
Smart Contract Interactions in Coq

Jakob Botsch Nielsen[0000−0002−0459−2678] and Bas Spitters[0000−0002−2802−0973]

Concordium Blockchain Research Center, Computer Science, Aarhus University
{botsch,spitters}@cs.au.dk

Abstract. We present a model/executable specification of smart con-
tract execution in Coq. Our formalization allows for inter-contract com-
munication and generalizes existing work by allowing modelling of both
depth-first execution blockchains (like Ethereum) and breadth-first exe-
cution blockchains (like Tezos). We represent smart contracts programs
in Coq’s functional language Gallina, enabling easier reasoning about
functional correctness of concrete contracts than other approaches. In
particular we develop a Congress contract in this style. This contract
– a simplified version of the infamous DAO – is interesting because of
its very dynamic communication pattern with other contracts. We give
a high-level partial specification of the Congress’s behavior, related to
reentrancy, and prove that the Congress satisfies it for all possible smart
contract execution orders.

Keywords: Blockchain · Coq · Formal Verification · Smart Contracts

1 Introduction

Since Ethereum, blockchains make a clear separation between the consensus
layer and the execution of interacting smart contracts. In Ethereum’s Solidity
language contracts can arbitrarily call into other contracts as regular function
calls. Modern blockchains further separate the top layer in an execution layer and
a contract layer. The execution layer schedules the calls between the contracts
and the contract layer executes individual programs. The choice of execution
order differs between blockchains. For example, in Ethereum the execution is
done in a synchronous (or depth first) order: a call completes fully before the
parent continues, and the parent is able to observe its result. Tezos and Scilla
use a breadth first order instead, where observing the result is not possible.

We provide1 a model/executable specification of the execution and contract
layer of a third generation blockchain in the Coq proof assistant. We use Coq’s
embedded functional language Gallina to model contracts and the execution
layer. This language can be extracted to certified programs in for example Haskell
or Ocaml. Coq’s expressive logic also allows us to write concise proofs. The
consensus protocol provides a consistent global state which we treat abstractly
in our formalization.

1 https://gitlab.au.dk/concordium/smart-contract-interactions/tree/v1.0

https://gitlab.au.dk/concordium/smart-contract-interactions/tree/v1.0


2 Jakob Botsch Nielsen and Bas Spitters

We work with an account-based model. We could also model the UTxO model
by converting a list of UTxO transactions to a list of account transactions [12].
Like that work, we do not model the cryptographic aspects, only the accounting
aspects: the transactions and contract calls.

Section 2 describes the implementation of the execution layer in Coq. In
Section 3 we provide a simple principled specification for the Congress. By using
such specifications one avoids having to deal with reentrancy bugs in a post-hoc
way. Section 4 discusses related and future work.

2 Implementation

2.1 Basic assumptions

Our goal is to model execution of smart contracts. To do so we will require
some basic operations that are to be used both by smart contracts and when
specifying our semantics. We do this with a typeclass in Coq:

Class ChainBase :=

{ Address : Type;

address_countable :> Countable Address;

address_is_contract : Address → bool; ... }.

We require a countable Address type with a clear separation between addresses
belonging to contracts and to users. While this separation is not provided in
Ethereum its omission has led to exploits before2 and we view it as realistic
that future blockchains allow this. Other blockchains commonly provide this by
using some specific format for contract addresses, for example, in Bitcoin such
pay-to-script-hash addresses always start with 3.

All semantics and smart contracts will be abstracted over an instance of this
type, so in the following sections we will assume we are given such an instance.

2.2 Smart Contracts

We will consider a pure functional smart contract language. Instead of modelling
the language as an abstract syntax tree in Coq, as in [2], we model individual
smart contracts as records with (Coq) functions.

