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Abstract. Delay functions have the goal of being inherently slow to compute. They have been shown
to be useful for generating public randomness in distributed systems in the presence of a dishonest
majority of network participants; a task that is impossible to solve without such functions, due to
Cleve’s seminal impossibility result (STOC 1986). Currently, little is known on how to construct secure
delay functions or how to analyze the security of newly proposed candidate constructions.
In this work, we explore the time/space tradeoffs of generic attacks for a large class of potential delay
function designs. We consider delay functions FT , which are computed as

FT := F (. . . F (F︸ ︷︷ ︸
T

(x)) . . . ),

where F : [N ] → [N ] is some round function, in the presence of an adversary, who is given an advice
string of some bounded size, has oracle access to F , and would like to compute FT on a random input
x using less than T sequential oracle calls.
We show that for both random and arbitrary functions F there exist non-trivial adversaries, who
successfully evaluate FT using only T/4 sequential calls to oracle F , when given a large enough advice
string. We also show that there exist round functions F for which the adversary cannot compute FT

using less than T/2 sequential queries, unless they receive a large advice string or they can perform a
large number of oracle queries to F in parallel.

1 Introduction

Delay functions, first introduced by Goldschlag and Stubblebine [GS98], are functions that are
inherently slow to compute, no matter how much parallel computing power is available. Slightly
more formally, these are functions that cannot be evaluated by low depth circuits, unless the circuit
size is super-polynomial related to the input length. Treating the depth of a circuit as a proxy for
the physical time needed to evaluate the corresponding function and assuming that parties in a
distributed network can measure time, has fascinating consequences in both theoretical and applied
cryptography.

Boneh et al. [BBBF18], for example, show that delay functions allow for overcoming Cleve’s
impossibility result [Cle86], which states that n parties cannot flip an unbiased coin in a distributed
network, when half or more of the processors are faulty.3 Being able to flip coins securely in the
presence of a dishonest majority is of significant importance for modern day blockchains and fol-
lowing the results of Boneh et al., several constructions of randomness beacons based on delay
functions have been proposed [CMB23]. Motivated by the application outlined above and various
other ones in the context of blockchains, delay functions have received a significant amount of
interest [BBBF18, Pie19, Wes19, EFKP20, MSW20, RS20, ARS24] in recent years.

Unfortunately, right now we do not know how to construct delay functions that are as secure
and as efficient as one might hope for and our ability to assess the security of new candidate delay

3 The general idea of using time-based cryptography to overcome Cleve’s impossibility originally appeared in the
work of Boneh and Naor [BN00].



functions is quite limited. Broadly speaking, there are two main approaches for assessing their
security and both of them are constrained in their power.

The reductionist approach is to base the security of a given delay function upon the presumed
hardness of some computational problem. This approach presupposes that there are “good” prob-
lems to reduce to, but as of now this does not seem to be the case. Delay functions built upon the
assumption that repeated squaring in groups of unknown order cannot be parallelized, an assump-
tion introduced by Cai et al. [CLSY93], all face practical obstacles. They either rely on a trusted
setup or require performing highly efficient (low depth) arithmetic operations over class groups,
which are hard to implement in practice. Alternatively, delay functions can be built upon the sole
assumption that certain non-parallelizable languages and one-way functions exist [ARS24], but the
practicality of the resulting constructions remains yet to be seen.

The cryptanalytic approach is try and break a given candidate delay function and to declare it
secure, when no meaningful attacks have been found for a sufficiently long time. In recent years,
several new delay function designs have been proposed by different researchers [BBBF18, DMPS19,
LM23, KMT22], but many of these proposed constructions have been broken shortly after their
initial publication [PT24, BFH+24, DDJ24]. Although these attacks are bad news for the delay
functions they target, they may also provide valuable insights for developing new, more secure
designs, serving as guiding principles for future delay functions.

The existing attacks [BBBF18, PT24, BFH+24, DDJ24] specifically target the algebraic struc-
ture underlying the delay functions they consider, thus they provide somewhat limited insights into
what more general design principles for delay functions could be.

1.1 Our Contribution

In this work we put on our cryptanalytic hat and explore time/space tradeoffs for generic attacks
on a large class of delay functions. Specifically, we focus on delay functions F T that are comprised
of a round function F : [N ]→ [N ] with [N ] := {0, . . . , N − 1}, which is repeatedly applied to itself.
In other words, we consider delay functions with arbitrary round functions of the form

F T := F (. . . F (F︸ ︷︷ ︸
T

(x)) . . . ).

This class of delay functions encompasses virtually all existing candidate delay functions, with
the exception of a recent work by Abram, Roy, and Simkin [ARS24]. We consider an adversary
A = (A0,A1), who has oracle access to the function F and who aims to evaluate F T (x) on a
random challenge x using less than T sequential calls to the oracle F . The adversary A0 is initially
allowed to perform an unbounded preprocessing step, which is independent of the challenge x, and
return an advice string of size S. This advice string along with a random challenge x is then given
to A1, who aims to output F T (x) using at most T̃ with T̃ < T sequential oracle calls to F , where
during each call the adversary can evaluate F in at most P different points in parallel.

In this work, we explore the relationship between all of the involved parameters, namely between
the size S of the advice string, the number of required and sufficient oracle calls T, T̃ , P , and the
size of the domain N . We show several somewhat complementary results.

First, using rather simple attack ideas, we show that non-trivial adversaries exist for random
and arbitrary functions. For example, we show that for some range of parameters, there exists an
efficient adversary for arbitrary F that successfully computes F T using T̃ = T/4 sequential oracle
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calls with constant success probability. Slightly more formally, this result is captured in the theorem
statement below.

Theorem 1 (Informal). For any round function F : [N ] → [N ], any T ∈ N, there exists an

adversary A = (A0,A1) that outputs an advice string of size S = O
(
N lgN

T

)
, makes at most

T̃ = T/4 sequential and at most P parallel queries, such that and

Pr
[
A1(x, σ) = F T (x) : σ ← A0(F )

]
> 1/2,

where the probability is taken over the choice of x ∈ [N ] and the random coins of the adversary.

The above theorem tells us that for some parameter ranges we have successfully found an
adversarial strategy that works, but it leaves open the question, whether there are much better
attacks for arbitrary functions F .

Using an encoding argument, a proof technique that has been used with great success in data
structure lower bounds [PD06, PV10, Lar12a, Lar12b, BL13, VZ13, CKL18, LS20, LY20, LLYZ23],
we show that there is a limit to how successful an adversary can be. Concretely, we show that there
exist round functions for which any adversary that wants to do less than T/2 sequential oracle calls
needs to have a large advice string and/or needs to perform many parallel oracle calls. Proving this
statement is rather involved and constitutes the main technical contribution of this work. Slightly
more formally, we get the following theorem.

Theorem 2 (Informal). There exist round functions F : [N ]→ [N ], such that for any adversary
A = (A0,A1) with

Pr
[
A1(x, σ) = F T (x) : σ ← A0(F )

]
> 1/2,

either the number of sequential queries T̃ ≥ T/2 or (roughly speaking) it must hold that

(S + T̃ )T̃P = Ω(N).

Are these Attacks practical? We note that the goal of this work is to explore the asymptotic
landscape of time/space tradeoffs for generic attacks on delay functions. We have not optimized the
hidden constants in our results and leave tightening hidden constants and exploring the practicality
of the proposed attacks for future work.

1.2 Related Works

Several works [RSS20, KLX20, RS20] investigate the computational hardness of the repeated squar-
ing assumption of Cai et al. [CLSY93]. Rotem, Segev, and Shahaf [RSS20] rule out a large class of po-
tential constructions of delay functions from known-order cyclic groups. Katz, Loss, and Xu [KLX20]
as well as Rotem and Segev [RS20] show that under certain simplifying assumptions reducing the
sequential time needed for performing repeated squaring in groups of unknown order is as hard as
factoring. Boneh et al. [BBBF18] investigate delay functions based on certain types of permutation
polynomials and explore several kinds of algebraic attacks on those. Peikert and Tang [PT24] show
that a new hardness assumption over lattices, introduced by Lai and Malavolta [LM23] with the
goal of constructing delay functions, is false. All these works have a focus that is different from ours,
as we care about generic attacks, whereas these works focus on highly specific algebraic structures.
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Several different attacks and their time/space tradeoffs have also been explored in the context
of a specific, by now defunct, candidate delay function called Minroot [LMP+23]. Ideas underlying
some of these attacks are similar to those underlying our attacks on arbitrary round functions, but
whereas their attacks and analysis focuses on Minroot specifically (in an idealized model), we show
that this type of attack can be made to work for arbitrary round functions (without an idealized
model).

