
Finding Geo-Social Cohorts

in Location-Based Social Networks

Muhammad Aamir Saleem1, Toon Calders2, Torben Bach Pedersen1, and
Panagiotis Karras3

1 Aalborg University, Denmark,
2 University of Antwerp, Belgium,

3 Aarhus University, Denmark,

Abstract. Given a record of geo-tagged activities, how can we suggest
groups, or cohorts of likely companions? A brute-force approach is to
perform a spatio-temporal join over past activity traces to find groups
of users recorded as moving together; yet such an approach is inherently
unscalable. In this paper, we propose that we can identify and predict
such cohorts by leveraging information on social ties along with past
geo-tagged activities, i.e., geo-social information. In particular, we find
groups of users that (i) form cliques of friendships and (ii) maximize a
function of common pairwise activities on record among their members.
We show that finding such groups is an NP-hard problem, and propose
a nontrivial algorithm, COVER, which works as if it were enumerating
maximal social cliques, but guides its exploration by a pruning-intensive
activity-driven criterion in place of a clique maximality condition. Our
experimental study with real-world data demonstrates that COVER out-
performs a brute-force baseline in terms of efficiency and surpasses an
adaptation of previous work in terms of prediction accuracy regarding
groups of companions, including groups that do not appear in the train-
ing set, thanks to its use of a social clique constraint.

1 Introduction

Advances in positioning and communication technologies enable sharing geo-
tagged content, and hence location-based social networking services. Location-
Based Social Networks (LBSNs) such as Weeplaces, Foursquare, Gowalla, Geo-
Life, and Twinkle are built around positioning capabilities, while Facebook and
vKontakte provide a consensual option to check-in at visited locations.

Such online LBSNs can utilize user mobility in consensual recommendation
services directed to groups, as opposed to individuals. For instance, a discount
offer for a concert may be recommended to a group of friends that have habitually
visited similar concerts and other events together; a car-pooling service may
suggest group formations to its customers who may be unaware of their similar
activities; or a travel agency may promote an offer for a group travel package
to groups of users potentially interested in traveling together. Past research has
proposed location-based recommendations of locations, routes, users, activities,

2 Saleem et al.

and media [4]; while some works refer to individual predictions [15], others detect
groups based on location histories and mobility profiles [10]. Yet these studies
rely on clustering trajectories and co-location traces [22] and Bayesian learning
so as to predict co-location features [11], hence do not scale well. Further, there
has been work on clustering static locations using geo-social information [18],
and a long line of works on detecting communities of interest [7, 13, 6] Yet to
our knowledge, no attempt has been made to suggest groups of users using both
social and mobility data, i.e., geo-social information.

In this paper, we propose a method that suggests cohorts of social compan-
ions without clustering trajectories or traces; instead, it leverages social and
co-location connections, which LBSNs record. We conjecture that recommend-
able groups of companions are prone to be directly or transitively connected in
both the social domain — i.e., to form cliques in a graph of social ties — and the
activity domain — i.e., to engage in common geo-tagged activities manifested as
frequent pairwise location check-ins. Our rationale is that each person may have
a large circle of friends and acquaintances, yet may engage in specific activities
only with particular ones, with whom they share related interests. For instance,
consider a socially linked group of people who have visited museums, at least
in pairs; our method can detect such a cohort, so as to propose new interesting
locations. We utilize location categories to tailor cohorts to particular interests,
and test the power of our method to predict cohorts on real-world data.

We build a graph GA from geo-tagged activities, distinct from a graph of
social ties, G, yet defined over the same vertex set; in GA, a pair of nodes is
connected by a weighted edge expressing the pairs’ history of co-location in
common activities. We reason that a group of tightly-connected users engaging
in common activities frequently appear in GA as a connected subgraph with high
edge density, i.e., form a quasi-clique of high edge weight in GA, and a clique
in G. We formally define the problem as retrieving sets of nodes that induce
subgraphs maximizing edge density in GA and also induce cliques in G.

The rest of this paper is structured as follows. Section 2 discusses related
work. In Section 3, we formulate the problem and study its hardness. Section 4
presents COVER, an efficient heuristic drawing from graph mining techniques
to address the spatiotemporal cohort discovery challenge. Section 5 presents
an extensive experimental study that showcases the effectiveness and predictive
power of our technique. Section 6 concludes the paper.

2 Related Work

In our problem, groups are sought after and have no labels. That is different from
group recommendation, in which we recommend items to a given group [1], and
from group discovery, which retrieves labeled groups of users from collaborative
rating data sets [19]. Our problem relates rather to the problems of finding
cliques, dense subgraph discovery, and multi-layer community detection.

Tomita et al. [20] studied the worst-case complexity of enumerating maximal
cliques on a graph. Such cliques can be used to define communities; for example,

Finding Geo-Social Cohorts in Location-Based Social Networks 3

one may consider only maximal cliques of size above a threshold, and define
communities as the disconnected components of the graph formed by the union
of those cliques [8]. Alternatively, one may use cliques of fixed size, k; the clique
percolation method [16] finds all such k-cliques in a network, and then finds
clusters made out pairs of k-cliques sharing k − 1 nodes.