Local state. It is not immediately clear how to represent smart contracts by
functions. For one, smart contracts have local state that they should be able to
access and update during execution. In Solidity, the language typically used in
Ethereum, this state is mutable and can be changed at any point in time. It
is possible to accomplish something similar in pure languages, for example by
using a state monad, but we do not take this approach. Instead we use a more

2 See for instance https://www.reddit.com/r/ethereum/comments/916xni/how_to_

pwn_fomo3d_a_beginners_guide/

https://www.reddit.com/r/ethereum/comments/916xni/how_to_pwn_fomo3d_a_beginners_guide/
https://www.reddit.com/r/ethereum/comments/916xni/how_to_pwn_fomo3d_a_beginners_guide/


Smart Contract Interactions in Coq 3

traditional approach where the contract takes as input its state and returns an
updated state which is similar to Liquidity.

Different contracts will typically have different types of states. A crowdfund-
ing contract may wish to store a map of backers in its state while an auction
contract would store information about ongoing auctions. To facilitate this poly-
morphism we use an intermediate storage type called SerializedValue. We define
conversions between SerializedValue and primitive types like booleans and in-
tegers plus derived types like pairs, sums and lists. Additionally we provide Coq
tactics that can automatically generate conversions for custom user types like
inductives and records. This allows conversions to be handled implicitly and
mostly transparently to the user.

Inter-contract communication. In addition to local state we also need some
way to handle inter-contract communication. In Solidity contracts can arbitrar-
ily call into other contracts as regular function calls. This would once again be
possible with a monadic style, for example by the use of a promise monad where
the contract would ask to be resumed after a call to another contract had fin-
ished. To ease reasoning we choose a simpler approach where contracts return
actions that indicate how they would like to interact with the blockchain, allow-
ing transfers, contract calls and contract deployments only at the end of (single
steps of) execution. The blockchain will then be responsible for scheduling these
actions in what we call its execution layer.

With this design we get a clear separation between contracts and their in-
teraction with the chain. That such separations are important has been realized
before, for instance in the design of Michelson and Scilla [9]. Indeed, a ”tail-call”
approach like this forces the programmer to update the contract’s internal state
before making calls to other contracts, mitigating by construction reentrancy
issues such as the infamous DAO exploit.

Thus, contracts will take their local state and some data allowing them to
query the blockchain. As a result they then optionally return the new state
and some operations (such as calls to other contract) allowing inter-contract
communication. Tezos’ Michelson language follows a similar approach.

The Ethereum model may be compared to object-oriented programming. Our
model is similar to the actor model as contracts do not read or write the state
of another contract directly, but instead communicate via messages instead of
shared memory. Liquidity and the IO-automata-based Scilla use similar models.

The contract. Smart contracts are allowed to query various data about the
blockchain. We model this with a data type:

Definition Amount := Z.

Record Chain := { chain_height : nat;

current_slot : nat;

finalized_height : nat;

account_balance : Address → Amount; }.



4 Jakob Botsch Nielsen and Bas Spitters

We allow contracts to access basic details about the blockchain, like the
current chain height, slot number and the finalized height. The slot number is
meant to be used to track the progression of time; in each slot, a block can
be created, but it does not have to be. The finalized height allows contracts
to track the current status of the finalization layer available in for example the
Concordium blockchain [5]. This height is different from the chain height in that
it guarantees that blocks before it can not be changed. We finally also allow the
contract to access balances of accounts as is common in other blockchains. In
sum, the following data types model the contracts:

Record ContractCallContext :=

{ ctx_from : Address;

ctx_contract_address : Address;

ctx_amount : Amount; }.

Inductive ActionBody :=

| act_transfer (to : Address) (amt : Amount)

| act_call (to : Address) (amt : Amount) (msg : SerializedValue)

| act_deploy (amt : Amount) (c : WeakContract) (setup : SerializedValue)

with WeakContract :=

| build_weak_contract

(init : Chain → ContractCallContext → SerializedValue (* setup *)

→ option SerializedValue)

(receive : Chain → ContractCallContext → SerializedValue (* state *)

→ option SerializedValue (* message *)

→ option (SerializedValue * list ActionBody)).