Somewhat more loosely related, but similar in spirit is the topic of function inversion [Hel80].
Here, an adversary is given oracle access to a function F , can perform an unbounded preprocessing
step to output an advice string of length S and is then asked to invert F on a random output y, i.e.
the adversary is given y and asked to find an x, such that F (x) = y, while making as few queries to
the oracle F as possible. In his seminal work, Hellman [Hel80] proved that non-trivial time/space
tradeoffs exist for random functions and suggested that they also exist for arbitrary functions. A
subsequent work by Fiat and Naor [FN91] has then rigorously proven the time/space tradeoffs for
arbitrary functions. More recently, this topic has seen a renewed interest [CK19, CHM20, GGPS23],
which has led to new bounds.

We stress that despite their superficial similarities, function inversion and our model in this work
are fundamentally different; especially when it comes to proving limits on the power of adversaries
in the respective settings. Lower bounds in function inversion need to argue that, given some advice
string of bounded size, the adversary has to make at least some number of oracle queries in total to
compute the output. In our setting, the output can be computed using only T sequential queries,
but we need to prove that an adversary cannot compute it using significantly less that T sequential
queries, unless it effectively queries most of the domain using parallel queries.

2 Model

Definition 1 (Iterated Functions). Let T ∈ N and let F : [N ]→ [N ] be a function. We define

F T := F (. . . F (F︸ ︷︷ ︸
T

(x)) . . . )

to be the T -wise iterated function with round function F .

Definition 2 (Parallel and Sequential Oracle Queries). Let A be an algorithm with query
access to oracle O. Separate queries by A to O are said to be sequential, if they happen one after
another. They are said to be parallel, if they happen simultaneously. Any algorithm A is allowed to
do both types of queries.

Definition 3 ((S, P, T̃ )-admissible adversaries). Let S, P, T̃ ∈ N. An adversary A = (A0,A1)
is said to be (S, P, T̃ )-admissible, if A0 on some given input always returns a bit string of length
at most S and if A1 with access to oracle O makes at most P parallel queries at once in a single
round and at most T̃ sequential rounds of queries.

Definition 4 (Sequentiality). Let S, P, T ∈ N, let ϵ ∈ R with 0 ≤ ϵ ≤ 1, and let F : [N ] → [N ]
be a round function. We say iterated function F T is (S, P, ϵ)-secure against, if for all (S, P, ϵT )-
admissible adversaries A := (A0,A1), it holds that

Pr
[
ExpSEQA,F,T = 1

]
≤ 1

2
,
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where experiment ExpSEQA is depicted in Figure 1 and where the probability is taken over the random
choice of the challenge.

ExpSEQA,F,T

1 : σ ← A0(F )

2 : x← [N ]

3 : y ← AF
1 (σ, x)

4 : if y = FT (x)

5 : return 1

6 : else

7 : return 0

Fig. 1. The delay function sequentiality experiment

Definition 5 (Evaluation Trace). Let T ∈ N, let F : [N ]→ [N ], and let x ∈ [N ]. The evaluation
trace of iterated function F T on input x is defined as

Trace(F T , x) := {x, F (x), F (F (x)), . . . , F T (x)}.

3 Upper Bounds

In this section, we present several simple adversarial strategies. In Section 3.1, we show that when F
is random and when the number of required iterations T is large enough, then exists an adversary
that can compute F T in T/4 steps using no preprocessing at all. In Section 3.2, we then go on
to consider arbitrary round functions F . First we show in Theorem 3 that a sufficient amount of
space allows for an adversary for arbitrary F that uses no parallelism, but only does T/4 sequential
queries. We then show in Theorem 5 how to exploit parallelism to reduce the size of the required
advice string at the cost of also now requiring the adversary to perform 3T/4 sequential steps.

3.1 Random Round Functions

Definition 6. Let F : [N ] → [N ] be a uniformly random function. Then for any T ≥ 8 ·
√
N , the

iterated function F T is not (0, 1, 1/4)-secure, i.e. there exists a (0, 1, T/4)-admissible adversary A
with

Pr
[
ExpSEQA,F,T = 1

]
>

1

2
.

Proof. To prove the theorem, we will construct an adversary which correctly computes the output of
F T using at most T/4 many sequential queries to oracle F . The idea behind the attack is very simple.
Consider the (directed) functional graph of F , i.e. the graph (V,E) with vertices V := {1, . . . , N}
and edges E := {(u, v) | u ∈ N ∧ F (u) = v}. Evaluating F on a point x corresponds to walking
along an edge in the corresponding functional graph. Our attacker will simply hope that the given
challenge x is either directly on a cycle or on a path into a cycle, such that walking T/4 steps on the
graph starting from x will complete a full walk over the cycle. If this is the case, then the adversary
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does not need to perform any more queries to the oracle F , since computing F T just corresponds
to running laps on the cycle that is known after T/4 sequential queries.

For an input x ∈ [N ], let Ex be the indicator variable that is one, if there exists i ∈ [T/4] with
F i(x) ∈ Trace(F i−1, x), where Trace(F 0, x) := x. For x and i ∈ [T/4], let Ex,i be the indicator
variable that is one, if F i(x) ∈ Trace(F i−1, x). We observe that

Pr [Ex] = Pr
[
Ex,1 ∨ · · · ∨ Ex,T/4

]
= 1− Pr

[
¬Ex,1 ∧ · · · ∧ ¬Ex,T/4

]
.

Since F is a uniformly random function, it holds that

Pr
[
¬Ex,1 ∧ · · · ∧ ¬Ex,T/4

]
= Pr [¬Ex,1] · Pr [¬Ex,2 | ¬Ex,1] · · ·Pr

[
¬Ex,T/4 | ¬Ex,1 ∧ · · · ∧ ¬Ex,T/4−1

]
=

T/4∏
i=1

(
1− i

N

)
≤

T/4∏
i=1

e−i/N = e−1/N ·
∑T/4

i=1 i ≤ e−
T2

32N .

Plugging in the bound for T from the theorem statement, we get that

Pr [Ex] ≥ 1− e−2 > 1/2.

Finally, we observe that, if Ex happens, then

F T (x) ∈ Trace(F T , x) = Trace(F T/4, x),

and the adversary can simply retrieve the output F T (x) from the already computed partial trace,
without querying the oracle F any more. ⊓⊔

3.2 Arbitrary Round Functions

Theorem 3. For any T ∈ N and any F : [N ] → [N ], there exists a (8N lgN
T , 1, T/4)-admissible

adversary A with

Pr
[
ExpSEQA,F,T = 1

]
>

1

2
.

Proof. To prove the theorem statement, we construct a (8N lgN
T , 1, T/4)-admissible adversary A =

(A0,A1). During preprocessing, adversary A0 picks xi ∈ [N ] for i ∈ [4N/T ] independently and
uniformly at random and stores (xi, F

3T/4(xi)). The advice string σ is the set of these pairs. The
bit length of the advice string produced by A0 is 8N lgN

T .
Upon receiving a challenge x ∈ [N ], adversary A1 checks whether advice σ contains the pair

(x, F 3T/4(x)). If σ contains the pair, then A1 uses T/4 sequential calls to oracle F to compute
F T (x) from the stored value F 3T/4(x). If σ does not contain the pair, then A1 computes F (x) and
checks whether σ contains (F (x), F 3T/4(F (x)) and proceeds as above. A1 repeats this process until
they match a pair in σ or until they compute F T/4(x) from x using T/4 sequential calls. If no pair
was matched at this point, then A1 checks whether

∣∣Trace(F T/4, x)
∣∣ < T/4+1. If this is the case,

then the evaluation trace contains repeated values, meaning that the iterated evaluation is in a
cycle in the functional graph of F and thus A1 can compute F T (x) from the existing trace, without
querying the oracle F any further. If, however,

∣∣Trace(F T/4, x)
∣∣ = T/4 + 1, then A1 outputs ⊥

and aborts. It is clear that A1 either correctly computes F T (x) with T/4 sequential calls to F or
outputs ⊥.
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Let us analyze the success probability of the adversary above. Let hit be the event that for some
value z ∈ Trace(F T/4, x), it holds that (z, F T/4(z)) ∈ σ and without loss of generality, we now
assume that

∣∣Trace(F T/4, x)
∣∣ = T/4+1, as the the adversary wins trivially otherwise. To win the

sequentiality security experiment, the adversary needs

Pr [hit] > 1/2,

where the probability is taken over the random choices of A0 and the choice of the challenge x.
To analyze this probability, we observe that the choice of σ is independent of x and the corre-

sponding evaluation trace. We can therefore consider the equivalent experiment of first picking x,
computing the corresponding evaluation trace up to T/4, and then selecting pairs for σ uniformly
at random. Then, we get that

Pr [¬hit] <
(
1− (T/4)

N

)4N/T

≤
(
e−T/4

)4/T
= e−1 < 1/2.