The densest subgraph problem asks for a vertex subset S ⊆ V on graphG(V ,E)
such that its induced subgraph achieves the maximum average degree; it is solv-
able in polynomial time with a maximum flow algorithm [9], while a greedy 1

2 -
approximation scheme requires linear time [12]. Asahiro et al. [2] study the
k− f(k) dense subgraph problem, which calls for finding a k-vertex subgraph of
a given graph G that has at least f(k) edges, for different functions f(k). When
a restriction is imposed on the size of set S, the problem becomes NP-hard [12].
Recently, the problem has been studied in streaming and MapReduce models [3].

Boden et al. [5] mine multi-layer coherent subgraphs, i.e., subgraphs that con-
tain vertices densely connected by edges with similar labels in a subset of layers
in an edge-labeled multi-layer graph; this technique applies the same density cri-
terion on multiple layers. We aim to apply different density criteria per layer: a
clique constraint vs. quasi-clique optimality, a distinction consequential on pre-
dictive power — as we show, if we relax the clique constraint, we lose predictive
power.

3 Problem Formulation

Let V be a set of LBSN users and U a universe of categories (i.e., types, based
on function and audience) to which locations of interest are associated.

3.1 Preliminary Concepts

Definition 1. A point of interest (POI) is a geographical location (e.g., the
Metropolitan Museum of Art) represented by a quadruple (l, lat, lon, cat), where l
is the identifier, lat and lon the latitude and longitude of the GPS coordinates
of the center of the POI, and cat ∈ U a category that this location belongs to.

Definition 2. An activity refers to a visit of a user u ∈ V at a location l at a
discretized time interval t, represented as a triplet (u, l, t); when the user u is
implied from context, we omit it and represent an activity by the pair (l, t).

Definition 3. The activity set of user u, A(u), is the set of activities user u

has engaged in; likewise, the activity set for a category cat, A(cat), is the set of
activities associated with category cat among users in V ; last, A(u, cat) is the set
of all activities by user u over POIs of category cat. We overload these notations
to also denote ordered sequences of activities depending on context.

Definition 4. A spatiotemporal join operation among sets of activities S and
T , S ✶ T , returns the set of pairs of activities {(l, t) ∈ S, (l′, t′) ∈ T }, where
locations and times match, i.e., l = l′ and t = t′ Furthermore, a consecutive

4 Saleem et al.

spatiotemporal join is defined among two temporal sequences of activities S and
T , S ✶

c T , and returns the set of quadruples of activities {(l, t), (lsuc, tsuc) ∈
S, (l′, t′), (l′suc, t

′
suc) ∈ T }, where (lsuc, tsuc) is the successor activity of (l, t) in

sequence S and (l′suc, t
′
suc) the successor activity of (l′, t′) in sequence T , such

that locations and times match, i.e., (l, t) = (l′, t′) and (lsuc, tsuc) = (l′suc, t
′
suc).

The spatiotemporal join between S and T returns all pairs of activities occur-
ring in S and T , by the discretization we employ; a consecutive spatiotemporal
join returns all quadruples of activities occurring, as two consecutive pairs, in
sequences S and T . We use these concepts to define weights in activity graph GA.

3.2 Objective

Given a data set of users, their relationships, and records of activities, and a set
of categories of interest, L ⊂ U , we are interested to identify any group of users
C ⊂ V that are likely to participate, as a group, in future activities related to L.

We leverage (i) a social graph G(V ,E), where V is the set of users and E the
set of friendship relationships; and (ii) an activity graph GLA(V ,E′), coterminous
with (i.e., defined over the same set of vertices V as) G, built out of the log of user
co-locations associated with L; an edge (u, v) ∈ E′ between users u, v ∈ V has
a non-zero weight wuv ∈ (0, 1], representing the extent to which these two users
participate in common activities associated with L, by the following definition.

Definition 5. The edge weight wuv between the pair of users (u, v) in GLA is de-
fined via the (consecutive) spatiotemporal join
⋃

cat∈L{A(u, cat) ✶ A(v, cat)}, normalized by dividing by the highest value ob-
tained among all pairs of users, as follows:

wuv =
|
⋃

cat∈L{A(u, cat) ✶(c) A(v, cat)}|

maxx,y∈V |
⋃

cat∈L{A(x, cat) ✶(c) A(y, cat)}|
(1)

We aim to retrieve groups, or cohorts, of users that have a track record of
pairwise common activities associated with L, and also form a clique (i.e., are
related to each other) in the social graph. Such cohorts are likely to act together,
hence may be used for recommendation, prediction, and social analysis.

Problem 1. [Cohort Retrieval] Given a set of LBSN users V , a set of cate-
gories L, a social graphG(V ,E) among users in V , and an activity graphGLA(V ,E′)
among users in V with edges in E′ weighted according to activities in L, and let-
ting C denote the set of all cliques in the social graph G, where ∀C ∈ C,C ⊆ V ,
find the top-k cliques in C in terms of an activity density function fL calculated
on the subgraphs they induce in GLA, i.e., argmaxkC∈C

{

fL(C)
}

.

