
c

 1996, Jaco van de Pol. All rights reserved.

Pol, Jan Cornelis van de

Termination of Higher-order Rewrite Systems /Jan Cornelis van de Pol

- Utrecht: Universiteit Utrecht, Faculteit Wijsbegeerte.

- (Quaestiones in�nitae, ISSN 0927-3395; volume 16)

- Proefschrift Universiteit Utrecht.

- Met literatuur opgave.

- Met samenvatting in het Nederlands.

ISBN 90-393-1357-1

Termination of Higher-order Rewrite Systems

Terminatie van hogere-orde herschrijfsystemen

(met een samenvatting in het Nederlands)

Proefschrift ter verkrijging van de graad van doctor

aan de Universiteit Utrecht

op gezag van de Rector Magni�cus, Prof. dr. J.A. van Ginkel

ingevolge het besluit van het College van Decanen

in het openbaar te verdedigen

op woensdag 11 december 1996 des ochtends om 10.30 uur

door

Jan Cornelis van de Pol

geboren op 6 april 1969, te Barneveld

promotor: Prof. Dr. J.A. Bergstra (Faculteit der Wijsbegeerte)

co-promotor: Dr. M.A. Bezem (Faculteit der Wijsbegeerte)

Een deel van het onderzoek werd verricht aan het Mathematisches Institut van de

Ludwig{Maximilians{Universit�at te M�unchen. Dit betreft de Hoofdstukken 5.3{5.5,

de aanzet tot Hoofdstuk 6 en de Appendix. Dit deel werd ge�nancierd door de

Europese Unie als Science Twinning Contract SC1*{CT91{0724.

Preface

This thesis has not been written in isolation; it could not have been. I needed nice

people to be friends with, to chat to, to listen to, to learn from and to become inspired

by.

I am indebted to my supervisors Jan Friso Groote, who initiated my research,

and Marc Bezem, who read my papers and directed me during writing this thesis

with many valuable remarks and wise lessons. He also is my co-promotor. I am very

grateful to my promotor, Jan Bergstra. His inuence is not measurable, but large.

He was always willing to give advice, asked and unasked. He stimulated and enabled

various escapades outside my specialistic research and forced me to think about \what

next".

I thank all the other colleagues at the Department of Philosophy of the Utrecht

University, both the scienti�c and administrative sta� and the system managers. I

especially mention my old roommates Jan Springintveld and Alex Sellink, as well as

my currently most direct colleagues, Inge Bethke, Wan Fokkink, Marco Hollenberg,

Kees Vermeulen, Albert Visser and Bas van Vlijmen.

I was given to spend a considerable amount of time at the Mathematical Institute

of the Munich University. My host, Helmut Schwichtenberg, enabled a very intensive

research. He had great inuence on the direction of this thesis and was a pleasant

co-author. Special attention deserves Ulrich Berger for his friendly hospitality and

many useful technical and non-technical discussions. With great pleasure I recall my

roommate Robert St�ark and all the other colleagues, that without exception tolerated

my poor German. Felix Joachimski, Ralph Matthes and Karl-Heinz Niggl commented

on parts of the text.

The members of the reading committee, Dirk van Dalen, JanWillem Klop, Vincent

van Oostrom, Helmut Schwichtenberg and Hans Zantema, were as kind as to read the

manuscript of this thesis, and to give their judgement and comments.

Hans Zantema also was my teacher in term rewriting and the supervisor of my

Master's thesis. I learned much from him and will always see him amidst green foliage,

in his o�ce with the door always wide open.

Finally, I am grateful to my family. My parents and grandmother for always

supporting my study with their interest. Corrie, my wife, for her good-humored love

and for giving me Ella and Jan. For all these gifts I thank God.

iii

iv PREFACE

Daarom kwelt het verstand zich bij het onderzoeken

van overtollige en nietswaardige dingen met een

belachelijke nieuwsgierigheid.

Johannes Calvijn, Institutie II, ii, 12

Deze moeilijke bezigheid heeft God de kinderen der

mensen gegeven om zich daarin te bekommeren.

Prediker I, 13

Contents

1 Introduction 1

2 The Systems 11

2.1 Preliminary Terminology and Notation 11

2.2 Abstract Reduction Systems . 13

2.3 First-order Term Rewriting Systems 15

2.4 Simply-typed Lambda Calculus . 16

2.4.1 Terms and Types . 16

2.4.2 �- and �-Reduction . 20

2.5 Higher-order Term Rewriting . 23

2.5.1 Substitution Calculus . 23

2.5.2 Higher-order Rewrite Systems 25

2.5.3 Remarks and Related Work . 26

2.5.4 Examples of Higher-order Rewrite Systems 28

3 The Semantical Approach to Termination Proofs 33

3.1 Monotone Algebras for Termination of TRSs 34

3.1.1 Monotone Algebras . 34

3.1.2 More on Termination . 36

3.2 Functionals of Finite Type . 37

3.3 Monotonic Functionals for Termination of �

!

�

. 40

3.3.1 Hereditarily Monotonic Functionals 40

3.3.2 Special Hereditarily Monotonic Functionals 42

3.3.3 Termination of (�). 42

3.4 Towards Termination of Higher-order Rewrite Systems 43

4 Weakly Monotonic and Strict Functionals 47

4.1 Weakly Monotonic Functionals . 48

4.2 Addition on Functionals . 52

4.3 Strict Functionals . 54

4.3.1 De�nition and Properties . 55

4.3.2 The Existence of Strict Functionals 58

4.4 Functionals over the Natural Numbers 61

v

vi CONTENTS

4.5 Extension to Product Types . 64

4.5.1 HRSs based on �

�

�

. 64

4.5.2 Weakly Monotonic and Strict Pairs 65

5 Termination of Higher-order Rewrite Systems 69

5.1 Higher-order Monotone Algebras for Termination Proofs 70

5.1.1 A Method for Proving Termination 70

5.1.2 Second-order Applications . 72

5.2 Internalizing Simply-typed Lambda Calculus 77

5.2.1 Encoding the Simply-typed Lambda Calculus 77

5.2.2 Termination Models for H

lam

. 78

5.2.3 Modularity of Termination . 79

5.3 Example: G�odel's T . 83

5.4 Example: Surjective Pairing . 85

5.5 Example: Permutative Conversions in Natural Deduction 85

5.5.1 Proof Normalization in Natural Deduction 86

5.5.2 Encoding Natural Deduction into an HRS 88

5.5.3 Termination of H

9

. 90

5.6 Incompleteness and Possible Extensions 94

6 Computability versus Functionals of Finite Type 97

6.1 Strong Computability for Termination of �

!

�

. 99

6.2 A Re�nement of Realizability . 101

6.2.1 The Modi�ed Realizability Interpretation 101

6.2.2 Derivations and Program Extraction 102

6.2.3 Realization of Axioms for Equality, Negation, Induction 105

6.3 Formal Comparison for �-Reduction 108

6.3.1 Fixing Signature and Axioms 109

6.3.2 Proof Terms and Extracted Programs 110

6.3.3 Comparison with Gandy's Proof 113

6.4 Extension to G�odel's T . 114

6.4.1 Changing the Interpretation of SN(M;n) 114

6.4.2 Informal Decorated Proof . 115

6.4.3 Formalized Proof . 119

6.4.4 Comparison with Gandy's Functionals 122

6.5 Conclusion . 123

A Strong Validity for the Permutative Conversions 125

Bibliography 133

Index 139

Samenvatting 141

Curriculum Vitae 147

Chapter 1

Introduction

Rewriting and Termination

The word rewriting suggests a process of computation. Typically, the objects of

computation are syntactic expressions in some formal language. A rewrite system

consists of a collection of rules (the program). A computation step is performed by

replacing a part of an expression by another expression, according to the rules. The

resulting expression may be rewritten again and again, giving rise to a reduction

sequence. Such a sequence can be seen as a computation.

Certain expressions are considered as results, or normal forms. A computation

terminates successfully when such a normal form has been reached. This situation

can be recognized by the fact that no rewrite rule is applicable. It may also happen

that a computation does not end in a normal form, but goes on and on forever. This

is unfortunate, because such computations yield no result.

Suppose that a computation runs on a computer for a long time without yielding

a result. In that case, it may be di�cult to decide whether it is wise to wait just a

bit longer, or to abort the computation by switching the computer o�. Therefore,

given a rewrite system it is an interesting question whether its rules admit in�nite

computations, or not. We call a rewrite system terminating if all reduction sequences

supported by it are �nite. In general, it is di�cult to prove termination of rewrite

systems. The example above already shows that termination cannot be decided in

�nite time by just testing the program.

This whole thesis is devoted to the termination problem for a particular kind of

rewrite systems, namely higher-order rewrite systems. These are a particular combi-

nation of �rst-order term rewriting systems and lambda calculus. Before these systems

will be described in more detail, some application areas of rewriting are identi�ed and

the importance of termination in these areas is explored.

Rewrite systems have been recognized as a fundamental tool in both computer

science and logic. The applications below have in common that a rewrite system is

used to transform certain expressions into equivalent expressions of a nice form. The

1

2 CHAPTER 1. INTRODUCTION

rewrite rules can be understood as directed equations. As equations they ensure that

the initial expression and the result of the computation are equivalent. The rules are

directed, because one form is preferred to another one. Rewrite systems are used for

the following purposes:

� Prototyping functional languages;

� Describing transformations on programs;

� Implementing abstract data types;

� Automated theorem proving, especially for equational logic;

� Proving completeness of axiomatizations for algebras;

� Proving consistency of proof calculi for logics.

These tasks can be divided into practical and theoretical applications. In theoret-

ical applications it is enough to know that in principle, expressions can be reduced to

normal form. The practical tasks are performed by actually computing such a normal

form. For some applications, it is required that the normal form is unique.

We now describe certain desirable properties of rewrite systems. To this end, the

following notation is convenient. For objects s and t, we write s ! t if s can be

rewritten to t in one step (t need not be unique). If s rewrites to t in zero, one or

more steps, we say that s reduces to t and we write s� t.

We already encountered termination. A rewrite system is terminating if all rewrite

sequences s

0

! s

1

! s

2

! � � � are �nite. Termination is often called strong normal-

ization. A rewrite system is weakly normalizing if for all objects s there exists a

normal form t, such that s � t. This is not equivalent to termination, because in

a weakly normalizing rewrite system in�nite computations may exist too. Clearly,

strong normalization implies weak normalization.

Another important question is, whether the normal form of an expression is

uniquely determined. Weak normalization still admits that a term reduces to two

di�erent normal forms. A rewrite system is conuent if for all objects r; s; t such that

both r � s and r � t, there exists a u such that s � u and t � u. In words:

two diverging computations can always ow together. In a conuent and weakly

normalizing rewrite system, every object is guaranteed to have a unique normal form.

A rewrite system is locally conuent if for all objects r; s; t such that both r ! s

and r ! t, there exists a u such that s� u and t� u. The di�erence with conuence

is that the common successor is only guaranteed after a one step divergence. Local

conuence is weaker than conuence and does not imply uniqueness of normal forms.

But due to its local nature it is easier to detect.

The question arises why termination is an issue. Is weak normalization not suf-

�cient? First of all, termination implies weak normalization, so its importance is

inherited from weak normalization. As advantages of the latter we mention:

� For programs, weak normalization guarantees that a result exists.

3

� For function de�nitions, weak normalization is needed for totality of the func-

tion.

� For a decision procedure of equational logic, weak normalization guarantees that

both sides of a true equation can be brought into normal form.

� In completeness and consistency proofs, weak normalization guarantees that

every formula or proof can be transformed into an equivalent one of a certain

nice shape.

In fact, weak normalization is not su�cient in practical applications. In order

to actually compute a normal form, a strategy is needed in addition, which in each

situation prescribes which step must be chosen next. Without a normalizing strategy

the normal form can be missed by getting involved in an in�nite computation. It is

tempting to see the strategy as part of the rules. In that view, the rewrite system

becomes strongly normalizing. As arguments in favor of proving termination we

mention:

� Termination implies weak normalization;

� A terminating rewrite system doesn't need a strategy, because there is no danger

of in�nite computations;

� Termination and local conuence together imply conuence (local conuence is

often easier to prove than conuence);

� Termination means that the rewrite relation is well-founded, which yields a

strong induction principle.

This provides practical and theoretical evidence that termination is an interest-

ing property. After all, it is quite natural to ask whether all reduction sequences

eventually lead to a normal form.

Higher-order Rewrite Systems

Higher-order rewrite systems combine �rst-order term rewriting systems and simply-

typed lambda calculus in a special way. We �rst introduce the latter two formalisms.

The formalisms are characterized by the objects of computation.

Term rewriting systems. In term rewriting, the objects are �rst-order terms.

Such terms are built from a number of function symbols, each expecting a �xed num-

ber of arguments. Consider the symbols f0; s; a; qg, where 0 (zero) has no arguments,

s (successor) and q (square) are unary function symbols, and a (addition) is binary.

Using these symbols, we can built the natural numbers, e.g. 3 is represented by the

term s(s(s(0))), because 3 is the third successor of 0. We can also form more complex

terms, like q(a(s(0); q(s(s(0))))), which is interpreted as (1 + 2

2

)

2

.

4 CHAPTER 1. INTRODUCTION

Furthermore, a term may contain variables, which are place holders for arbitrary

terms. The fact that variables range over terms only | and not over e.g. function

symbols | explains the adjective �rst-order.

So far, a and q are idle symbols. By giving rewrite rules, we can make them

compute. Consider the following rewrite system:

(I)

8

>

>

<

>

>

:

a(X; 0) 7! X

a(X; s(Y)) 7! s(a(X;Y))

q(0) 7! 0

q(s(X)) 7! s(a(q(X); a(X;X)))

Here X and Y are variables, representing arbitrary terms. If a certain term contains

a subterm that matches the left-hand side of one of these rules, then that subterm can

be replaced by the corresponding instance of the right-hand side. This constitutes

one rewrite step. The subterm that is replaced is called the redex. As an example we

show that 2

2

� 4. In each step, the redex has been underlined:

q(s(s(0))) ! s(a(q(s(0)); a(s(0); s(0))))

! s(a(q(s(0)); s(a(s(0); 0))))

! s(a(q(s(0)); s(s(0))))

! s(s(a(q(s(0)); s(0))))

! s(s(s(a(q(s(0)); 0))))

! s(s(s(q(s(0)))))

! s(s(s(s(a(q(0); a(0; 0))))))

! s(s(s(s(a(q(0); 0)))))

! s(s(s(s(q(0)))))

! s(s(s(s(0))))

The latter term contains no redex, so it is a normal form.

There are two limitations of �rst-order term rewriting that we wish to overcome.

The �rst one is that there are no variables for function symbols. Functional program-

ming languages show that this would be a convenient construction. Consider e.g. the

following de�nition of twice, which applies its �rst argument (a function!) on the

second one twice.

(II)
twice(F;X) 7! F (F (X))

The other limitation is that �rst-order terms don't support the construct of bound

| or local | variables. This feature exists in most programming languages and also

in proofs and formulae of predicate logic. Bound variables occur quite naturally,

e.g. in the following rules, which de�ne the sum of a certain expression in i, for all

0 � i � n:

(III)

�

P

i�0

E 7! E[i := 0]

P

i�s(n)

E 7! a(

P

i�n

E;E[i := s(n)])

5

Here E denotes an expression that may contain i, and E[i := n] denotes the same

expression in which n is substituted for all occurrences of i. As reduction sequence

we could have for instance:

P

i�s(0)

s(i) ! a(

P

i�0

s(i); s(s(0)))

! a(s(0); s(s(0)))

! s(a(s(0); s(0)))

! s(s(a(s(0); 0)))

! s(s(s(0)))

Simply-typed lambda calculus. We now describe lambda calculus, which is a

calculus of functions and has a notion of bound variables. The two basic operations to

construct lambda terms are function application and lambda abstraction. A function

can be used by applying it to an argument. Application is written as juxtaposition. A

function can be introduced by giving a law for it. The function that maps x to E(x) is

written �x:E(x). Pure lambda calculus has no function symbols. Variables are place

holders for arbitrary functions. E.g. the term �x:(xy) represents the function that

takes an x and yields (xy), i.e. x applied to y. This is quite di�erent from �y:(xy),

which takes an arbitrary y and applies the function x to it. The function twice can

be represented by the lambda term �f:�x:f(fx).

The lambda calculus has only one rewrite rule, called the �-rule. This rule ex-

presses that applying a function �x:M to an argument N yields M , in which all

occurrences of x are replaced by N . In symbols:

(IV)
(�x:M)N 7! M [x := N]

In the simply-typed lambda calculus that we consider, term formation is subject to

type restrictions. Types are constructed from the base type o, by repeatedly applying

the binary type constructor !. Typically, o denotes the set of natural numbers, and

� ! � the set of functions from � into � . In this way a hierarchy of functions is

introduced. Functions of type o! o act on basic objects; higher-order functions (also

called functionals) act on functions of a lower type. The typing rules ensure that

functions of type � ! � can be applied only to functions of type �, yielding a result

of type � .

As an example, let x; z be variables of type o, f of type o ! o and g of type

o! o! o. Then omitting a number of parentheses, (�f:f(fx))(�z:gzz) is a term of

type o, which reduces to g(gxx)(gxx):

(�f:f(fx))(�z:gzz) ! (�z:gzz)((�z:gzz)x)

! (�z:gzz)(gxx)

! g(gxx)(gxx)

Simply-typed lambda calculus can be combined with a term rewriting system, by

giving the function symbols of the latter a type, e.g. 0 : o; q; s : o! o; a : o ! o ! o.

The rule for twice can now also be incorporated, by giving twice the type (o! o)!

6 CHAPTER 1. INTRODUCTION

o ! o. Using the rules introduced so far, it can be veri�ed that in the combined

system, twice(�x:s(a(x; x)); 0) � s(s(s(0))).

In this combined system, we have both named and nameless functions. Function

de�nitions can use both pattern matching (inherited from term rewriting) and pa-

rameter passing (inherited from lambda calculus). Therefore, this is the basis for a

powerful programming language. Nevertheless, the rules for the

P

-operator are not

well-formed in this system, because they contain a new binder. To amend this, we

will use higher-order rewrite systems.

Higher-order rewrite systems. In higher-order rewrite systems, the � remains

the only binder. The key observation is that other binders, like the

P

-operator, can

be represented by a higher-order function symbol. Assign the type o! (o! o)! o

to

P

. Then we can write e.g.

P

(n; �i:a(i; i)), which in the previous notation reads

P

i�n

a(i; i).

Thus, the objects of a higher-order rewrite system are lambda terms that may

contain function symbols of any type. The lambda calculus also takes care of substi-

tution, and technical matters like the scope of local variables. Instead of E[i := n],

we can now write (�i:E)n; the actual substitution can be performed by a �-rewrite

step. The translated sum-rules now read:

(V)

�

P

(0; �i:F (i)) 7! F (0)

P

(s(n); �i:F (i)) 7! a(

P

(n; �i:F (i)); F (s(n)))

In higher-order rewriting, it is ensured that �-reduction is performed immediately,

after applying a rule. In technical terms, this means that the rewrite relation is

generated modulo �. We clarify this with an example. In the plain combination of

rewriting and �-reduction, we would have the following reduction sequence:

P

(s(0); �i:s(i)) ! a(

P

(0; �i:s(i)); (�i:s(i))s(0))

!

�

a(

P

(0; �i:s(i)); s(s(0)))

! a((�i:s(i))0; s(s(0)))

!

�

a(s(0); s(s(0)))

! s(a(s(0); s(0)))

! s(s(a(s(0); 0)))

! s(s(s(0)))

By rewriting modulo �, the �-steps are performed immediately, so they become

invisible. We then get the following reduction sequence, which corresponds better

with the sequence displayed earlier in connection with the rules (III):

P

(s(0); �i:s(i)) ! a(

P

(0; �i:s(i)); s(s(0)))

! a(s(0); s(s(0)))

! s(a(s(0); s(0)))

! s(s(a(s(0); 0)))

! s(s(s(0)))

7

Substitution only occurs in the right-hand side of the sum-rules. This corresponds

with invisible �-reductions. Substitution may also occur on the left-hand side of the

higher-order rules, which corresponds with invisible �-expansions. Because of the

possibility of �-expansions, higher-order rewriting is more complex than the plain

combination of lambda calculus and term rewriting.

In the following chapters, several examples of higher-order rewriting occur. It

appears that the lambda calculus itself can be understood as a higher-order rewrite

system. The procedure to �nd the prenex-normal form of �rst-order formulae can

be viewed as a higher-order rewrite system. Also proof normalization in arithmetic

based on natural deduction can be seen as a higher-order rewrite system.

As a merit of the complex formalism of higher-order rewriting, we see that it has

all the above mentioned systems as instances. This makes it possible to study general

notions, like termination, in a common framework.

The Semantical Approach to Termination

Why does the symbol a mean addition, s the successor function, q the square and so

on? This particular meaning is supported by the fact, that we get true equations if

we interpret the rules in this way. Writing [[t]] for the interpretation of t, we get for

instance:

[[a(x; s(y))]] = x+ (1 + y) = 1 + (x+ y) = [[s(a(x; y))]]:

In other words, addition, successor and so on form a model. Of course, there may

be more models. Similarly, lambda calculus is about functions, because the �-rule is

true in the model of functions.

What we will propose, is to use a variant of this semantics in termination proofs.

Instead of a model in which the rules correspond to true equalities, we look for a

termination model, in which the rules are true inequalities. This is not a new idea;

what is new, is that we make this technique available for higher-order rewrite systems.

This appears to be a non-trivial extension of similar methods in �rst-order term

rewriting and lambda calculus.

The semantical method will be supported by a theorem, which states that if a

higher-order rewrite system has a termination model, then it is a terminating system.

For �rst-order term rewriting, a termination model has the following ingredients:

1. A set equipped with a well-founded partial order >.

2. For each function symbol, a strictly monotonic (= increasing) function on

this set. Roughly speaking, f is strictly monotonic if whenever x > y holds,

f(� � �x � � �) > f(� � � y � � �).

3. It must hold that for every rule l 7! r in the rewrite system, [[l]] > [[r]].

By (3) and (2), if s ! t, then [[s]] > [[t]]. Here (2) is needed, because the rule may

be used to replace a part of s; strict monotonicity of all function symbols guarantees

8 CHAPTER 1. INTRODUCTION

that the surrounding context preserves the decrease in order. Hence any reduction

sequence can be interpreted as a descending chain in > of the same length. By (1), this

chain is �nite, so the reduction sequence is �nite. Therefore, the system is terminating

(qed).

We illustrate this with an example. For the term rewriting system (I), de�ning a

and q, we take for (1) the natural numbers (N) with the usual greater-than relation.

For (2), we put:

[[0]] := 1

[[s(x)]] := x+ 1

[[a(x; y)]] := x+ 2y

[[q(x)]] := 3x

2

These functions are strictly monotonic. Now we verify (3):

[[a(x; 0)]] = x+ 2 > x = [[x]]

[[a(x; s(y))]] = x+ 2(y + 1) > x+ 2y + 1 = [[s(a(x; y))]]

[[q(0)]] = 3 > 1 = [[0]]

[[q(s(x))]] = 3(x+ 1)

2

= 3x

2

+ 6x+ 3 > 3x

2

+ 6x+ 1 = [[s(a(q(x); a(x; x)))]]

We have found a termination model satisfying (1), (2) and (3), hence the term rewrit-

ing system (I) is terminating.

The generalization of termination models to higher-order rewrite systems is quite

technical. The natural numbers with the usual greater-than relation can be taken as

a partial order on the base type. Terms of type o ! o are interpreted as functions

from N to N. We de�ne f > g to be: For all x, f(x) > g(x). The partial order and

the notion strictly monotonic have to be generalized to functions of higher types. We

also have to deal with function variables. In the termination models these variables

range over weakly monotonic functions (= non-decreasing). In particular, constant

functions are weakly monotonic. For details we refer to Chapter 4 and 5.

As an example, we show how a termination model for the system of sum-rules

looks like. We suggest the following interpretation for the sum-symbol:

[[

P

(n; f)]] := n+ 2f(0) + � � �+ 2f(n)

We take for granted that this function is strictly monotonic both in f and in n. We

can now verify that the rules correspond with a decrease in order.

[[

P

(0; �i:f(i))]] = 1 + 2f(0) + 2f(1) > f(1) = [[f(0)]]

[[

P

(s(n); �i:f(i))]] = n+ 1 + 2f(0) + � � �+ 2f(n) + 2f(n+ 1)

> n+ 2f(0) + � � �+ 2f(n) + 2f(n+ 1)

� n+ 2f(0) + � � �+ 2f(n) + 2f(n)

= [[a(

P

(n; �i:f(i)); f(n))]]

9

Here� holds, because f is at least weakly monotonic. By the main result of this thesis,

the calculations above imply that the higher-order rewrite system (V) is terminating.

For the sake of completeness, we mention that putting [[twice(F;X)]] := F (FX)+

X + 1 yields a termination model for the single-rule system (II). It is well-known

that in simply-typed lambda calculus the �-rule (IV) is also terminating. By another

result of this thesis, we can conclude that the plain combination of the �-rule with

the rule de�ning twice also terminates.

Contents of the Remaining Chapters

In Chapter 2, we formally introduce term rewriting systems, lambda calculus and

higher-order rewrite systems. Since these systems have a lot in common, the chapter

starts with an introduction to abstract reduction systems. This chapter contains no

new results.