Here the ContractCallContext provides the contract with information about
the transaction that resulted in its execution. It contains the source address
(ctx_from), the contract’s own address (ctx_contract_address) and the amount
of money transferred (ctx_amount). The ActionBody type represents operations
that interact with the chain. It allows for messageless transfers (act_transfer),
calls with messages (act_call), and deployment of new contracts (act_deploy).
The contract itself is two functions. The init function is used when a contract
is deployed to set up its initial state, while the receive function will be used
for transfers and calls with messages afterwards. They both return option types,
allowing the contract to signal invalid calls or deployments. The receive function
additionally returns a list of ActionBody that it wants to be scheduled, as we
described earlier. This data type does not contain a source address since it is
implicitly the contract’s own address. Later, we will also use a representation
where there is a source address; we call this type Action:

Record Action := { act_from : Address; act_body : ActionBody; }.

This type resembles what is normally called a transaction, but we make a dis-
tinction between the two. An Action is a request by a contract or external user to
perform some operation. When executed by an implementation, this action will
affect the state of the blockchain in some way. It differs from transactions since
act_deploy does not contain the address of the contract to be deployed. This
models that it is the implementation that picks the address of a newly deployed



Smart Contract Interactions in Coq 5

contract, not the contract making the deployment. We will later describe our
ActionEvaluation type which captures more in depth the choices made by the
implementation while executing an action.

The functions of contracts are typed using the SerializedValue type. This
is also the reason for the name WeakContract. This makes specifying semantics
simpler, since the semantics can deal with contracts in a generic way (rather
than contracts abstracted over types). However, this form of ”string-typing”
makes things harder when reasoning about contracts. For this reason we provide
a dual notion of a strong contract, which is a polymorphic version of contracts
generalized over the setup, state and message types. Users of the framework only
need to be aware of this notion of contract, which does not contain references to
SerializedValue at all.

One could also imagine an alternative representation using a dependent
record of setup, state and message types plus functions over those types. How-
ever, in such a representation it is unclear how to allow contracts to send mes-
sages to other contracts when the blockchain itself does not have any knowledge
about concrete contracts.

2.3 Semantics of the execution layer

Environments. The Chain type shown above is merely the contract’s view of
the blockchain and does not store enough information to allow the blockchain
to run actions. More specifically we need to be able to look up information
about currently deployed contracts like their functions and state. We augment
the Chain type with this information and call it an Environment:

Record Environment :=

{ env_chain :> Chain;

env_contracts : Address → option WeakContract;

env_contract_states : Address → option SerializedValue; }.

It is not hard to define functions that allow us to make updates to environ-
ments. For instance, inserting a new contract is done by creating a new function
that checks if the address matches and otherwise uses the old map. In other words
we use simple linear maps in the semantics. In similar ways we can update the
rest of the fields of the Environment record.

Evaluation of actions. When contracts return actions the execution layer
will need to evaluate the effects of these actions. We define this as a ”proof-
relevant” relation ActionEvaluation in Coq, with type Environment → Action

→ Environment → list Action → Type. This relation captures the requirements
and effects of executing the action in the environment. It is ”proof-relevant”,
meaning that the choices made by the execution layer can be inspected. For
example, when an action requests to deploy a new contract, the address selected
by the implementation can be extracted from this relation.



6 Jakob Botsch Nielsen and Bas Spitters

We define the relation by three cases: one for transfers of money, one for
deployment of new contracts, and one for calls to existing contracts. To exemplify
this relation we give its formal details for the simple transfer case below:

| eval_transfer :

forall {pre : Environment} {act : Action} {new_env : Environment}

(from to : Address) (amount : Amount),

amount ≤ account_balance pre from →
address_is_contract to = false →
act_from act = from →
act_body act = act_transfer to amount →
EnvironmentEquiv new_env (transfer_balance from to amount pre) →
ActionEvaluation pre act new_env []

In this case the sender must have enough money and the recipient cannot
be a contract. When this is the case a transfer action and the old environment
evaluate to the new environment where the account_balance has been updated
appropriately. Finally, such a transfer does not result in more actions to execute
since it is not associated with execution of contracts. Note that we close the
evaluation relation under extensional equality (EnvironmentEquiv).

We denote this relation by the notation 〈σ, a〉 ⇓ (σ′, l). The intuitive under-
standing of this notation is that evaluating the action a in environment σ results
in a new environment σ′ and new actions to execute l.