3.3 Maximizing Activity Density

Problem 1 requires an activity density function: (i) relying on edge weights of GLA,
and (ii) independent of subgraph (i.e., group) size, allowing for comparison
among larger and smaller groups. A function that satisfies these properties is the
edge surplus function fα, maximized by an Optimal Quasi-Clique (OQC) [21]:

Finding Geo-Social Cohorts in Location-Based Social Networks 5

Definition 6. [OQC] Given a graph G = (V ,E) and α ∈ (0, 1), an optimal
quasi-clique of G is a subset of vertices S∗ ⊆ V such that:

fα(S
∗) = e[S∗]− α

(

|S∗|
2

)

≥ fα(S), for all S ⊆ V . (2)

where e[S] is the number of edges in the subgraph of G induced by S.

This edge surplus function provides a size-independent measure of edge den-
sity without favoring large subgraphs: a subgraph achieves a high value of edge
surplus fα not merely by means of a high average degree, as large subgraphs
may have, but by coming close to completing a clique among its nodes. Besides,
rather than imposing some arbitrary threshold on edge weights so as to obtain
binary edges, it takes all weights in consideration, regardless of their values, and
can be straightforwardly generalized to the weighted edges in an activity graph.
We thus define our activity density function based on the edge surplus function:

Definition 7. Given an activity graph GLA=(V ,E′), a vertex subset C⊆V , and
a parameter α∈(0, 1), the activity density on C is:

fLα (C) = w[C]− α

(

|C|

2

)

(3)

where w[C] is the sum of normalized edge weights for all edges in the subgraph
induced by C: w[C] =

∑

u,v∈C wuv.

We aim to retrieve cohorts under the constraint of forming a clique in a social
graph and the objective of maximizing edge surplus in the activity graph. To
that end, it is useful to investigate the hardness of the problem of finding an
OQC, which we henceforward name OQC. After all, in case our social graph is
a complete graph, and all non-zero edge weights in the activity graph are equal
to 1, then Cohort Retrieval is reduced to OQC, hence it is at least as hard
as OQC. Tsourakakis et al. [21] suspect OQC to be NP-hard, yet provide no
formal proof of hardness. We provide such a proof in the following, starting out
with some results regarding the nature of the OQC problem.

Lemma 1. For α ∈ (0, 1), any clique in G = (V ,E) has positive edge surplus.

Proof. By definition, the number of edges in a clique S ⊆ V is e[S] =
(

|S|
2

)

.

Then, the edge surplus of S is fα(S) = e[S]− α
(

|S|
2

)

= (1− α)
(

|S|
2

)

> 0.

Lemma 2. For any α ∈ (0, 1), a maximum clique of a graph G = (V ,E) has
the maximum edge surplus among all cliques in G.

Proof. By Lemma 1, the edge surplus of a clique S ⊆ V is fα(S) = (1−α)
(

|S|
2

)

>

0. A maximum clique achieves the maximum number of vertices |S| among all
cliques in G; therefore, it also has the maximum edge surplus.

Theorem 1. Given a simple undirected graph G = (V ,E), for α = 1−
(

|V |
2

)−1
,

a subset of vertices S ⊆ V has positive edge surplus if and only if it is a clique.

6 Saleem et al.

Proof. The ⇐ direction is provided by Lemma 1. We now prove the ⇒ direction:
The edge surplus of a subset of vertices S ⊆ V is fα(S) = e[S]−α

(

|S|
2

)

= e[S]−

(1−
(

n
2

)−1
)
(

|S|
2

)

= e[S] −
(

|S|
2

)

+ |S|(|S|−1)
|V |(|V |−1) . If S has positive edge surplus, then

fα(S) > 0 ⇔ e[S] >
(

|S|
2

)

− |S|(|S|−1)|V |(|V |−1) . Since S ⊆ V , it follows that |S|(|S|−1)|V |(|V |−1) ≤ 1.

Thus, fα(S) > 0 ⇒ e[S] >
(

|S|
2

)

− 1. Yet the only subgraph of |S| vertices that

has more than
(

|S|
2

)

− 1 edges is a clique.

Theorem 2. Finding an OQC is NP-hard.

Proof. We construct our proof by reduction from the NP-hard Clique prob-
lem, which calls for deciding whether a clique of certain size k exists in a simple
undirected graph. Assume we are given a polynomial-time algorithm A(G,α)
that can find an OQC in any simple undirected graph G(V ,E) for any param-
eter α ∈ (0, 1). Then, given any instance of the Clique problem on a simple

undirected graph G(V ,E), we invoke A(G,α) with α = 1−
(

|V |
2

)−1
. We empha-

size that an elaborate reduction is not necessary, as we use the same graph in
both problems. By Theorem 1, if the returned optimal quasi-clique (OQC) has
non-positive edge surplus, it follows that G has no cliques; otherwise, if the re-
turned OQC has any positive edge surplus, it is a clique. Moreover, by definition,
the returned OQC has the maximum edge surplus among all such cliques in G,
hence, by Lemma 2, it is a maximum clique of G. In effect, an algorithm that
finds an OQC in G in polynomial time would also effectively decide whether G
contains a clique, and, if so, what the maximum clique size is; thus, it would
solve any instance of Clique, effectively deciding that a clique of size k exists
if and only if k is no less than the maximum clique size. It follows that finding
an OQC is at least as hard as any problem in NP.