Chapter 3 is a quite extensive summary of the semantical approach to termination

proofs. We explain how this technique works for term rewriting systems, and for

lambda calculus. These are existing techniques. In Section 3.4, it is explained why

these methods can not be immediately used for proving termination of higher-order

rewrite systems; we sketch how a modi�cation and integration of the two methods

should look like. This section also contains an overview of related work about proving

termination of higher-order rewrite systems.

Chapters 4 and 5 form the core of the thesis. The theoretical basis is established in

Chapter 4. This chapter can be read quite independently of the exact formulation of

higher-order rewriting. It is devoted to the extensions of strictly monotonic and weakly

monotonic to functions of all types. We propose a notion of strict functions, which

are strictly monotonic in a certain sense, even in the presence of weakly monotonic

functions.

In Chapter 5 the theory on weakly monotonic and strict functionals is applied to

derive a semantical method for proving termination of higher-order rewrite systems.

The method is applied to many examples. Most notably are G�odel's T | a system

that extends simply-typed lambda calculus with higher-order primitive recursion |

and a rewrite system that normalizes proofs in natural deduction. The latter system

is complicated by the presence of the so-called permutative reductions. We also

identi�ed computation rules for functionals and methods to �nd strict functionals.

These make it easier to ful�ll the requirements of the method that we propose, thus

supporting the application of our method.

Chapter 6 can be read independently of the rest of this thesis. In this chapter,

we compare the semantical approach to termination proofs, with a more traditional

approach that emerged from lambda calculus, and which uses strong computability

predicates. Although the two proofs seem completely unrelated, we found a remark-

able connection.

The idea to reveal this connection is as follows: We start with a proof based on

strong computability predicates. This proof is decorated with information on the

length of reduction sequences. After this, we extract the computational content of

10 CHAPTER 1. INTRODUCTION

this proof, by using the modi�ed realizability interpretation. In this way, we �nd

a program that given a term, estimates an upper bound for the length of reduction

sequences starting in it. It turns out that this upper bound coincides with the function

that is used in semantical termination proofs. This scheme is carried out for simply-

typed lambda calculus and G�odel's T.

Finally, the Appendix contains a reproduction of Prawitz's proof based on a variant

of strong computability. We added it because there are a number of connections with

our work. Our reproduction is denser than the text in [Pra71].

Contribution and Related Work.

The major contribution of this thesis is a general method to prove termination of

higher-order rewrite systems. Although the method is not complete, it covers a lot

of examples, as will be extensively shown. Easy application of it is supported by

providing computation rules for functionals and ways to �nd strict functionals.

We show that our method can deal with non-trivial examples. For the normal-

ization of natural deductions, including permutative conversions, we present the �rst

semantical termination proof. A proof using a variant of the strong computability

predicates already existed. It is reproduced in the Appendix.

As a corollary we prove that adding a terminating term rewriting system to the

simply-typed lambda calculus preserves termination. This modularity result is already

known, but we present a new proof of it. We also generalize this result for a particular

kind of higher-order rewrite rules. In the latter case, we have to know the termination

model of the rewrite rules. Under certain conditions on this termination model, the

plain combination of the higher-order rules with �-reduction is terminating.

Finally, the last chapter of this thesis shows how to compare two existing proof

methods, that could not be compared before. By program extraction from strong com-

putability proofs, we �nd programs that play a crucial role in semantical termination

proofs. This recipe can probably be applied to other systems. Note that termination,

as well as realizability and semantic models play an important role in consistency

proofs of logical systems. It is interesting to connect these notions. Whether the

connection we found has logical consequences remains open.

Most results of this thesis have been published in conference proceedings. In

[Pol94] a description of the semantical proof method is given. In [PS95] several com-

putation rules are given and the method is applied to larger examples. The former

two papers form the basis of Chapter 4 and 5. Chapter 6 is the full version of [Pol96].

The modularity results have not been published before.

For pointers to related work we refer to Section 2.5.3, Chapter 3 (especially the

last section), the introduction to Chapter 6 and the Bibliography.

Chapter 2

The Systems

This chapter is devoted to the syntactical introduction of several systems. The most

advanced systems are the higher-order term rewriting systems (HRS). Because these

systems can be understood as a combination of usual (�rst-order) term rewriting

systems (TRS) and simply-typed lambda calculus (�

!

), we �rst introduce the latter

two systems. The three systems are introduced in Section 2.3, 2.4 and 2.5, respectively.

Because the three systems that we introduce have a lot in common, we start o�

with the introduction of abstract reduction systems (ARS, Section 2.2). The particular

systems that we already mentioned can be seen as specializations of ARSs.

Before doing anything, some general terminology and handy notation will be �xed.

2.1 Preliminary Terminology and Notation

This section gives an overview of a number of general notions and notation, that will

be used. We tried to keep notation close to mathematical conventions, by using \naive

set theory".

The natural numbers are 0; 1; 2; : : :. The set of natural numbers is denoted by N.

We will use + for the binary addition function and > for the binary greater-than-

relation. With N

�n

we denote the set of natural numbers that are greater than or

equal to n.

For sets A and B we write A [B for the union and A \ B for the intersection of

A and B. The element-relationship is denoted by x 2 A (x is an element of A), the

subset relation with A � B (A is a subset of B). A and B are disjoint, if they have no

elements in common. If A and B are disjoint, their union may be written as A] B.

With A�B we write the cartesian product of A and B. A pair (x; y) is in A�B if

x 2 A and y 2 B. If z = (x; y), then �

0

(z) denotes x and �

1

(z) denotes y.

With A)B we denote the set of all functions from A to B. A is called the domain

of these functions, and B the co-domain. If f 2 A) B and x 2 A, then we write

f(x) for the result of applying f to x; of course f(x) 2 B. If h 2 A) (B)C), we

will write h(x; y) for the application h(x)(y), as if h were in (A�B))C.

11

12 CHAPTER 2. THE SYSTEMS

Two functions f; g 2 A) B are equal, if for all x 2 A, f(x) = g(x). Hence

a function can be de�ned by specifying its input/output behavior, which can be

conveniently expressed by using an abstraction: if E[x] is an expression, possibly

containing x, then we write ��x 2 A:E[x] for the function that maps each a 2 A to

E[a] (the result of substituting a for x in E). This notation is borrowed from the

lambda calculus, which will be introduced later. For f 2 A)B and g 2 B)C, we

write g � f 2 A)C for the composition of f and g. The composition can be de�ned

as ��x2A:g(f(x)).

A sequence of objects x

1

; x

2

; : : : ; x

n

is often abbreviated as ~x

n

, or ~x when the

length is unknown or not important. Conversely, if a sequence ~y

n

is given, then we

write y

1

for the �rst element, y

2

for the second, etcetera. With " we denote the empty

sequence (i.e. n=0).

If A is a set and for each i 2 A, X

i

is some object, we write (X

i

)

i2A

for an

A-indexed family. This is equivalent to the function ��i 2 A:X

i

. If the index set is

clear from the context, the family can be abbreviated with X . If each X

i

is itself a

set, then

S

i2A

(X

i

) denotes the union of all sets in the family. If the X

i

are pairwise

disjoint, we will confuse X with its disjoint union. If an A-indexed family X is given,

then we write X

a

for the a-th element of X , i.e. the element with index a.

Given a set A, a binary relation on it is a subset of A� A. With xRy we denote

that R holds between x and y. A relation R is reexive if xRx holds for all x 2 A; it is

irreexive if for no x 2 A, xRx holds. R is symmetric if for all x; y 2 A, xRy implies

yRx; it is transitive if for all x; y; z 2 A with xRy and yRz, xRz holds. Finally, R is

anti-symmetric if for all x; y 2 A, xRy and yRx imply that x = y.

With R

+

we denote the transitive closure of R, i.e. it is the smallest set that

contains R and is transitive. With R

�

its reexive-transitive closure. With R

�1

we

denote the inverse of R: xR

�1

y holds if and only if yRx.

An equivalence relation is a binary relation that is reexive, symmetric and tran-

sitive. An equivalence relation � on A, generates a set of equivalence classes. The

equivalence class of x consists of the elements y 2 A such that x � y. The equivalence

classes are pairwise disjoint.

A (strict) partial order is a binary relation that is transitive and irreexive. We

use symbols > and � for partial orders. Many authors de�ne partial orders to be

reexive, anti-symmetric and transitive. Our choice is more convenient in termination

proofs. We always mean strict partial order, when we say \partial order" or just

\order". A partial order is well-founded if there is no in�nite decreasing sequence

x

0

> x

1

> x

2

> � � �.

Given partial orders (B;>

B

), (A

1

; >

1

); : : : ; (A

n

; >

n

) we call the function f 2

(A

1

� � � � �A

n

))B strictly monotonic if for each 1 � i � n, and for all x

1

2

A

1

; : : : ; x

n

2 A

n

and y 2 A

i

,

x

i

>

i

y) f(x

1

; : : : ; x

i

; : : : ; x

n

) >

B

f(x

1

; : : : ; y; : : : ; x

n

) :

A pre-order (also called quasi-order) is a binary relation that is reexive and

transitive. A pre-order � generates an equivalence relation and a partial order as

follows: x � y if and only if x � y and y � x; x > y if and only if x � y but not

y � x. The latter partial order is said to be generated by the pre-order.

2.2. ABSTRACT REDUCTION SYSTEMS 13

2.2 Abstract Reduction Systems

In the subsequent sections, we will encounter several reduction systems. A number

of de�nitions and lemmas are not special for one of these systems in particular, but

have a general nature. To this end, we introduce the well known notion of an abstract

reduction system (ARS). An ARS is of the form (A;R), where R is a binary relation

on A.

So far, there is nothing special about ARSs. In fact the distinguishing feature

of ARSs comes with their use. We think of A as a set of objects, and of R as a

reduction relation, or as computation steps. That is, given an object a 2 A, it can be

\computed" by performing steps, that is �nding b; c; : : : such that aRbRc � � �, until no

step can be done anymore. In that case we have reached a so-called normal form.

To stress that an ARS is about transformations, we often denote the relation by

!. The reexive-transitive closure of ! is denoted by �. The reexive-symmetric-

transitive closure is denoted by =. Syntactic equality on objects is denoted by �.

If a ! b, then b is called a one-step reduct of a. The reducts of a are those b such

that a � b. We write !

1

� !

2

for the composition of !

1

and !

2

. Furthermore,

n

!

denotes the n-fold composition of !.

Several questions about the computations may arise: Can any object be computed,

i.e. can we �nd a reduction sequence to normal form? Is the result of a computation

uniquely determined, i.e. independent of the steps that we choose to perform? or:

Does any rewrite sequence eventually terminate in a normal form? These natural

questions give rise to several de�nitions.

De�nition 2.2.1 Let A = (A;!) be an ARS. Let a; b 2 A be given.

� a is a normal form, if for no x 2 A, a! x.

� a is weakly normalizing (WN) if it has a normal form, i.e. if for some x 2 A,

a� x and x is a normal form.

� A reduction sequence from a is a (�nite or in�nite) sequence a � a

0

! a

1

!

a

2

! � � �.

� a is strongly normalizing (SN) or terminating if every reduction sequence from

a is �nite.

� a is strongly normalizing in at most n steps, SN(a; n), if every reduction se-

quence from a has at most n steps.

� a is conuent or Church-Rosser (CR) if for all b; c 2 A such that a � b and

a� c, there exists a d such that b� d and c� d.

� a is weakly Church-Rosser or locally conuent (WCR) if for all b; c 2 A such

that a! b and a! c, there exists a d such that b� d and c� d.

� A is WN, SN, WCR or CR, if for all x 2 A, x is WN, SN, WCR or CR.

14 CHAPTER 2. THE SYSTEMS

� A is �nitely branching, if for all x 2 A, the set fy jx ! yg is �nite. This is

sometimes called locally �nite.

Weak normalization is a desirable property, because it ensures that every object

has a normal form, so it can be computed. It is also desirable that the answer is

unique. This is ensured by conuence: If a reduces to two normal forms b and c, then

by conuence b � d and c � d for some d. Because b and c are normal, it must be

the case that b � c � d. So weak normalization and conuence together ensure that

any object can be computed in a unique way. In the presence of these properties, we

write a# for the unique normal form of a.

In fact, weak normalization is a bit too weak. We only have that there exists a

reduction to normal form. In order to really compute, we should also have a good

strategy to �nd that reduction. Termination (or strong normalization) is convenient,

because in that case we need not care about a reduction strategy: Every reduction

eventually leads to a normal form. (A strategy may become important if we also take

e�ciency into consideration.)

Conuence and termination are often di�cult to prove. We refer to [Oos94] for

a recent study on conuence proofs. It is often more easy to prove local conuence.

The di�erence is that for any object, we only have to prove something for its one-step

reducts. This check can often be automated, especially in case ! is generated by a

�nite number of rules. We can now give a second reason to be interested in strong

normalization:

Lemma 2.2.2 [New42] If A is SN and WCR, then it is CR.

The only properties that we have not yet motivated are the binary SN-predicate

and the �nite branching. If we know SN(a; n), we have an upper bound on the

longest reduction sequence from a. It may be convenient to know the resources that

are needed to perform a computation. Having a function f such that for all a 2 A,

SN(a; f(a)) even gives a uniform upper bound to reduction sequences in an ARS.

However, the main motivation for the binary SN-predicate is a methodological one.

The binary predicate gives more information. Di�erent methods to prove termination

may yield di�erent upper bounds. We can compare the methods by inspecting which

bound is sharper. In Chapter 6 we will compare di�erent SN-proofs with respect to

the upper bounds they impose on the length of reduction sequences. There also exist

SN-proofs that give no indication about the length of reduction sequences.

The relationship between the unary and the binary SN-predicate is given by the

following lemma, which is an immediate consequence of K�onig's Lemma.

Lemma 2.2.3 If A is �nitely branching, then SN(A) holds if and only if 8a2A:9n2

N:SN(a; n).

Proof:): Consider the reduction tree from a. This tree is �nitely branching by

assumption, and all paths in it have �nite length, by SN. By K�onig's Lemma, the

number of nodes in the tree is �nite, so the number of paths in it is also �nite. Hence

we can take a path with the greatest length. This length is the required n.

(: Immediate. This part doesn't use the �nite branching. �

2.3. FIRST-ORDER TERM REWRITING SYSTEMS 15

2.3 First-order Term Rewriting Systems

The �rst instances of ARSs that we encounter are the TRSs. Here the objects are

�rst-order terms in some signature. The reduction relation is generated by closing a

set of rewrite rules under substitution and context.

First order term rewriting can be seen as the proof theory that comes with equa-

tional logic. Alternatively, it can be seen as the operational semantics of abstract

data types. The study of TRSs yields a lot of insights in functional programming

languages. Standard texts on term rewriting are [HO80, DJ90, Klo92].

De�nition of TRSs. A �rst-order signature is a tuple (F;V), where F is the set of

function symbols and V is a set of variables. It is assumed that F\V = ?. Associated

to F is a function arity : F)N, which gives each f 2 F its arity.

From now on, we �x a signature � = (F;V). We can de�ne the set of terms

T(�) inductively as follows: if x 2 V, then x 2 T(�); and if f 2 F, arity(f) = n

and t

1

; : : : ; t

n

2 T(�), then f(t

1

; : : : ; t

n

) 2 T(�). The variables x; y; z; : : : (possibly

subscripted) will range over V; r; s; t; : : : are reserved for elements in T(�). With

Var(t) we denote the set of variables that occur in t.

A term t is closed if Var(t) = ?. The closed terms are built by leaving out the

�rst clause in the de�nition of T(�). The only way to start building closed terms is

with a constant, i.e. a function symbol with arity 0. If there are no constants, then

the set of closed terms is empty.

A substitution is a function in V)T(�). It is extended to terms in a homomorphic

way. For substitutions we use �; �

1

; : : :. The result of applying substitution � to term

t is denoted by t

�

. Thus f(t

1

; : : : ; t

n

)

�

� f(t

�

1

; : : : ; t

�

n

).

A context over � is a term t in T(F;V [2), such that 2 occurs exactly once in

t. Contexts are regarded as terms with a hole in it (namely 2), and are often called

C[] and D[]. The result of �lling the hole in C[] with t is denoted by C[t].

A rewrite rule is a pair l 7! r, such that l; r 2 T(�), l =2 V and Var(r) � Var(l).

A rewrite rule l 7! r is called duplicating, if some variable x occurs more often in r

than in l. It is called collapsing if r is a variable.

A term rewriting system (TRS) is a tuple (�; R), where � is a signature and R a

set of rewrite rules.

The rewrite relation generated by a TRS R = (�; R) is denoted by !

R

, and is

de�ned as follows:

s!

R

t :() there are C[]; � and l 7! r such that s � C[l

�

] ^ t � C[r

�

] :

Disjunctive normal form. As an example, we consider a TRS to �nd the disjunc-

tive normal form of propositional formulae. We only consider the following connec-

16 CHAPTER 2. THE SYSTEMS

tives: ^ and _ (binary, written in�x) and : (unary). The rules are

x ^ (y _ z) 7! (x ^ y) _ (x ^ z)

(y _ z) ^ x 7! (y ^ x) _ (z ^ x)

:(x ^ y) 7! :x _ :y

:(x _ y) 7! :x ^ :y

::x 7! x

It is clear that the normal forms of this system correspond to disjunctive normal forms

(i.e. disjunctions of conjunctions of positive and negative literals). The left hand side

of each rule is logically equivalent to the corresponding right hand side. So if this

system is WN, then every formula can be written in a logically equivalent disjunctive

normal form. In Section 3.1, we show as an illustration that this system is SN.

We remark that this system is not conuent, which corresponds to the fact that

the disjunctive normal form is not uniquely determined. Consider for instance the

following diverging reductions:

(v _ w) ^ (x _ y) !

R

((v _ w) ^ x) _ ((v _ w) ^ y)

2

!

R

((v ^ x) _ (w ^ x)) _ ((v ^ y) _ (w ^ y)) ;

and

(v _ w) ^ (x _ y) !

R

(v ^ (x _ y)) _ (w ^ (x _ y))

2

!

R

((v ^ x) _ (v ^ y)) _ ((w ^ x) _ (w ^ y)) :

Both results are in normal form, so they cannot be brought together by performing

more reductions.

2.4 Simply-typed Lambda Calculus

In this section, we will introduce the simply-typed lambda calculus. This is another

instance of ARSs. The objects of this ARS are those lambda terms that can be

assigned a simple type. We will introduce two reduction relations on terms, !

�

and

!

��

. Section 2.4.1 is on the static part: terms, types and a lot of terminology. In

Section 2.4.2 we will introduce the rewrite relations.

Simply-typed lambda calculus was introduced by Church in [Chu40]. For general

notions and notation in lambda calculus, see [Bar84]. For an overview of typed lambda

calculi the reader is referred to [Bar92].

2.4.1 Terms and Types

In fact we should speak about simply-typed lambda calculi. We allow several param-

eters to vary, namely the base types, the constants and the variables that are used.

This information is stored in a signature.

2.4. SIMPLY-TYPED LAMBDA CALCULUS 17

Types. The simple types are constructed from a set of base types. Other types can

be formed by repeatedly applying the binary type operator!. Later on, other calculi

will be introduced that have more type forming operators (e.g. product types). To

distinguish the various calculi, we will denote the types with T

!

(B), the simple types

over a set of base types B. This set is formally de�ned as the smallest set satisfying

� B � T

!

(B)

� If �; � 2 T

!

(B) then also � ! � 2 T

!

(B).

In the sequel, the variables �; �; �; : : : (possibly subscripted) will range over T

!

(B);

we use �; � as metavariables over B. Intuitively, � ! � is the type of functions that

can be applied to input of type �, yielding output of type � . To save brackets, we

follow the convention that ! associates to the right. I.e. �! � ! � denotes the type

�! (� ! �). We also write ~�

n

! � for the type �

1

! � � � ! �

n

! �.

Every type can be uniquely written in the form ~�

n

! �, where � is a base type.

If � = ~�

n

! �, then n is called the arity of �, which corresponds to the number of

arguments that functions of this type expect. In this case we also write fac(�) for ~�,

the factors of � and res(�) for �, the result type of �. The latter can be recursively

de�ned by

� For � 2 B, res(�) = �.

� res(� ! �) = res(�).

If two types have the same factors, then they accept the same sequence of argu-

ments. We write � � � in that case. This equivalence relation can be inductively

de�ned as follows:

� � � �, for �; � 2 B.

� If � � � , then �! � � �! � .

As a measure of complexity, we introduce the notion of type level. This is de�ned

with induction over the types:

� For � 2 B we put TL(�) = 0.

� TL(� ! �) = max(TL(�) + 1;TL(�)).

Thus nesting arrows to the left is considered complex.

Signature. In pure lambda calculus, terms are constructed from typed variables by

the operators of abstraction and application. These operators get their meaning by

the rules for �- or ��-equality. In our setting, additional constants are allowed, which

will get their meaning by higher-order rewrite rules. These rules are not discussed in

this section.

The set of simply-typed lambda terms is parametrized by a set of base types, sets

of typed constants and sets of typed variables. These three sets will be combined in

a signature. A higher-order signature is a triple (B;C;V), where

18 CHAPTER 2. THE SYSTEMS

� B is a set, which serves as the set of base types.

� C is a family (C

�

)

�2T

!

(B)

, where the C

�

are pairwise disjoint. Elements of C

�

are called constants of type �.

� V is a family (V

�

)

�2T

!

(B)

, where the V

�

are countably in�nite and pairwise

disjoint. Elements of V

�

are called variables of type �.

� B,

S

C and

S

V are pairwise disjoint.

Symbols c; d; f; g typically range over C. Symbols x; y; z are reserved for variables

in V. We write x

�

to stress that (the variable) x has type �.

Terms. Given a signature F = (B;C;V) we de�ne the set of simply-typed lambda

terms, �

!

(F), as the union of the sets of terms of type � , for each � 2 T

!

(B). These

sets, written �

!

�

(F), are de�ned simultaneously as the smallest sets satisfying

� V

�

� �

!

�

(F).

� C

�

� �

!

�

(F),

� If M 2 �

!

�!�

(F) and N 2 �

!

�

(F), then MN 2 �

!

�

(F). This is called applica-

tion of M to N .

� If x 2 V

�

and M 2 �

!

�

(F) then �x:M 2 �

!

�!�

(F). This is called abstraction of

x in M .

We put �

!

(F) :=

S

�2T

!

(B)

�

!

�

(F), the set of simply-typed lambda terms over

the signature F.

Often the signature is known from the context, in which case it can be omitted by

simply writing T

!

and �

!

. In the sequel of this section, we assume a �xed signature

F = (B;C;V). With terms we will mean simply-typed lambda terms in this signature.

Instead of M 2 �

!

�

we will also write M : � .

The following notational conventions will be used. The symbolsM;N;P (possibly

subscripted) are reserved for terms. We write �xyz:M for �x:�y:�z:M . Application

associates to the left and binds stronger than abstraction. So NMP means (NM)P

and �x:yx denotes �x:(yx). Finally, we write M

~

P

n

as a shorthand for MP

1

� � �P

n

and �~x

n

:M for �x

1

x

2

� � �x

n

:M .

Bound and free variables. One can think about lambda terms as a notation for

functions. These functions can be applied to each other, provided the types �t. The

type of a term determines to which other terms it can be applied. Abstraction is the

\inverse" of application. With abstraction one can construct functions. The �x in

�x:yx expresses that this term has to be interpreted as a function in x (and y is a

free parameter of it). Applying this function to a yields ya. This is quite di�erent

from applying �y:yx to a. Other examples of lambda terms are �x:x (the identity

function); �x:�y:x (left projection) and �x:y (the constant y function). This intuition

2.4. SIMPLY-TYPED LAMBDA CALCULUS 19

underlies the standard model of simply-typed lambda calculus, which we will discuss

in Section 3.2.

The �x part in �x:M is said to bind the occurrences of variable x in M ; x is a

bound variable. Variables that occur outside the scope of any binder are called free.

In principle, a variable can occur both bound and free in one term. Consider e.g. the

term (cx)(�x:x), which is well-typed in an appropriate signature. Formally, we de�ne

the set of free variables of a simply-typed term M , denoted by FV(M), by induction

on M as follows:

� FV(x) = fxg for x 2 V

� FV(c) = ? for c 2 C

� FV(MN) = FV(M) [FV(N)

� FV(�x:M) = FV(M) n fxg

If FV(M) = ?, we say that M is a closed term.

Alpha-conversion, substitution, variable convention. Note that �x:x and

�y:y both denote identity. The bound variable has a local nature, so the name that

is chosen for it is not important. Changing the names of bound variables is known

as �-conversion. From now on, we will identify terms that only di�er in the names

of the bound variables. So in fact a lambda term should be viewed as an equivalence

class of �-convertible terms. The terms that are written down are arbitrary repre-

sentatives of this equivalence class. We write M � N if M and N are �-convertible.

E.g. �x:�x:x � �x:�y:y. The latter is more intelligible, because distinct variables

have di�erent names.

A substitution is a mapping from variables to terms of the same type. More

precisely, it is a �nite function fx

1

7! M

1

; : : : ; x

n

7! M

n

g, where for each 1 � i � n,

there exists a � such that x

i

2 V

�

and M

i

2 �

!