Chain traces. The Environment type captures enough information to evaluate
actions. We further augment this type to keep track of the queue of actions
to execute. In languages like Solidity this data is encoded implicitly in the call
stack, but since interactions with the blockchain are explicit in our framework
we keep track of it explicitly.

Record ChainState := { chain_state_env :> Environment;

chain_state_queue : list Action; }.

We now define what it means for the chain to take a step. Formally, this is
defined as a ”proof-relevant” relation ChainStep of type ChainState → ChainState

→ Type. We denote this relation with the notation (σ, l) → (σ′, l′), meaning that
we can step from the environment σ and list of actions l to the environment σ′

and list of actions l′. We give this relation as simplified inference rules:

step-block
b valid for σ acts from users

(σ, [])→ (add block b σ, acts)

step-action
〈σ, a〉 ⇓ (σ′, l)

(σ, a :: l′)→ (σ′, l ++ l′)

step-permute
Perm(l, l′)

(σ, l)→ (σ, l′)

The step-block rule allows the addition of a new block (b) containing some
actions (acts) to execute. We require that the block is valid for the current
environment (the ”b valid for σ” premise), meaning that it needs to satisfy some
well-formedness conditions. For example, if the chain currently has height n, the
next block added needs to have height n + 1. There are other well-formedness
conditions on other fields, such as the block creator, but we omit them here



Smart Contract Interactions in Coq 7

for brevity. Another condition is that all added actions must come from users
(the ”acts from users” premise). This models the real world where transactions
added in blocks are ”root transactions” from users. This condition is crucial to
ensure that transfers from contracts can happen only due to execution of their
associated code. When the premises are met we update information about the
current block (such as the current height and the balance of the creator, signified
by the add block function) and update that the queue now contains the actions
that were added.

The step-action rule allows the evaluation of the first action in the queue,
replacing it with the resulting new actions to execute. This new list (l in the rule)
is concatenated at the beginning, corresponding to using the queue as a stack.
This results in a depth-first execution order of actions. The step-permute rule
allows an implementation to use a different order of reduction by permuting the
queue at any time. For example, it is possible to obtain a breadth-first order of
execution by permuting the queue so that newly added events are in the back.
In this case the queue will be used like an actual FIFO queue.

Building upon steps we can further define traces as the proof-relevant re-
flexive transitive closure of the step relation. In other words, this is a sequence
of steps where each step starts in the state that the previous step ended in.
Intuitively the existence of a trace between two states means that there is a se-
mantically correct way to go between those states. If we let ε denote the empty
environment and queue this allows us to define a concept of reachability. For-
mally we say a state (σ, l) is reachable if there exists a trace starting in ε and
ending in (σ, l). Generally, only reachable states are interesting to consider and
most proofs are by induction over the trace to a reachable state.

2.4 Building blockchains

We connect our semantics to an executable definition of a blockchain with a
typeclass in Coq:

Class ChainBuilderType := {

builder_type : Type;

builder_initial : builder_type;

builder_env : builder_type → Environment;

builder_add_block (builder : builder_type) (header : BlockHeader)

(actions : list Action) : option builder_type;

builder_trace (builder : builder_type) :

ChainTrace empty_state (build_chain_state (builder_env builder) []); }.

A chain builder is a dependent record consisting of an implementation type
(builder_type) and several fields using this type. It must provide an initial
builder, which typically would be an empty chain, or a chain containing just
a genesis block. It must be convertible to an environment allowing to query in-
formation about the state. It must define a function that allows addition of new
blocks. Finally, the implementation needs to be able to give a trace showing that
the current environment is reachable with no more actions left in the queue to



8 Jakob Botsch Nielsen and Bas Spitters

execute. This trace captures a definition of soundness, since it means that the
state of such a chain builder will always be reachable.

Instantiations. We have implemented two instances of the ChainBuilderType

typeclass. Both of these are based on finite maps from the std++ library used
by Iris [4] and are thus relatively efficient compared to the linear maps used
to specify the semantics. The difference in the implementations lies in their
execution model: one implementation uses a depth-first execution order, while
the other uses a breadth-first execution order. The former execution model is
similar to the EVM while the latter is similar to Tezos and Scilla.