Our proof resolves a question left open in [21]. Given this result, we should
strive for non-optimal solutions to Cohort Retrieval, which is at least as
hard as the problem of finding an OQC.

4 COVER Algorithm

We present COVER, our algorithm for the cohort retrieval problem; COVER
merges and builds upon techniques for maximal clique enumeration [20] and the
OQC problem [21]. It searches for cliques on the social graph, yet, instead of
striving to satisfy just a maximality condition upon them, it checks, for any
possible clique candidate, the edge surplus of its induced subgraphs on the ac-
tivity graph, pruning nodes that cannot lead to higher edge surplus than already
found. Eventually, it outputs the top-k results by our problem definition.

A cohort should form a social clique and also achieve as high activity density
as possible, as outlined in Section 3.3. COVER explores the social graph in order
to find cliques, as an algorithm for maximal clique enumeration would do. Yet,
for each clique it finds in the social graph G, it searches locally for its subgraphs
of high activity density in the activity graph GA, maintaining a queue of the

Finding Geo-Social Cohorts in Location-Based Social Networks 7

top-k results, and, thereby, also a global queue of the top-k cohorts overall. In
this process, when considering a new node v, it evaluates its strength, in terms
of marginal activity density, that it may bring to any cohort under construction;
node v is further considered only if its marginal activity density can bring an
advantage compared to the top-k cohorts retrieved so far.

Algorithm 1: COVER: retrieving top-k geo-social cohorts
1 Input: G(V ,E), GL(V ,E), k, TMax, α
2 Output: Set of k traveler groups : CO
3 begin

4 C = ∅ /* a clique in G */
5 cohG = ∅ /* queue of top-k cohorts within C */
6 CO = ∅ /* global queue of top-k cohorts */
7 searchCliques(V ,V ,C) /* recursive function */

Algorithm 2: searchCliques(Sub,Cand,C)

1 begin

2 /* Sub: seed set to be searched for cliques */
3 /* Cand: expansion set for building cliques */
4 /* NG(u): friends of u in G*/
5 if Sub 6= ∅ then

6 u← vertex ∈ Sub maximizing |Cand ∩NG(u)|
7 foreach v ∈ Cand \NG(u) do

8 Subv ← Sub ∩NG(v)
9 Candv ← Cand ∩NG(v)

10 cohGM ← Candv ∪ C ∪ {v}
11 /* cohGM : largest possible clique on v */

12 if
(|cohGM |

2

)

(1− α) > minS∈CO (fα(S)) then

13 searchCliques(Subv ,Candv ,C ∪ {v})
14 Cand← Cand \ {v}

15 else

16 cohG← findCohorts(GA,C, k)
17 CO ← CO ∪ cohG

Algorithm 1 is the shell of COVER; it initializes variables and priority queues
and finds top-k activity-based cohorts recursively on the back of social cliques.
Algorithm 2 searches for promising cliques C in the social graph G. We start with
the set of all users V , and recursively explore subgraphs having a clique property
in depth-first-search manner. We maintain two set variables: Sub maintains the
intersection of the neighbor sets of all nodes already entered in the clique C

currently under construction. On the other hand, Cand maintains the intersec-
tion of such neighbor sets minus any nodes that have already been checked, i.e.,
included, or considered for inclusion, in C. We use Cand to generate new candi-
dates for checking at each iteration (Line 7). Besides, to accelerate the search, at
each iteration we pick up a high-degree pivot node u ∈ Sub having many neigh-
bors NG(u) in Cand (Line 6). Then, we check candidate nodes v ∈ Cand\NG(u)
(Lines 7-14) for inclusion in C. We exclude those neighbors from the search
(Line 7), since, if we have not already considered them, we consider them recur-
sively later by virtue of them being neighbors of u. A critical check is performed
in Line 12: if the largest possible clique that can be built by including v and
its neighbors can yield a best-case activity density among the current top-k val-
ues, then C is recursively expanded with v (Line 13); otherwise, we discard the
depth-first search path leading to v, as it cannot bring forth new results, and
thereby we avoid redundant computations. Lastly, when clique C cannot be ex-

8 Saleem et al.

panded further, we search for the top-k cohorts therein by calling Algorithm 3
and update the global priority queue CO accordingly (Lines 16-17).

Algorithm 3 finds top-k cohorts withinGA and social clique C by local search.
A candidate cohort S starts out as the node u ∈ C of highest ratio of adjacent
triangles to degree and its neighbors (Line 3). We iteratively revise S, first by
adding nodes, as long as that can bring a benefit in activity density, choosing the
best such option (Lines 8–12); then by removing the best node whose removal
brings benefit (Lines 13–16); we repeat until we reach a local optimum or the
maximum iterations Tmax. In each iteration, we insert the running S to the
priority queue cohG, and eventually merge the result in priority queue CO.