�

.

Substitutions are extended to homomorphisms on terms. We write M

�

for the

application of � to M , i.e. the simultaneous substitution of the x

i

by the M

i

in M . If

� = fx 7! Ng, we also write M [x := N]. M

�

can be de�ned with induction on M as

follows:

� x

�

� �(x) if x is in the domain of �.

� x

�

� x, if x 2 V but not in the domain of �.

� c

�

� c, if c 2 C.

� (MN)

�

�M

�

N

�

� (�x:M)

�

� �x:(M

�

), provided no name clashes occur.

A name clash can occur in two ways:

20 CHAPTER 2. THE SYSTEMS

1. x occurs in the domain of �. In that case, a substitution would rename a bound

variable, which is unintended.

2. x occurs free in the co-domain of �. More precisely, for some y, x 2 FV(�(y)).

In that case, there is an unintended capture of that x by the �x.

Although there is a proviso, the de�nition of M

�

is total, because we can always

rename the bound variables such that the proviso is met. Consequently, substitution

is only de�ned up to �. For example, applying the substitution fy 7! (ax)g to the

term (�x:yx) should yield �z:axz, not the erroneous �x:axx.

In the sequel, we tacitly assume that necessary renamings will be performed au-

tomatically. Moreover, in concrete situations, we assume that renamings are not

necessary, due to a convenient choice of the names of the bound variables. Such

assumptions are often referred to as the variable convention.

Note that this convention only works in a mathematical text. In a computer pro-

gram, or in formalized proofs, one cannot escape from renaming the variables explic-

itly. To make the choice of variable names systematic, De Bruijn indices (i.e. numbers

referring to the binders) can be used instead of named variables [Bru72]. See [Bar84,

p. 26], where a more severe variable convention is introduced.

Restricted classes of terms. A subclass of lambda terms, the so called �I-terms,

is obtained by restricting the formation of �x:M to the case that x 2 FV(M). We

denote this class by �

!

-I. This class plays an important rôle in Gandy's proof that

�-reduction in simply-typed lambda calculus terminates (Section 3.3). The term

�x:�y:x for instance is not in �

!

-I, because the argument y is not used.

An other restriction of lambda terms is formed by the so called patterns. Given

a term M , it can be written as �~x:N , with N not a lambda abstraction. Now M is

a pattern, if all variables y 2 FV(N) occur in a position yz

1

: : : z

n

and the z

1

; : : : ; z

n

are pairwise distinct free variables. This class is important for higher-order match-

ing [Mil91].

2.4.2 �- and �-Reduction

Equations. So far, we have no calculus yet. We will now introduce two schematic

equations, traditionally called � and �. The � equality expresses what happens if we

apply a term �x:M to a term N . The result will be M , with the formal parameter x

instantiated by the argument N . Hence we get (for every x, M and N such that the

following schema is well-typed)

(�) (�x:M)N =M [x := N] :

The equality =

�

is de�ned as the closure of the rule (�) under the usual equational

laws of reexivity, symmetry, transitivity and compatibility. With the latter we mean

that if M =

�

N , then MP =

�

NP , PM =

�

PN and �x:M =

�

�x:N .

There is a second equation schema: For each M with x =2 FV(M),

(�) �x:Mx =M :

2.4. SIMPLY-TYPED LAMBDA CALCULUS 21

This schema can be justi�ed by noting that the left and right hand side yield the

same result when applied to a term N . The equality =

��

is de�ned as the closure of

the rules (�) and (�) under the usual equational laws.

The equational theory thus obtained can be turned into a reduction system by

directing the equations (�) and/or (�). We will be mostly concerned by the reduction

system based on the (�)-rule only. This reduction system will be called �

!

�

.

�-Reduction. We write !

�

for the compatible closure of the rewrite schema

(�) (�x:M)N 7! M [x := N] :

The reexive-transitive closure is written �

�

. The chosen direction is the intuitive

one. It corresponds to function calls in many programming languages. For this reason,

�

!

�

is the prototype to study parameter passing in functional languages.

The system �

!

�

has been studied extensively. As a reduction system, it has many

nice properties. We only list a few of them.

Theorem 2.4.1 [CR36] �

!

�

is conuent.

Conuence does not depend on typing information. The untyped lambda calculus is

already conuent. Proofs of this fact are due to Church and Rosser (in fact this proof

is in the setting of the untyped �I-calculus), and Martin-L�of and Tait. The proofs

can be found in e.g. [Bar84].

Theorem 2.4.2 �

!

�

is weakly normalizing.

By the previous theorems, every simply-typed lambda term has a unique �-normal

form. It is not di�cult to characterize this normal form.

Lemma 2.4.3 M is in normal form, if and only if it is of the form �~x

n

:yN

1

; : : : ; N

m

,

where y 2 V [C, and for each 1 � i � m, N

i

is in �-normal form again.

Finally,

Theorem 2.4.4 �

!

�

is strongly normalizing.

There are many proofs of the last fact [Gan80, Tai67, Tro73]. We will present Gandy's

proof in Section 3.3. Tait's proof is presented in Section 6.1. Chapter 6 is devoted to

the comparison of these two proofs.

Normalization essentially relies on typing information. In the untyped lambda

calculus, WN does not hold. In this calculus, application and abstraction are not

restricted by any type constraints. In this way one can construct more terms, among

which the famous
 � (�x:xx)(�x:xx). It is easily veri�ed that
 !

�

, which

destroys strong normalization. As
 is the only successor of
, it has no normal

form, so weak normalization is violated too.

There are much more strongly normalizing lambda terms than those typable in

�

!

. It is undecidable whether an untyped lambda term is strongly normalizing or

22 CHAPTER 2. THE SYSTEMS

not. Stronger typing systems have been studied, that capture more and more strongly

normalizing terms, most notably System F (capturing second order polymorphism)

[Gir72], System F

!

(featured by unlimited polymorphism) and �\

�

(incorporating

intersection types). In the latter system, strong normalization and typability coincide

[Bak92]. Of course, in this system it is undecidable whether a term is typable or not.

Long normal forms. At �rst sight, the most reasonable direction of the equation

schema (�) is from left to right, for only in that direction the terms get smaller. We

therefore de�ne !

�

as the compatible closure of the relation �x:Mx 7!M , provided

x =2 FV(M). We put !

��

= !

�

[!

�

. This relation has nice rewrite properties, for

it is strongly normalizing and conuent.

It is also possible to choose the opposite direction, which is more convenient in

higher-order rewriting and also for higher-order matching. However, we cannot allow

unrestricted �-expansion, because it has undesirable rewrite properties. First of all,

normal forms would not exist: For any M : o! o we have

M

�

�x:Mx

�

�x:(�y:My)x

�

� � � :

In the presence of �, another in�nite reduction exists:

MN

�

(�x:Mx)N !

�

MN

�

� � � :

Note that also in the �rst reduction sequence, �-redexes are created. We therefore

de�ne restricted �-expansion as follows:

M !

�

N :() M

�

N without creating a �-redex.

With!

��

we denote!

�

[!

�

. We remark that a subtermM of P may be expanded

to �x:Mx if the following conditions hold:

� M has an arrow type;

� x =2 FV(M);

� M is not of the form �x:N already; and

� M does not occur in a context MN within P .

With �

!

��

we denote the ARS (�

!

;!

��

).

Proposition 2.4.5 �

!

��

is strongly normalizing and conuent.

Proofs of this fact can be found in [CK94, Aka93, Dou93]. Therefore, each lambda

term has a unique ��-normal form, which is denoted by M #

��

. Furthermore, every

��-normal form M is of the form �~x

n

:(aN

1

: : : N

m

), where (aN

1

: : : N

m

) is of base

type, a 2 V [C, n is the arity of the type of M and each N

i

is in ��-normal form

again. One reason to work with restricted �-expansion is that ��-normal forms have

this nice structure. Each term starts with a number of lambdas, reecting how many

arguments it expects, followed by an expression of base type, which in turn is an

2.5. HIGHER-ORDER TERM REWRITING 23

atomic term applied on similar terms. Lambda terms in ��-normal form are much

like �rst order terms.

The following lemma shows why it is also technically convenient to work with �-

expansions instead of �-reduction: the �-normal form is preserved under substitution

and �-reduction.

Lemma 2.4.6 Let M and N be �-normal. Then

� M [x := N] is �-normal.

� If M !

�

M

0

then M

0

is �-normal.

By de�nition of �, no � redexes can emerge during �-expansion. The previous

lemma says that no �-redexes can emerge in an �-normal form after �-reduction.

Hence the ��-normal form can be found among others via �

�

� �

�

as well as via

�

�

��

�

.

2.5 Higher-order Term Rewriting

In this section, we introduce higher-order term rewriting. Higher-order term rewrit-

ing is a combination of �rst-order term rewriting and simply-typed lambda calculus.

Higher-order rewriting can be viewed as \rewriting with functions" as opposed to

rewriting with �rst-order objects.

The main motivation for extending �rst-order term rewriting is to enhance �rst-

order terms with bound variables. Many formal languages have a construct of bound

| or local | variables, e.g. lambda calculus, �rst order logic, Pascal programs. The

claim is, that objects of such languages (programs, formulae, proofs) can be faithfully

represented by lambda terms containing (higher-order) constants. This point of view

is not new at all. In [CFC58, p. 85] e.g. the following is stated (and proved): \Any

binding operation can in principle be de�ned in terms of functional abstraction and

an ordinary operation". The modern slogan for this attempt is \higher-order syntax".

The main reasons for extending simply-typed lambda calculus is to enlarge the

expressive power and to add abstract data types. The resulting formalism inherits

the notions of bound variables, substitution and parameter passing of the lambda

calculus, and it inherits pattern matching and function de�nition by equations from

term rewriting.

In this section we will �rst motivate the use of higher-order syntax. Then we give

the formal de�nition of higher-order term rewriting. We then give a short discussion

and provide links to related formalisms. Finally we give some examples.

2.5.1 Substitution Calculus

In the view of higher-order syntax, there is only one binder, the � of some lambda

calculus. This calculus is used as a metalanguage. All other binding mechanisms

are formulated via this metalanguage. This guarantees that all binding mechanisms

24 CHAPTER 2. THE SYSTEMS

are treated in a uniform way. Hence matters of scope, renaming of local variables,

substitution, free parameter provisos etc. have to be dealt with only once. Follow-

ing [Nip91, Nip93], we will take the simply-typed lambda calculus with ��-reduction

as a metalanguage. Following [Oos94, Raa96] we will refer to the metalanguage as

the substitution calculus.

As a typical example, let us consider �nding the prenex normal form of �rst-order

logical formulae. In this normal form, the quanti�ers only occur at the outside of

the formula. The standard way to prove that each formula is logically equivalent to

a prenex normal form, is by giving rules that push the quanti�ers outside step by

step, and prove that applying these rules repeatedly, will terminate eventually. One

of these rules could be:

' ^ 8x: 7! 8x:(' ^) ;

provided that x does not occur free in '. If x happens to occur free in ', the bound

variable x must be renamed before the rule can be applied. E.g. p(x) ^ 8x:9y:r(x; y)

must be renamed to p(x)^8z:9y:r(z; y), before it can be rewritten with the �rst rule

to 8z:(p(x) ^ 9y:r(z; y)).

In the point of view of higher-order syntax, the formula in the rule above is a

function that depends on x. This formalizes the traditional informal notation [x],

which means that x may occur in . Instead of [x], we will write �x: [x], or

equivalently, �x: , thus expressing the dependency on x more precisely.

Assuming two base types, � for individuals and o for formulae, the type of �x:

will be � ! o. This is the type that the 8-quanti�er expects as argument. Now

the 8-quanti�er does not bind variables, because they are already bound by the �.

Instead, it is viewed as an ordinary constant of type (�! o)! o.

In the traditional informal notation, after introducing a formula like [x], many

authors write [t] to denote with all free occurrences of x replaced by the term

t. We can now write [t] as an application, viz. (�x:)t. Note that �-reduction is

necessary to actually perform the substitution. So �-reduction is a component of the

substitution calculus. It is needed to animate the metalanguage. Remember that the

de�nition of �-reduction takes care that name clashes are avoided by renaming bound

variables.

The rewrite rule written above can now be formulated in the substitution calculus

as follows:

P ^ 8(�x:Qx) 7! 8�x:(P ^ (Qx));

where P

o

and Q

�!o

are formal variables. P can be instantiated by a concrete ';

Q can be instantiated by something like �x: [x]. In the rule above, we wrote the

��-normal form of Q, viz. �x:Qx.

The proviso that x is not allowed to occur in ' is now captured by the usual

variable convention. On the other hand, x may appear in . This is because we can

instantiate Q

�!o

with �z: [z] (which doesn't contain x free) such that (Qx) reduces

to [x] in the substitution calculus.

2.5. HIGHER-ORDER TERM REWRITING 25

The substitution calculus will get one more task, namely the instantiation of the

rules. The rewrite rule above is in fact a schema, for which concrete ' and for

P

o

and Q

�!o

have to be substituted. To shift the burden of this substitution to the

substitution calculus, we will write the rule as

�P

o

:�Q

�!o

:P ^ 8(�x:Qx) 7! �P

o

:�Q

�!o

:8�x:(P ^ (Qx)) :

Applying the left hand side and the right hand side to e.g. (py) and �z:(qzy) and

computing the �-normal form of both sides, will bind P to (py) and (Qx) to (qxy),

yielding the correct instance

(py) ^ 8�x:(qxy) 7! 8�x:(py) ^ (qxy) :

This process of rewriting will be more formally de�ned in the next section.

2.5.2 Higher-order Rewrite Systems

We now de�ne what a higher-order rewrite system is. To this end, we have to know

how the rules may look like. An HRS is then a set of higher-order rules in a certain

simply-typed signature. After this, we will de�ne which ARS is induced by such

a system. Its objects will be simply-typed lambda terms in ��-normal form. The

rewrite relation is generated by a number of higher-order rules, that are understood

modulo =

��

, to deal with substitution.

De�nition 2.5.1

� Given a signature F = (B;C;V) (in the sense of Section 2.4.1), a higher-order

rewrite rule is a pair, written L 7! R, such that for some � 2 T

!

(B), both L : �

and R : � , and L and R are closed ��-normal forms.

� A higher-order rewrite system (HRS) is a tuple (F;R), where F is a signature

and R is a set of higher-order rewrite rules in this signature.

Usually, there are several restrictions on the rules. We have deliberately chosen

to keep these restrictions outside the de�nition of HRSs.

In order to de�ne the rewrite relation generated by an HRS, we have to close the

relation under contexts. Because the rules contain no free variables, a closure under

substitution is not necessary. Instead of closing under substitution, we let matching

take place modulo the substitution calculus. We �rst de�ne what a context is.

A context over a signature (B;C;V) is a term C in �

!

(B;V[f2g;C) such that 2

occurs free in C at exactly one position. Note that the number of occurrences of 2

is not invariant under �-reduction. This is not problematic, because we will only use

contexts that are in �-normal form. Just as in the �rst-order case we write arbitrary

contexts as C[]; C[M] denotes the termM in context C[]. It is obtained by replacing

2 by M in C[].

De�nition 2.5.2 Given an HRS (F;R), we de�ne the rewrite relation!

R

as follows:

M !

R

N if and only if there is a context C[] in ��-normal form, and a rule (L 7!

R) 2 R, such that M � C[L]#

��

and N � C[R]#

��

.

26 CHAPTER 2. THE SYSTEMS

Thus an HRS (F;R) induces the ARS (fM #

��

jM 2 �

!

(F)g;!

R

).

Because L and R are closed terms, putting them into a context does not bind

free variables. Because C and L are in �-normal form, C[L] is in �-normal form

too. Moreover, �-reduction respects �-normal forms, so we can �nd M by �

�

from

C[L]. So a rewrite step from M to N consists of �-expansions, followed by a literal

replacement, followed by �-reduction to normal form, as in

M �

�

C[L] 7! C[R]�

�

N :

We now illustrate how a rewrite step is performed, using the following rule:

�P

o

:�Q

�!o

:P ^ 8(�z

�

:Qz) 7! �P

o

:�Q

�!o

:8(�z

�

:P ^ (Qz)) :

Take as context C � (qx) _ (2(px)(�x:9�y:(rxy))). Then plugging in the left hand

side yields

C[�P

o

:�Q

�!o

:P ^ 8�z

�

:Qz]�

�

(qx) _ ((px) ^ 8�z:(9�y:(rzy))) :

For the right hand side we have

C[�P

o

:�Q

�!o

:8�z

�

:P ^ (Qz)]�

�

(qx) _ 8�z

�

:((px) ^ 9�y:(rzy)) :

In traditional notation, this corresponds to the intended rewrite step

q(x) _ (p(x) ^ 8z:9y:r(z; y)) 7! q(x) _ 8z:(p(x) ^ 9y:r(z; y)) :

2.5.3 Remarks and Related Work

This section consists of a set of general remarks regarding higher-order rewriting. A

short overview of related formalisms is given.

Loose practice. In examples we will write down HRSs whose rules are not closed.

In this case we will write the free variables with capitals. This abuse of language

is not problematic, because the rules can always be closed by pre�xing the left- and

right hand side with �

~

X, where

~

X are the variables occurring free in the rule. We

call the result of this operation the closure of the rule. It is de�ned modulo the order

of the free variables. Note that the rewrite relation does not depend on the choice

of the order of these variables. So such ill-formed rules can easily be turned into

well-formed rules. The fact that the rules are closed is convenient in the de�nition

of higher-order rewriting and in proofs because they make substitutions superuous,

but counter intuitive in examples. This is the reason that we allow the loose notation.

HRSs based on �. As we noticed before, although the substitution calculus for

HRSs is �

!

��

, only =

�

plays a rôle in the computation of the rewrite relation. It is

also possible to introduce HRSs with �

!

�

as a substitution calculus, which we will

call �-HRSs in the sequel. The only di�erence is that the rules and contexts are only

required to be in �-normal form. So a �-HRS is a bit more liberal.

2.5. HIGHER-ORDER TERM REWRITING 27

For most second order HRSs, the ��-discipline is more intuitive. It is for example

quite strange to distinguish between 8P and 8�x:Px. Working modulo �� makes

these two equal. However, for HRSs with arbitrary high type it is more intuitive to

admit terms that are not ��-normal form. Not only because �-expansions are rather

space consuming, but it is quite impossible to write down the �-expansion of e.g. the

�rst higher-order recursion rule schema R

�

fx0 7! x, because its form depends on �.

For the termination method that we will present, it is immaterial whether we work

with ��-HRSs or with �-HRSs. The reason is that ordinary HRSs can be seen as a

restriction on �-HRSs, for which we will prove correctness of our method.

In Section 4.5 HRSs based on �

�

�

will be introduced. This is a real extension.

Decidability and patterns. Note that the question whether a certain rule L is

applicable to a certain term M amounts to �nding a suitable context C[]; this is

equivalent to the higher-order matching problem 9X:M =

��

(XL)? Decidability

of higher-order matching is still an open question. For this reason, the left hand

sides of the rules are often restricted to patterns, for which higher-order matching is

decidable. An additional advantage of using patterns is that it guarantees that the

matching problem above has at most one solution.

We also admit HRSs with non-pattern left hand sides. The reason for this is that

using patterns is only a su�cient and not a necessary condition for decidability and

uniqueness of matching problems. We will encounter several unproblematic HRSs

that have non-pattern left hand sides.

Other approaches. There are many di�erent de�nitions of higher-order (term)

rewrit(e)(ing) in recent literature. We only mention a few mile stones. For a historical

overview of the several formats and a technical comparison between several of them,

see e.g. [OR94, Oos94, Raa96].

In 1980 Klop introduced combinatory reduction systems (CRS) [Klo80, KOR93].

This is the �rst systematic study of TRSs with bound variables (lambda calculus

with particular extensions had already been studied before; Aczel [Acz78] already

considered general extensions of lambda calculus). In combinatory reduction systems,

untyped lambda calculus is used as substitution calculus. Instead of reduction to

normal form (which is impossible in untyped lambda calculus) developments are used.

The left hand sides of the rules are restricted to patterns.

The systems in this thesis are inspired by and very similar to Nipkow's higher-

order rewrite systems [Nip91, Nip93]. The main di�erence is that Nipkow builds in the

restriction to patterns. This is however inspired by his work on conuence, and plays

a less important rôle for termination. Minor di�erences are that Nipkow requires the

rules to be of base type (where we require them to be closed) and de�nes the rewrite

relation in terms of contexts, substitutions and ��-reduction.

Wolfram studies higher-order term rewriting systems [Wol93]. These systems are

the same as the HRSs that we study, up to minor di�erences. Wolfram requires the

rules of base type, and also de�nes a rewrite step in terms of contexts, substitutions

and ��-reduction, but these di�erences can be seen as presentation matters only.

28 CHAPTER 2. THE SYSTEMS

We also mention Van Oostrom [Oos94] and Van Raamsdonk [Raa96], who intro-

duced the so called Higher-Order Rewriting Systems (HORS), meant to generalize

all existing formalisms. HORSs parametrize over the substitution calculus that is

used. Our HRSs, �-HRSs and the HRSs based on �

�

�

are instances of Van Oostrom's

HORSs.

Quite another approach can be found in [Bre88, Dou92], where the typed lambda

calculus is not used as a substitution calculus. Instead of this, a �rst-order TRS is

combined with the �-reduction from the simply-typed, or even polymorphic lambda

calculus. Each reduction step is either a TRS-step (performed on lambda-terms) or

a �-reduction step. The reduction relation is much simpler, because matching is not

done modulo a theory, but it is just a syntactic matter. In [JO91] this is extended to

higher-order rules of a certain format. Also higher type systems can be used, e.g. in

[BFG94] the combination of the Calculus of Constructions with a set of higher-order

rewrite rules is studied.

In the approach using lambda calculus as substitution calculus it is possible to

formulate beta-reduction on the rewrite level. Therefore HRSs subsume the direct

combination of higher-order rewrite rules with lambda calculus.

2.5.4 Examples of Higher-order Rewrite Systems

We will now give some examples of HRSs, to give an idea what can be done with them.

We �rst give an HRS that �nds prenex normal forms. In this HRS substitution plays

a marginal rôle. We also show how the untyped lambda calculus (with �- and �-

reduction) can be presented as an HRS. Much more involved HRSs can be found in

Section 5.2 and 5.5. Some of these examples have as substitution calculus �

�

�

, simply

typed lambda calculus extended with product types.

2.5.4.1 Finding the prenex-normal form

Let us consider �nding the prenex normal form of �rst-order logical formulae. In this

normal form, the quanti�ers only occur at the outside of the formula. We deal with

formulae of the following form (where t

1

; : : : ; t

n

are arbitrary �rst-order terms):

p(t

1

; : : : ; t

n

) j ' ^ j ' _ j :' j 8x:' j 9x:' :

The quanti�ers 8 and 9 act as binders; we let the connectives ^ and _ bind stronger

than the quanti�ers; : binds the strongest.

The higher-order signature for formulae has base types o for formulae and � for

individuals. The constants are:

p : ~�

n

! o for each n-ary predicate symbol p.

^ : o! o! o

_ : o! o! o

: : o! o

8 : (�! o)! o

9 : (�! o)! o

2.5. HIGHER-ORDER TERM REWRITING 29

Every logical formula can be represented by a ��-normal form of type o in this

signature, whose free variables have type �. Conversely, each such term corresponds

directly to a logical formula.

A classical result is, that each formula is logically equivalent to a formula in prenex

normal form, that is, a formula of the form Q

1

x

1

; : : : ; Q

n

x

n

:', where the Q

i

are the

quanti�ers 8 or 9 and ' doesn't contain any of these quanti�ers. The standard way

to prove that each formula has a logically equivalent prenex normal form is by giving

a method to push the quanti�ers outside step by step. The following collection of

rules su�ces:

P ^ 8�x:(Qx) 7! 8�x:P ^ (Qx)

(8�x:(Qx)) ^ P 7! 8�x:(Qx) ^ P

P _ 8�x:(Qx) 7! 8�x:P _ (Qx)

(8�x:(Qx)) _ P 7! 8�x:(Qx) _ P

P ^ 9�x:(Qx) 7! 9�x:P ^ (Qx)

(9�x:(Qx)) ^ P 7! 9�x:(Qx) ^ P

P _ 9�x:(Qx) 7! 9�x:P _ (Qx)

(9�x:(Qx)) _ P 7! 9�x:(Qx) _ P

:8�x:(Qx) 7! 9�x::(Qx)

:9�x:(Qx) 7! 8�x::(Qx)

Here P

o

and Q

�!o

are variables. Remember that the actual rules, as used in the

rewrite relation as de�ned in De�nition 2.5.2, are closed forms of these rules. We

put H

pnf

the HRS (C;V; R), where C are the constants and R the rules as indicated

above; V is a su�ciently large set of variables.

It is easy to see, that if a formula does not contain one of the left hand sides as a

subterm, then it is in prenex normal form. If a formula contains an occurrence of the

left hand sides, then it cannot be in prenex normal form. In this case, we replace that

occurrence by the corresponding right hand side. When this process terminates, a

prenex normal form is reached. This termination issue will be deferred to Chapter 5.

2.5.4.2 From TRS to HRS

Any TRS (F;V;R) can be converted into an HRS. This is done by currying the

signature and the rules, and then closing the rules.