These implementations are useful as sanity checks but they also serve other
useful purposes in the framework. Since they are executable they can be used
to test concrete contracts that have been written in Coq. This involves writing
the contracts and executing them using Coq’s Compute vernacular to inspect the
results. In addition, they can also be used to give counter-examples to properties.
In the next section we will introduce the Congress contract, and we have used the
depth-first implementation of our semantics to formally show that this contract
with a small change can be exploited with reentrancy.

3 Case: Congress – a simplified DAO

In this section we will present a case study of implementing and partially speci-
fying a complex contract in our framework.

The Congress contract Wang [11] gives a list of eight interesting Ethereum
contracts. One of these is the Congress in which members of the contract vote on
proposals. Proposals contain transactions that, if the proposal succeeds, are sent
out by the Congress. These transactions are typically monetary amounts sent
out to some address, but they can also be arbitrary calls to any other contract.

We pick the Congress contract because of its complex dynamic interaction
with the blockchain and because of its similarity to the infamous DAO contract
that was deployed on the Ethereum blockchain and which was eventually hacked
by a clever attacker exploiting reentrancy in the EVM. The Congress can be seen
as the core of the DAO contract, namely the proposal and voting mechanisms.

We implement the logic of the Congress in roughly 150 lines of Coq code.
The type of messages accepted by the Congress can be thought of as its interface
since this is how the contract can be interacted with:

Inductive Msg :=

| transfer_ownership : Address → Msg

| change_rules : Rules → Msg

| add_member : Address → Msg

| remove_member : Address → Msg

| create_proposal : list CongressAction → Msg

| vote_for_proposal : ProposalId → Msg



Smart Contract Interactions in Coq 9

| vote_against_proposal : ProposalId → Msg

| retract_vote : ProposalId → Msg

| finish_proposal : ProposalId → Msg.

The Congress has an owner who is responsible for managing the rules of the
Congress and the member list. By default, we set this to be the creator of the
Congress. The owner can transfer his ownership away with the transfer_ownership

message. It is possible to make the Congress its own owner, in which case all rule
changes and modifications to the member list must happen through proposals
(essentially making the Congress a democracy).

Anyone can use the create_proposal and finish_proposal messages. We allow
proposals to contain any number of actions to send out, though we restrict
the actions to only transfers and contract calls (i.e. no contract deployments).
This restriction is necessary because deployments would require the state of the
Congress to contain the contracts to deploy. Since contracts are functions in our
shallow embedding this would require storing higher order state which we do not
allow in the framework. This is a downside to the shallow embedding – with a
deep embedding like [2], the code could be stored as an AST or bytes.

The rules of the Congress specify how long proposals need to be debated.
During this period, members of the Congress have the ability to vote on the
proposal. Once debated, a proposal can be finished and the Congress will remove
it from its internal storage and send out its actions if it passed.

A partial specification The DAO vulnerability was in reward payout code in
which a specially crafted contract could reenter the DAO causing it to perform
actions an unintended number of times. Specifically, the attacker was able to
propose a so-called split and have the original DAO transfer a disproportionate
amount of money to a new DAO contract under his control. Congress does not
allow splits, but the same kind of bug would be possible in code responsible for
carrying out proposals.

Previous research such as [3] has focused on defining this kind of reentrancy
formally. Such (hyper-)properties are interesting, but they also rely heavily on
the benefit of hindsight and their statements are complex and hard to under-
stand. Instead we would like to come up with a natural specification for the
Congress that a programmer could reasonably have come up with, even with-
out knowledge of reentrancy or the exploit. Our goal with this is to apply the
framework in a very concrete setting.