Algorithm 3: findCohorts(GA,C, k)

1 begin

2 u : vertex with max #triangles

degree
ratio in GA[C]

3 S ← N(u) ∪ {u} /* u and GA neighbors */
4 cohG← {S}
5 b1 ← True, t← 1 /* local search begins */
6 while b1 and t ≤ Tmax do

7 b2 ← True

8 while b2 do

9 if ∃v ∈ C \ S such that fα(S ∪ {v}) ≥ fα(S) then

10 S ← S ∪ {v}; cohG← cohG ∪ S
11 else

12 b2 ← False /* growth of S stops */

13 if ∃x ∈ S such that fα(S \ {x}) ≥ fα(S) then

14 S ← S \ {x}; cohG← cohG ∪ S
15 else

16 b1 ← False /* local search stops */
17 t← t + 1 /* iteration counter */

Given the worst-case complexity of clique enumeration [20], which forms the
backbone of COVER, the worst-case complexity of COVER is O(3

n

3 +cTmaxm),
where n is the number of nodes, c the number of enumerated cliques that reach
Line 12 of Algorithm 2, m the number of activity graph edges, and Tmax the
maximum number of iterations in Algorithm 3, which touches each edge at most
once per iteration [21]. We avoid this worst-case scenario by a massive discarding
of paths in Line 12 of Algorithm 2. Therefore the algorithm is efficient in practice.

5 Experimental Study

We present an extensive experimental evaluation of COVER, including its ca-
pacity to predict convoys of mobile companions, regardless of whether they form
a social clique. We ran all experiments on a 2.3GHz, 4 AMD Opteron 6376 Linux
machine with 512GB of RAM. All algorithms are implemented4 in Scala.

Datasets. We utilize three real-world datasetsfrom Foursquare, Gowalla,
and Weeplaces [14] (The Gowalla and Weeplaces data are available at https:

//www.yongliu.org/datasets/). Table 1 gathers information about the data.
Each of the datasets consisted of three parts: the social friendship graph, an
ordered list of check-ins, and a collection of Venues. A check-in record contains
the user-id, check-in time, GPS coordinates, and a location-id. Venues provide

4 The code is available at http://bit.ly/2tUTEuu.

Finding Geo-Social Cohorts in Location-Based Social Networks 9

the details of locations, i.e., city, country, and semantic categories of those lo-
cations. Data Preprocessing. The data required cleaning, as many locations

Users Locations Checkins POIs Friend pairs Duration Categories

FourSquare 4K 0.2M 0.47M 0.12M 32K 1322 days 35
Gowalla 77K 2.8M 18M 2M 4M 913 days 363
Wee 16K 0.9M 8M 0.76M 0.1M 2796 days 770

Table 1: Dataset characteristics

were associated with multiple identifiers, each having slightly different GPS co-
ordinates. We applied grid-based spatial clustering on GPS points, with a grid
of size 10m × 10m, as in [17]. We assign a unique location Id to each resulting
cluster and use these Ids as POIs in all experiments. All three datasets presented
similar multiplicity problems, which we addressed in the same manner. Statistics
regarding these new POI Ids are reported in Table 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
D

F

Time difference (min.)

FourSquare
Wee

Gowalla

Fig. 1: CDF of time between consecutive activities

5.1 Brute-Force Convoy Retrieval

We first present a brute-force baseline that retrieves groups of users moving
together, i.e., convoys. We divide all activities into a series of time intervals, or
snapshots, using a time-stamp threshold ts, recording one activity per interval:
the last recorded activity. We can tune ts so as to strike a fine balance in the
tradeoff between time granularity and computation time. With larger ts values,
it becomes likelier to miss activities within a time snapshot. To set a suitable ts
value, we plot the cumulative distribution of time differences between consecutive
user activities in Figure 1. By this plot, we set ts = 1 hour, which covers more
than 90% of activities.

 2 3 4 5
 2

 3
 4

 5 0

 50

 100

 150

0
0

0
0

0
0

0
0

0
0

0
2

2
927

186

Minimum Users
M

inim
um Locs.

(a) All Convoys (FS)

 2 3 4 5
 2

 3
 4

 5 0

 5000

 10000

 15000

0
0

8
147

2
4

27
352

7
30

1691371

453
1131

3720

16614

Minimum Users
M

inim
um Locs.

(b) All Convoys (GW)

 2 3 4 5
 2

 3
 4

 5 0

 10000

 20000

 30000

0
2

13
293

1
6

38
790

14
45

2153184

789
19466308

31242

Minimum Users
M

inim
um Locs.

(c) All Convoys (Wee)

 2 3 4 5
 2

 3
 4

 5 0

 50

 100

 150

0
0

0
0

0
0

0
0

0
0

0
1

2
924

148

Minimum Users
M

inim
um Locs.

