
call-by-value evaluation relation of MetaCoq up to appropriate conversion of values. Currently,
the full formalisation of this proof is under development. Being able to relate the semantics of
Oak to the semantics of Coq through Coq’s meta-theory formalisation gives stronger guarantees
that our shallow embedding reflects the actual behaviour of Oak programs. The described
approach provides a more principled way of embedding functional language, in contrast to the
source-to-source based approaches.

3 The crowdfunding contract

As an example of our approach we consider verification of some properties of a crowdfunding
contract (Figure 2). Such a contract allows arbitrary users to donate money within a deadline.
If the crowdfunding goal is reached, the owner can withdraw the total amount from the account
after the deadline has passed. Also, users can withdraw their donations after the deadline if the
goal has not been reached. Contracts like this are standard applications of smart contracts and
appear in a number of tutorials.9 We follow the example of Scilla [7] and adopt (with minor
variations) a crowdfunding contract as a good instance to demonstrate verification techniques.

We extensively use a new feature of Coq called “custom entries” to provide a convenient

9 The idea of a crowdfunding contract appears under different names: crowdsale, kickstarter-like contract, ICO
contract, ect. Many Ethereum-related resources contain variations of this idea in tutorials (including Solidity
and Vyper documentation). A simplified verision of a crowdfunding contract is also available for Liquidity:
https://github.com/postables/Tezos-Developer-Resources/blob/master/Examples/Crowdfund/Basic.ml
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notation for our deep embedding.10 The program texts in Figure 2 written inside the special
brackets [\ ... \] and [| ... |] are parsed according to the custom notation rules. For example,
without using notations the definition of action_syn looks as follows:

gdInd Action 0 [("Transfer", [(nAnon, tyInd "nat"); (nAnon, tyInd "nat")]);("Empty", [])] false.

This AST otherwise would be printed directly from the smart contract AST by a simple pro-
cedure (as we outlined in Section 2). We start with defining the required data structures such
as State, Action, Result and Msg meaning contract state, resulting contract actions, the type
of results (equivalent to the option type of Coq) and messages accepted by this contract. We
pre-generate string constants for corresponding names of inductive types, constructors, etc.
using the MetaCoq template monad.11 This allows for more readable presentation using our
notation mechanism. Currently, we use the nat type of Coq to represent account addresses and
currency. Eventually, these types will be replaced with corresponding formalisations of these
primitive types.

The trans_global_dec : global_dec → mutual_inductive_entry function takes the syntax of
the data type declarations and produces an element of mutual_inductive_entry — a MetaCoq
representation for inductive types. For each of our deeply embedded data type definitions we
produce corresponding definitions of inductive types in Coq by using the Make Inductive com-
mand of MetaCoq that “unquotes” given instances of the mutual_inductive_entry type. Similar
notation mechanism is used to write programs using the deep embedding. The definition of
crowdfunding represents a syntax of the crowdfunding contract. We translate the crowdfund-
ing contract’s AST into a MetaCoq AST using the expr_to_term : global_env → expr → term

function. Here, global_env is a global environment containing declarations of inductive types
used in the function definition, expr is a type of Oak expressions, and term is a type of
MetaCoq terms. Before translating the Oak AST we apply the indexify function that con-
verts named variables into De Bruijn indices. The result of these transformations is un-
quoted with the Make Definition command. The corresponding function has the following
type entry : ctx → State_coq → Msg_coq → Result_coq, where ctx is a call context containing
current block time, transferred amount, sender’s address and other information available for
inspection during the contract call. The type names with the “coq” postfix correspond to the
unquoted data types from the Figure 2.

The entry function corresponds to a transition from the current state of the contract to
the new state. That allows for proving functional correctness properties using pre- and post-
conditions. Similarly to [7], we a prove number of properties of the contract using the shallow
embedding. Specifically, we proved the following properties: the contract does no leak funds;
the donations can be paid back to the backers if the goal is not reached within a deadline;
donations are recorded correctly in the contract’s state. Moreover, in our Coq development,
we show how one can verify library code for Oak by proving Oak functions equivalent to the
corresponding functions from the standard library of Coq. In particular, we provide an example
of such a procedure for certain functions on finite maps.

4 Related work

In this work we focus on modern smart contract languages based on a functional programming
paradigm. In many cases various small errors in smart contracts can be ruled out by the type

10Custom entries are available starting from Coq 8.10
11The template monad is a part of the MetaCoq infrastructure. It allows for interacting with Coq’s global

environment: reading data about existing definitions, adding new definitions, quoting/unquoting definitions,
etc.
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systems of these languages. Capturing more serious errors requires employing such techniques
as deductive verification (for verification of concrete contracts) and formalisation of meta-theory
(to ensure soundness of type systems). Works related to formalisation of such languages are
mentioned in Section 1 and include languages like Plutus, Michelson, Liquidity, Scilla and
Simplicity.

5 Conclusion and future work

We have presented a work-in-progress on the smart contract verification framework. An impor-
tant feature of our approach is the ability to both develop a meta-theory of a smart contract
language and to conveniently reason about smart contracts. One can prove soundness theorems
relating meta-theory of the smart contract language with the embedding. Such an option is usu-
ally not available for source-to-source translations. We applied our approach to the development
of an embedding of the Oak smart contract language and provided an example of verification
of a crowdfunding contract starting from the contract’s AST. However, the approach is quite
general and applies to other functional smart contract languages.

As future work, we would like to provide integration with Oak-language infrastructure allow-
ing for a convenient translation of Oak programs to Coq. Since our framework is not focused
on one particular smart contract language, we also consider benchmarking our development
by developing “backends” for translation of other languages (e.g. Liquidity, Simplicity). Cur-
rently, our framework allows for proving functional correctness of contracts corresponding to
one “step” from the current state to the new state. To be able to reason about the chain
of contract calls one needs an execution model to be formalised in Coq as well. We plan to
connect our development to the ongoing work on formalising such and execution model for the
Oak programming language[4].

Extending the formalisation of the Oak language meta-theory is also among our goals for the
framework. An important bit of Oak’s meta-theory is the cost semantics allowing for reasoning
about “gas”. We would like to give a cost semantics for the deep embedding and explore how
it can be extended on the shallow embedding.
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