Thus it follows that the adversary A will be successful with probability strictly greater than half.
⊓⊔

Corollary 4. Let T ∈ N. For any iterated function F T : [N ] → [N ] that is (S, 1, 1/4)-secure, it
must hold that S · T ∈ O(N lgN).

Let us now explore how the ability to do parallel queries can be exploited.

Theorem 5. Let T, P ∈ N and let S = 6 (N/T − P ) lgN . For any round function F : [N ]→ [N ],
there exists a (S, P + 1, 2T/3)-admissible adversary A with

Pr
[
ExpSEQA,F,T = 1

]
>

1

2
.

Proof. The to space constraints, the proof is deferred to Section A.

Corollary 6. Let T, P ∈ N. For any iterated function F T : [N ]→ [N ] that is (S, P+1, 2/3)-secure,
it must hold that (S + P ) · T ∈ O(N lgN).

4 Lower Bound

After having established that adversaries with large enough advice and sufficient sequential and
parallel time can win the iterated function security experiment with probability greater than 1/2
no matter the round function F , let us now show the converse. That is, there exist functions F for
which the adversary cannot evaluate F T using T̃ ≤ T/2 sequential oracle calls, unless they have
many bits of advice and/or perform many calls in parallel.

For the purpose of this lower bound, it will be convenient to view the adversary A as a data
structure D of S ≪ N bits, such that for a uniform random x ∈ [N ], it allows for quickly computing
F T (x). We require D to return the correct result on a random input with probability at least 1/2.
We now show the following theorem.

Theorem 7. For N ≥ c, where c ∈ N is a large enough constant, there exists a functions F :
[N ] → [N ], such that any data structure D that answers queries F T (x) on uniformly random
inputs x correctly with probability at least 1/2, must either have T̃ ≥ T/2 or satisfy

(S + T̃ lgN)max{T̃P lg5(T̃ ), T} = Ω(N).

To prove the theorem statement, let us define a hard distribution over round functions F .
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Hard Input Distribution. Let the round function F be obtained by drawing a uniform random
permutation π with a single cycle over the elements {1, . . . , N − 1} and letting F(0) = π(1),
F(F(0)) = π(2), Fk(0) = π(k) for 1 ≤ k ≤ N − 1 and FN (0) = 0. The function F is thus obtained
by drawing a uniform random directed cycle on the elements/nodes [N ] and letting F(x) be the
successor of the node x on the cycle.

Henceforth, we thus think of the problem as if we are given a uniform random directed cycle
on the elements [N ] as input, and we get to store S bits. A query is a uniform random element
x ∈ [N ]. We then have T̃ (sequential) rounds of evaluating the successor of P nodes. The goal is to
determine the T -th successor of x along the cycle. We use Fi(x) to denote the i-th successor of x
along the cycle.

Proof Framework. We now introduce the main ideas and general framework used to prove our lower
bound. On an intuitive level, if T̃ < T , then the data structure has an insufficient number of rounds
of oracle calls to F to merely follow the “successor pointers” on the cycle, starting from x, then
F(x), F(F(x)) and so forth. Hence it must either “guess” intermediate nodes between x and FT (x)
by randomly querying elements in [N ], or it must use the S bits of advice to store “short cuts”. The
former strategy requires a large number of total queries, i.e. T̃ ·P must be large. The latter strategy
requires many advice bits, i.e. S must be large. To formalize this, we want to argue that without
many queries and advice, the data structure must be very lucky if it is to correctly compute FT (x).
Turning this into a solid argument is however far from trivial. Our approach for doing so is based
on an encoding argument, a technique which has been used to great success in data structure lower
bounds, see e.g. [PD06, PV10, Lar12a, Lar12b, BL13, VZ13, CKL18, LS20, LY20, LLYZ23].

The general idea of an encoding argument is to show that an efficient data structure D implies
an efficient binary encoding of a randomly chosen input cycle/function F. We view such an encoding
as consisting of two parts, an encoder and a decoder. The encoder receives F as input and must
send a prefix-free message to the decoder. The decoder must be able to uniquely recover F from
the message. If H(·) denotes binary Shannon entropy, then it follows from Shannon’s source coding
theorem that the expected length of the message must be at least H(F) = lg((N − 1)!) bits. The
key step is now to show that a too efficient data structure D, can be used to give an encoding into
fewer bits, yielding an information theoretic contradiction.

To simplify our proof, we make two further modifications to this framework. First, our lower
bound holds also for randomized data structures D that errs with probability up to 1/2 on any
given input-query pair (F, x). By Yao’s principle (fixing the random coins), this also implies the
existence of a deterministic data structure with the same T̃ , P, S that errs with probability at most
1/2 over the random choice of F and a uniform random query X ∈ [N ]. We thus assume D is a
deterministic data structure with this property.

Next, it will be convenient for the encoder and decoder to agree on a set of random queries.
We thus let the encoder and decoder share access to B uniform random and independently chosen
elements X1, . . . ,XB ∈ [N ] for a B ≤ N/(8T̃ ) to be chosen later. By independence, we have
H(F | X1, · · · ,XB) = H(F) = lg((N − 1)!). It follows that any prefix free encoding of F must use
at least lg((N−1)!) bits in expectation, even if the encoder and decoder share access to X1, . . . ,XB.

4.1 Overall Encoding Scheme

With the encoding framework introduced above, we now present the overall ideas in our encoding
scheme. Our strategy is to show that being able to answer the random queries X1, . . . ,XB on F

8



reveals Ω̃(B) bits of information about F. If a data structure D has only S bits of advice, this will
eventually lead to a contradiction if B is sufficiently larger than S. However for this claim to be
true, we need that many of the queries X1, . . . ,XB are answered correctly, and that the queries
are sufficiently different. Intuitively, if Xi and Xj are two queries close to each other on the cycle
defining F, then answering both of them may reuse evaluations of F and thus reveal little or no
new information. With these considerations in mind, we thus define an interesting input.

Definition 7. We say that F,X1, . . . ,XB is an interesting input for a data structure D with T̃
sequential queries, if there exists m ≥ B/8 distinct indices i1, . . . , im ∈ {1, . . . , B} such that Xij is

answered correctly by D on input F for every ij and Xij ̸= Fk(Xh) for any 1 ≤ k ≤ 2T̃ and h ̸= ij.
We say such an index ij is useful.

Notice the crucial property of our definition requiring that Xij ̸= Fk(Xh) for any 1 ≤ k ≤ 2T̃ .
This ensures that even if D evaluates F(Xi) in round one for every i, then F(F(Xi)) in round two
and so forth for T̃ rounds, there will be no overlap in the discovered nodes as the Xi’s are spaced
by at least 2T̃ on the cycle. We will later show that many inputs are interesting.

In our encoding, we will consider the function evaluations F(X) made by the data structure
D implemented on F when the queries are X1, . . . ,XB. Let us denote by Yi

1, . . . ,Y
i
B·P ∈ [N ] the

list of function evaluations made by D in the i-th sequential round when answering the queries
X1, . . . ,XB. That is, in the i-th round, D evaluates F(Yi

1), . . . ,F(Y
i
BP ). We order the evaluations

such that (i, j) < (i′, j′) if either i < i′ or if i = i′ and j < j′.

With the interpretation of F as a cycle, each function evaluation F(Yi
j) made byD discovers one

directed edge (Yi
j ,F(Y

i
j)) on the cycle. We define the view Vi

j of D after evaluations Y1
1, . . . ,Y

i
j−1

as all discovered edges (Yi′
j′ ,F(Y

i′
j′)) after the function evaluations F(Yi′

j′) with (1, 1) ≤ (i′, j′) <
(i, j).

The edges in a view Vi
j naturally reveal chains of nodes on the cycle corresponding to F.

The first element on a chain is called the head, and is the only element on the chain for which
its predecessor in F has not yet been discovered (the predecessor of an X is the Y such that
F(Y ) = X). The tail is likewise the only element on the chain for which its successor has not been
discovered. For a node X ∈ [N ], we let cij(X) denote the list of nodes on the chain containing X in

Vi
j . The list is ordered in the natural ordering with the head first and the tail last. Observe that

in the view V1
1 corresponding to before any function evaluations are made, all nodes X reside in a

singleton chain c11(X) = X. We need to also count the number of nodes on the chain from X and
until the tail of the chain. Let tij(X) denote this number of nodes. Note that tij(X) = 1 if X is the

tail of cij(X) and tij(X) = |cij(X)| if X is the head.