Put B := fog, the sort of �rst-order terms. For any f 2 F with arity n, we include

a constant symbol f

0

: o! � � � ! o

| {z }

n times

! o in F

0

. V

0

is a su�ciently large set of typed

variables that contains V as variables of type o. Now terms in (F;V) can be curried

as follows. We write hti for the curried version of t; it will be of type o.

hxi � x

hf(t

1

; : : : ; t

n

)i � (f

0

ht

1

i � � � ht

n

i)

For any rule l 7! r 2 R, we include the rule �~x:hli 7! �~x:hri in R

0

, where ~x are the

free variables that occur in l. By the de�nition of �rst-order rule, r does not contain

30 CHAPTER 2. THE SYSTEMS

additional variables. We call the HRS (fog;F

0

;V

0

;R

0

) the curried version of the TRS

(F;V;R).

The curried version of a TRS contains more typable terms than the original TRS.

In particular, it may contain lambdas. Note however that we require all terms in

the rewrite relation to be in �-normal form, so the lambdas can only occur at \non-

interesting" places. The curried version will be used later in order to add higher-order

rules to an arbitrary TRS, e.g. �-reduction on the rewrite level. The same translation

occurs in [Oos94].

2.5.4.3 Untyped lambda calculus

Another typical example of HRSs is the untyped lambda calculus, with � and �-

reduction. This HRS has a signature with as only base type o, the type of untyped

lambda terms. There are two constants, for application and lambda abstraction:

app : o! o! o

abs : (o! o)! o :

Note that it is possible to construct untypable terms, like (�x:xx)(�x:xx) in this

signature. The latter term is encoded as:

app (abs�x:(app xx))(abs �x:(app xx)) :

The HRS of �- and �-reduction has the following rules:

app (abs�x

o

:Fx)Y 7! (FY)

abs�x

o

:(appY x) 7! Y :

Now F

o!o

and Y

o

are free variables, to be abstracted in order to obtain the proper

rewrite rules.

Note that the substitution needed to perform the �-reduction is now performed

by the substitution calculus. Furthermore, the proviso that is usually attached to the

�-rule is now implicit, due to the variable convention.

As an example, it is now shown how the term given above, rewrites to itself.

This rewrite step uses the context (2(�x:(app xx))(abs �x:(appxx))). We now get

�-expansion, literal replacement and �-reduction as follows:

app (abs�x:(appxx))(abs �x:(appxx))

�

�

(�F

o!o

�Y

o

:app (abs�x

o

:Fx)Y) (�x:(app xx)) (abs�x:(app xx))

7! (�F

o!o

�Y

o

:(FY)) (�x:(app xx)) (abs�x:(app xx))

�

�

app (abs�x:(appxx))(abs �x:(appxx)) :

For clarity, we underlined the arguments corresponding to F and Y .

Although we only needed a second-order signature, this example exhibits the ad-

vantages of the HRS-framework. First, lambda-calculus can be expressed in simple

rules, without any side conditions. This enables the study of lambda calculus in a

general setting. E.g. results on critical pairs to prove local conuence for HRSs can

be directly applied to lambda calculus [Nip91].

2.5. HIGHER-ORDER TERM REWRITING 31

A second advantage is that we can add more rules to this system. This admits

a uniform approach for the study of de�nitional extensions of lambda calculus. In

Section 5.2.1 we will see how to encode simply typed lambda calculus as an HRS and

we will study extensions of it, like G�odel's T (Section 5.3).

32 CHAPTER 2. THE SYSTEMS

Chapter 3

The Semantical Approach to

Termination Proofs

In the previous chapter, higher-order term rewriting was introduced as a combination

of �rst-order term rewriting and simply-typed lambda calculus. This chapter serves as

an illustration how the semantics of such systems can be used to obtain termination

proofs for them.

The usual semantics of a TRS is an algebra, which is a set with certain functions.

The terms can be interpreted in this set; the algebra is a model if the rewrite rules,

interpreted as equations, hold. The standard semantics for simply typed lambda

calculus consists of a type structure, more particularly the functionals of �nite type.

Each lambda term can be interpreted as a functional, in such a way that the (�)- and

(�)-equalities hold.

The structures that are used in termination proofs are no models in this equational

sense. We again take an algebra or the type structure of functionals and interpret

the terms in it. But now the interpretation is non-standard. Instead of being equal,

the left and right hand side of the rules are ordered in some well-founded partial

order. Under certain extra conditions such an interpretation is called a termination

model. Every rewrite step gives rise to a decrease of the corresponding values in the

termination model. Hence the existence of a termination model ensures termination.

In Section 3.1 we recapitulate how termination proofs for TRSs can use monotone

algebras [Zan94]. In Section 3.2 we show the standard model of functionals of �nite

type for the simply-typed lambda calculus and we show in Section 3.3 how a subset

of them, the hereditarily monotonic functionals can be used to prove termination of

this calculus [Gan80]. Finally, in Section 3.4, we investigate how similar techniques

can be used for termination proofs of higher-order term rewriting systems. The latter

section also contains a short overview of other approaches to termination proofs of

higher-order rewrite systems.

This chapter contains no new results, but it is an introduction to the theory

and methods in Chapter 4 and 5. In Chapter 6 we analyze the proof introduced in

33

34 CHAPTER 3. SEMANTICS FOR TERMINATION PROOFS

Section 3.3.

3.1 Monotone Algebras for Termination of TRSs

Given a signature � = (F;V), an algebra is a structure (A; (f

A

)

f2F

), such that

whenever f 2 F and arity(f) = n, f

A

2 A

n

)A. Given such an algebra, we can

interpret any closed term in a canonical way. To interpret open terms, we have to

know the value of the variables. A valuation is a function in V)A. We write [[s]]

A

�

for the interpretation of s in the algebra A, relative to the valuation �. If A is clear

from the context, we write [[s]]

�

. This notion is de�ned with induction on s as follows:

[[x]]

�

= �(x)

[[f(t

1

; : : : ; t

n

)]]

�

= f

A

([[t

1

]]

�

; : : : ; [[t

n

]]

�

)

Such an algebra is a model of a TRS (�; R), if for each rule l 7! r 2 R, and for all

valuations �, [[l]]

�

= [[r]]

�

. That is, all equations hold.

3.1.1 Monotone Algebras

For termination proofs, we are interested in a termination model. The algebra is

extended with a partial order >. We say that a rule l 7! r 2 R is decreasing, if for

any valuation �, [[l]]

�

> [[r]]

�

. In that case, we also write l > r.

If a rule l 7! r is decreasing, then the quanti�cation over all valuations above

guarantees that for all substitutions �, l

�

> r

�

. If moreover all function symbols

are interpreted in a strictly monotonic way, then we obtain for any context C[],

C[l

�

] > C[r

�

]. Thus, any rewrite sequence gives rise to a decreasing sequence in the

algebra. This ensures termination, provided the partial order > is well-founded. This

informal explanation justi�es the following de�nitions and theorem.

Recall that given a partial order (A;>), we call f 2 A

n

)A strictly monotonic if

for all x; y 2 A, with x > y we have f(: : : ; x; : : :) > f(: : : ; y; : : :) (also for all possible

arguments on the : : :).

De�nition 3.1.1 A monotone algebra for � = (F;V) is a structure (A;>; (f

A

)

f2F

),

such that

1. (A;>) is a non-empty partial order; and

2. For each f 2 F, with arity(f) = n, f

A

is a strictly monotonic function in

A

n

)A.

The monotone algebra is well-founded, if > is well-founded.

A rule l 7! r is called decreasing in A if for any valuation �, [[l]]

A

�

> [[r]]

A

�

.

De�nition 3.1.2 A termination model for a TRS (�; R) is a well-founded monotone

algebra for �, such that each rule in R is decreasing.

3.1. MONOTONE ALGEBRAS FOR TERMINATION OF TRSS 35

Theorem 3.1.3 ([HO80, Zan94]) Any TRS has a termination model if and only

if it is terminating.

Proof: The only-if part has been sketched above. The if can be seen as follows: take

A = (T(�);!

+

R

; (f

A

)

f2F

), where f

A

(t

1

; : : : t

n

) = f(t

1

; : : : ; t

n

). This is the open term

model.

This is a monotone algebra, because every function symbol f is strictly monotonic,

for if s !

+

R

t then f(: : : ; s; : : :) !

+

R

f(: : : ; t; : : :). Also, !

+

R

is well-founded, because

!

R

is terminating by assumption. The algebra is a termination model, because for

any rule l 7! r and substitution � (that now plays the rôle of a valuation), l

�

!

+

R

r

�

.

�

The theorem provides for a complete method to prove termination. Note that it

doesn't give an algorithm. A clever guess of the partial order and the interpretation

has to be made. The test whether a given algebra is monotone, or whether a monotone

algebra is a termination model is undecidable too. Nevertheless, the method turns

out to be helpful to �nd many termination proofs. Completeness of the method can

be used to prove several modularity results (see e.g. Section 5.2.3).

Disjunctive normal form.

To illustrate the use of Theorem 3.1.3, we provide a termination model for the example

of Section 2.3, computing the disjunctive normal form of propositional formulae. We

decide to try (a subset of) the natural numbers as domain, because this makes the

computations much easier.

Note that taking multiplication for ^ and addition for _, would yield true equations

for the �rst two rules. To get a decreasing rule, we have to add a slight distortion.

Hence we put:

F

^

(x; y) = x � y

F

_

(x; y) = x+ y + 1

Clearly F

_

is strictly monotonic. However, F

^

is only strictly monotonic if we restrict

the domain to N

�1

. We can now verify that the �rst two rules are decreasing. Let �

be an arbitrary valuation; for the moment we do not distinguish between x and �(x),

just as in ordinary high-school algebra. The left- and right hand side of the �rst rule

can be computed (the �rst two rules are similar, because F

^

and F

_

are symmetric):

[[x ^ (y _ z)]] = x � (y + z + 1) = x � y + x � z + x , and

[[(x ^ y) _ (x ^ z)]] = x � y + x � z + 1

If we restrict our domain to N

�2

, then the former is greater than the latter.

We still have to provide an interpretation of :, such that the last three rules are

decreasing. The fourth is the most problematic one, for we need F

:

(x + y + 1) >

36 CHAPTER 3. SEMANTICS FOR TERMINATION PROOFS

F

:

(x) � F

:

(y). So a sum in the arguments has to overcome a product in the result.

This requires an exponential function. Hence we put:

F

:

(x) = 2

x

:

We can now verify that the last three rules are decreasing in N

�2

:

[[:(x ^ y)]] = 2

x�y

> 2

x

+ 2

y

+ 1 = [[:x _ :y]]

[[:(x _ y)]] = 2

x+y+1

= 2

x

� 2

y

� 2 > 2

x

� 2

y

= [[:x ^ :y]]

[[::x]] = 2

2

x

> 2

x

> x = [[x]]

So in the well-founded monotone algebra (N

�2

; >; F

^

; F

_

; F

:

) all �ve rules are

decreasing, so it is a termination model. By Theorem 3.1.3 this proves termination

of the TRS in Section 2.3 that computes the disjunctive normal form.

Remark. We can now also �nd a monotone algebra based on N, by translating the

functions by 2. We then �nd as interpretations:

G

^

(x; y) = (x+ 2) � (y + 2)� 2

G

_

(x; y) = x+ y + 2

G

:

(x) = 2

x+2

� 2

3.1.2 More on Termination

Termination of TRSs is a quite well-studied topic. Huet and Lankford proved that

termination of TRSs with �nitely many rules is undecidable [HL78]. Therefore any

method to prove termination is bound to be a semi-procedure. It is either limited to

a subclass of TRSs, or the method itself cannot be automated.

Semi-decision procedures of the former kind are various forms of lexicographic and

recursive path orders, see e.g. [Der82, Der87]. The approach using monotone algebras

is an example of a method that cannot be automated itself, as it is complete. Such

methods only give heuristics how to tackle termination proofs. Various combinations

of these two approaches have been proposed, e.g. [KL80, Ges94, Zan95].

Another indication that termination is a di�cult problem is that termination is

not a modular property. This means that there are terminating TRSs, with disjoint

sets of function symbols, whose union is not terminating. So a termination problem

cannot be tackled by dividing a TRS into small parts, even not when these parts have

nothing in common. The following example is due to Toyama [Toy87]:

f(0; 1; x) 7! f(x; x; x)

g(x; y) 7! x

g(x; y) 7! y

Although the rule de�ning f is terminating, and the rules de�ning g are terminating

too, there exists an in�nite reduction in the combined system, starting with the term

f(0; 1; g(0; 1)).

3.2. FUNCTIONALS OF FINITE TYPE 37

Rusinowitch [Rus87] and Middeldorp [Mid89] proved that it is essential for all

such counter examples that one of the systems has a duplicating rule, and the other

a collapsing rule. In other cases, termination is preserved by the disjoint union. As

a consequence, if the TRS (F;V; R) is terminating, then so is the TRS (F] G;V; R),

because (G;V;?) has no rules, so in particular neither duplicating nor collapsing rules.

Another (incomparable) modularity result is the following:

Proposition 3.1.4 Let R = (F;V; R) be a terminating TRS. Then the TRS R

0

=

(F] fgg;V; R] g(x; y) 7! x) is also terminating.

This is a corollary of a more general theorem in [MOZ96]. The proof uses semantic

self-labeling. Notice that adding the second projection too does not always preserve

termination, as is witnessed by Toyama's example above. The previous proposition

will be used in Section 5.2.3.

3.2 Functionals of Finite Type

As noted earlier (Section 2.4.1) the main intuition about simply-typed lambda calculus

is, that the objects are functions that can be applied to each other in a type respecting

way. This intuition is made formal, by designating a standard model for this calculus.

This model will be the topic of the current section. The types are interpreted as sets

of functions. The terms of a certain type as elements in the interpretation of that

type.

Interpretation of types. In the standard model, types will be interpreted by sets.

In particular, the type forming operator ! will be interpreted by the full function

space between its arguments. The interpretation of the basic types has to be speci�ed

in each model separately. We will call this choice the interpretation key for the basic

types. Given a set of base types B, such a key is a family of non-empty sets (I

�

)

�2B

.

Now the interpretation of types can be inductively de�ned as an extension of the

interpretation key I. We de�ne T

�

, the set of functionals of type � by the following

clauses:

T

�

= I

�

T

�!�

= T

�

)T

�

:

Recall that A)B denotes the set-theoretic function space between A and B. The

set T

�

serves as the interpretation of type �. The collection (T

�

)

�2T

!

(B)

will serve

as the domain of the standard model. The objects in this domain are known as the

functionals of �nite type.

It is not necessary to take the full function space. An objection could be that the

cardinality of T

�

grows with the complexity for �. In the typical case of one base

type o, interpreted by the natural numbers N, the set T

o!o

already is uncountable.

Smaller models have been studied extensively. These can be constructed by restricting

38 CHAPTER 3. SEMANTICS FOR TERMINATION PROOFS

the function space to e.g. the computable functions. More general notions of type

structures can be obtained by allowing an arbitrary interpretation of application. We

restrict attention to full function spaces.

One important property of the model based on full function spaces is that equality

is extensional. Extensionality means that for all types � and functions f; g 2 T

�!�

,

we have the following: if for all x 2 T

�

, f(x) = g(x) then f = g. The reason is that

in set theory a function is identi�ed by its graph, so if two functions agree on all

arguments, they must be the same. This property will be used later on when proving

that (�) holds in the type structure T.

Interpretation of terms. We now switch from the interpretation of the types

to that of terms. Again, we have to make a choice for the basic entities, being the

constants and the variables. Given a signature (B;C;V) and a base type interpretation

key I, an interpretation key for the constants is a family of functions (J

�

)

�2T

!

(B)

,

such that for each type �, J

�

2 C

�

)T

�

.

A choice for the value of the variables is called a valuation. It is a type respecting

function from variables into the standard model. More formally, a valuation for a sig-

nature (B;C;V) with base type interpretation I is a family of functions (�

�

)

�2T

!

(B)

,

such that for each type �, �

�

2 V

�

)T

�

.

Given a valuation �, we write �[x := b] for the valuation that equals � on all

variables except for x, where it takes the value b.

We are now able to de�ne the interpretation of terms in a �xed signature F =

(B;C;V). An interpretation key I for the types acts as implicit parameter. A valuation

and an interpretation key for the constants is provided as explicit parameter. For each

type � 2 T

!

(B), we denote the interpretation of a term M : � under the valuation �

and constant interpretation J by [[M]]

�;J

2 T

�

. The de�nition is by induction on M :

[[x]]

�;J

= �(x) if x 2 V

[[c]]

�;J

= J(c) if c 2 C

[[MN]]

�;J

= [[M]]

�;J

([[N]]

�;J

)

[[�x

�

:M]]

�;J

= ��a2T

�

:[[M]]

�[x:=a];J

The interpretation of constants is often �xed. The variables on the other hand

have no �xed meaning, which is of course the essence of their use. We mostly suppress

the subscript J and write [[M]]

�

. If M is closed, we also write [[M]]. This notation

is justi�ed by the fact that the denotation of closed terms M does not depend on a

valuation. By induction on M one can prove the stronger statement, that the value

of � on the free variables of M completely determines [[M]]

�

.

Given a substitution � and a valuation �, we write ��� for the new valuation that

sends x to [[x

�

]]

�

(given a �xed constant interpretation J). Note that the valuation

� � fx 7! Ng equals �[x := [[N]]

�

].

Equations � and �. We have prematurely called the type structure T the standard

model. We still have to show that the equations � and � are satis�ed. For � we can

3.2. FUNCTIONALS OF FINITE TYPE 39

use that equality is extensional. To show that � holds, we need the following technical

lemma, which shows that substitutions and valuations commute as expected.

Lemma 3.2.1 (Substitution Lemma) Let � be a substitution, � a valuation and

J an interpretation of the constants. Then for each termM 2 �

!

we have [[M

�

]]

�;J

=

[[M]]

���;J

.

Proof: The proof is by induction on the structure ofM . For the �-case it is important

that the induction hypothesis holds for arbitrary �.

� M � x 2 V: by de�nition of � � �.

� M � c 2 C: [[c

�

]]

�;J

= J(c) = [[c]]

���;J

.

� M � NP : Using the induction hypothesis for N and P , we have

[[M

�

]]

�

= [[N

�

]]

�

([[P

�

]]

�

) = [[N]]

���

([[P]]

���

) = [[M]]

���

:

� M � �x

�

:N : Let a 2 T

�

. We �rst prove the following statement,

(�) �[x := a] � � = (� � �)[x := a] :

By the variable convention, we may assume that the name x has been chosen

such, that it is not in the domain or co-domain of �, so x

�

� x, and for all y,

x =2 FV(y

�

). We now check the statement for every variable y. If y � x, we

have:

(�[x := a] � �)(x) = [[x

�

]]

�[x:=a]

= a = ((� � �)[x := a])(x)

And for y 6� x, we have

(�[x := a] � �)(y) = [[y

�

]]

�[x:=a]

= [[y

�

]]

�

= (� � �)(y) = ((� � �)[x := a])(y)

Having this, we proceed by the following calculation:

[[M

�

]]

�

= ��a2T

�

:([[N

�

]]

�[x:=a]

)

= ��a2T

�

:([[N]]

�[x:=a]��

) (by i.h.)

= ��a2T

�

:([[N]]

(���)[x:=a]

) (by �)

= [[M]]

���

:

�

Now we easily obtain the following proposition:

Proposition 3.2.2 T � � and T � �.

40 CHAPTER 3. SEMANTICS FOR TERMINATION PROOFS

Proof: We will show that both equalities hold for arbitrary open terms and for all

valuations. Let an arbitrary valuation � be given.

We �rst prove that [[(�x:M)N]]

�

= [[M [x := N]]]

�

. Using the de�nition of interpre-

tation the left hand side can be computed and equals [[M]]

�[x:=[[N]]

�

]

. By Lemma 3.2.1

this equals [[M [x := N]]]

�

. This shows that (�) holds.

Now we show that [[�x:(Mx)]]

�

= [[M]]

�

. The left hand side is a function that,

applied to arbitrary a, yields [[M]]

�

(a), as x does not occur free in M . So does the

right hand side. By extensionality, (�) holds. �

3.3 Monotonic Functionals for Termination of �

!

�

We now sketch Gandy's proof of strong normalization of the simply-typed lambda

calculus. Gandy de�nes a subset of the full type structure: the hereditarily monotonic

functionals. He observes that every �I-term is hereditarily monotonic. A translation

of lambda terms into �I-terms gives the required strong normalization result.

This section is meant to give insight in the concepts used by Gandy. Our proposal

to prove termination of HRSs (Chapter 4, 5) can be seen as a modi�cation of these

concepts. We will only give de�nitions, statements and some proof sketches to illus-

trate certain points. For detailed proofs and extensions to other systems, we refer

to [Gan80].

For simplicity we assume that there is only one base type, called o. Furthermore,

we assume that there exist constants 0 : o, Succ : o ! o and + : o ! o ! o. So

we work in a signature (fog;V; f0;Succ;+g) for some set of variables V. We will use

the standard model, with interpretation N for o and the usual zero, successor and

addition functions on natural numbers for 0, Succ and +. Finally, with > we denote

the usual \greater than" relation on natural numbers.

3.3.1 Hereditarily Monotonic Functionals

The order (N; >) plays the same rôle for lambda terms of base type, as the monotone

algebra in termination proofs of TRSs. For lambda terms of other types, new partial

orders will be de�ned, by lifting > to higher types. Simultaneously, a notion of

monotonicity is de�ned on functionals in T

�

, the hereditarily monotonic functionals.

The sets HM

�

(hereditarily monotonic functionals) and partial order

hm

>

�

(greater than on hereditarily monotonic input) are de�ned by induction on �.

De�nition 3.3.1 The sets HM

�

� T

�

and the relations

hm

>

�

� HM

�

�HM

�

on

them are de�ned by simultaneous induction on � as follows:

HM

o

= N

x

hm

>

o

y () x > y

HM

�!�

= ff 2 T

�!�

j 8x; y 2 HM

�

:

f(x) 2 HM

�

^ (x

hm

>

�

y) f(x)

hm

>

�

f(y))g

f

hm

>

�!�

g () 8x 2 HM

�

:f(x)

hm

>

�

g(x)

3.3. MONOTONIC FUNCTIONALS FOR TERMINATION OF �

!

�

41

These notions depend on each other in the following way. Functionals in HM

preserve the order

hm

>; on the other hand, f

hm

> g holds if the functions f and g

are pointwise related, but only on arguments in HM.

By induction on the types it can be shown that

hm

> is indeed a strict partial order.

On type level 1, hereditary monotonicity coincides with the usual de�nition of strict

monotonicity on number theoretic functions. As an example of type level 2, we remark

that ��f 2 N)N :f(1)

hm

> ��f 2 N)N :f(0), because for strict monotonic number

theoretic functions f , f(1) > f(0). Both functionals are hereditarily monotonic, for

if f is pointwise greater than g, then f(0) > g(0) and f(1) > g(1).

Not every closed lambda term denotes a hereditarily monotonic functional; con-

sider e.g. �xy:x, the left projection. However, it can be proved that each closed

�I-term denotes a hereditarily monotonic functional. Recall that in each subterm of

a �I-term of the form �x:M , x occurs free in M . A valuation � is called hereditarily

monotonic, if for each variable x, �(x) 2 HM. The following lemma can be proved

straightforwardly, with simultaneous induction on the type of M .

Lemma 3.3.2 (Gandy)

1. For each M 2 �

!

-I and hereditarily monotonic valuation �, [[M]]

�

2 HM.

2. If the variable x occurs free in term M 2 �

!

-I, and the valuations � and �

agree on all variables except x and �(x)

hm

> �(x) then [[M]]

� hm

> [[M]]

�

.

One can de�ne an order on lambda terms in the following way:

M

hm

> N () for all hereditarily monotonic valuations �; [[M]]

� hm

> [[N]]

�

:

As a corollary of the previous lemma, we obtain that �I-contexts preserve the

order.

Corollary 3.3.3 For any terms M and N and contexts C[], if both C[M] and C[N]

are �I-terms, M

hm

> N then C[M]

hm

> C[N].

Proof: With C[M] and C[N], also their subterms M and N are �I-terms, hence

their denotation is hereditarily monotonic by the �rst part of the Lemma 3.3.2. It

follows from Lemma 3.3.2.(2), that for �I-contexts D[], D[M]

hm

> D[N]. (Use that

that for any valuation �, [[D[M]]]

�

= [[D[2]]]

�[2:=[[M]]

�

]

).

However, C[] is not necessarily a �I-term, for there can occur binders �x in C[]

such that x does not occur free in the corresponding subterm. Because C[M] and

C[N] are �I-terms, such x's must occur free in M and N . Let ~x be the sequence of

all such variables, then C[2~x], �~x:M and �~x:N are �I-terms. Moreover, we have that

�~x:M

hm

> �~x:N . Hence we may apply Lemma 3.3.2.(2), which yields

C[M] =

�

C[(�~xM)~x]

wm

> C[(�~xN)~x] =

�

C[N] :

�

42 CHAPTER 3. SEMANTICS FOR TERMINATION PROOFS

The proof is somewhat simpler than the corresponding one in [Gan80, 1.4]. Note

that the corollary heavily depends on the restriction to �I-terms. Such terms denote

hereditarily monotonic functionals, so they preserve the order in the desired way. This

is not the case for arbitrary lambda terms: AlthoughM

hm

> N , it cannot be the case

that (�x:0)M

hm

> (�x:0)N , because both sides denote the same number.