(d) Clique Convoys (FS)

 2 3 4 5
 2

 3
 4

 5 0

 5000

 10000

 15000

0
0

3
31

2
3

16
204

7
27

146
1064

446
1109

3620

15727

Minimum Users
M

inim
um Locs.

(e) Clique Convoys (GW)

 2 3 4 5
 2

 3
 4

 5 0

 10000

 20000

0
0

10
59

1
4

34
219

13
43

196
1382

779
1922

5966

23645

Minimum Users
M

inim
um Locs.

(f) Clique Convoys (Wee)
Fig. 2: Statistics on convoys: all convoys vs. convoys that also form social cliques

We detect convoys based on recorded activities. A convoy should: (i) contain
at least two users moving together across locations; and (ii) involve at least
two consecutively visited locations. We maintain a convoy list L and iterate

10 Saleem et al.

over data snapshots in temporal order. In each snapshot, we group activities
by location and check each group against L. If a group extends an existing
convoy C, we update C accordingly; if a group forms a new convoy, we insert
it in L. We store away items in L that are no longer expandable, and go on
til the last snapshot. This approach is more computationally demanding than
COVER’s activity density estimation: it detects all groups in the training set,
while COVER only considers pairs of users and at most pairs of consecutive
activities, and social links. Figure 2 shows statistics on convoys so retrieved vs.
those whose members also form social cliques. About 76% of all convoys form
social cliques. This finding validates our conjecture that people are likely to move
in social cliques, hence justifies our clique constraint.

5.2 Use Case: Convoy Prediction

We surmise that the cohorts COVER retrieves predict convoys of mobile com-
panions; we design an experiment to assess that conjecture. We do not test
an ability to predict social cliques ; we claim that the clique constraint in our
problem helps predict convoys. We use a holdout approach: we sort activities by
timestamp and divide them into training (earlier) and test (later) sets, having an
equal number of activities. A group retrieved from the training data thta forms
a convoy in the test data is a true positive. We apply two prediction regimes:

Without Input Categories: We find groups likely to form future convoys.
COVER ranks groups by activity density; brute-force by appearances.

With Input Categories: In this case, we are given a set of categories of
locations of interest L. We find groups deemed likely to form future convoys,
moving among locations of the given categories. To identify such groups, we
filter the dataset so that we maintain only activities at locations of L. Then, we
retrieve groups as explained above; again the brute-force methods ranks convoys
by count, while COVER ranks geo-social cohorts by surplus.

We measure a method’s capacity to predict future convoys in the test data
by averaging an accuracy measure, defined as follows:

Acc =
|C ∩ T |

min{|C|, |T |}
(4)

where C is the returned set of top-k groups and T the set of convoys in the test
data. We sanitize the measure, dividing by the minimum of |C| = k, and |T |.
The rationale is that the denominator should exceed neither k, since the top-k
results cannot be more than k, nor the number of existing convoys in the test
data, which may be less than k, especially when we filter by input categories. In
effect, this measure is the maximum of precision and recall ; we think this is a
reasonable measure given the sparsity of real-world LBSN data.

5.3 Revalidating the Social Clique Constraint

Before we proceed, we revalidate our social clique conjecture. To do so, we test
COVER without considering the social graph. We extract top-k groups in terms

Finding Geo-Social Cohorts in Location-Based Social Networks 11

of activity edge surplus in the training data, for k = 1, 3, 5. This way, we only
get a positive prediction with the Wee dataset for k = 3, which is five times
less accurate than what we achieved using the clique constraint. This result
reconfirms the logic of that constraint: users who engage in common a activity
but do not form a social clique are not likely to do so again. Further, we relaxed
the clique constraint to find quasi-cliques in the social graph for several α values.
Unfortunately, this way we could not predict any group of travel companions.
We reiterate that the groups (convoys) we aim to predict are not required to form
social cliques. We simply observe that groups of future travel companions form
social cliques, and we can well predict them using this constraint.

5.4 Prediction without Input Categories

We first present prediction results for the case without a restrictive set of given
categories of interest L.

Brute-force method: We run the brute-force method of Section 5.1 on
the training data, retrieving the k most frequently observed convoys, and test
its predictions on the test data. The last three columns in Table 2 show top-k
convoy prediction accuracy for k = 1, 3, 5, reaching 100% in all but two cases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
v
g