The specification we give is based on the following observation: any transac-
tion sent out by the Congress should correspond to an action that was previously
created with a create_proposal message. This is a temporal property because
it says something about the past whenever an outgoing transaction is observed.
Temporal logic is not natively supported by Coq, so this would require some
work. Therefore we prefer a similar but simpler property: the number of actions
in previous create_proposal messages is always greater than or equal to the total
number of transactions the Congress has sent out. Our main result about the
Congress is a formal proof that this always holds after adding a block:



10 Jakob Botsch Nielsen and Bas Spitters

Corollary congress_txs_after_block {ChainBuilder : ChainBuilderType}

prev creator header acts new :

builder_add_block prev creator header acts = Some new →
forall addr,

env_contracts new addr = Some (Congress.contract : WeakContract) →
length (outgoing_txs (builder_trace new) addr) ≤
num_acts_created_in_proposals (incoming_txs (builder_trace new) addr).

This result states that, after adding a block, any address at which a Congress
contract is deployed satisfies the property previously described. The number of
actions created in previous create_proposal messages is calculated by function
num_acts_created_in_proposals. The incoming_txs and outgoing_txs functions
are general functions that finds transactions (evaluation of actions) in a trace.
In this sense the property treats the contract as a black box, stating only things
about the transactions that have been observed on the blockchain.

This is not a full specification of the behavior of the Congress but proving
this property can help increase trust in the Congress. In particular it would
not have been provable in the original DAO contract because of the reentrancy
exploit where the DAO sent out an unbounded number of transactions. Note
also that we do not want to exclude reentrancy entirely: indeed, in the situation
where the Congress is its own owner reentrancy is required for changing rules
and the member list.

We prove the property by generalizing it over the following data:

– The internal state of the contract; more specifically, the current number of
actions in proposals stored in the internal state.

– The number of transactions sent out by the Congress, as before.

– The number of actions in the queue where the Congress is the source.

– The number of actions created in proposals, as before.

This results in a stronger statement from which the original result follows. The
key observations are that

1. When a proposal is created, the number of actions created in proposals goes
up, but so does the number of actions in the internal state of the Congress.

2. When a proposal is finished, the number of actions in the internal state goes
down, but the number of actions in the queue goes up accordingly (assum-
ing the proposal was voted for). In other words, actions ”move” from the
Congress’s internal state to the queue.

3. When an outgoing transaction appears on the chain it is because an action
moved out of the queue.

Especially observation 3 is interesting. It allows us to connect the evaluation of
a contract in the past to its resulting transactions on the chain, even though
these steps can be separated by many unrelated steps in the trace.

The proof of the stronger statement is straightforward by inducting over the
trace. When deploying the Congress we need to establish the invariant which
boils down to proving functional correctness of the init function and the use



Smart Contract Interactions in Coq 11

of some results that hold for contracts which have just been deployed (for in-
stance, such contracts have not made any outgoing transactions). On calls to
the Congress the invariant needs to be reestablished, which boils down to prov-
ing functional correctness of the receive function. Crucially, we can reestablish
the invariant because the implementation of the Congress clears out proposals
from its state before the actions in the proposal are evaluated (the DAO was
vulnerable because it neglected to do this on splits).

4 Conclusions

We have formalized the execution model of blockchains in Coq and used our
formalization to prove formally a result about a concrete contract. Our formal-
ization of blockchain semantics is flexible in that it accounts both for depth-first
and breadth-first execution order, generalizing existing blockchains and previ-
ous work, while remaining expressive enough to allow us to prove results about
complex contracts. We showed for a Congress – a simplified version of the DAO,
which still has a complex dynamic interaction pattern – that it will never send
out more transactions than have been created in proposals. This is a natural
property that aids in increasing trust that this contract is not vulnerable to
reentrancy like the DAO.

Related work Both Simplicity [7] and Scilla [9] are smart contract languages
with an embedding in Coq. Temporal properties of several smart contracts have
been verified in Scilla [10], although our Congress contract is more complex than
the contracts described in that paper. We are unaware of an implementation of
such a contract in Scilla. Scilla, as an intermediate language which includes
both a functional part and contract calls, uses a CPS translation to ensure that
every call to another contract is done as the last instruction. In our model, the
high-level language and the execution layer are strictly separated.