The corollary is an important step in the proof. In the sequel, a translation M

�

from �

!

to �

!

-I will be given, for which the �-rule is decreasing. The previous corol-

lary then ensures that a rewrite step in any �I-context corresponds to a decreasing

step. Before doing so, it is shown that any type contains functionals in HM.

3.3.2 Special Hereditarily Monotonic Functionals

On types of level 1, hereditary monotonicity coincides with the usual notion of strict

monotonicity. So Succ and +, the usual successor and addition function are in

HM. These functions are lifted up through the type structure, by giving suitable �I-

expressions, in the signature (o;V; f0;Succ;+g). Because 0, Succ and + are hereditar-

ily monotonic, all �I-terms over these functions are in HM as well, by Lemma 3.3.2.

The pointwise extension of Succ and + to higher types yields functions Succ

�

2

T

�!�

and �

�

2 T

�!�!�

(written in in�x notation) and are de�ned as follows:

Succ

�!�

= �f

�!�

:�x

�

:Succ

�

(fx)

�

�!�

= �f

�!�

:�g

�!�

:�x

�

:((fx) �

�

(gx)) :

In order to ensure that elements of HM exist for all types, Gandy de�nes the

functionals L

�

2 HM

�

, based on 0 and �

�

:

L

o

= 0

L

o!o

= �x

o

:x

L

(�!�)!o

= �f

�!�

:L

�!o

(fL

�

)

L

�!(�!�)

= �x

�

:�y

�

:(L

�!�

x)�

�

(L

�!�

y)

By Lemma 3.3.2 for each type �, L

�

2 HM

�

. We let �

L

be the valuation mapping

each x

�

to L

�

.

3.3.3 Termination of (�).

At this point, we are quite near a termination argument of �-reduction in the simply-

typed lambda calculus. To this end, a mapping of �-terms to �I-terms is given. This

translation meets the additional requirement that the translated left hand side of the

�-rule is greater (in the sense of

hm

>) than the translated right hand side. The

translation of M is denoted by M

�

.

De�nition 3.3.4

x

�

� x

(MN)

�

� M

�

N

�

(�x

�

:M

�

)

�

� �x

�

:Succ

�

(M

�

�

�

(L

�!�

x))

3.4. TOWARDS TERMINATION OF HRSs 43

Here the +(Lx) part is needed to ensure thatM

�

is a �I-term. The Succ

�

-function

is needed to achieve that the �-rule is decreasing. We indeed have

((�x

�

:M

�

)N)

�

=

�

Succ

�

(M

�

[x := N

�

]�

�

(L

�!�

N

�

))

hm

>

�

M

�

[x := N

�

] :

Theorem 3.3.5 �-reduction terminates in the simply-typed lambda calculus. In par-

ticular, given a lambda term M : � , the length of each reduction sequence from M is

at most [[L

�!o

M

�

]]

�

L

Proof: Let a reduction sequence M

0

!

�

M

1

!

�

M

2

!

�

� � �M

n

of type � be given.

Take some 0 � i < n. LetM

i+1

be obtained fromM

i

by replacing a redex P by Q. As

shown before, P

�

hm

> Q

�

. Because bothM

�

i

(with subterm P

�

) andM

�

i+1

(with sub-

term Q

�

) are �I-terms, Corollary 3.3.3 may be applied, yielding that M

�

i

hm

> M

�

i+1

.

By monotonicity of the L-functionals, also L

�!o

M

�

i

hm

> L

�!o

M

�

i+1

. This means that

for all hereditarily monotonic valuations the corresponding inequality holds, especially

for the valuation �

L

, so [[L

�!o

M

�

i

]]

�

L

> [[L

�!o

M

�

i+1

]]

�

L

. This inequality between nat-

ural numbers holds for any 0 � i < n, so the length of the reduction sequence, n, is

at most [[L

�!o

M

�

0

]]

�

L

. �

3.4 Towards Termination of Higher-order Rewrite

Systems

We have set ourselves the goal to develop theory that can serve as a tool to �nd

termination proofs for higher-order rewrite systems. In the previous sections we reca-

pitulated successful semantical approaches to termination proofs for �rst-order term

rewriting and for lambda calculus. As higher-order rewriting systems form a combi-

nation of these two formalisms, we will also propose a semantical approach to prove

their termination.

We will generalize the approach using monotone algebras of Section 3.1. In this

method a termination proof for some TRS consists of an interpretation of the con-

stants as strictly monotonic functions in some partial order, such that the rewrite

rules are decreasing. These ingredients can be lifted to higher-order rewriting, by

lifting partial orders through the types, and by de�ning an appropriate notion of

strict monotonicity for functionals. The �rst idea could now be, to apply the work of

Gandy, presented in Section 3.3. That is, strictly monotonic functions are generalized

to hereditarily monotonic functionals, and any order on the base types can be lifted

in the same way as (N; >) was lifted to

hm

>.

Unfortunately, this idea does not work immediately. This is mainly due to two

reasons. First, Gandy's method is designed to prove termination of �-reduction,

whereas in higher-order rewriting, both !

�

and

�

are used. Therefore, we will

look at interpretations that are invariant under �-reduction, instead of decreasing for

�-reduction. The other reason is that Gandy's ordering is not really closed under

taking contexts. It is only closed under taking �I-contexts.

44 CHAPTER 3. SEMANTICS FOR TERMINATION PROOFS

So our task will be to design a strict partial order and a good notion of mono-

tonicity together with an interpretation on lambda terms, such that the following

requirements are met:

� the interpretation of �-equal terms is identical,

� the order must be closed under taking arbitrary context, provided the free vari-

ables and constants are interpreted in a certain monotonic sense.

Unfortunately, these requirements together are highly problematic. Assume that

a > b holds, for a and b of base type. By the second requirement, (�x:c)a must be

greater than (�x:c)b. However, by the �rst requirement, both terms are interpreted

by the value of c.

We can escape from this problem, by weakening the second requirement. Inspec-

tion of De�nition 2.5.2 reveals that it su�ces to require that the order is closed under

contexts that are in ��-normal form, and the context (�x:c)2 that we used above

contains a �-redex.

However, still assuming a > b, by weakening the second requirement accordingly,

we should at least have that �x:xa > �x:xb. But now we take as context 2(�z:c),

and again the �rst and second requirement together yield the problematic c > c.

As a solution we will propose the use of two distinct orders. For a rule L 7! R, we

will require that L >

1

R. This should imply that for arbitrary ��-normal contexts

C, C[L] >

2

C[R]. Furthermore, both >

1

and >

2

will be invariant under �-reduction.

In the next chapter, we develop a theory concerning weakly monotonic and strict

functionals. This study will yield the orders >

1

and >

2

with the required properties.

In Chapter 5 we show how these orders can be used in termination proofs for higher-

order rewrite systems.

Existing work on termination. Conuence for higher-order rewriting systems is

rather well-studied. Klop (in the context of combinatory reduction systems), Nipkow

and Van Oostrom are mainly concerned with conuence. Some of the main results

are that orthogonal CRSs are conuent [Klo80], weakly orthogonal HRSs are conu-

ent [Oos94, Raa96] and a critical pair lemma for HRSs [Nip91].

Remarkably, termination for higher-order rewriting is much less studied. Van

Raamsdonk [Raa96] proves that outermost-fair rewriting is a normalizing strategy

for orthogonal higher-order term rewriting. But note that termination (or strong

normalization) requires that all reduction sequences end in a normal form.

Furthermore, for orthogonal CRSs, Klop [Klo80] gives a method to reduce strong

normalization to weak normalization, which is often easier to prove. This work is

preceded by [Ned73] and succeded by [S�r96].

As far as we know, [Pol94] provides the �rst method to prove termination of

arbitrary HRSs, by using a semantical approach. This work is based on similar work

for TRSs [Zan94] and for simply-typed lambda calculus [Gan80].

Kahrs [Kah95] shows that it is possible to use the hereditarily monotonic function-

als in termination proofs for HRSs. He avoids constant functions by systematically

3.4. TOWARDS TERMINATION OF HRSs 45

translating lambda terms to �I-terms (using the translation M

�

). The price to be

paid is that �-equal terms are not interpreted equally. As a consequence, testing

whether a rule is decreasing involves a syntactical analysis of the applied substitu-

tion. His method is tailored to proving termination of extensions of simply-typed

lambda calculus, the main example being a calculus with products and co-products.

See also [Kah96].

Another approach to termination of HRSs can be found in [LS93, Lor94, LP95],

where lexicographic path orders have been generalized from the �rst-order to the

higher-order case. These approaches have a �rst-order avor, because they generalize

a method from �rst-order term rewriting. Their methods are restricted to second-

order HRSs, with patterns in the left hand sides of the rules. Very recently, [JR96]

de�ned a recursive path order on arbitrary ��-normal forms.

Finally, we mention some work on termination for the direct combination of

lambda calculus with rewrite rules. In [Bre88] it is proved that the combination

of a terminating TRS with the simply-typed lambda calculus is still terminating.

See Theorem 5.2.6 for an alternative proof. In [BG90] this result is extended to

the polymorphic lambda calculus. In [JO91] a kind of primitive recursive format for

higher-order rules is given, which combined with polymorphic lambda calculus guar-

antees termination. This is extended by [BFG94] to the calculus of constructions. In

all these cases, the proofs are based on strong computability arguments, so essentially

a method from the lambda calculus is used.

46 CHAPTER 3. SEMANTICS FOR TERMINATION PROOFS

Chapter 4

Weakly Monotonic and Strict

Functionals

In this chapter two classes of functionals are studied: the weakly monotonic and the

strict functionals. The main motivation for introducing them is that they are useful

in termination proofs for higher-order rewrite systems. This chapter is mainly based

on [Pol94, PS95].

In Section 3.4 we pointed out why the hereditarily monotonic functionals are less

suitable for termination proofs. Recall that all �I-terms are hereditarily monotonic

(Lemma 3.3.2). In order to capture all lambda terms, we introduce the class of weakly

monotonic functionals. In particular, a constant function is weakly monotonic. In

Section 4.1 we de�ne the weakly monotonic functionals, and prove that all lambda

terms denote weakly monotonic functionals.

Section 4.2 is devoted to what we call ordered domains. These are collections

of partial orders, for which the presence of binary strictly monotonic functions is

guaranteed. The canonical example will be addition on natural numbers. We also

show in this section that lifting addition to higher types in the usual way, does not

destroy arithmetical laws, like associativity.

In Section 4.3, we de�ne the set of strict functionals. This set will be a proper

subset of the weakly monotonic functionals. It will also have more severe requirements

than the hereditarily monotonic functions. In particular, the set of strict functionals is

closed under application to weakly monotonic arguments. In this way, the presence of

the weakly monotonic functionals is compensated. We will also provide some su�cient

conditions, to prove that a given functional is strict.

In many applications, there is only one base type, which is interpreted by the

natural numbers. We devote Section 4.4 to the particular case of the functionals

based on natural numbers. We prove certain properties for this special case, that do

not hold in all type structures.

The theory concerning weakly monotonic and strict functionals can be extended

by considering product types. This extension is necessary in the example from proof

47

48 CHAPTER 4. WEAKLY MONOTONIC AND STRICT FUNCTIONALS

theory that will be treated in Section 5.5. The extension to product types is carried

out in Section 4.5

To help the reader, we end this introduction with an overview of the di�erent

classes of order preserving function(al)s that have been and will be introduced.

strictly monotonic: (cf. Section 2.1) This is the notion the reader is likely familiar

with. We only use it for functions of type level 1 (number theoretic functions)

and not for functionals of higher type.

hereditarily monotonic: (cf. De�nition 3.3.1) This generalizes \strict monotonic-

ity" to higher types. The notion is due to Gandy, who used it for a termination

proof of the simply-typed lambda calculus.

weakly monotonic: (cf. De�nition 4.1.1) This is a generalization of the notion \non-

decreasing" for number theoretic functions to higher types. It di�ers from hered-

itarily monotonic by including constant functions. It is also de�ned hereditarily.

strict: (cf. De�nition 4.3.1) This notion is the most restrictive notion. Strict function-

als preserve the order in a strict way, even in the presence of weakly monotonic

functionals.

Hence the �rst notion is the familiar one, the second is only needed in Section 3.3.

The latter two notions are involved in the method to prove termination that will be

introduced in Chapter 5.

4.1 Weakly Monotonic Functionals

Let a set of base types B be given. Let each base type � be interpreted by a partial

order (I

�

; >

�

). Recall that the carrier sets of these partial orders generate the full

type structure (T

�

)

�2T

!

(B)

, as de�ned in Section 3.2. We will write x �

�

y for the

reexive closure of >

�

, i.e. x �

�

y if and only if x >

�

y or x = y. In many examples,

B = fog, in which case o is interpreted as (N; >).

We will now de�ne the subset of weakly monotonic functionals and simultaneously,

the preorder

wm

� on them, to be pronounced as greater than or equal on weakly

monotonic arguments.

De�nition 4.1.1 For any type � 2 T

!

(B), we de�ne the set WM

�

� T

�

and a

relation

wm

�

�

�WM

�

�WM

�

by simultaneous induction on � as follows:

� WM

�

= I

�

for � 2 B.

� x

wm

�

�

y if and only if x �

�

y.

� f 2 WM

�!�

if and only if

{ f 2 T

�!�

, and

{ 8x 2 WM

�

:f(x) 2 WM

�

, and

4.1. WEAKLY MONOTONIC FUNCTIONALS 49

{ 8x; y 2 WM

�

:x

wm

�

�

y) f(x)

wm

�

�

f(y).

� f

wm

�

�!�

g if and only if 8x 2 WM

�

:f(x)

wm

�

�

g(x).

The only di�erence with the hereditarily monotonic functionals de�ned in Sec-

tion 3.3 is that �

�

is used on base types instead of >

�

. This results in the fact that

constant functions are weakly monotonic, although they are not hereditarily mono-

tonic.

Another related notion is strong majorization [Bez86]. The (highly) recursive

clause for the latter notion is: f majorizes g if and only if for all x; y that can be

majorized, if x majorizes y then f(x) majorizes both f(y) and g(y). This is de�ned

simultaneously withMAJ , the set of those functionals that can be majorized by some

functional. At �rst sight it appears that \f is weakly monotonic" and \f majorizes

itself" are related, but the two are incomparable.

Note that

wm

� is only a preorder and not a partial order, because anti-symmetry

fails. It may happen that f and g coincide on weakly monotonic arguments (so that

f

wm

� g and g

wm

� f), but di�er on other arguments, i.e. f = g does not hold.

Having the weakly monotonic functionals at our disposal, we can now de�ne the

strict partial order

wm

>, greater than on weakly monotonic input.

De�nition 4.1.2 For each type � the relation

wm

>

�

� WM

�

�WM

�

is de�ned by

induction on the types as follows:

� x

wm

>

�

y if and only if x >

�

y.

� f

wm

>

�!�

g if and only if 8x 2 WM

�

:f(x)

wm

>

�

g(x).

Note that although �x:x

wm

�

o!o

�x:0, it is neither the case that �x:x

wm

> �x:0,

nor that �x:x = �x:0. So

wm

� is not the reexive closure of

wm

>, nor is

wm

>

the partial order generated by

wm

�. The following lemmata shed some light on the

relationship between

wm

� and

wm

>.

Lemma 4.1.3 Let f; g 2 T

�!�

and x; y 2 T

�

for arbitrary �; � 2 T

!

(B). We have

1. If f 2 WM and x 2 WM then f(x) 2 WM;

2. If f

wm

� g and x 2 WM then f(x)

wm

� g(x);

3. If f

wm

> g and x 2 WM then f(x)

wm

> g(x);

4. If f 2 WM and x

wm

� y then f(x)

wm

� f(y).

Proof: By de�nition. �

Lemma 4.1.4 For all � 2 T

!

(B) and x; y; z 2 WM

�

, we have the following:

1. If x

wm

> y or x = y then x

wm

� y.

2. If x

wm

� y and y

wm

� z then x

wm

� z.

50 CHAPTER 4. WEAKLY MONOTONIC AND STRICT FUNCTIONALS

3. If x

wm

� y and y

wm

> z then x

wm

> z.

4. If x

wm

> y and y

wm

� z then x

wm

> z.

5. If x

wm

> y and y

wm

> z then x

wm

> z.

Proof: All �ve statements can be proved straightforwardly by induction on �. In

fact, (1) and (3) imply (5). �

By (1) and (2),

wm

� is a preorder. Anti-symmetry of

wm

>

�

can also be shown by

induction on �, which together with (5) implies that

wm

> is a strict partial order.

The following example shows that

wm

�

(o!o)!o

is not a partial order, but only a

preorder:

Example. Let B = fog, I

o

= N and >

o

= >, the usual order on natural numbers.

Let F;G 2 ((N)N))N) be the functionals de�ned as follows:

F (f) =

�

1 if f(0) > f(1),

0 otherwise,

and G(f) = 0 for all f 2 (N) N). Clearly, F

wm

� G. Note that if f(0) > f(1),

then f =2 WM

o!o

. Hence, also G

wm

� F . Nevertheless, F and G are not equal, so

wm

�

(o!o)!o

is not anti-symmetric. �

Lambda terms are weakly monotonic. We will now prove that all lambda terms

denote weakly monotonic functionals, provided the variables and constants denote

weakly monotonic functionals. This should be compared with Lemma 3.3.2, stating

that �I-terms are hereditarily monotonic.

From now on, we assume a �xed signature F = (B;C;V), interpreted in (I

�

; >

�

)

�2B

.

We also assume a �xed constant interpretation J. We will call a valuation � weakly

monotonic, if �(x

�

) 2 WM

�

, for all x 2 V. We write �

wm

� � for valuations � and

�, if for all x 2 V, �(x)

wm

� �(x). The constant interpretation J is weakly monotonic

if for all c, J(c) 2 WM. Recall that [[M]]

�;J

denotes the interpretation of M under

the valuation �, relative to J.

Proposition 4.1.5 Let J be weakly monotonic. For each M 2 �

!

(F) and weakly

monotonic valuations �; �, we have:

1. [[M]]

�;J

2 WM.

2. If �

wm

� � then [[M]]

�;J wm

� [[M]]

�;J

.

Proof: (induction on the structure of M , for all valuations � and �.)

If M � x 2 V:

1. [[M]]

�;J

= �(x) is weakly monotonic by assumption.

2. Let �

wm

� �. Then [[M]]

�;J

= �(x)

wm

� �(x) = [[M]]

�;J

.

4.1. WEAKLY MONOTONIC FUNCTIONALS 51

If M � c 2 C:

1. [[M]]

�;J

= J(c) is weakly monotonic by assumption.

2. [[M]]

�;J

= J(c) = [[M]]

�;J

, so by Lemma 4.1.4.(1) [[M]]

�;J wm

� [[M]]

�;J

.

If M � PQ:

1. By induction hypothesis (1) both [[P]]

�

and [[Q]]

�

are weakly monotonic. Then

by Lemma 4.1.3.(1), also [[M]]

�

= [[P]]

�

([[Q]]

�

) is weakly monotonic.

2. By induction hypothesis (2) [[P]]

� wm

� [[P]]

�

. By induction hypothesis (1) [[Q]]

�

is weakly monotonic, so we have, with Lemma 4.1.3.(2), that [[P]]

�

([[Q]]

�

)

wm

�

[[P]]

�

([[Q]]

�

). We also get from the induction hypotheses (1,2) that [[Q]]

� wm

�

[[Q]]

�

and [[P]]

�

is weakly monotonic. Therefore, with Lemma 4.1.3.(4) we get

that, [[P]]

�

([[Q]]

�

)

wm

� [[P]]

�

([[Q]]

�

). Now by transitivity, we have [[M]]

� wm

�

[[M]]

�

.

If M � �x:N : Say x 2 V

�

1. First, choose a 2 WM

�

, then [[�x:N]]

�

(a) = [[N]]

�[x:=a]

. This is weakly mono-

tonic by induction hypothesis (1). Furthermore, if a

wm

�

�

b, then �[x :=

a]

wm

� �[x := b], so by induction hypothesis (2) [[N]]

�[x:=a]

wm

� [[N]]

�[x:=b]

.

This is equivalent to [[M]]

�

(a)

wm

� [[M]]

�

(b), so [[M]]

�

is weakly monotonic.

2. Let a 2 WM

�

. Because �

wm

� �, we have �[x := a]

wm

� �[x := a]. So

using induction hypothesis (2) we can compute: [[�x:N]]

�

(a) = [[N]]

�[x:=a]

wm

�

[[N]]

�[x:=a]

= [[�x:N]]

�

(a). So indeed, [[M]]

� wm

� [[M]]

�

. �

This lemma can also be used to prove that certain functionals are weakly mono-

tonic, namely if they can be expressed as lambda terms over known weakly monotonic

functionals. The following is an immediate consequence of Proposition 4.1.5.(1)

Corollary 4.1.6 Let f

1

; : : : ; f

n

be weakly monotonic, and let � be a valuation, map-

ping x

i

to f

i

for 1 � i � n. If g can be written as [[M]]

�

, with FV(M) � fx

1

; : : : ; x

n

g,

then g is weakly monotonic.

Example. Multiplication (�) on natural numbers is weakly monotonic. The corol-

lary can be used to show that taking squares is weakly monotonic, for the squar-

ing function can be written as �x:(x � x). Similarly, the function mapping each

f 2 (N) N) to f(f(0) � f(1)) is weakly monotonic, because it can be written as

�f:f(f(0) � f(1)), where 0, 1 and � are weakly monotonic. �

This illustrates how weak monotonicity can be proved quite easily for a wide class

of functionals.

52 CHAPTER 4. WEAKLY MONOTONIC AND STRICT FUNCTIONALS

4.2 Addition on Functionals

In Section 4.3.2, we will need that (I

�

; >

�

)

�2B

admits enough strictly monotonic func-

tions. We can construct strictly monotonic functions of all kinds, if for any combina-

tion �; � 2 B, there exists a strictly monotonic function +

�;�

2 T

�!�!�

. In this case,

we will speak of an ordered domain.

De�nition 4.2.1 An ordered domain for a set of base types B is a structure ((I

�

; >

�

; 0

�

)

�2B

; (+

�;�

)

�;�2B

), such that for each �; � 2 B

� (I

�

; >

�

) is a partial order;

� 0

�

2 I

�

;

� +

�;�

2 I

�

)I

�

)I

�

is strictly monotonic.

A well-founded domain is an ordered domain, such that for each � 2 B, >

�

is well-

founded.

The existence of binary strictly monotonic functions excludes �nite sets A with a

non-empty order, for there is no binary strictly monotonic function in A)A)A.

(Consider e.g. A = f0; 1g, then a binary strictly monotonic function cannot exist, for

we need at least three values 0 + 0 < 0 + 1 < 1 + 1.)

Requiring strictly monotonic functions implies that the sets (I

�

)

�

all have the same

order type, which must be a power of !, i.e. !

for some ordinal (for the latter see

[Fer95, Thm. 5.25]).

In the rest of this section, we work in a �xed ordered domain of the form ((I

�

; >

�

; 0

�

)

�2B

; (+

�;�

)

�;�2B

), unless stated otherwise. We lift elements of I

�

and the + func-

tion to higher types in the standard way, by putting for each n 2 I

�

,

n

�

= n

n

�!�

= ��x

�

:n

�

x�

�;�

y = x+

�;�

y

f �

�!�;�!�

g = ��x

�

:f(x) �

�;�

g(x)

More schematically, (f � g)(~x) = f(~x) + g(~x), and n(~x) = n. Note that �

�;�

is only de�ned if � � � , i.e. � and � have the same factors. In that case, we have

�

�;�

: � ! � ! �. The lifted n

�

only exists if res(�) = �.

Lemma 4.2.2 Let �; � 2 T

!

(B) with � � � ; let n 2 I

res(�)

. Then we have

1. n

�

2 WM

�

;

2. �

�;�

2 WM

�!�!�

.

Proof: Immediate by Corollary 4.1.6. �

4.2. ADDITION ON FUNCTIONALS 53

Computation rules. To assist simple computations involving � and n, we derive

some properties. These properties of �, n,

wm

� and

wm

>, rely on the corresponding

properties for the underlying +, n, � and >. We �rst concentrate on some equalities

in the ordered domain (N; >; 0;+).

Lemma 4.2.3 In the ordered domain (N; >; 0;+), the following statements hold, for

all � 2 T

!

(fog) and x; y; z 2 T

�

and m;n 2 N,

1. x� y = y � x;

2. (x� y)� z = x� (y � z);

3. 0� x = x� 0 = x;

4. m+ n

�

= m

�

� n

�

.

Proof: Straightforward induction on �. We only treat (1). For � = o, the statement

is a true arithmetic equation. For � = �! � , let a 2 T

�

be given. Then (x�

�;�

y)(a) =

x(a) �

�;�

y(a). By induction hypothesis, the latter equals y(a) � x(a) = (y � x)(a).

This holds for any a 2 T, so x� y = y � x. �

In general, given an ordered base type interpretation (I; >; 0;+) and a true equation

in its language, then the equation obtained by replacing + by �

�;�

and 0 by 0

�

is

true in T

�

. A similar preservation result holds if there is more than one base type,

and if additional domain constants are used.

We now concentrate on inequalities.