.
A

c
c
u

ra
c
y

Surplus α

Top-1
Top-3
Top-5

(a) PlDens, All, Wee

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
v
g

.
A

c
c
u

ra
c
y

Surplus α

Top-1
Top-3
Top-5

(b) PlDens, Inp, Wee

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
v
g

.
A

c
c
u

ra
c
y

Surplus α

Top-1
Top-3
Top-5

(c) ConDen, All,
Wee

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
A

v
g

.
A

c
c
u

ra
c
y

Surplus α

Top-1
Top-3
Top-5

(d) ConDen, Inp,
Wee

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
v
g

.
A

c
c
u

ra
c
y

Surplus α

Top-1
Top-3
Top-5

(e) PlDens, All, FS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
v
g

.
A

c
c
u

ra
c
y

Surplus α

Top-1
Top-3
Top-5

(f) PlDens, Inp, FS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
v
g

.
A

c
c
u

ra
c
y

Surplus α

Top-1
Top-3
Top-5

(g) ConDen, All, FS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
v
g

.
A

c
c
u

ra
c
y

Surplus α

Top-1
Top-3
Top-5

(h) ConDen, Inp, FS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
v
g

.
A

c
c
u

ra
c
y

Surplus α

Top-1
Top-3
Top-5

(i) PlDens, All, GW

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
v
g

.
A

c
c
u

ra
c
y

Surplus α

Top-1
Top-3
Top-5

(j) PlDens, Inp, GW

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
v
g

.
A

c
c
u

ra
c
y

Surplus α

Top-1
Top-3
Top-5

(k) ConDen, All,
GW

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
v
g

.
A

c
c
u

ra
c
y

Surplus α

Top-1
Top-3
Top-5

(l) ConDen, Inp,
GW

Fig. 3: Use Case: COVER’s performance on convoy prediction with three datasets

COVER on plain activity density: We test COVER on the same prob-
lem, setting weights in the activity graph without considering consecutive ac-
tivities. Figures 3a, 3e, and 3i present results on top-k group prediction as a
function of density surplus α. The top prediction becomes correct at α = 0.1
and remains so for larger values of α; for top-3 and top-5 returned groups, the
accuracy is lower. This is due to variations among training and test data; similar

12 Saleem et al.

divergences appear in Table 2 even with the brute-force method. The fact that
COVER does almost as well is remarkable, as it is up to 3 orders of magnitude
faster, as we will see in Figure 4b. In most cases, accuracy drops as k increases;
it is easier to get a correct top group than the whole group of top 3 or 5.

COVER on consecutive activity density: Next, we set density by con-
secutive spatiotemporal join. As Figures 3c, 3g, and 3k show, smaller α achieve
maximum accuracy. A large α forces the detection of small, tightly connected
groups; the consecutivity requirement creates smaller cohorts on its own, ren-
dering the impact of α less significant. COVER performs remarkably well.

5.5 Prediction with Input Categories

Now we examine the case with a restrictive set of categories of interest, L. We
construct 10 instances of L, each consisting of 2–3 categories that appear together
in real-world contexts, and report the average accuracy over all queries. For
COVER, edge weights in activity graph GLA are based solely on locations in L.

Brute-force method: The brute-force method achieves accuracy up to 66%
(Table 2), as convoys specific to the input categories may not be met in the
training data, but appear in the test data.

Input Cat All Cat

k FS GW Wee FS GW Wee

1 0.60 0 0.50 1 1 1
3 0.66 0.17 0.60 1 1 1
5 0.64 0.20 0.70 0.30 0.80 1

Table 2: Accuracy in brute-force convoy prediction

COVER on plain activity density: Figures 3b, 3f, and 3j present the
average top-k set prediction accuracy for COVER with plain activity density.
While the problem is more challenging due to data sparsity, we still obtain
high accuracy in most cases. Less accuracy variation with varying α appears on
Foursquare, the smallest of our data sets, as fewer convoys arise in it. Accuracy
still drops with increasing k, except for the case of the Wee data, where enlarging
the set of results raises the chances they exist in the test data.

COVER on consecutive activity density: Lastly, Figures 3d, 3h, and 3l
show the results for COVER with consecutive activity density. Remarkably, ac-
curacy is either similar to or significantly higher than that in the non-consecutive
case reaching 67% for the top-5 cohorts. This result vindicates the use of consec-
utive activity density. On Foursquare and Gowalla, accuracy increases sharply
as α grows by virtue of smaller returned group sizes, then stabilizes above 60%.

5.6 Effect of Surplus Parameter α

Prediction accuracy grows with α, yet the size of retrieved geo-social cohorts
decreases with α, as higher values demand stronger cohesion. To study this
tradeoff, we measure the average retrieved cohort size vs. α on the top-5 cohorts
with input categories and consecutive activity density. The results in Figure 4a
show that cohort size decreases with α up to 0.6, then stabilizes at 2; α = 0.4
yields both large size and predictive power. We employ this value in Section 5.7.

Finding Geo-Social Cohorts in Location-Based Social Networks 13

5.7 Scalability and Prediction Quality

As there is no previous work on the problem we study, we juxtapose COVER
with fixed α = 0.4 vs. the following methods:

– BF: The Brute-Force convoy retrieval method of Section 5.1.

– GroupFinder: A method that finds groups of a given size k for a given
user u and set categories [6]. We adapt this method to our problem so as
to conduct a reasonable comparison: Given a set of categories, we apply
GroupFinder to each user in the data set and then choose the best group of
size k, where k is the most popular group size returned by COVER (in all
cases, 2). We utilize both pairwise user-item relevance measures proposed
in [6]: pairwise aggregated voting (PAV) and pairwise least misery (PLM).