The formalization of the EVM in F* [3] can be extracted and used to run
EVM tests to show that it is a faithful model of the EVM. However, they do
not prove properties of any concrete contracts. Instead they consider classes of
bugs in smart contracts and try to define general properties that prevent these.
One of these properties, call integrity, is motivated by the DAO and attempts
to capture reentrancy. Intuitively a contract satisfies call integrity if the calls
it makes cannot be affected by code of other contracts. VerX [8] uses temporal
logic and model checking to check a similar property. Such statements are not
hard to state in our framework given Coq’s expressive logic, and it seems this
would be an appropriate property to verify for the Congress. However, even a
correct Congress does not satisfy this property, since it is possible for called
contracts to finish proposals which can cause the Congress to perform calls.
This property could potentially be proven in a version of the Congress that only
allowed proposals to be finished by humans, and not by contracts.



12 Jakob Botsch Nielsen and Bas Spitters

Future work More smart contracts are available in Wang’s PhD thesis [11] and
specifying these to gain experience with using the framework will help uncover
how the framework itself should be improved. In this area it is also interesting
to consider more automatic methods to make proving more productive. For
example, temporal logics like LTL or CTL can be useful to specify properties on
traces and model checking these can be automated; see e.g. [8].

Finally, while our current framework is inspired by and generalizes existing
blockchains, there is still more work to be done to get closer to practical imple-
mentations. Gas is notoriously difficult to deal with in our shallow embedding
because tracking costs of operations can not be done automatically. However,
perhaps a monadic structure can be used here [6]. We have connected our work
with a deep embedding of a functional language [1] and explored pros and cons of
shallow and deep embeddings in that work. We plan to use this deep embedding
to explore reasoning about gas. In the other direction it is interesting to con-
sider extraction of the execution layers we have shown to satisfy our semantics
and extraction of verified contracts into other languages like Liquidity, Oak or
Solidity.

Acknowledgements. We would like to thank the Oak team for discussions.

References

1. Annenkov, D., Nielsen, J.B., Spitters, B.: Towards a smart contract verification
framework in Coq. arXiv:1907.10674 (2019)

2. Annenkov, D., Spitters, B.: Deep and shallow embeddings in Coq. TYPES (2019)
3. Grishchenko, I., Maffei, M., Schneidewind, C.: A semantic framework for the secu-

rity analysis of ethereum smart contracts. In: PoST. pp. 243–269. Springer (2018)
4. Jung, R., Krebbers, R., Jourdan, J.H., Bizjak, A., Birkedal, L., Dreyer, D.: Iris

from the ground up: A modular foundation for higher-order concurrent separation
logic. Journal of Functional Programming 28 (2018)

5. Magri, B., Matt, C., Nielsen, J.B., Tschudi, D.: Afgjort – a semi-synchronous fi-
nality layer for blockchains. Cryptology ePrint 2019/504 (2019)

6. McCarthy, J., Fetscher, B., New, M.S., Feltey, D., Findler, R.B.: A Coq library
for internal verification of running-times. Science of Computer Programming 164,
49–65 (2018)

7. O’Connor, R.: Simplicity: A new language for blockchains. arXiv:1711.03028 (2017)
8. Permenev, A., Dimitrov, D., Tsankov, P., Drachsler-Cohen, D., Vechev, M.: Verx:

Safety verification of smart contracts. Security and Privacy 2020 (2019)
9. Sergey, I., Kumar, A., Hobor, A.: Scilla: a smart contract intermediate-level lan-

guage. arXiv:1801.00687 (2018)
10. Sergey, I., Kumar, A., Hobor, A.: Temporal properties of smart contracts. In:

Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Veri-
fication and Validation. Industrial Practice. pp. 323–338. Springer (2018)

11. Wang, P.: Type System for Resource Bounds with Type-Preserving Compilation.
Ph.D. thesis, MIT (2018)

12. Zahnentferner, J.: Chimeric ledgers: Translating and unifying UTXO-based and
account-based cryptocurrencies. Cryptology ePrint 2018/262 (2018)

https://eprint.iacr.org/2019/504
https://eprint.iacr.org/2018/262

	Smart Contract Interactions in Coq