Lemma 4.2.4 Let �; � 2 T

!

(B) with � � � ; let f; g 2 WM

�

and h 2 WM

�

and

m;n 2 I

�

, where � = res(�). We have

1. If f

wm

> g then f � h

wm

> g � h;

2. If f

wm

> g then h� g

wm

> h� f ;

3. If m >

�

n then m

�

wm

> n

�

.

Proof: Straightforward by induction on �. We only carry out the proof of (1). For

base type, the proposition follows from strict monotonicity of +

�;�

.

Now assume that (1) holds for type � . Let f

wm

>

�!�

g and x 2 WM

�

. By

Lemma 4.1.3.(3), f(x)

wm

> g(x). Using the induction hypothesis and the de�nition

of � we get:

(f � h)(x) = f(x)� h(x)

wm

> g(x)� h(x) = (g � h)(x) :

This holds for arbitrary weakly monotonic x, so f � h

wm

> g � h. �

54 CHAPTER 4. WEAKLY MONOTONIC AND STRICT FUNCTIONALS

Preservation statement. More generally, in any ordered domain (I; >; 0;+), if

P is a true Horn clause in the language f+; 0; >;�g, then for any �, the formula

obtained by replacing each occurrence of + by �

�;�

, 0 by 0

�

, > by

wm

>

�

and � by

wm

�

�

is a true formula in WM

�

.

We will not give a formal formulation of the preservation statement, for it would

be quite tedious to make it precise. The proof of the preservation statement is by

induction on �. On base type, we get a true equation by assumption. On type � ! � ,

the statement reduces to an instance of the same statement on type � , which is true

by induction hypothesis.

The reason that the preservation statement holds, is that by de�nition, f

wm

� g

holds, if and only if for all x 2 WM, f(x)

wm

� g(x), and similarly for

wm

>. In fact,

Lemma 4.1.4.(2){(5) are instances of this general preservation statement.

We give some examples on natural numbers that will be used later on.

Lemma 4.2.5 In the ordered domain (N; >; 0;+) we have for any � 2 T

!

(fog),

m;n 2 N and x; y 2 WM

�

:

1. x� y

wm

� x;

2. x� 1

�

wm

> x.

Proof: By the preservation statement. �

The preservation statement still holds when we allow equality in the hypotheses

of the Horn clause, so that e.g. Lemma 4.1.4.(1) becomes a corollary. But allowing

equality in the conclusion destroys the preservation statement, as is witnessed by the

non-theorem f

wm

� g ^ g

wm

� f) f = g, which is only true on base type.

4.3 Strict Functionals

We now introduce the strict functionals. Their distinguishing property is that they

preserve the order in their arguments in a very strict way, namely even in the presence

of weakly monotonic arguments. Consider the following two expressions:

f

~

M7

~

N and f

~

M3

~

N;

with

~

M and

~

N arbitrary lambda terms. It is understood that 7 > 3. For termination

proofs, it is important that such an inequality is preserved by any lambda context. So

the question becomes: for which functions f can we guarantee that the left expression

above is greater than the right hand one? It is not surprising that we can �nd weakly

monotonic f , such that the two expressions become equal, as constant functions are

weakly monotonic.

However, also for hereditarily monotonic functionals, the required inequality may

fail. This is due to the fact that

~

M and

~

N need not be �I-terms. So it is possible

that f

~

M is not hereditarily monotonic, although f is. Consequently, the inequality

7 > 3 is not reected by the context.

4.3. STRICT FUNCTIONALS 55

The set of strict functionals (denoted by ST) will be de�ned such that they pre-

serve the order. In particular, it will be closed under application to weakly monotonic

arguments. We also de�ne an order

st

> which means greater than on strict arguments.

We will be able to prove, that if L

wm

> R and if all constants and variables are inter-

preted by strict functionals, then for any context C, C[L]

st

> C[R].

In Section 4.3.1, we give a formal de�nition of the strict functionals and prove

some properties about them. It is also proved there that contexts in ��-normal

form are order preserving in some way. In Section 4.3.2 some important examples

of strict functionals are given. An easy method to prove strictness for a wide class

of functionals is also provided there. Finally, the latter section includes a number of

handy computation rules.

4.3.1 De�nition and Properties

Let a set B of base types be given, together with an ordered type interpretation

(I

�

; >

�

)

�2B

. We now de�ne the set ST of strict functionals and the partial order

st

>

greater than on strict arguments, motivated before.

De�nition 4.3.1 For any type � 2 T

!

(B), we de�ne the set ST

�

� WM

�

and a

relation

st

>

�

� WM

�

�WM

�

by simultaneous induction on � as follows:

� ST

�

= I

�

for � 2 B.

� x

st

>

�

y if and only if x >

�

y.

� f 2 ST

�!�

if and only if

{ f 2 WM

�!�

, and

{ 8x 2 WM

�

:f(x) 2 ST

�

, and

{ 8x; y 2 WM

�

:x

st

>

�

y) f(x)

wm

>

�

f(y).

� f

st

>

�!�

g if and only if f

wm

� g and 8x 2 ST

�

:f(x)

st

>

�

g(x).

We say that f : ~�

n

! � is strict in its i-th argument, if for all x

1

2 WM

�

1

; : : : ; x

n

2

WM

�

n

and y 2 WM

�

i

, we have

x

i st

> y) f(x

1

; : : : ; x

i

; : : : ; x

n

) >

�

f(x

1

; : : : ; y; : : : ; x

n

) :

Notice that f is strict if and only if it is strict in all its arguments. We will prove

(Proposition 4.3.6) that the sets ST

�

are non-empty.

The following relationships hold by de�nition:

Lemma 4.3.2 Let f; g 2 T

�!�

and x; y 2 T

�

for arbitrary �; � 2 T

!

(B). Then we

have

1. If x 2 ST then x 2 WM, but not conversely;

2. If f 2 ST and x 2 WM then f(x) 2 ST ;

56 CHAPTER 4. WEAKLY MONOTONIC AND STRICT FUNCTIONALS

3. If f 2 ST and x

st

> y then f(x)

wm

> f(y);

4. If x 2 ST and f

st

> g then f(x)

st

> g(x);

5. If x

st

> y then x

wm

� y.

Ad (1), we already noted that 0

o!o

is weakly monotonic. It is clearly not strict,

because e.g. for any two natural numbers m and n, 0(m) = 0(n).

We also have the following properties:

Lemma 4.3.3 Let x; y; z 2 T

�

for arbitrary � 2 T

!

(B). Then we have

1. If x

wm

> y then x

st

> y;

2. If x

wm

� y and y

st

> z then x

st

> z;

3. If x

st

> y and y

wm

� z then x

st

> z.

Proof: In all three cases, the main idea is, that if x is greater than y on weakly

monotonic input, then on strict input this must be the case too, because ST � WM.

1. Induction on �. For base type �, both

wm

> and

st

> coincide with >

�

. Assume

that (1) holds for � . Assume f

wm

>

�!�

g holds. By Lemma 4.1.4.(1), f

wm

� g.

We show that for all strict x, f(x)

st

> g(x). Let x 2 ST

�

. Then x 2 WM

�

by Lemma 4.3.2.(1), so f(x)

wm

> g(x) by Lemma 4.1.3.(3). By the induction

hypothesis, f(x)

st

> g(x).

2. Also induction on �. On base type, the relationship holds. Now assume that (2)

holds on type � . Assume f

wm

�

�!�

g and g

st

>

�!�

h. By Lemma 4.3.2.(5) and

Lemma 4.1.4.(2), we have f

wm

� h. Now we show that for arbitrary x 2 ST

�

,

f(x)

st

>

�

h(x). Assume x 2 ST

�

, then by Lemma 4.3.2.(1), x 2 WM; by

Lemma 4.1.3.(2), f(x)

wm

� g(x). By Lemma 4.3.2.(4), g(x)

st

> h(x). Hence by

induction hypothesis, f(x)

st

> h(x).

3. Similar to (2). �

From now on, applications of Lemma 4.1.3, 4.1.4, 4.3.2 and Lemma 4.3.3 will not

always be mentioned. From Lemma 4.3.2.(5) and 4.3.3.(1) it is clear that

st

> lies

between

wm

� and

wm

>. In fact, the part f

wm

� g in De�nition 4.3.1 was added in

order to obtain Lemma 4.3.2.(5), which eventually leads to Lemma 4.3.7. The latter

lemma is desirable because it provides many strict functionals.

Main theorem. The strict functionals are de�ned in order to have the following

theorem, stating that if L

wm

> R, then for any context C in ��-normal form, C[L]

st

>

C[R], provided the constants and variables are interpreted strictly. Consider the

context cM(�f:f(2N))P . Using the previous lemmata, we can make the following

deduction. This can be seen as an illustration of the proof of the theorem.

4.3. STRICT FUNCTIONALS 57

c 2 ST M 2 WM

(cM) 2 ST

f 2 ST

L

wm

> R N 2 WM

4:1:3:(3)

(LN)

wm

> (RN)

4:3:3:(1)

(LN)

st

> (RN)

4:3:2:(3)

(f(LN))

wm

> (f(RN))

4:3:3:(1)

(f(LN))

st

> (f(RN)) (for arbitrary f 2 ST)

Def. of

st

>

�f:(f(LN))

st

> �f:(f(RN))

4:3:2:(3)

cM(�f:f(LN))

wm

> cM(�f:f(RN)) P 2 WM

4:1:3:(3)

cM(�f:f(LN))P

wm

> cM(�f:f(RN))P

4:3:3:(1)

cM(�f:f(LN))P

st

> cM(�f:f(RN))P

We assume a �xed signature F = (B;C;V), with base type interpretation I and

constant interpretation J. J is called strict, if for each c 2 C, J(c) 2 ST . Similarly, a

valuation � is called strict, if for each x 2 V, �(x) 2 ST .

Theorem 4.3.4 Let J be a strict constant interpretation, and � a strict valuation.

For any closed M;N 2 �

!

(F), and context C[] in �-normal form we have, if

[[M]]

wm

> [[N]] then [[C[M]]]

�;J st

> [[C[N]]]

�;J

.

Proof: The proof is by induction on C[]. We use that by Lemma 2.4.3 any �-normal

form, so in particular C[], is of the form �~x:y

~

P , where y 2 C[V[f2g. We distinguish

cases, whether y � 2 or the 2 is contained in on of the P

i

. In the latter case, P

i

is

again a context in �-normal form, so the theorem already holds for it, by induction

hypothesis. We now give the proof in detail.

Assume that [[M]]

wm

> [[N]] and let � be a strict valuation, so in particular it

is weakly monotonic. Let ~a 2 ST be given. Let � be the valuation �[~x := ~a],

which clearly is strict. In view of Lemma 4.3.3.(1), it is su�cient to prove that

[[(y

~

P)[M]]]

� wm

> [[(y

~

P)[N]]]

�

. We distinguish

� Case y � 2. Then (y

~

P)[M] � M

~

P . Because [[M]]

wm

> [[N]] and each [[P

i

]]

�

2

WM, we have [[M

~

P]]

� wm

> [[N

~

P]]

�

.

� Case y 2 V [C. In this case, one of the P

i

's contains the 2, so by induction

hypothesis, [[P

i

[M]]]

� st

> [[P

i

[N]]]

�

. If y 2 ~x, then its value is decided by ~a; if y

is a free variable in C[], then its value is decided by �; if y is a constant, it gets

its value from J. In all these cases, [[y]]

�

2 ST . Then also [[(yP

1

: : : P

i�1

)]]

�

2

ST , so [[(yP

1

: : : P

i�1

P

i

[M])]]

� wm

> [[(yP

1

: : : P

i�1

P

i

[N])]]

�

. Also the remaining

[[P

j

]]

�

are weakly monotonic, so [[(y

~

P)[M]]]

� wm

> [[(y

~

P)[N]]]

�

. �

58 CHAPTER 4. WEAKLY MONOTONIC AND STRICT FUNCTIONALS

In fact a slightly stronger theorem holds. For strict � and J and if f

wm

> g, then for

any �-normal term C (playing the rôle of a context) with x 2 FV(C), [[C]]

�[x:=f]

st

>

[[C]]

�[x:=g]

. This is stronger in two respects. First, f and g are arbitrary weakly

monotonic, instead of restricted to denotations of closed lambda terms. In the second

place, the x may appear more than once in M . The proof can be found in [PS95] and

is similar to the one given here. We will only need the theorem in the form stated

above.

4.3.2 The Existence of Strict Functionals

It is not immediately clear that strict functionals exist for all types. Below we will

de�ne functionals S

�

0

of type �, that turn out to be strict. However, some conditions

on the ordered type interpretation have to be made, namely that it admits enough

strictly monotonic functions on type level 1. This is captured by the notion of an

ordered domain (Section 4.2).

We de�ne the identity on type �, as follows:

I

�

= ��x

�

:x

One might think that I

�

is a strict function. However, this is not the case. Al-

though I is hereditarily monotonic by Lemma 3.3.2.(2), it is not strict. This is seen as

follows. I(0) = 0 is a constant function, so it cannot be strict. By Lemma 4.3.2.(2),

strictness is preserved under application on weakly monotonic arguments, so I itself

is not strict. The same applies to �, because �0 = I (in the standard model based

on natural numbers).

4.3.2.1 The strict functionals S and M.

We now de�ne for any type � with res(�) = �, functionals M

�

: � ! � and S

�

: �! �.

These functionals are presented as a series of lambda terms, de�ned by simultaneous

recursion on �, based on constants 0

�

and +

�;�

. In the recursive clause, we assume

w.l.o.g. that res(�) = � and res(�) = �.

De�nition 4.3.5 Let ((I

�

; >

�

; 0

�

)

�2B

; (+

�;�

)

�;�2B

) be an ordered domain. Then we

de�ne

M

�

= ��x

�

:x

M

�!�

= ��f

�!�

:M

�

(f(S

�

(0

�

)))

S

�

= ��x

�

:x

S

�!�

= ��x

�

:��f

�

:S

�

(x+

�;�

M

�

(f))

Given � with res(�) = �, we write S

�

0

for the functional S

�

(0

�

).

The intuition is that M

�

serves as a measure on functionals. A functional is

mapped to some base type, by applying it to strict arguments. Its counterpart S is

called so, because it is a canonical strict functional. It is minimal in a certain sense

(see Proposition 4.4.4). It works by summing up the measures of its arguments. The

4.3. STRICT FUNCTIONALS 59

�rst argument of S plays the rôle of a storage cell, keeping the sum of the arguments

already processed.

We proceed by showing that M and S are strict functionals. We then have strict

functionals of any type, because S

�

0

is of type �. Note that by Corollary 4.1.6, S

�

and

M

�

are weakly monotonic already.

Proposition 4.3.6 For any � 2 T

!

(B) with res(�) = �, we have M

�

2 ST

�!�

and

S

�

2 ST

�!�

.

Proof: (Simultaneous induction on �). Base: This is trivial. Let x >

�

y, then

M

�

(x) = S

�

(x) = x >

�

y = S

�

(y) = M

�

(y).

Induction step: Assume that S

�

, S

�

, M

�

and M

�

are strict. Furthermore, let

res(�) = � and res(�) = �. To prove that S

�!�

2 ST we have to prove for arbitrary

x; y 2 I

�

and f; g 2 WM

�

:

1. if x >

�

y then S(x; f)

wm

>

�

S(y; f);

2. if f

st

>

�

g then S(x; f)

wm

>

�

S(x; g);

3. S(x; f) 2 ST

�

.

ad 1: Assume x >

�

y and f 2 WM

�

. By strictness of +, x +

�;�

M

�

(f) >

�

y +

�;�

M

�

(f). By strictness of S

�

, S

�

(x+

�;�

(M

�

f))

wm

> S

�

(y +

�;�

(M

�

f)).

ad 2: Assume x 2 I

�

and f

st

> g. By strictness of M

�

, M

�

(f) >

�

M

�

(g). By

strictness of + and S

�

, S

�

(x+

�;�

M

�

(f))

wm

>

�

S

�

(x +

�;�

M

�

(g)).

ad 3: Assume x 2 I

�

and f 2 WM

�

. Note that x +

�;�

M

�

(f) is of base type. By

induction hypothesis, S

�

is strict. By Lemma 4.3.2.(2) S

�

(x+

�;�

M

�

(f)) 2 ST

�

.

To prove that M

�!�

2 ST , we have to show, that for arbitrary f; g 2 WM

�!�

,

1. If f

st

> g then M

�!�

(f)

wm

> M

�!�

(g).

2. M

�!�

(f) 2 ST

�

ad 1. Let f

st

>

�!�

g. By induction hypothesis, S

�

is strict, so S

�

0

is strict too.

Therefore f(S

�

0

)

st

>

�

g(S

�

0

). By strictness of M

�

we get M

�

(f(S

�

0

)) >

�

M

�

(g(S

�

0

)).

ad 2. This is trivial, because M(f) 2 I

�

= ST

�

. �

Having these strict functionals, it is easy to construct more strict functionals.

The following lemma gives an easy method to prove strictness of a certain class of

functionals.

Lemma 4.3.7 Let �; � 2 T

!

(B) with the same factors be given. Let f 2 ST

�

and

g 2 WM

�

, then f �

�;�

g 2 ST

�

and g �

�;�

f 2 ST

�

.

Proof: We only prove that f�g 2 ST

�

; the other proposition can be proved similarly.

The proof is by induction on the types �. The base case of the induction is trivial,

because f � g 2 I

�

= ST

�

.

Now assume that the theorem holds for types � and � . Let f 2 ST

�!�

and

g 2 WM

�!�

. Let x; y 2 WM

�

be given. We have to prove:

60 CHAPTER 4. WEAKLY MONOTONIC AND STRICT FUNCTIONALS

1. If x

st

> y then (f � g)(x)

wm

> (f � g)(y).

2. (f � g)(x) 2 ST

�

.

ad 1. Let x

st

> y. By Lemma 4.3.2.(3), f(x)

wm

> f(y). By Lemma 4.3.2.(5), x

wm

� y

and by Lemma 4.3.2.(1) f 2 WM, so by Lemma 4.1.3.(4), f(x)

wm

� g(x).

Using Lemma 4.2.4, we get

(f � g)(x) = f(x)� g(x)

wm

> f(y)� g(x)

wm

� f(y)� g(y) = (f � g)(y) :

The required inequality now follows from Lemma 4.1.4.(4).

ad 2. We have (f � g)(x) = f(x) � g(x). As f 2 ST and x 2 WM it follows

that f(x) 2 ST . Moreover, as g 2 WM, we have g(x) 2 WM. By the induction

hypothesis, f(x)� g(x) 2 ST . �

4.3.2.2 Computation rules for S and M.

In a concrete termination proof, several calculations involving M and S have to be

made. Therefore, it is convenient to have some computation rules. These computation

rules depend on the choice of the functions +

�;�

and 0

�

. We will say that 0 is the

identity element, if for any �; � 2 B, +

�;�

has a left identity element 0

�

and a right

identity element 0

�

; i.e. 0 + x = x and y + 0 = y.

The most surprising is the following, which states that in fact S

�!�

0

andM coincide.

Lemma 4.3.8 If 0 is the identity element, then for any � 2 T

!

(B), with res(�) = �,

we have S

�!�

0

= M

�

Proof: This can be veri�ed by a simple calculation. For all f 2 T

�

we have:

S(0

�

; f) = S

�

(0

�

+

�;�

M

�

(f)) = M

�

(f) :

We used that S

�

is the identity function and 0

�

is the left identity element of +. �

The reason that we de�ned two functionals that eventually turn out to be the same

is manifold. In the �rst place, by de�ning S and M together, it becomes clearer how

the recursion over the types runs. This can be seen by comparing the de�nition with

that of Gandy's L-functionals (Section 3.3). In Section 4.4 it will turn out that the

S-functionals are more e�cient than the L-ones. Finally, the de�nition that we give

can be extracted from a traditional SN-proof for the simply-typed lambda calculus in

a very canonical way. This will be demonstrated in Chapter 6.

Lemma 4.3.9 If 0 is the identity element, then for any � 2 T

!

(B) with res(�) = �

and x 2 I

�

, we have M

�

(S

�

(x)) = x.

Proof: Induction on �. For base type, M

�

(S

�

(x)) = x by de�nition of M and S. Now

let res(�) = � and res(�) = �, and assume as induction hypothesis thatM

�

(S

�

(y)) = y

4.4. FUNCTIONALS OVER THE NATURAL NUMBERS 61

and M

�

(S

�

(x)) = x for all y 2 I

�

and x 2 I

�

. We can now compute for arbitrary

x 2 I

�

:

M

�!�

(S

�!�

(x)) = M

�

(S

�!�

(x; S

�

(0

�

)))

= M

�

(S

�

(x+

�;�

M

�

(S

�

(0

�

))))

= x+

�;�

0

�

induction hypotheses

= x by identity 0.

�

From the previous lemma and De�nition 4.3.5, it follows that S

�!�

0

(S

�

0

) = S

�

0

,

provided 0 is the identity element. Finally, we have the following lemma.

Lemma 4.3.10 If 0 is the identity element, then for any �; �; � 2 T

!

(B), we have

S

�!�

0

� S

�!�

0

= S

�!�

0

.

Proof: Let f 2 T

�

be given. The following calculation su�ces:

(S

�!�

0

� S

�!�

0

)(f) = S

�!�

0

(S

�

(M

�

(f))) using that 0 is the identity

= S

�

(M

�

(S

�

(M

�

(f)))) using that 0 is the identity

= S

�

(M

�

(f)) by Lemma 4.3.9

= S

�!�

0

(f) using that 0 is the identity

�

4.4 Functionals over the Natural Numbers

In many cases, there is only one base type, interpreted by the natural numbers, with

the usual order >. It is therefore quite helpful to study this particular case in some

detail. The S and M functions are parametrized by +

o;o

and 0

o

, for which we choose

the usual addition and 0 of the natural numbers. Because 0 is the identity element of

+, Lemmata 4.3.8, 4.3.9 and 4.3.10 hold in this case.

We �rst give some examples of the strict functionals S

0

:

S

o

0

= 0

S

o!o

0

(x) = x

S

(o!o)!o

0

(f) = f(0)

S

((o!o)!o)!o

0

(F) = F (��f:f(0))

S

(o!o)!o!o

0

(f; x) = f(0) + x

Sometimes the following equality is handy:

Lemma 4.4.1 For any � 2 T

!

(fog), S

�

(n) = n

�

� S

�

0

.

62 CHAPTER 4. WEAKLY MONOTONIC AND STRICT FUNCTIONALS

Proof: Induction on �. If � = o, then S

�

(n) = n = n + 0 = n

o

� S

o

0

. Assume that

the equality holds for type � . Then we have for any x 2 T

�

,

S

�!�

(n)(x) = S

�

(n+M(x))

= n+M(x)

�

� S

�

0

by induction hypothesis

= n

�

� (M(x)

�

� S

�

0

) using Lemma 4.2.3.(2),(4)

= n� S

�

(M(x)) by induction hypothesis

= n� S

�!�

0

(x)

�

In general, given � = ~�

n

! o,

S

�

0

(~x

n

) =

X

1�i�n

M

�

i

!o

(x

i

) :

As Gandy remarks, his L-functionals have as characteristic equation

L

�

(~x

n

) =

X

1�i�n

p

i

� L

�

i

!o

(x

i

) ;

where p

1

= 1, and for 2 � i � n, p

i

= 2

i�2

.

So it is clear that the S

0

functionals are smaller than the L functionals. In fact,

when we replace L by S

0

in the proof of Theorem 3.3.5, we obtain a sharper upper

bound for the longest �-reduction sequences.

One might wonder, whether there are even smaller strict functionals. However, as

the proposition below expresses, S

0

is the smallest strict functional in a certain sense.

We will need an auxiliary lemma, and a generalized predecessor functional.

Lemma 4.4.2 For all n 2 N, for all types � and x 2 WM

�

, if x

wm

>

�

S

�

(n) then

x

wm

� S

�

(n+ 1).

Proof: Induction on � . On type o, the lemma reduces to the true implication: If

x > n then x � n+ 1.

Assume that the lemma holds already for type � . Let f 2 WM

�!�

. Assume

f

wm

> S(n). Let x 2 WM

�

, then f(x)

wm

> S(n; x) = S

�

(n + M(x)). Using the

induction hypothesis,

f(x)

wm

� S

�

((n+M(x)) + 1) = S

�

((n+ 1) +M(x)) = S

�!�

(n+ 1; x) :

So for any x 2 WM

�

, f(x)

wm

� S(n+ 1)(x), hence f

wm

� S(n+ 1). �

The generalized predecessor function is de�ned as follows.

Pred

o

(x) =

�

x if x = 0

x� 1 otherwise

Pred

�!�

(f) = ��x

�

:Pred

�

(fx)

4.4. FUNCTIONALS OVER THE NATURAL NUMBERS 63

Lemma 4.4.3 For all types � and x 2 WM

�

, we have

1. M

�

(Pred

�

(x)) = Pred

o

(M

�

(x)).

2. x

wm

�

�

Pred

�

(x).

3. Pred

�

2 WM

�!�

.