– OQC2: A COVER variant that relaxes the clique constraint, finding groups
of high edge surplus on both graphs, using two α values, one for each sur-
plus component; we try out α values with step 0.1 and weights for the two
components in {0, 0.25, 0.66, 1, 1.5, 4,∞}, and present best results.

First, we assess all methods in terms of scalability, measuring runtime on
6.25%, 12.5% 25%, 50% and 100% of the Wee data. Figure 4b shows the results
(Brute-Force as Naive, OQC2 with α = 0.6). Despite an exponential worst-
case complexity, the practical runtime of COVER is comparable to that of
GroupFinder, and the most scalable of all examined algorithms, while Brute-
Force (Naive) does not scale well. Other data produces similar trends.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.2 0.4 0.6 0.8 1

G
ro

u
p
 S

iz
e

Surplus α

Wee
Foursquare

Gowalla

(a) Average group size vs. α

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06 1e+07

T
im

e
 (

S
e
c
)

Activities

COVER
Naive

GroupFinder
OQC2

(b) Runtime vs. data size (Wee)

Fig. 4: Effect of α and scalability in data size

Next, we evaluate the following measures of prediction quality on the Wee
data, which has the highest number of observed convoys:

– Accuracy, the metric we have used in previous results;

– Precision@K, the ratio of the number of true top-k convoys by frequency
returned, over k or the total number of true convoys, whichever is smaller;

– Mean Average Precision (MAP), the mean of Precision@K for all k values
up to the examined one; and

– Normalized Discounted Cumulative Gain (NDCG), on the ranking of re-
turned results vs. their frequency ranking in the test data.

14 Saleem et al.

Table 3 shows results on consecutive activity density, with input categories,
for five values of k. Brute-Force sometimes outperforms COVER, yet COVER
stands its ground in several measures, while avoiding an exhaustive calculation.
GF-PAV, GFPLM and OQC perform poorly by all measures; their results are
not in the top-20, resulting in 0 value for P@K and MAP. GroupFinder falters
as it does not consider activities, but only interests; OQC performs poorly as it
abolishes the social clique constraint; this finding corroborates that constraint.

Accuracy P@K MAP NDCG

K BF
GF

PAV

GF

PLM
OQC COVER BF

GF-

PAV

GF-

PLM
OQC COVER BF

GF-

PAV

GF-

PLM
OQC COVER BF

GF-

PAV

GF-

PLM
OQC COVER

1 0.5 0.01 0.01 0.25 0.6 0 0 0 0 0 0 0 0 0 0 0.5 0.09 0.1 0.25 0.35
5 0.7 0.03 0.03 0.1 0.4 0.35 0 0 0 0.15 0.18 0 0 0 0.17 0.7 0.25 0.1 0.5 0.76

10 0.6 0.03 0.03 0.05 0.63 0.22 0 0 0 0.15 0.22 0 0 0 0.16 0.79 0.25 0.15 0.5 0.81

15 0.5 0.08 0.05 0.03 0.57 0.18 0 0 0 0.15 0.22 0 0 0 0.16 0.81 0.1 0.25 0.5 0.81

20 0.47 0.08 0.05 0.025 0.53 0.14 0 0 0.01 0.14 0.2 0 0 0 0.16 0.8 0.25 0.25 0.5 0.82

Table 3: Comparative Evaluation on Wee (α=0.4 for COVER, best OQC values)

5.8 Analysis on Retrieved Groups

Figure 5 presents the cumulative density function of characteristics for all re-
trieved geo-social cohorts (5a) and those forming mobility convoys (5b), i.e.,
their size and number of activities performed by their members (i.e., individuals
or pairs). Group size goes from 2 to 3 (green line), while we predict convoys
correctly even when they have not performed any activities together on input
categories. This capacity of COVER sets it apart from the brute-force baseline
that can only predict convoys that appear in the training set.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

 0 1 2 3

C
D

F

Activities

Size

Size
Acts

Pair Acts
Pair Seq Acts

(a) All Retrieved Cohorts

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

 0 1 2 3

C
D

F

Activities

Size

Size
Acts

Pair Acts
Pair Seq Acts

(b) Correctly Predicted Convoys

Fig. 5: Analysis of Retrieved Groups (Wee)

6 Conclusion

We proposed the problem of finding geo-social cohorts of frequent companions
in LBSNs, defined in terms of (i) a selective clique constraint on a social graph,
and (ii) a density objective on a coterminous graph (i.e., defined on the same set
of nodes) capturing common (and consecutive) pairwise activities. We designed
COVER, a nontrivial algorithm for that problem. Our experimental study with
real-life data sets showed that COVER is effective, scalable, and efficient; more-
over, it predicts future convoys (i.e., groups moving together), including convoys
that do not appear in the training set, while neither an adaptation of previous
work nor a brute-force approach based on user traces can deliver such a result.

In the future, we intend to (i) expand our techniques so as to include different
activity density functions, and (ii) study the robustness of our method, in terms
of its predictive power, in the face of missing, incomplete, uncertain, noisy, and
privacy-aware data.