With these definitions, we now take two alternative approaches to encoding F depending on

the chains in the final view V∞ := VT̃
BP+1. Note that the final view corresponds to when the data

structure D has finished answering all queries X1, . . . ,XB. For an interesting input F,X1, . . . ,XB,
let I = {I1, . . . , IB/8} be the first (i.e. of smallest values) B/8 useful indices. If at least half the

indices j ∈ I have |t∞(Xj)| := |tT̃BP+1(Xj)| = |tT̃+1
1 (Xj)| > 2T̃ , then we say the final view has long

chains. Otherwise, we say it has short chains. We present a different encoding in these two cases.
The overall encoding strategy described above is shown as Algorithm 1, where bin(z) for an integer
z promised to be in [2k] is a length-k binary encoding of the integer z and a◦ b is the concatenation
of binary strings a and b.
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Algorithm 1: Encode(F,X1, . . . , XB, D)
Input: Function F : [N ]→ [N ] corresponding to a cycle, queries X1, . . . , XB ∈ [N ], data structure D.
Result: Prefix free encoding of F (binary string).

1 Build D on F .
2 if (F,X1, . . . , XB) is not an interesting input for D then
3 Interpret F as an integer f in [(N − 1)!].
4 return 0 ◦ bin(f)
5 Let a be the S bits of advice of D on input F .
6 Let I = {I1, . . . , IB/8} be the first B/8 useful indices in {1, . . . , B}.
7 Execute all queries X1, . . . , XB on D and compute views V i

j for all 1 ≤ i ≤ T̃ and 1 ≤ j ≤ BP + 1.

8 Let L ⊆ I be the set of indices j ∈ I such that |t∞(Xj)| > 2T̃ .
9 if |L| < B/16 then

10 return 10 ◦ a ◦ EncodeShortChains(F,X1, . . . , XB , I \ L,D)
11 else
12 return 11 ◦ a ◦ EncodeLongChains(F,X1, . . . , XB , L,D)

The encoding procedure is accompanied by a decoding/reconstruction procedure, shown as
Algorithm 2. In the decoding procedure, we use the notation b[i] for a binary string b ∈ {0, 1}∗
to denote the i-th bit of b, with b[0] being the first bit. We use the notation b[i : j] to denote
b[i] ◦ · · · ◦ b[j] and we use b[i :∞] to denote the suffix of b starting at the i-th bit.

Algorithm 2: Decode(b,X1, . . . , XB, D)
Input: binary string b ∈ {0, 1}∗ with b =Encode(F,X1, . . . , XB , D) for some F : [N ]→ [N ] corresponding to a cycle,

queries X1, . . . , XB ∈ [N ], data structure D.
Result: The function F : [N ]→ [N ].

1 if b[0] = 0 then
2 Interpret b[1 :∞] as an integer f in [(N − 1)!].
3 return F corresponding to f

4 Let a = b[2 : 1 + S].
5 if b[1] = 0 then
6 return DecodeShortChains(b[2 + S,∞], a,X1, . . . , XB , D)
7 else
8 return DecodeLongChains(b[2 + S,∞], a,X1, . . . , XB , D)

In the next sections, we give the two encoding and decoding procedures for the cases of short
and long chains. The number of bits used by the two encoding procedures is shown in the following
the lemmas.

Lemma 8. If N ≥ 27, BT̃P ≤ N/4 and B(T + 1) ≤ N , then the encoding length of En-
codeShortChains is no more than

lg((N − 1)!) + 6 + 2 lgN −B/16
bits.

Lemma 9. If BT̃P lg5(4T̃ ) ≤ N/220, then the encoding length of EncodeLongChains is no
more than

lg((N − 1)!) + 1 + T̃ (1 + lgN)−B/32
bits.

We will prove the two results in the following sections and instead proceed to analyse the
expected length of the encoding and derive the lower bound.
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First, observe that Encode adds 2 + S bits to encoding produced by either EncodeShort-
Chains or EncodeLongChains. The savings of B/16 or B/32 in Lemma 8 and Lemma 9 must
be enough to make up for this as well as the additional bits in the two lemmas. We thus set
B = 32(S + T̃ (1 + lgN) + 22). We conclude that either (S + T̃ lgN)T̃P lg5(T̃ ) = Ω(N), or
(S + T̃ lgN)T = Ω(N), or both encodings use no more than lg((N − 1)!)− 22 bits.

Assume for the sake of contradiction that the encodings use no more than lg((N − 1)!)−S− 22
bits. If E denotes the event that the random input F,X1, . . . ,XB is interesting, the expected length
of the encoding is the bounded by

1 + (1− Pr[E])(1 + lg((N − 1)!)) + Pr[E](S + lg((N − 1)!)− S − 22)

≤2 + lg((N − 1)!)− Pr[E]22.

We now invoke the following observation to show that the input is interesting with good probability:

Observation 8. For any data structure D, the random input F,X1, . . . ,XB is an interesting input
with probability at least 1/7.

Inserting this bound for Pr[E] gives an expected encoding length of at most 2+lg((N−1)!)−22/7 <
lg((N − 1)!), i.e. a contradiction. We thus conclude that either (S + T̃ lgN)T̃P lg5(T̃ ) = Ω(N), or
(S + T̃ lgN)T = Ω(N). This proves Theorem 7.

We conclude this section by proving the above observation regarding the probability of obtaining
an interesting input.

Proof (of Observation 8). Consider a fixed index i ∈ {1, . . . , B}. Since Xi is uniform random in
[N ], it follows from the guarantees of D that Xi is answered correctly with probability at least 1/2
over the choice of F. At the same time, conditioned on X1, . . . ,Xi−1,Xi+1, . . . ,XB, we have that
Xi is still uniform random in N . Hence Xi ̸= Fk(Xh) for all 1 ≤ k ≤ 2p and h ̸= i with probability
at least (N − 2BT̃ )/N = 1− 2BT̃/N ≥ 1− 1/4. A union bound implies that Xi is both answered
correctly and has Xi ̸= Fk(Xh) for all 1 ≤ k ≤ t and h ̸= i with probability at least 1/4 (i.e. i is
useful). The expected number of useful i is thus at least B/4. This also implies that the expected
number of i that is not useful is no more than 3B/4. By Markov’s inequality, the probability that
there are more than 7B/8 i that are not useful is thus at most (3/4)/(7/8) = 6/7.

4.2 Encoding with Short Chains

In this section, we describe the encoding and decoding procedures for the case when the final view
has short chains. Recall that this implies the existence of a subset I ′ ⊆ I with |I ′| = B/16 such
that for all j ∈ I ′, we have |t∞(Xj)| ≤ 2T̃ . The key observation is that for every j ∈ I ′, the
chain t∞(Xj) containing Xj in the final view is different from the chain t∞(F T (Xj)) containing

the answer F T (Xj) to the query Xj . This is because T is assumed larger than 2T̃ and less than 2T̃
nodes succeed Xj on its chain. That they are on different chains intuitively means that the answer
to the query Xj reveals new information not discovered while evaluating the function F . This is
precisely what we exploit to compress F . In our encoding, we assume an ordering on the chains in
a view V i

j . The concrete ordering is not important, as long as it is consistent with the ordering used
in decoding. One choice could be to order them based on the indices of the head of the chains, i.e.
a smaller index head means earlier in the ordering.

The encoding procedure is shown as Algorithm 3 and we will describe the ideas in the encoding
by refering to the pseudocode.
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Algorithm 3: EncodeShortChains(F,X1, . . . , XB, I, D)
Input: Function F : [N ]→ [N ] corresponding to a cycle, queries X1, . . . , XB ∈ [N ], indices I ⊆ {1, . . . , B} with

|I| ≥ B/16, data structure D.
Result: Prefix free encoding of F (binary string).

1 Build D on F .

2 Execute all queries X1, . . . , XB on D and compute views V i
j for all 1 ≤ i ≤ T̃ and 1 ≤ j ≤ BP .

3 Let I′ ⊆ I be the first B/16 indices in I.
4 Let b← bin(I′) be a binary encoding of I′ as a subset of the indices {1, . . . , B} using ⌈lg

( B
B/16

)
⌉ bits.

5 Let m ∈ [N ] be the number of chains in V ∞. Update b← b ◦ bin(m).
6 Let L be an initially empty list of indices.

7 for i = 1, . . . , T̃ do
8 for j = 1, . . . , BP do
9 if Y i

j is the tail of the chain cij(Y
i
j ) then

10 Append the rank rij of cij(F (Y i
j )) among all chains in V i

j \ {cij(Y i
j )} to L.