Proof:

1. Induction on �. For � = o, note that M

o

is the identity. Assume that the

statement holds for � . Then we compute for � ! � :

M

�!�

(Pred

�!�

(x)) = M

�

(Pred

�!�

(x)(S

�

0

))

= M

�

(Pred

�

(x(S

�

0

)))

= Pred

o

(M

�

(x(S

�

0

))) by induction hypothesis

= Pred

o

(M

�!�

(x))

2. Straightforward induction on � (analogous to the preservation statement).

3. Pred

o

is non-decreasing, hence weakly monotonic. Pred

�

is a lambda expression

in Pred

o

, so by Corollary 4.1.6 it is weakly monotonic too.

�

Proposition 4.4.4 For any � 2 T

!

(fog) and f 2 ST

�

, we have f

wm

� S

�

0

.

Proof: We prove by simultaneous induction on � the following two propositions.

1. If f 2 ST

�

then f

wm

� S

�

0

.

2. If f 2 WM

�

and M

�

(f) � 1 then f

st

> Pred(f).

For � = o, we have for any f 2 N, f � S

0

= 0, proving (1). For (2), note that

M

o

(f) = f � 1 by assumption, so Pred(f) = f � 1.

Now, let f 2 WM

�!�

and assume that both properties hold on types � and � .

� For (1) let f 2 ST

�!�

. We have to prove that for all x 2 WM

�

, f(x)

wm

�

S

0

(x). Note that S

0

(x) = S

�

(M

�

(x)). The inequality is proved with induction

on M(x), which is a natural number.

If M(x) = 0, then by the main induction hypothesis (1), f(x)

wm

� S

�

0

= S

0

(x).

This hypothesis is applicable because by Lemma 4.3.2.(2), f(x) 2 ST .

If M(x) = n + 1, then we can assume that for all y with M(y) = n, f(y)

wm

�

S

�

(M(y)). By Lemma 4.4.3.(1), M(Pred(x)) = n, so by the inner induction

hypothesis, f(Pred(x))

wm

� S

�

(n). By the main induction hypothesis (2), x

st

>

Pred(x), so by strictness of f , f(x)

wm

> f(Pred(x)). By Lemma 4.1.4.(4),

f(x)

wm

> S

�

(n), hence by Lemma 4.4.2, f(x)

wm

� S

�

(n+ 1) = S

0

(x).

� For (2), assume M

�!�

(f) � 1. Let x 2 ST

�

, then by induction hypothesis (1),

x

wm

�

�

S

0

, so using weak monotonicity of f and M, M

�

(f(x)) � M

�

(f(S

�

0

)) =

M

�!�

(f) � 1. By induction hypothesis (2), f(x)

st

> Pred(f(x)) = Pred(f; x).

This holds for any strict x and f

wm

� Pred(f) by Lemma 4.4.3.(2), so f

st

>

Pred(f). �

64 CHAPTER 4. WEAKLY MONOTONIC AND STRICT FUNCTIONALS

4.5 Extension to Product Types

The previous sections were based on simply-typed lambda calculus, with ! as the

only type constructor. In Section 5.5, we also need product types. The goal of the

current section, is to add product types to �

!

�

. The resulting system will be �

�

�

. The

theory developed so far, will be extended in order to be applicable to HRSs with �

�

�

as substitution calculus.

In [PS95] product types were incorporated. However, we have changed some

de�nitions. The main di�erence is that in that paper, the de�nition of HRSs is taken

modulo the ��-calculus, i.e. also projections are performed implicitly. We have now

decided to add only product types without changing the terms. The constants for pair

formation and projections and the corresponding rewrite rules can be expressed by

ordinary HRS-rules (cf. 5.4). This decision makes the theory slightly more elegant.

Especially, the computation rules from Section 4.3.2.2 still hold in the resulting theory.

4.5.1 HRSs based on �

�

�

We simply add a new binary type forming operator, �, representing the cartesian

product. Given a set of base types B, the set of product types, T

�

(B) is de�ned

inductively as the least set satisfying

� B � T

�

(B)

� If �; � 2 T

�

(B) then also � ! � 2 T

�

(B).

� If �; � 2 T

�

(B), then � � � 2 T

�

(B).

By convention,� binds stronger than!, so e.g. o�o! o denotes the type (o�o) ! o.

The notions of arity and factors will not be generalized to product types. The

result of a type, the type level and the congruence on types � will be generalized by

adding the following clauses to the corresponding de�nitions in Section 2.4.1:

� res(� � �) = res(�).

� TL(� � �) = max(TL(�);TL(�)).

� � � � � �� � if and only if � � � and � � �.

The choice for res(� � �) is not canonical, but choosing for res(�) turns out to be

more convenient in the de�nition of M

���

.

We will not add new term forming constructors for pairing and projections. This

is not necessary, because we parametrized lambda calculus with a signature. Pairing

and projection symbols can be added as constants. The reduction relation for pairing

and projection can be de�ned by an HRS. This will be illustrated in Section 5.4.

The notions of higher-order signature, terms and substitutions and the various

reduction relations can be generalized by replacing T

!

by T

�

everywhere. We write

�

�

(F) for terms involving product types. The resulting ARS is denoted by �

�

�

and

is of the form (�

�

;!

�

).

4.5. EXTENSION TO PRODUCT TYPES 65

In the sequel of this chapter we consider HRSs that are based on �

�

�

as substitution

calculus.

4.5.2 Weakly Monotonic and Strict Pairs

We will shortly describe how the considerations on weakly monotonic and strict func-

tionals (Section 4.1{4.4) extends to the product types. We extend the de�nition of

the various notions in such a way, that the lemmata and theorems of the previous

chapters (apart from Proposition 4.4.4) still hold in the extended theory.

4.5.2.1 Weakly monotonic and strict functionals

First, the interpretation of a product type is recursively de�ned as follows. Here for

each base type � 2 B, I

�

is a �xed interpretation for it.

T

�

= I

�

T

�!�

= T

�

)T

�

:

T

���

= T

�

� T

�

In the following de�nitions, we will not repeat the clauses for the base case and

function case. We just list the clauses for the product case. This means that this

clause has to be added to the existing recursive de�nition, and that the types �; � in

the function clause range over product types.

Extend De�nition 4.1.1 with

� WM

���

:=WM

�

�WM

�

.

� (u; v)

wm

�

���

(x; y) :() u

wm

�

�

x ^ v

wm

�

�

y.

Extend De�nition 4.1.2 with

� (u; v)

wm

>

���

(x; y) :() (u; v)

wm

�

���

(x; y) ^ (u

wm

>

�

x _ v

wm

>

�

y).

Extend De�nition 4.3.1 with

� ST

���

:= ST

�

� ST

�

.

� (u; v)

st

>

���

(x; y) :() (u; v)

wm

�

���

(x; y) ^ (u

st

>

�

x _ v

st

>

�

y).

The products are ordered in such a way, that a pair decreases if one component

decreases and the other does not increase. The latter condition is needed to preserve

well-foundedness.

Lemma 4.1.3, Lemma 4.1.4, Lemma 4.3.2 and Lemma 4.3.3 are also valid when we

let �; � range over T

�

(B). The proofs can be easily extended. Also Proposition 4.1.5

and Theorem 4.3.4 remain valid in the presence of product types. Their proofs do

not require any change.

66 CHAPTER 4. WEAKLY MONOTONIC AND STRICT FUNCTIONALS

4.5.2.2 M- and S-functionals

We now extend De�nition 4.3.5. Recall that if res(�) = �, then S

�

: � ! � and

M

�

: � ! �. In the clauses below, we assume that res(�) = � and res(�) = �. We put

� M

���

(x; y) = M

�

(x) +

�;�

M

�

(y)

� S

���

(x

�

) = (S

�

(x); S

�

(0

�

)).

Recall that (x; y) denotes the \mathematical" ordered pair of x and y. Some

examples may illustrate (o is a base type):

S

o�o

(a) = (a; 0)

M

o�o

(x; y) = x+ y

S

o�o!o

(a)(x; y) = a+ (x+ y)

S

o�o!o�o

(a)(x; y) = (a+ (x+ y); 0)

M

o�o!o�o

(f) = �

1

(f(0; 0)) + �

2

(f(0; 0))

We �rst extend the proof of Proposition 4.3.6, stating that M and S are strict.

Proposition 4.5.1 For any � 2 T

�

(B), M

�

and S

�

are strict.

Proof: The proof extends the inductive proof of Proposition 4.3.6 with the product

cases. Let res(�) = � and res(�) = �. Assume that S

�

, S

�

, M

�

, M

�

are all strict.

� For S

���

we have to prove

1. If x >

�

y then S

���

(x)

wm

> S

���

(y). Let x >

�

y. Then by induction

hypothesis, S

�

(x)

wm

> S

�

(y). This implies, by the de�nition of

wm

> on

pairs (S

�

(x); S

�

(0

�

))

wm

> (S

�

(y); S

�

(0

�

)).

2. For any x, S

���

(x) is strict. By induction hypothesis for S

�

and S

�

and

Lemma 4.3.2.(2), S

�

(x) and S

�

(0) are strict; by de�nition of ST on pairs,

the pair (S

�

(x); S

�

(0)) is also strict.

� For M

���

we have to prove: If (u; v)

st

>

���

(x; y), then M(u; v) >

�

M(x; y).

Let (u; v)

st

> (x; y), then either u

st

> x and v

wm

� y, or v

st

> y and u

wm

�

x. We now assume that the �rst case applies, the other case goes similarly.

By induction hypothesis, M

�

(u) >

�

M

�

(x) and M

�

(v) �

�

M

�

(y). Then (by

strictness of +

�;�

) M

�

(u) +

�;�

M

�

(v) >

�

M

�

(x) +

�;�

M

�

(v) �

�

M

�

(x) +

�;�

M

�

(y).

Using transitivity of >

�

yields that M

���

(u; v) >

�

M

���

(x; y).

�

Put

(x; y)�

���;���

(u; v) := (x�

�;�

u; y �

�;�

v) :

n

���

:= (n

�

; n

�

) :

Then for natural numbers, Lemma 4.2.3 and 4.2.5 remain true for the product case.

For arbitrary ordered domain, we keep Lemma 4.2.2, 4.2.4. Also Lemma 4.3.7, which

generates many strict functionals, holds for all types �; � 2 T

�

(B). The inductive

proofs of all these lemmata can easily be extended.

4.5. EXTENSION TO PRODUCT TYPES 67

4.5.2.3 Computation rules for S and M

Also the computation rules for M and S remain to hold, under assumption that 0 is

the identity, i.e. 0

�

+

�;�

x = x and y +

�;�

0

�

= y for all �; � 2 B, x 2 I

�

and y 2 I

�

.

Lemma 4.3.8 is independent of the rules for the product type. Also Lemma 4.3.9

remains valid:

Lemma 4.5.2 If 0 is the identity, then for any � 2 T

�

(B) with res(�) = � and

x 2 I

�

, we have M

�

(S

�

(x)) = x.

Proof: We extend the inductive proof of Lemma 4.3.9 with the product case. Assume

that res(�) = � and res(�) = �. By induction hypothesis, M

�

(S

�

(x)) = x and

M

�

(S

�

(y)) = y, for any x 2 I

�

and y 2 I

�

. Then we can compute:

M

���

(S

���

(x)) = M

���

(S

�

(x); S

�

(0))

= M

�

(S

�

(x)) +M

�

(S

�

(0))

= x+ 0 by induction hypothesis

= x because 0 is the identity

�

Also Lemma 4.3.10 remains true. In the proof the application of Lemma 4.3.9 can be

replaced by an application of Lemma 4.5.2.

We also have a new computation rule. This depends on an extra assumption of

the +

�;�

functionals. We say that + is associative, if for any combination �; �; � 2 B

and x 2 I

�

, y 2 I

�

and z 2 I

�

the following holds: (x+

�;�

y)+

�;�

z = x+

�;�

(y+

�;�

z).

Lemma 4.5.3 If + is associative, then for any �; �; � 2 T

�

(B), with res(�) = �,

x 2 I

�

, f 2 T

�

and g 2 T

�

, we have S

���!�

(x)(f; g) = S

�!�!�

(x)(f)(g).

Proof: The proof is by mere calculation:

S

���!�

(x

�

)(f; g) = S

�

(x+M

���

(f; g))

= S

�

(x+ (M

�

(f) +M

�

(g)))

= S

�

((x +M

�

(f)) +M

�

(g)) by associativity of +

= S

�!�

(x+M

�

(f))(g)

= S

�!�!�

(x)(f)(g)

�

Proposition 4.4.4 does not remain valid in the presence of product types. This is

easy to see. We have that S

o!(o�o)

0

(x) = (x; 0). Using symmetry considerations, we

have that also f de�ned by f(x) = (0; x) is a strict functional. However, the two are

not related. So we loose the property that S

�

0

is the smallest strict functional for any

�.

68 CHAPTER 4. WEAKLY MONOTONIC AND STRICT FUNCTIONALS

Chapter 5

Termination of Higher-order

Rewrite Systems

In this chapter we take the pro�t of the theory developed in Chapter 4. The theory

on weakly monotonic and strict functionals quite easily provides for a method to

prove termination of HRSs, in the same way as monotone algebras give a method to

prove termination of TRSs. We present this method in Section 5.1.1. Section 5.1.2

is devoted to some straightforward applications of the proof method. This part is

mainly based on [Pol94].

We then investigate how the scope of our method can be extended. To this end, we

internalize the simply-typed lambda calculus (Section 5.2). With this we mean that

its terms and the �-rule are encoded in an HRS. The encoding will be performed in

such a way, that the thus obtained H

lam

can be easily combined with other systems.

After the encoding, the combination of an arbitrary �rst-order TRS with lambda

calculus can be described; we can even add higher-order rules of a restricted format.

As an easy consequence of our termination method, we derive modularity properties

for these combinations (Section 5.2.3). Especially, we prove that the combination of

a TRS with �-reduction terminates if and only if the TRS terminates. This result is

not new, but we have a completely di�erent proof.

We proceed with some larger examples (Sections 5.3{5.5). Using the method

of Section 5.1.1, we prove termination of G�odel's T, simply-typed lambda calculus

with surjective pairing and strong normalization for natural deduction trees in �rst-

order logic. In the latter case, the rules are formed by the proper reduction rules,

that remove detours, and the permutative conversions. These examples are based

on [PS95].

Finally, we give an example of an HRS that cannot be proved terminating by the

method. We will also sketch a possible modi�cation of the method, to tackle at least

this kind of examples. It is not clear whether the modi�ed method is stronger than

the original method, let alone if it is a complete method. We also mention possible

extensions to other type disciplines.

69

70 CHAPTER 5. TERMINATION OF HRSs

5.1 Higher-order Monotone Algebras for Termina-

tion Proofs

We give the de�nition of a higher-order monotone algebra, and present a method

to prove termination of HRSs in Section 5.1.1. Section 5.1.2 is devoted to some

straightforward applications of the proof method. We give three examples: �nding

the prenex normal form, a speci�cation of the disjoint union of two sorts and an

example from process algebra with an in�nite choice operator over data elements.

We start the application section with a specialization of the method to second-order

HRSs.

5.1.1 A Method for Proving Termination

Recall that an ordered domain is a collection of partial orders (I

�

; >

�

) for each base

type �, together with inhabitants 0

�

2 I

�

and for each two base types � and �, a strictly

monotonic function of type I

�

)I

�

)I

�

. A monotone higher-order algebra is obtained

by extending an ordered domain with strict functionals for all constants.

De�nition 5.1.1 Given a higher-order signature F = (B;C;V), a monotone higher-

order algebra is a structure (D; (J

c

)

c2C

), such that

1. D is an ordered domain, and

2. For each � 2 T

!

(B) and c 2 C

�

, J(c) 2 ST

�

.

A monotone higher-order algebra is well-founded if the underlying ordered domain is.

De�nition 5.1.2 A rule L 7! R is decreasing in the monotone higher-order algebra,

if and only if [[L]]

wm

> [[R]].

Note that rules are closed, so their interpretation is regardless of valuations. But

in practical examples, we write open terms, with capitals for the free variables. In that

case, a rule is decreasing, if for all weakly monotonic valuations �, [[L]]

� wm

> [[R]]

�

.

This holds if and only if the closure of the rule is decreasing.

De�nition 5.1.3 A termination model for a higher-order term rewriting system

(F;R), is a well-founded monotone higher-order algebra, in which each rule of R

is decreasing.

Theorem 5.1.4 If an HRS (F;R) has a termination model, then it is terminating.

Proof: Let (F;R) have a termination model. We �rst consider one rewrite step: let

M !

R

N be a rewrite step of type � , with res(�) = �. Then, by the de�nition of a

rewrite step, there exists a context C[] in �-normal form and a rule L 7! R 2 R, such

that C[L] �

�

M and C[R] �

�

N . Because the monotone algebra is based upon an

ordered domain, the functionals S

�

0

can be constructed as in De�nition 4.3.5; they are

strict by Proposition 4.3.6. Let �

S

be the strict valuation that maps each x

�

to S

�

0

.

5.1. HIGHER-ORDER MONOTONE ALGEBRAS 71

The second condition of a monotone higher-order algebra ensures that the constants

are interpreted in a strict way. The rules are decreasing, so [[L]]

wm

> [[R]]. Hence we

can apply Theorem 4.3.4 and we have:

[[M]]

�

S

= [[C[L]]]

�

S

st

>

�

[[C[R]]]

�

S

= [[N]]

�

S

:

By Proposition 4.3.6, M

�

2 ST

�!�

, hence by Lemma 4.3.2.(3), M

�

([[M]]

�

S

) >

�

M

�

([[N]]

�

S

).

So any rewrite sequence corresponds to a decreasing sequence in (I

�

; >

�

). This

sequence is �nite by well-foundedness of the algebra. Hence the HRS is terminating.

�

The theorem is not speci�c about the underlying substitution calculus. It simply

holds for all three cases that we encountered, so it can be used in the setting of HRSs

based on �

!

��

, �

!

�

or �

�

�

.

Note that, contrary to Theorem 3.1.3, we have Theorem 5.1.4 only in one direction.

The converse implication does not hold, as will be shown in Section 5.6. So our method

is incomplete.

Helpful hints. Theorem 5.1.4 supports the following method to prove termination

of an HRS:

1. For the base types �, choose well-suited partial orders (I

�

; >

�

) that are non-empty

and well-founded and have strictly monotonic functions +

�;�

2 I

�

)I

�

)I

�

.

2. Find an appropriate strict interpretation for the constant symbols.

3. Show for any rule L 7! R that [[L]]

wm

> [[R]].

After step (1) we have a well-founded ordered domain, in step (2) we obtain a

higher-order monotone algebra; in step (3) we know that the algebra is a termination

model.

In most applications step (1) is quite easy, step (2) requires some intuition (some-

times ingenuity) and step (3) is rather straightforward. However, in some cases it is

not obvious how to choose (1), and given (1) and (2), testing (3) is not decidable in

general.

For (1) we will often choose the ordered domain (N; >; 0;+). It is well-known

that even for �rst-order term rewriting this is not enough. There exist terminating

TRSs for which a non-total order is necessary. See [Zan94, Fer95] for a hierarchy of

underlying partial orders.

There is no general recipe how to �nd a suitable strict interpretation (2). There

are two starting points. The �rst starting point is the standard interpretation of

the rewrite system as an equational theory, which yields a model. A modi�cation of

this model can yield a termination model. The second starting point is an intuitive

measure that decreases in every rewrite step. Often such a measure can be expressed

in terms of a strict interpretation. Experience with the corresponding method for

�rst-order term rewriting systems surely helps.

72 CHAPTER 5. TERMINATION OF HRSs

Another helpful hint to �nd a strict interpretation (2), is the following way to �nd

more and more strict functionals. First, by Proposition 4.3.6 we obtain strict func-

tionals S

�

0

for each type �. Then, by Lemma 4.3.7, the sum of a strict functional and

a weakly monotonic functional is again strict. To �nd weakly monotonic functionals,

Corollary 4.1.6 can be used, which states that anything that can be written as a

lambda term is weakly monotonic. The last helpful hint is that all strictly monotonic

functions in a �rst-order signature are strict functionals of type level 1.

Finally, in order to verify that (3) holds we refer the reader to the various com-

putation rules that have been proved, especially in Section 4.2, Section 4.3.2.2 and

Section 4.5.2.3. The preservation statements, formulated in Section 4.2, can be used

to lift computation rules that hold on base types to higher types.

The next section is devoted to several illustrations of the method we propose.

5.1.2 Second-order Applications

We will now provide some examples, to illustrate the use of higher-order monotone

algebras for termination proofs. The �rst example is the HRS H

pnf

, �nding prenex

normal forms, introduced in Section 2.5.4. Then we show termination of a speci�cation

of the surjective disjoint union. This example is typical, as it contains a non-pattern

left hand side. Finally, we show an example from process algebra with a choice-

operator over data. In fact this latter example was the motivation to start working

on termination of higher-order term rewriting.

Most higher-order rewrite systems are in fact second-order systems, in the sense

that the function symbols have type level at most 2, and the variables have a type of

level at most 1. It is therefore advantageous to inspect how the various partial orders

and notions of monotonicity behave on the lower type levels.

The base types have type level 0. On this level, several notions coincide. For �

with TL(�) = 0, we have

� x

st

>

�

y () x

wm

>

�

y () x >

�

y,

� x

wm

�

�

y () (x >

�

y _ x = y),

� I

�

= T

�

=WM

�

= ST

�

.

Type level 1 contains the usual functions. On this level, the usual notions of strict

and weak monotonicity apply. The di�erent orders collapse to the pointwise ordering

on functions, de�ned as

f > g if and only if for all arguments ~x; f(~x) > g(~x) :

Likewise, we de�ne

f � g if and only if for all arguments ~x; f(~x) � g(~x) :

We have for � with TL(�) = 1,

� f 2 ST

�

if f is strictly monotonic in the usual sense.

5.1. HIGHER-ORDER MONOTONE ALGEBRAS 73

� f 2 WM

�

if f is weakly monotonic in the usual sense.

� f

wm

>

�

g and f

st

>

�

g are equivalent to f > g.

� f

wm

�

�

g is equivalent to f � g.

On type level 2, the various notions diverge. We note that for � with TL(�) = 2,

we have

� F 2 ST

�

if and only if for all weakly monotonic arguments

~

f; g

1

; g

2

;

~

h (of type

level at most 1), if g

1

> g

2

then F (

~

f; g

1

;

~

h) >

�

F (

~

f; g

2

;

~

h).

5.1.2.1 Prenex Normal Form

The �rst example proves termination of the HRS H

pnf

, computing the prenex normal

form of �rst order formulae (introduced in Section 2.5.4.1). Because the system is

rather symmetric, we only repeat the �rst and the last rule. Recall that the free

variables, written with capitals, should be abstracted in the left- and right hand sides

to obtain the proper rewrite rules.

P ^ 8�x:(Qx) 7! 8�x:P ^ (Qx)

:9�x:(Qx) 7! 8�x::(Qx)

We interpret both base types o and � by the well-founded ordered domain (N; >

; 0;+). As interpretation for the constants, we put:

J(^) = J(_) = ��x; y2N:(2 � x+ 2 � y)

J(:) = ��x 2 N:(2 � x)

J(8) = J(9) = ��f 2N)N :(f(0) + 1)

The �rst two functions are strictly monotonic, hence strict. The second function

is also strict, for if f

st

> g, then f(0) + 1 > g(0) + 1. Finally, we have to check that

the rules are decreasing. Because J(8) = J(9) and J(_) = J(^) is symmetric, the only

rules from Section 2.5.4.1 we have to prove decreasing are the two mentioned above.

The calculations are simple. Let an arbitrary weakly monotonic valuation � be given.

We write [[M]] for the interpretation of M under this valuation.

[[P ^ 8�x:(Qx)]]

= 2 � [[P]] + 2 � ([[Q]](0) + 1)

> 2 � [[P]] + 2 � [[Q]](0) + 1

= ��x:(2 � [[P]] + 2 � [[Q]](x))(0) + 1

= [[8�x:P ^ (Qx)]]

and

[[:9�x:(Qx)]]

= 2 � ([[Q]](0) + 1)

> 2 � [[Q]](0) + 1

= ��x:(2 � [[Q]](x))(0) + 1

= [[9�x::(Qx)]] :

74 CHAPTER 5. TERMINATION OF HRSs

We have found a termination model for H

pnf

, so by Theorem 5.1.4, it is terminat-

ing.

Note that in this example, the fact that [[Q]] is weakly monotonic is not important.

The system is fairly simple, because both the left- and the right hand side are only

patterns, so �-reduction and expansion play a marginal rôle.

5.1.2.2 Surjective Disjoint Union

The next example is a speci�cation of the disjoint union of two base types A and B.

The union is itself a base type, U . The function symbols consist of two constructors,

the left and right injections, and a case distinction for each base type. The latter

construct has a type of level 2. The function symbols have the following types (where

� 2 fA;B;Ug):

case

�

: U ! (A! �)! (B ! �)! �

inl : A! U

inr : B ! U

All function symbols have type level � 2. There are nine rules, namely for each

base type � an instance of the schemas below. The �rst two are the ordinary reduction

rules for case distinction; the last one expresses that disjoint union is surjective (it

expresses that Z must be either a left- or a right injection). The following symbols

are used as free variables: fX

A

; Y

B

; Z

U

; F

A!�

; G

B!�

; H

U!�

g.

case

�

(inl(X); F;G) 7! F (X)

case

�

(inr(Y); F;G) 7! G(Y)

case

�

(Z; �x

A

:H(inl(x)); �y

B

:H(inr(y))) 7! H(Z)

Note that this example does not �t in the framework of Nipkow [Nip91, p. 347],

because the left hand side of the last rule is not a pattern (the argument of H is not

a bound variable). Termination for this example is less trivial than for the prenex

normal form, because there is an application of two free variables. Therefore, it is not

the case that the number of case occurrences decreases in each step: If X contains a

case occurrence, then F (X) can generate many copies of it in the right hand side of

the �rst rule.