11 Interpret the list L as a number ℓ ∈ [(N − 1)(N − 2) · · ·m] and update b← b ◦ bin(ℓ).
12 Let V ⋆ ← V ∞ equal the final view and c⋆(X) denote the chain in V ⋆ containing a node X ∈ [N ].
13 Let K be an initially empty list of indices.
14 for i = 1, . . . , B/16 do
15 Let j be the i-th index in I′.
16 while c⋆(Xj) ̸= c⋆(FT (Xj)) do
17 Let x← t⋆(Xj) denote the number of nodes from Xj and until the tail of c⋆(Xj).

18 Let y ← |c⋆(FT (Xj))| − t⋆(FT (Xj)) denote the number of nodes from the head and up just before FT (Xj)

in c⋆(FT (Xj)).
19 if x+ y = T then
20 Add the edge from the tail of c⋆(Xj) to the head of c⋆(FT (Xj)) and merge the chains in V ⋆.
21 else
22 Append the rank in V ⋆ \ {c⋆(Xj)} of the chain whose head is the successor of the tail in c⋆(Xj) to K.

Then merge the two chains in V ⋆ by inserting the corresponding edge.
23 Update b← b ◦ bin(|K|) with |K| ∈ [N ].
24 Interpret the list K as a number k ∈ [(m− 1)(m− 2) · · · (m− |K|)] and update b← b ◦ bin(k).
25 b← b ◦ EncodeRemainingView(F, V ⋆).
26 return b

Algorithm 4: EncodeRemainingView(F, V ⋆)

Input: F : [N ]→ [N ] corresponding to a cycle, view V ⋆ consistent with F .
Result: Prefix free encoding of F from V ⋆.

1 Let L be an initially empty list of indices.
2 Let n← |V ⋆| − 1.
3 for i = 1, . . . , n do
4 Let c1 be the chain in V ⋆ with the smallest rank.
5 Append the rank in V ⋆ \ {c1} of the chain whose head is the successor of the tail in c1 to L. Then merge

the two chains in V ⋆ by inserting the corresponding edge.
6 Interpret the list L as a number ℓ ∈ [(|V ⋆| − 1)(|V ⋆| − 2) · · · 1].
7 return bin(ℓ)
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The first part of EncodeShortChains (Algorithm 3) constructs the data structure D and
executes the queries to compute the different views V i

j (lines 1-2). We then select the first B/16
indices I ′ ⊆ I. Recall that when Encode invokes EncodeShortChains, the list I contains indices
j of queries that are answered correctly and where |t∞(Xj)| ≤ 2T̃ < T . In line 4 we then encode
these indices I ′ such that the decoder will be able to recover these indices.

In lines 5-11 we now encode the final view V∞ such that the decoder may reconstruct this view.
The way we encode it, is to simply write down the edges discovered while D performs the function
evaluations F (Y i

j ) during its execution. This will allow the decoder to simulate the execution of D
as well. Up to this point, there is no saving of bits in the encoding.

Lines 12-23 if where we finally exploit that D managed to answer the queries while not con-
necting the chains c∞(Xj) and c∞(F T (Xj)). Concretely, the for-loop iterations over all the queries
in I ′ in turn. For each one, it repeatedly merges chains (lines 16-22) until Xj and F T (Xj) are on
the same chain. The crucial point is that when the number of elements succeeding Xj on its chain,
plus the number of elements up to and including F T (Xj) on its chain equals T , then we know that
there must be an edge from the tail of the chain containing Xj to the head of the other chain. This
saves us the encoding of an edge, i.e. the information is contained in the answer to the query. The
second crucial point is that we save the encoding of one edge for every single index in I ′. This is
because the indices in I ′ are useful and thus spaced by at least T . Furthermore, all edges inserted
in the while-loop for a fixed Xj are inserted between Xj and F T (Xj).

Finally, we complete the encoding in line 25 by invoking EncodeRemainingView. This process
simply encodes how to merge the remaining chains using ⌈lg((|V ⋆| − 1)!)⌉ bits for a view V ⋆ with
|V ⋆| many chains.

With the above in mind, the decoding procedure is shown as Algorithm 5.

We briefly discuss it while refering to the pseudocode. In lines 1-3, we read off I ′, |V∞| and
the list L produced by EncodeShortChains. Lines 4-9 now simulates the execution of the data
structure D on queries X1, . . . , XB on the function F . Note that this is done without direct access to
F . Instead, since the decoding procedure is provided with the advice bits a, it can first determine all
function evaluations thatD would make in the first sequential round. That is, we know Y 1

1 , . . . , Y
1
BP .

Now in order to simulate D, we need to know the answer to all the function evaluations F (Y 1
i ). But

this information is precisely what is stored in L. Once we know the results of all function evaluation
in the first sequential round, we can continue simulating D for the second round and so forth until
completion. This obtains the final view V∞. Furthermore, and critically, we also finish simulating
D on all the queries. Since all queries in I ′ are answered correctly by D, the decoding procedure
now knows F T (Xj) for every j ∈ I ′ (line 10).

In lines 11-21 we now re-execute all the merges of chains that EncodeShortChains performed
(in lines 14-22 of that procedure). The key observation here is that we know the query answers and
thus can still carry out the test x+ y = T?. We thus reconstruct V ⋆ as it was during encoding, just
before invoking EncodeRemainingView. We feed this V ⋆ to DecodeRemainingView, which
merely reads off the merges necessary to reduce the number of chains in V ⋆ to one. This also
uniquely determines the function F .

We have thus argued correctness of our encoding and decoding procedure for handling views
with short chains. Let us next analyse the size of the encoding.
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Algorithm 5: DecodeShortChains(b, a,X1, . . . , XB, D)
Input: binary string b ∈ {0, 1}∗ with b =EncodeShortChains(F, a,X1, . . . , XB , I \ L,D) for some F : [N ]→ [N ]

corresponding to a cycle, advice a of data structure D on input F , queries X1, . . . , XB ∈ [N ], data structure
D.

Result: The function F : [N ]→ [N ].

1 Read and remove first ⌈lg
( B
B/16

)
⌉ bits of b to recover I′.

2 Read and remove first ⌈lgN⌉ bits of b to recover m = |V ∞|.
3 Read and remove first ⌈lg((N − 1)!/(m− 1)!)⌉ bits of b to recover L.

4 for i = 1, . . . , T̃ do

5 From a, queries X1, . . . , XB , Y i′
j and F (Y i′

j ) with i′ < i, simulate D to determine all Y i
j , i.e. all function

evaluation made by D in sequential round i. This also determines the view V i−1
BP+1 (end of round i− 1).

6 for j = 1, . . . , BP do
7 if Y i

j is the tail of the chain cij(Y
i
j ) then

8 Read and remove the first element rij of L. We learn that F (Y i
j ) is the head of the chain of rank rij in

V i
j \ {cij(Y i

j )}. We can thus compute F (Y i
j ) and the next view V i

j+1.

9 Let V ⋆ ← V ∞ equal the final view.

10 From simulating D on queries Xj , compute FT (Xj) for every j ∈ I′.
11 Read and remove first ⌈lgN⌉ bits to recover |K|.
12 Read and remove first ⌈lg((m− 1)!/(m− |K| − 1)!)⌉ bits to recover K.
13 for i = 1, . . . , B/16 do
14 Let j be the i-th index in I′.
15 while c⋆(Xj) ̸= c⋆(FT (Xj)) do
16 Let x← t⋆(Xj).

17 Let y ← |c⋆(FT (Xj))| − t⋆(FT (Xj)).
18 if x+ y = T then
19 Add the edge from the tail of c⋆(Xj) to the head of c⋆(FT (Xj)) and merge the chains in V ⋆.
20 else
21 Remove the first element from K. This determines the chain whose head is the successor of the tail in

c⋆(Xj). Then merge the two chains in V ⋆ by inserting the corresponding edge.

22 return DecodeRemainingView(b, V ⋆)

Algorithm 6: DecodeRemainingView(b, V ⋆)
Input: binary string b ∈ {0, 1}∗, view V ⋆ consistent with F .
Result: The function F : [N ]→ [N ].

1 Read the ⌈lg((|V ⋆| − 1)!⌉ bits in b to recover L.
2 Let n← |V ⋆| − 1.
3 for i = 1, . . . , n do
4 Let c1 be the chain in V ⋆ with the smallest rank.
5 Remove the first element r of L and interpret it as the rank in V ⋆ \ {c1} of the chain whose head is the successor

of the tail in c1 to L. Then merge the two chains in V ⋆ by inserting the corresponding edge.
6 return The unique function F consistent with the single chain in V ⋆
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Encoding Size with Short Chains. Examining the EncodeShortChains procedure, we see that it
writes ⌈

lg

(
B

B/16

)⌉
+ 2⌈lgN⌉+

⌈
lg

(
(N − 1)!

(m− 1)!

)⌉
+

⌈
lg

(
(m− 1)!

(m− |K| − 1)!

)⌉
+⌈lg((|V ⋆| − 1)!)⌉

≤6 + lg

(
B

B/16

)
+ 2 lgN + lg

(
(N − 1)!

(m− 1)!

)
+ lg

(
(m− 1)!

(m− |K| − 1)!

)
+ lg((|V ⋆| − 1)!)

≤6 + (B/16) lg(16e) + 2 lgN + lg

(
(N − 1)!

(m− |K| − 1)!

)
+ lg((|V ⋆| − 1)!)

bits, where V ⋆ here denotes the V ⋆ that is passed to the procedure EncodeRemainingView. Now
observe that |V ⋆| = m−|K|−B/16. This is because the loop in lines 13-21 of EncodeShortChains
performs precisely |K| merges that add an element to K and one merge for each index i ∈ I ′ which
does not add to K. As mentioned earlier, this is precisely where our saving comes from. The above
is thus upper bounded by

6 + (B/16) lg(16e) + 2 lgN + lg

(
(N − 1)!

(m− |K| − 1)!

)
+ lg((m− |K| −B/16− 1)!)

≤ lg((N − 1)!) + 6 + (B/16) lg(16e) + 2 lgN − (B/16) lg(m− |K| −B/16).

Since m is the number of chains in the final view V∞ and D performs at most BT̃P function
evaluations throughout the encoding procedure, we have m ≥ N − BT̃P . At the same time, we
have that the loop in lines 14-22 of EncodeShortChains only adds elements to K when merging
chains within the first T steps of Xj on the cycle for j ∈ I ′. Hence |K| ≤ (B/16)T . We thus get a
number of bits of at most

lg((N − 1)!) + 6 + 2 lgN − (B/16) lg((N −BT̃P − (B/16)(T + 1))/(16e)).

If N ≥ 27, BT̃P ≤ N/4 and B(T + 1) ≤ N , then lg((N − BT̃P − (B/16)(T + 1))/(16e)) ≥
lg((N/2)/(16e)) ≥ 1 and the above is at most lg((N − 1)!) + 6 + 2 lgN − (B/16). This completes
the proof of Lemma 8.

4.3 Encoding with Long Chains

In this section, we describe the encoding and decoding procedures for the case when the final view
has long chains. Recall that this implies the existence of a subset I ′ ⊆ I with |I ′| = B/16 such
that for all j ∈ I ′, we have |t∞(Xj)| > 2T̃ . Our main observation is that chains may only grow this
long if some of the function evaluations F (Y i

j ) made by D return nodes on the cycle that reside on

chains of length longer than 1. Since there are no more than BT̃P many chains of length longer
than 1, this allows us to save bits in encoding such F (Y i

j ). Unlike in the short chains case, the
savings in compression size thus come from encoding the view V∞ resulting from executing the
queries X1, . . . , Xn on D.
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Algorithm 7: EncodeLongChains(F,X1, . . . , XB, I, D)
Input: Function F : [N ]→ [N ] corresponding to a cycle, queries X1, . . . , XB ∈ [N ], indices I ⊆ {1, . . . , B} with

|I| ≥ B/16, data structure D.
Result: Prefix free encoding of F (binary string).

1 Build D on F .

2 Execute all queries X1, . . . , XB on D and compute views V i
j for all 1 ≤ i ≤ T̃ and 1 ≤ j ≤ BP .

3 Let I′ ⊆ I be the first B/16 indices in I.
4 Let b← bin(I′) be a binary encoding of I′ as a subset of the indices {1, . . . , B} using ⌈lg

( B
B/16

)
⌉ bits.

5 Let ℓij ← min{2T̃ + 1, ti+1
1 (Xj)} −min{2T̃ + 1, ti1(Xj)} for each i ∈ {1, . . . , T̃} and j ∈ {1, . . . , B}.

6 for j ∈ I′ do
7 Compute an index hj ∈ {0, . . . , lg(T̃ )− 3} such that there are at least ∆hj

:= 2hj /(hj + 1)2 indices q with

ℓqj − 1 ≥ T̃ /2hj+3 (such hj always exists).

8 Let Shj
⊆ {1, . . . , T̃} be the first ∆hj

indices q with ℓqj − 1 ≥ T̃ /2hj+3.

9 Update b← b ◦ bin(hj) ◦ bin(Shj
), where bin(Shj

) is encoded as a ∆hj
-sized subset of {1, . . . , T̃}.

10 for i = 1, . . . , T̃ do
11 Let Li be an initially empty list of indices.

12 Let V ′ ← V i
1 and use c′(X) and t′(X) as the equivalent definitions of cij and tij for the view V ′.

13 for j ∈ I′ do
14 if i ∈ Shj

then

15 while t′(Xj) ≤ 2T̃ and the tail of c′(Xj) equals Y i
k for some k do

16 Let z ← |c′(F (Y i
k ))|.

17 b← b ◦ binAdapt(⌈lg z⌉).
18 if z > 1 then

19 Let r ∈ [⌊BT̃P/2⌈lg z⌉−1⌋] be the rank of the chain c′(F (Y i
k )) among all chains c in V ′ with

|c| ∈ (2⌈lg z⌉−1, 2⌈lg z⌉].
20 b← b ◦ bin(r).
21 else
22 if the singleton chain c′(F (Y i

k )) = F (Y i
k ) has Y i

ℓ = F (Y i
k ) for some ℓ ∈ [BP ] then

23 b← b ◦ 0 ◦ bin(ℓ).
24 else
25 b← b ◦ 1 ◦ bin(F (Y i

k )) with F (Y i
k ) ∈ [N ].

26 Add the edge from the tail of c′(Xj) to F (Y i
k ) and merge the chains in V ′.

27 for j = 1, . . . , BP do
28 if Y i

j is the tail of the chain c′(Y i
j ) then

29 Append the rank rij of c′(F (Y i
j )) among all chains in V ′ \ {c′(Y i

j )} to Li.

30 Let mi ∈ [N ] denote |Li| and update b← b ◦ bin(mi).
31 Interpret the list Li as a number ℓi ∈ [(|V ′|+mi − 1)(|V ′|+mi − 2) · · · |V ′|] and update b← b ◦ bin(ℓi).
32 b← b ◦ EncodeRemainingView(F, V ∞).
33 return b
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We will next go over the steps of the encoding procedure while referring to the pseudocode
shown in Algorithm 7.

Lines 1-4 are somewhat uneventful. Here we simply start by executing the queries X1, . . . , XB

on D to compute the views V i
j . We then pick the first B/16 indices I ′ among the indices I given as

argument. Recall that Encode invokes EncodeLongChains with I being a set of useful queries
Xj with |t∞(Xj)| > 2T̃ . These are queries in which the data structure managed to grow the length

of its chain by much more than one per sequential round (there are T̃ sequential rounds). The
encoding will exploit this and show that such long chains may be used to compress F .

In line 5, we compute the increase in the number of nodes succeeding Xj in its chain during
sequential round i. The two min-expression ensures that we will only count an increase in number
of nodes while the chain extends no more than 2T̃ beyond Xj . The reason for this cap, is that since
the queries j ∈ I ′ are useful, they are spaced by at least this much on the cycle. This will guarantee
that all edges/function evaluations that we exploit to compress F are disjoint for different Xj ’s.

In lines 6-9, we iterate over the useful j ∈ I ′. For each of these, we look for a “typical” increase in
the number of nodes on Xj ’s chain. Concretely, we determine the indices hj in line 7, guaranteeing
that there are at least ∆hj

:= 2hj/(hj + 1)2 rounds where the chain length grows by at least

T̃ /2hj+3 + 1. At the end of this section, we will show that such an index hj always exists:

Lemma 10. If tT̃+1
1 (Xj) > 2T̃ , then there exists an index hj ∈ {0, . . . , lg(T̃ ) − 3} such that there

are at least ∆hj
:= 2hj/(hj + 1)2 indices i with min{2T̃ + 1, ti+1

1 (Xj)} − min{2T̃ + 1, ti1(Xj)} ≥
T̃ /2hj+3 + 1.

We then encode a number of sequential rounds in which the chain ofXj grows by at least T̃ /2hj+3+1.
The reason for encoding such rounds, is that it is expensive (bit-wise) to encode a round in which
the chain grows. Thus the chain has to grow sufficiently much to afford encoding the round. The
exact details will be clearer when we analyse the encoding length.

In lines 10-31, we now wish to encode the views V i
1 at the beginning of each sequential round.

The overall goal with these steps, is to allow the decoder to recover V∞. The encoding of sequential
round i begins with going over the useful indices in I ′. For each such j, if sequential round i was
one of the rounds where the increase in Xj ’s chain length is sufficiently large, we encode the chain
merges that Xj is involved in. In particular, lines 15-26 encode all function evaluations F (Y i

k ) that
grow the chain of Xj . For each such function evaluation, we check the length of the chain c′(F (Y i

k ))
that we merge with. This length is precisely the increase in the length of Xj ’s chain. If we merge
with a non-singleton (z > 1) chain, we will save bits by encoding the chain c′(F (Y i

k )) as an index
into the set of chains of length in (2⌈lg z⌉−1, 2⌈lg z⌉]. Since any chain with a length in this interval has
at least 2⌈lg z⌉−1 many edges and D makes no more than BT̃P function evaluations in total, the
number of such chains is no more than ⌊BT̃P/2⌈lg z⌉−1⌋. The crucial point is that the number of
bits we spend on encoding the chain drops with the increase z in chain length. If instead we merge
with a singleton chain, we check whether that chain is itself involved in a merge in sequential round
i (line 22). If so, then we know that the head/tail of the singleton chain is one of the Y i

ℓ . Since
there are only BP function evaluations per sequential round, this allows us to save in the encoding
length. Finally, if the singleton is not involved in a merge, we pay an expensive encoding of the
chain (line 25). Fortunately, this will be made up for by the savings in other steps of the encoding.

Notice that in line 17, we encode the value ⌈lg z⌉ above using a special binAdapt(x) encoding.
This encoding is prefix-free and uses a number of bits proportional to the value x ≥ 0. It starts with
⌈lg(x+ 1)⌉ 0’s, followed by a 1. This gives a unary encoding of ⌈lg(x+ 1)⌉. It then has ⌈lg(x+ 1)⌉
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bits giving a binary encoding of x. Decoding such a number is straight forward: read bits until the
first 1 is encountered. This recovers ⌈lg(x + 1)⌉. Then read the next ⌈lg(x + 1)⌉ bits to recover
recover x. The number of bits used to encode an integer x ≥ 0 is thus no more than

2⌈lg(x+ 1)⌉ ≤ 2 + 2 lg(x+ 1).

In lines 27-29 we complete the encoding of all merges taking place in sequential round i. This is
done by going over all Y i

j that still correspond to a tail of a chain and merely encoding the successor

F (Y i
j ) as an index into the remaining chains. This step will make no savings in bits, but also will

not lose any. The crucial point is that upon completing the encoding of one sequential round i, we
have encoded all merges that occur in the round. This will allow the decoder to determine the view
at the beginning of round i+ 1.

Finally, once all T̃ sequential rounds have been completed, we encode the merges necessary for
completing the final view V∞ to a single chain (similarly to the short chains case).

The corresponding decoding procedure, DecodeLongChains, shown as Algorithm 8 simply
reconstructs the views V i

1 in the order produced by the encoding. For completeness, we here outline
the steps. First, in lines 1-4, we recover I ′, hj and Shj

for each j ∈ I ′. With this information, the
decoding procedure can now simulate the i sequential rounds ofD. In round i, we start by processing
all j ∈ I ′ for which i ∈ Shj

. Here we read off (lines 11-23) all the function evaluations/chain merges

that extends the chain of Xj in round i (unless it grows beyond 2T̃ nodes succeeding Xj). In lines
24-28 we then decode all other function evaluations in round i. Note that decoding crucially uses in
line 8 that the decoder has access to the advice a, the queries X1, . . . , XB and the view V i

1 . Since
the view V i

1 contains all edges corresponding to function evaluations in previous sequential rounds,
the decoding procedure can thus simulate D up to round i and determine all function evaluations
F (Y i

j ) made by D in round i. After processing sequential round i, we have recovered all function

evaluations made by D in round i and thus V i+1
1 equals V ′ (as updated in line 29). Finally, we use

the procedure from decoding short chains, DecodeRemainingView (Algorithm 6), to recover F .

Encoding Size with Long Chains. Analysing the encoding length with long chains is a bit more
tricky than with short chains.

Examining EncodeLongChains in Algorithm 7, we first have ⌈lg
(

B
B/16

)
⌉ bits to encode I ′.

For each j ∈ I ′, we use ⌈lg(lg(T̃ )− 2)⌉ bits to encode hj and ⌈lg
(

T̃
∆hj

)
⌉ bits for Shj

. We will argue

that the remaining part of the encoding makes savings that can pay for these costs.
First, observe that upon completion of lines 10-31 in Algorithm 7, we use ⌈lg((|V∞|−1)!)⌉ bits to

encode the merges of the chains in V∞. Encoding the lists Li costs ⌈lg((|V ′i |+mi−1)!/(|V ′i |−1)!)⌉,
where V ′i is the value of V ′ upon reaching line 31 in iteration i of the for-loop. We also pay ⌈lgN⌉
to encode |Li| for each i. The key point is that if we ignore the rounding ⌈·⌉, then all factors in
lg((|V∞|−1)!)+

∑
i lg((|V ′i |+mi−1)!/(|V ′i |−1)!) correspond to terms in lg((N−1)!). Furthermore,

there is precisely one term in (N − 1)! missing for every edge added in line 26. Moreover, each of
these terms is at least |V∞| ≥ N −BT̃P large. If a total of Z edges are added in line 26, we then
have

lg((|V∞| − 1)!) +
∑
i

lg((|V ′i |+mi − 1)!/(|V ′i | − 1)!) ≤ lg((N − 1)!)− Z lg(N −BT̃P ).

Let us now partition these Z edges depending on the index j ∈ I ′ and i ∈ Shj
causing us to add

the edges in line 26. That is, we let Zi
j denote the number of edges added in line 26 for a fixed
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Algorithm 8: DecodeLongChains(b, a,X1, . . . , XB, D)
Input: binary string b ∈ {0, 1}∗ with b =EncodeLongChains(F, a,X1, . . . , XB , I \ L,D) for some F : [N ]→ [N ]

corresponding to a cycle, advice a of data structure D on input F , queries X1, . . . , XB ∈ [N ], data structure
D.

Result: The function F : [N ]→ [N ].

1 Read and remove first ⌈lg
( B
B/16

)
⌉ bits of b to recover I′.

2 for j ∈ I′ do
3 Read and remove first ⌈lg(lg(T̃ ) + 2)⌉ bits to recover hj .

4 Read and remove first ⌈lg
( T̃
∆hj

)
⌉ bits to recover Shj

.

5 Let V 1
1 be the view with all nodes as singleton chains.

6 for i = 1, . . . , T̃ do
7 Let V ′ ← V i

1 and use c′(X) and t′(X) as the equivalent definitions of cij and tij for the view V ′.

8 From V ′ and the advice a, simulate D until sequential round i to determine the function evaluations F (Y i
j ) it

makes in round i.
9 for j ∈ I′ do

10 if i ∈ Shj
then

11 while t′(Xj) ≤ 2T̃ and the tail of c′(Xj) equals Y i
k for some k do

12 Read and remove ⌈lg z⌉ ← |c′(F (Y i
k ))| from b.

13 if ⌈lg z⌉ > 0 then
14 Read and remove the rank r of the chain c′(F (Y i

k )) among all chains c in V ′ with

|c| ∈ (2⌈lg z⌉−1, 2⌈lg z⌉] from b.
15 Add the edge from Y i

k to the head of the chain c′(F (Y i
k )) to V ′ and merge the two chains.

16 else
17 Read and remove the first bit q from b.
18 if q = 0 then
19 Read and remove ⌈lg(BP )⌉ bits from b to recover ℓ such that F (Y i

k ) = Y i
ℓ .

20 Add the edge from Y i
k to Y i

ℓ and merge the two chains.

21 else
22 Read and remove ⌈lg(N)⌉ bits from b to recover F (Y i

k ).

23 Add the edge from Y i
k to F (Y i

k ) and merge the two chains.

24 Read and remove first ⌈lgN⌉ bits to recover mi = |Li|.
25 Read and remove ⌈lg((|V ′|+mi − 1)!/(|V ′| − 1)!)⌉ bits from b to recover Li.
26 for j = 1, . . . , BP do
27 if Y i

j is the tail of the chain c′(Y i
j ) then

28 Read and remove the first element rij of Li. We learn that F (Y i
j ) is the head of the chain of rank rij in

V ′ \ {c′(Y i
j )}. We can thus compute F (Y i

j ), insert the edge from Y i
j to F (Y i

j ) and merge the two

chains in V ′.
29 V i+1

1 ← V ′.

30 V ∞ ← V T̃+1
1 .

31 return DecodeRemainingView(b, V ∞)
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j ∈ I ′ and i ∈ Shj
. We want to argue that the number of bits added to the encoding in lines 15-26

due to this fixed j and i is smaller than Zi
j lg(N −BT̃P ).

For this argument, note that since i ∈ Shj
, we have ℓij := min{2T̃ + 1, ti+1

1 (Xj)} − min{2T̃ +

1, ti1(Xj)} ≥ T̃ /2hj+3 + 1. The total length of the chains corresponding to the Zi
j edges is thus at

least ℓij . Consider one of these Zi
j edges e, and let ze denote the increase in t′(Xj) due to the edge.

The edge first adds binAdapt(⌈lg ze⌉) to the encoding, which we argued above cost no more than
2 + 2 lg(⌈lg ze⌉+ 1) ≤ 2 + 2 lg lg(4ze) bits.

If ze > 1, we then pay ⌈lg(BT̃P/2⌈lg ze⌉−1)⌉ ≤ 2 + lg(BT̃P )− lg ze. The saving due to the edge
e is thus at least lg(N −BT̃P )− lg(24BT̃P lg2(4ze)/ze) bits.

If ze = 1 and we enter line 23, we pay 1+ ⌈lgBP ⌉ ≤ 2+ lgBP for the edge e in line 23, plus the
2+2 lg lg 4 = 4 bits from binAdapt(⌈lg ze⌉). The edge e thus saves at least lg(N−BT̃P )− lg(26BP )
bits.

Comparing the two cases above, we see that the saving per increase in t′(Xj) is lg(N −BT̃P )−
lg(26BP ) in the latter case and (lg(N−BT̃P )−lg(24BT̃P lg2(4ze)/ze))/ze in the former case. Since
the expensive case in line 25 can only occur once (since no further merges occur for the chain),
the above two cases must account for at least ℓij − 1 of the increase in t′(Xj). The total saving is

smallest when this is due to a single edge with ze = ℓij − 1 ≥ T̃ /2hj+3, giving a total saving of at

least lg(N − BT̃P ) − lg(24BT̃P lg2(4T̃ )/(T̃ /2hj+3)) = lg(N − BT̃P ) − lg(2hj+7BP lg2(4T̃ )). The
expensive case in line 25 may happen once, giving a negative saving of lg(N − BT̃P ) − lgN − 1.
The Zi

j edges for the fixed j ∈ I ′ and i ∈ Shj
thus give a saving of at least

lg

(
(N −BT̃P )2

2hj+7BP lg2(4T̃ )N

)

bits. This happens for each of the ∆hj
choices of i ∈ Shj

. Also accounting for the ⌈lg
(

T̃
∆hj

)
⌉ ≤

1 +∆hj
lg(eT̃ /∆hj

) bits spent encoding Shj
now gives a saving of

∆hj
lg

(
(N −BT̃P )2∆hj

e2hj+7T̃BP lg2(4T̃ )N

)
.

Using that ∆hj
= 2hj/(hj + 1)2 and hj ≤ lg(T̃ )− 3, this is at least

∆hj
lg

(
(N −BT̃P )2

e27(hj + 1)2T̃BP lg2(4T̃ )N

)
≥ ∆hj

lg

(
(N −BT̃P )2

e27T̃BP lg4(4T̃ )N

)
.

If we now assume that BT̃P lg5(4T̃ ) ≤ N/220, then the above saving is at least

∆hj
lg

(
(N/2)2

e27N2/(220 lg(4T̃ ))

)
≥ ∆hj

lg(27 lg(4T̃ )) ≥ lg(27 lg(4T̃ )).

Finally accounting for the ⌈lg(lg(T̃ )− 2)⌉ ≤ lg(2 lg(T̃ )) bits spend on encoding hj , we get a saving

of at least lg(27 lg(4T̃ ))− lg(2 lg(T̃ )) ≥ 6 bits for each i ∈ I ′.
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Recalling that we spend ⌈lgN⌉ on encoding |Li| for each i, the total encoding length is thus
bounded by

lg((N − 1)!) +

⌈
lg

(
B

B/16

)⌉
− 6B/16 + 1 + T̃ (1 + lgN).

This is at most

lg((N − 1)!) + 1 + T̃ (1 + lgN)− (B/16) lg(26/(e16))

≤ lg((N − 1)!) + 1 + T̃ (1 + lgN)− (B/32).

This completes the proof of Lemma 9.

The indices hj exist (Proof of Lemma 10). Here we give the proof of Lemma 10 showing that it is
possible to find the indices hj .

Proof (of Lemma 10). Observe that for tT̃+1
1 (Xj) > 2T̃ , we have

T̃∑
i=1

min{2T̃ + 1, ti+1
1 (Xj)} −min{2T̃ + 1, ti1(Xj)} ≥ 2T̃ .

Using δi := min{2T̃ + 1, ti+1
1 (Xj)} −min{2T̃ + 1, ti1(Xj)} for short, this also implies

T̃∑
i=1

(δi − 1) ≥ T̃ . (1)

Now assume for the sake of contradiction that there is no index hj ∈ {0, . . . , lg(T̃ ) − 3} such that

there are at least ∆hj
:= 2hj/(hj + 1)2 indices i with δi ≥ T̃ /2hj+3 + 1. Then we have

T̃∑
i=1

(δi − 1) =

lg(T̃ )−3∑
h=1

∑
i:T̃ /2h+3+1≤δi<T̃/2h+2+1

(δi − 1) +
∑

i:δi≥T̃ /23+1

(δi − 1) .

Observe that ∆0 = 1 and thus our contradictory assumption implies that there are no indices i
with δi ≥ T̃ /23 + 1. We thus upper bound the sum by

T̃∑
i=1

(δi − 1) ≤
lg(T̃ )−3∑
h=1

∑
i:T̃ /2h+3+1≤δi<T̃/2h+2+1

(
T̃ /2h+2 − 1

)

≤
lg(T̃ )−3∑
h=1

(
2h/(h+ 1)2 − 1

)(
T̃ /2h+2 − 1

)

≤ T̃

4

lg(T̃ )−3∑
h=1

1

(h+ 1)2
<

π2T̃

24
< T̃ .

This contradicts (1).
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A Missing Proof of Theorem 5

To prove the theorem statement, we construct a (S, P + 1, 2T/3)-admissible adversaryA = (A0,A1).
During preprocessing, adversary A0 picks xi ∈ [N ] for i ∈ [3N/T −P ] independently and uniformly
at random and stores (xi, F

T/3(xi)). The advice string σ is the set of these pairs. The bit length of
the advice string produced by A0 is 2 lgN (3N/T − P ).

Upon receiving challenge x, adversary A1 picks x1, . . . , xP ∈ [N ] independently and uniformly
at random. Then, A1 computes F T/3(x), F T/3(x1), . . . , F

T/3(xP ) using T/3 sequential and P + 1
parallel queries to oracle F . Let σ̃ := σ ∪ {(xi, F T/3(xi)) | i ∈ [P ]} be the set containing all pairs
computed during preprocessing and computed now.

Now for i ∈ [T/3], the adversaryA1 iteratively keeps computing F T/3+i(x) and checking whether
(F T/3+i(x), F T2/3+i(x)) is contained in σ̃. If, for some i ∈ [T/3] such a pair is found, the adversary
skips from F T/3+i(x) to F T2/3+i(x) and computes F T (x) from there on honestly. If no such pair is
found in these T/3 steps (and the evaluation did not end up in a cycle in the functional graph), then
A1 outputs ⊥ and aborts. If the adversary is successful, it is clear that A1 makes 2T/3 sequential
queries to F .

The analysis of the adversary’s success probability is basically the same as in the previous
proof. Let hit be the event that for some value in z ∈ {F T/3+1(x), . . . , F 2T/3(x)}, it holds that
(z, F T/3(z)) ∈ σ̃. To win the sequentiality security experiment, the adversary needs

Pr [hit] > 1/2,
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where the probability is taken over the random choices of A0, A1, and the choice of the challenge
x.

Pr [¬hit] =
(
1− (T/3)

N

)(3N/T−P )+P

=

(
1− (T/3)

N

)3N/T

≤
(
e−T/3

)3/T
=e−1 < 1/2.

Thus it follows that the adversary A will be successful with probability strictly greater than half.
⊓⊔
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