Nevertheless, the interpretation in a termination model is smooth. Take I(�) =

(N; >; 0;+), for each � 2 fA;B;Ug. Interpret the constants as follows.

J(inl) = J(inr) = ��a:a

J(case) = ��a2N:��f; g2N)N :f(a) + g(a) + a+ 1

We �rst show that these functions are strict. This is only non-trivial for the

last function. We check strictness of J(case) in all arguments. First, let a > b

and let f; g 2 N) N be weakly monotonic. Then f(a) + g(a) � f(b) + g(b), so

f(a) + g(a) + a+ 1 > f(b) + g(b) + b+ 1. Hence J(case) is monotonic in a.

Now let f

1 st

> f

2

and let a 2 N and g 2 N) N be weakly monotonic. Then

f

1

(a) > f

2

(a), and g(a) � g(b), hence f

1

(a)+g(a)+a+1 > f

2

(a)+g(a)+a+1. This

5.1. HIGHER-ORDER MONOTONE ALGEBRAS 75

shows strictness in f . Strictness in g can be checked similarly. Hence (N; >; 0;+; J)

is a higher-order monotone algebra.

Finally, we verify that the rules are decreasing. To this end, we compute the

interpretations of the left- and right hand sides of the rules, for arbitrary valuation.

Left hand side Right hand side

[[F]]([[X]]) + [[G]]([[X]]) + [[X]] + 1 [[F]]([[X]])

[[F]]([[Y]]) + [[G]]([[Y]]) + [[Y]] + 1 [[G]]([[Y]])

2 � [[H]]([[Z]]) + [[Z]] + 1 [[H]]([[Z]])

The left hand sides are clearly greater than the right hand sides. So the higher-order

monotone algebra indicated above is a termination model. By Theorem 5.1.4, the

system for the "surjective disjoint union" is terminating.

To get full disjunction, we have to add a union operator as type forming construc-

tor, and we have to add case distinctions for arbitrary types. See [Gan80, Kah95] for a

semantical termination proof of the resulting system. Moreover, rules for permutative

conversions have to be added to �nd nice normal forms. In Section 5.5 we show that

permutative conversions for existential quanti�ers can be dealt with.

5.1.2.3 Process Algebra with Data

The �nal second-order application comes from process algebra [BK84], or better

�CRL, which extends process algebra with abstract data types [GP90, GP94]. We

only concentrate on the fragment with non-deterministic choice (+), sequential com-

position (�), deadlock (�) and the data dependent choice (�) from �CRL. The Process

Algebra part can be formulated in a �rst order Term Rewriting System (see for in-

stance [AB91]). The rules for the Sum-operator require higher-order rewrite rules to

deal with the bound variables. A similar formulation of �CRL can be found in [Sel94].

There are two base types: fProc;Datag. Furthermore, here is a list of the function

symbols with their types:

+ : Proc ! Proc ! Proc

� : Proc ! Proc ! Proc

� : Proc

P

: (Data ! Proc)! Proc

fX;Y; Z; P;Q;Dg are used as free variables. Now we have the following set of rules,

with the binary function symbols written in�x. Note that the left hand side of rule

76 CHAPTER 5. TERMINATION OF HRSs

Sum3 is not a pattern, and that Sum1 and Sum5 have an implicit side condition.

A3: X +X 7! X

A4: (X + Y) � Z 7! (X � Z) + (Y � Z)

A5: (X � Y) � Z 7! X � (Y � Z)

A6: X + � 7! X

A7: � �X 7! �

Sum1: �(�d

Data

:X) 7! X

Sum3: �(�d

Data

:(Pd)) + (PD) 7! �(�d

Data

:(Pd))

Sum4: �(�d

Data

:(Pd) + (Qd)) 7! �(�d

Data

:(Pd)) + �(�d

Data

:(Qd))

Sum5: �(�d

Data

:(Pd)) �X 7! �(�d

Data

:(Pd) �X)

To prove termination of this system we interpret both base types Data and Proc

by (N

�1

; >; 1;+), with the usual meaning. This is a well-founded ordered domain.

The function symbols are interpreted in the following way:

[[+]] = ��a:��b:a + b+ 1

[[�]] = ��a:��b:a � (b+ 1)

[[�]] = 1

[[

P

]] = ��f:(3 � f(1) + 1)

In the right hand sides of these equations, � denotes multiplication and + denotes

addition on natural numbers. This is an extension of the interpretation in [AB91] for

the Process Algebra part of the system. The �rst three functions are strictly mono-

tonic in N

�1

, hence strict. The last functional is also strict, for if f > g (pointwise),

then f(1) > g(1), hence 3 � f(1) + 1 > 3 � g(1) + 1. Now we compute the values of the

left hand sides and right hand sides.

interpretation of the left hand side interpretation of the right hand side

A3 2 � [[X]] + 1 [[X]]

A4 ([[X]] + [[Y]] + 1) � ([[Z]] + 1) ([[X]] + [[Y]]) � ([[Z]] + 1) + 1

A5 [[X]] � ([[Y]] + 1) � ([[Z]] + 1) [[X]] � ([[Y]] � [[Z]] + [[Y]] + 1)

A6 [[X]] + 2 [[X]]

A7 [[X]] + 1 1

Sum1 3 � [[X]] + 1 [[X]]

Sum3 3 � [[P]](1) + [[PD]] + 2 3 � [[P]](1) + 1

Sum4 3 � ([[P]](1) + [[Q]](1)) + 4 3 � ([[P]](1) + [[Q]](1)) + 3

Sum5 (3 � [[P]](1) + 1) � ([[X]] + 1) 3 � [[P]](1) � ([[X]] + 1) + 1

It is easy to verify that in N

�1

, the interpretation of the left hand side is greater

than the interpretation of the right hand side on each line in the table. Hence we have

found a termination model, and by Theorem 5.1.4 this system of Process Algebra and

Sum rules is terminating. Because commutativity and associativity (AC) of + holds

in the termination model, also termination modulo AC can be proved in this way.

5.2. INTERNALIZING SIMPLY-TYPED LAMBDA CALCULUS 77

5.2 Internalizing Simply-typed Lambda Calculus

5.2.1 Encoding the Simply-typed Lambda Calculus

In Section 2.5.4 an HRS representing the untyped lambda calculus was presented. In

this section we encode the simply-typed lambda calculus �

!

�

as an HRS. We assume

for convenience that there is only one base type, called o.

It may be confusing that the simply-typed lambda calculus now exists at two levels.

It underlies the formalism of higher-order term rewriting as substitution calculus. On

the other hand, simply-typed lambda calculus is just a particular HRS.

The advantage of the encoding of �

!

�

as an HRS is that we can now deal with

extensions of lambda calculus in a uniform framework. One such extension will be

G�odel's T. This enables us to give more modular termination proofs, because �-

reduction is now an ordinary rewrite rule.

In principle, the presence of two levels results in two forms of abstraction and

application and also in two di�erent �-rules. But a more leisure encoding is obtained

by identifying the types of the HRS and the calculus that we encode. We also identify

the application symbols of the two levels. To encode typed lambda abstraction we

introduce in�nitely many constants.

The �-HRS H

lam

is de�ned as follows. As function symbols it has for each type

�; � 2 T

!

(fog),

abs

�;�

: (� ! �)! � ! � :

The �-reduction rule can now be represented by the higher-order rewrite rule

schema (for each type �; �)

(beta) abs

�;�

(�x

�

:Fx)X 7! (FX) :

We write !

beta

for the rewrite relation induced by H

lam

.

We can represent any lambda term as �-normal form in the signature of H

lam

as

follows. We write hMi for the representation of M .

hx

�

i � x

�

hMNi � (hMi hNi)

h�x

�

:M

�

i � (abs

�;�

�x

�

:hMi)

The following lemma expresses a partial correctness of the encoding of �

!

�

into

H

lam

.

Lemma 5.2.1 For all terms M and N (of the appropriate type)

1. hMi[x := hNi] � hM [x := N]i.

2. If M !

�

N then hMi !

beta

hNi.

78 CHAPTER 5. TERMINATION OF HRSs

Proof: (1) Straightforward by induction on M . (2) Induction on the de�nition of

!

�

. We only do the base case (outermost reduction). The other cases are immediate.

Let M = (�x:P)Q and N = P [x := Q]. Then

hMi � h(�x:P)Qi

� (abs (�x:hP i)hQi)

7!

beta

(�x:hP i)hQi

!

�

hP i[x := hQi]

� hP [x := Q]i By (1)

� hNi

�

As a consequence, each �-reduction sequence in �

!

�

maps to a beta-reduction

sequence in H

lam

of equal length. Hence termination of H

lam

implies termination of

�

!

�

. However, in the de�nition of a higher-order rewriting step, it is already used that

unique �-normal forms exist, so in fact weak normalization and conuence of �

!

�

is

already presumed.

Remark. In fact, too much terms are well-typed in H

lam

, because h i is not sur-

jective. An example of a typable term in H

lam

is (abs�F:F (�x:x))(�g:gy). Note

that this term reduces in a single beta-step to y. This illustrates that the reduction

relation of H

lam

is more complex than that of �

!

�

.

5.2.2 Termination Models for H

lam

We now show that many ordered domains can be extended to a termination model

for H

lam

. The additional information that we need is that the ordered domain admits

a strict projection.

De�nition 5.2.2 Given a partial order (A;>), a binary function
 in A)A)A is

projective if it is strictly monotonic and for all x; y 2 A, x
 y > x.

Examples are addition in (N

�1

; >), multiplication in (N

�2

; >) and the function

��x; y:x+y+1 in (N; >). With

�

we denote the pointwise extension of
 to arguments

of type � (analogously to �

�;�

). By straightforward induction on � one proves that

for all x; y 2 WM

�

, x

�

y

wm

> x.

Theorem 5.2.3 Let A be a well-founded ordered domain with a projective
. Then

there exists a constant interpretation J, such that (A; J) is a termination model for

H

lam

.

Proof: Let A = fA;>; 0;+g. The only function symbols to be interpreted are abs

�;�

.

We put

J(abs

�;�

) = I

�!�

(�!�)!�!�

S

(�!�)!�!�

0

:

5.2. INTERNALIZING SIMPLY-TYPED LAMBDA CALCULUS 79

This is strict, by Lemma 4.3.7 (the fact that we use
 instead of � is inessential). We

now show that the beta-rule is decreasing: Let � be a weakly monotonic valuation;

we write [[M]] for the interpretation under �. We have

[[abs

�;�

(�x:Fx)X]]

= [[F]]([[X]])
 S

0

([[F]]; [[X]])

wm

> [[F]]([[X]]) because
 is projective

= [[(FX)]]

Hence (A; J) is a termination model. �

Corollary 5.2.4 �

!

�

terminates.

Proof: The function ��x; y:x + y + 1 is projective in the well-founded ordered do-

main (N; >; 0;+). By Theorem 5.2.3 there is a termination model for H

lam

. By

Theorem 5.1.4 this implies termination of H

lam

, which by Lemma 5.2.1.(2) implies

termination of �

!

�

.

Remark. In the proof of Corollary 5.2.4, the interpretation of abstraction obeys

the following equation:

J(abs

�;�

)(f; x) = f(x)�

�

S

0

(f; x)�

�

1

�

:

This example is quite typical for (small extensions of) various lambda calculi. The

f(x) is inspired by the standard model for the beta-rule; this part ensures that the

left hand side is not smaller than the right hand side. To make J(abs) strict the

S

0

-part is added. The �1 was added to ensure that the rule really gets decreasing.

Using this interpretation, an upper bound on the length of the longest reduction

from any term M can be given, namely M([[hMi]]

�

S

). The most striking di�erence

with the interpretation that Gandy found (namely [[L

�!o

M

�

]]

�

L

, see Section 3.3.3) is

that f occurs as argument of the S

0

-part. This is necessary to make J(abs) strict.

From Theorem 3.3.5 and the remark at the beginning of Section 4.4, it appears that

this occurrence of f is in fact superuous in the upper bound expression.

The reason for the coarse upper bound is that too much terms are well typed in

H

lam

and consequently its reduction relation is more complex than �

!

�

.

5.2.3 Modularity of Termination

In higher-order rewriting, a set of higher-order rules is turned into a reduction system,

by closing the rules under context and computing modulo a substitution calculus, like

�

!

�

. Following e.g. [Bre88, Dou92, JO91], it is also possible to add �-reduction as

an ordinary rewrite rule. Given a set of rewrite rules, the reduction relation is then

obtained by closing the rules under the �-rule, substitution and context. The one step

rewrite relation is easier to compute, because it is not generated modulo a theory.

80 CHAPTER 5. TERMINATION OF HRSs

First-order rules.

A particular situation arises when the rewrite rules form a (�rst-order) TRS. It is

proved in [Bre88], that if the TRS R is terminating, then the combination R [�

terminates too. A similar modularity result holds for conuence.

The preservation of termination is a non-trivial modularity result. We have no

restrictions on the TRS, so in particular it can have duplicating and collapsing rules.

Also �-reduction may duplicate and collapse arguments. Hence the situation seems

quite bad in view of Toyama's example, given in Section 3.1.2. The combination is

even not completely disjoint, because both components share the same application

symbols.

The proof in [Bre88] is based on the SN-proof for simply-typed lambda calculus

that uses computability predicates. We will give an alternative proof of this fact. Our

proof is more or less a corollary of the semantical proof of termination of simply-typed

lambda calculus. We proved that every projective well-founded ordered domain can

be used to prove termination of simply-typed lambda calculus. Given a terminating

TRS, its term algebra gives rise to a well-founded ordered domain. This need not be

projective, but it is if we add the rule g(x; y) 7! x to the original TRS.

De�nition 5.2.5 Let R be a TRS. Then we de�ne the HRS H

R�

as the union of the

curried version of R and H

lam

.

Theorem 5.2.6 Let R = (F;V;R) be a terminating TRS. Then the HRS H

R�

is

terminating too.

Proof: Let c be a new constant and g be a fresh binary function symbol. By Propo-

sition 3.1.4, (F] fc; gg;R] fg(x; y) 7! xg) is still terminating. By Theorem 3.1.3,

there exists a �rst-order termination model (A;>; (f

A

)

f2F[fc;gg

). Now (A;>; c

A

; g

A

)

is a well-founded ordered domain, with a projective g

A

. Each f

A

is strictly monotonic

and its type is of type level at most 1, so it is strict. So (A;>; c

A

; g

A

; (f

A

)

f2F[fc;gg

)

is a higher-order termination model for the curried version of R. By Theorem 5.2.3

it can be extended to a termination model of H

R�

. �

Higher-order rules.

What happens when we combine higher-order rules with �-reduction? In [JO91] a

kind of primitive recursive format occurs. It is proved there that the rewrite system

composed from a set of higher-order rules in this format, combined with an arbitrary

terminating TRS and �-reduction is still terminating. The following rules, with con-

stant symbol K : (o ! o) ! (o ! o) ! (o ! o) are outside this primitive recursive

format:

Kfgx 7! fx

K(Kfg)h 7! Kf(Kgh)

It is not di�cult to give a termination model for this system. This proves termi-

nation of the K-rules modulo �. However, this does not immediately imply termina-

tion of the K-rules combined with �-reduction. E.g. the reduction (�z:a)(Kfgx) !

5.2. INTERNALIZING SIMPLY-TYPED LAMBDA CALCULUS 81

(�z:a)(fx) ! a lives completely inside one �-equivalence class. Therefore, reduction

sequences in the combined system cannot be mapped to reduction sequences in the

system modulo �.

The idea now is that the translation h i of Section 5.2.1, maps reductions in

the combination of the K-rules with � to reductions in the HRS K [H

lam

. The

problematic reduction above becomes

(abs�z:a)(Kfgx)! (abs�x:a)(fx) ! a :

This idea only works when the original set of rules contains no lambdas. It is often the

case that the higher-order rewrite rules do not contain lambdas. This is for instance

the case in G�odel's T and in the system of K-rules above. For such systems, we derive

a partial modularity result, based on Theorem 5.2.3.

Theorem 5.2.7 Let R be a set of higher-order rules without lambdas. If there is a

termination model for R that has a projective function, then the combination R [�

terminates.

Proof: Assume that R has a termination model, in which
 is projective. A reduction

step M ! N in the combined system is either an R-step or a � step. We apply the

translation into H

lam

, h i. If M !

�

N , then hMi !

beta

hNi by Lemma 5.2.1.(2). If

M ! N , using the rewrite rule L 7! R, then for some context C[] and substitution �,

M � C[L

�

]. Put C

0

[] := hC[]i and �

0

(x) := h�(x)i. Because L contains no lambdas,

hLi � L. Using this and Lemma 5.2.1.(1), we get:

hMi � hC[L

�

]i � C

0

[hLi

�

0

] � C

0

[L

�

0

] :

Similarly, hNi � C

0

[R

�

0

]. Hence, we have that hMi ! hNi using the rule L 7! R.

This shows that any reduction in R[� can be mapped to a reduction in the HRS

R[H

lam

of equal length. By assumption,
 is projective in the termination model of

R, so by Theorem 5.2.3 this model can be extended to a termination model of R[H

lam

.

By Theorem 5.1.4 this combined system terminates, hence R [� terminates. �

This is only a partial modularity result, because the theorem in fact relies on a

particular termination proof for the higher-order rules. Hence we have not proved

modularity of termination for the combination of higher-order rules with �-reduction,

but nevertheless we provide a modular approach to termination proofs of such systems.

As an example, we give a termination model for the K-rules given before. These

rules contain no lambdas, hence by Theorem 5.2.7, the combination of the K-rules

with �-reduction terminates.

We take the ordered domain (N; >; 0;+) with as interpretation

J(K)(f; g; x) := 2 � f(x) + g(x) + x+ 1

This is clearly strict. Moreover, writing f; g; h; x for the interpretation of f; g; h; x

under an arbitrary weakly monotonic valuation, we compute

[[Kfgx]] = 2 � f(x) + g(x) + x+ 1

> f(x)

= [[fx]]

82 CHAPTER 5. TERMINATION OF HRSs

and for arbitrary a 2 N,

[[K(Kfg)h]](a) = 2 � J(K)(f; g; a) + h(a) + a+ 1

= 2 � (2 � f(a) + g(a) + a+ 1) + h(a) + a+ 1

> 2 � f(a) + (2 � g(a) + h(a) + a+ 1) + a+ 1

= 2 � f(a) + J(K)(g; h; a) + a+ 1

= [[Kf(Kgh)]](a) :

Hence both rules are decreasing in (N; >; 0;+; J).

Map and append.

We end this section with an example involving map and append on lists. Again,

the intended rewrite relation is obtained by combining the higher-order rules with

�-reduction.

Consider terms built up from the constants

nil : o

cons : o! o! o

append : o! o! o

map : (o! o)! o! o:

The types are chosen such that e.g. map(�x:append(x; x); `) is well typed. Terms of

type o represent �nite lists of lists of � � �. The functions map and append are de�ned

via the following rewrite rules

append(nil; `) 7! ` (i)

append(cons(k; `);m) 7! cons(k; append(`;m)) (ii)

map(f; nil) 7! nil (iii)

map(f; cons(k; `)) 7! cons(f(k);map(f; `)) (iv)

append(append(k; `);m) 7! append(k; append(`;m)) (v)

map(f; append(`; k)) 7! append(map(f; `);map(f; k)) (vi)

The rules �t in the schema of [JO91], for the rules of append form a terminating

TRS and the rules for map are primitive recursive.

The rules contain no lambdas, hence we can also apply Theorem 5.2.7. This

reduces termination of the combination of these rules with �-reduction to the task of

�nding a termination model for the six rules above.

As ordered domain, we choose (N; >; 0;+), which also has a strictly monotonic

projection (e.g. �xy:x + y + 1). The interpretation of the constants is de�ned as

follows:

J(nil) := 1

J(cons)(m;n) := m+ n+ 1

J(append)(m;n) := 2m+ n+ 2

J(map)(f; n) :=

P

n

i=0

f(i) + 3n+ 1

The interpretations of nil, cons and append are obviously strict. Strictness of J(map)

follows e.g. by Lemma 4.3.7, if we write its de�nition as

�

f(0) + n

�

+

�

n

X

i=1

f(i) + 2n+ 1

�

:

5.3. EXAMPLE: G

�

ODEL'S T 83

Hence we have a higher-order monotone algebra. We still have to check that the

rules are decreasing. In the sequel k, `, m, f are arbitrary values for the corresponding

variables. Note that f ranges over weakly monotonic functionals. For rule (v) e.g. the

check boils down to the true inequality 2 � (2`+k+2)+m+2> 2`+(2k+m+2)+2.

We don't present all calculations here, but let us yet verify the most di�cult one, rule

(vi):

[[map(f; append(`; k))]]

=

2`+k+2

X

i=0

f(i) + 3 � (2`+ k + 2) + 1

=

`

X

i=0

f(i) +

2`+1

X

i=`+1

f(i) +

2`+k+2

X

i=2`+2

f(i) + 6`+ 3k + 7

>

`

X

i=0

f(i) +

`

X

i=0

f(i) +

k

X

i=0

f(i) + 6`+ 3k + 5 because f is monotonic

= 2 � (

`

X

i=0

f(i) + 3`+ 1) + (

k

X

i=0

f(i) + 3k + 1) + 2

= [[append(map(f; `);map(f; k))]]

For all rules, this relation between left- and right hand side holds. Therefore the

combination of the rules for map and append with the �-reduction rule terminates.

5.3 Example: G�odel's T

We now apply our method to prove termination of G�odel's T. This system extends

simply-typed lambda calculus with higher-order primitive recursion operators R

�

of

type � ! (o ! � ! �) ! o ! �, for any type �. Here o is a base type, for natural

numbers, which comes with the constants 0

o

and S

o!o

. The usual rules expressing

recursion are:

R

�

gh0 7! g ;

R

�

gh(Sx) 7! hx(R

�

ghx) :

By Theorem 5.2.7, termination of the whole system (including �-reduction) follows

if we �nd a termination model for the two schemas above. We work in the ordered

domain (N; >; 0;+). The symbol 0 is interpreted by 0. The symbol S is interpreted

as the successor function.

Furthermore, we de�ne recursively

J(R

�

)(g; h; 0) := g �

�

S

0

(g; h)� 1

�

;

J(R

�

)(g; h; n+ 1) := h(n; J(R

�

)(g; h; n))�

�

g �

�

S

0

(g; h)� n+ 2

�

:

The intuition behind this interpretation is as follows: The �rst summand of both

rules is inspired by the standard interpretation of the recursor operator, as dictated

84 CHAPTER 5. TERMINATION OF HRSs

by the rewrite rules. The addition of 1 makes the �rst rule decreasing. The addition

of S

0

(g; h) makes J(R) strict in g and h. Finally, to ensure strictness in the third

argument, g and n have been added to the second de�ning clause. Finally, adding 2

ensures that the second rule is decreasing, and that the n + 1-case is always greater

than the 0-case, which is needed for strictness.

First, we show that the rules are decreasing. Write [[M]] for the denotation of M

under an arbitrary weakly monotonic valuation �, then we have (for any �)

[[R

�

gh0]] = [[g]] � S

0

([[g]]; [[h]])� 1

wm

> [[g]]

and

[[R

�

gh(Sx)]]

wm

> [[h]]([[x]]; J(R

�

)([[g]]; [[h]]; [[x]])) = [[hx(R

�

ghx)]]

So the rules are decreasing.

We now show that J(R

�

) is strict for any �. Let for n 2 N, R

n

denote the functional

��g; h:J(R

�

)(g; h; n). We �rst show by induction on n that R

n

is strict. After that, we

show that if m > n then R

m

wm

> R

n

. This is also proved by induction on n. Together

these two statements imply strictness of J(R

�

)

� To prove: R

n

is strict. If n = 0 then R

n

=

�

��g;h: g � 1

�

� S

0

, which is strict by

Lemma 4.3.7. Assume now that R

n

is strict, then it is also weakly monotonic.

Note that

R

n+1

=

�

��g;h: h(n;R

n

(g; h))� g � n+ 2

�

� S

0

;

so also R

n+1

is strict by Lemma 4.3.7.

� Let m > n, put m

0

:= m�1. To prove: R

m

wm

> R

n

. Let g; h 2 WM. It su�ces

to prove R

m

(g; h)

wm

> R

n

(g; h). If n = 0, then we have

R

m

(g; h)

wm

� g � S

0

(g; h)�m

0

+ 2

wm

> g � S

0

(g; h)� 1

= R

n

(g; h):

Now for n = n

0

+ 1, we have m

0

> n

0

. By induction hypothesis, R

m

0

(g; h)

wm

>

R

n

0

(g; h). By weak monotonicity of h, we obtain

h(m

0

;R

m

0

(g; h))

wm

� h(n

0

;R

n

0

(g; h)) :

Clearly m

0

+ 2

wm

> n

0

+ 2. Hence also in this case, R

m

(g; h)

wm

> R

n

(g; h)

So J(R

�

) is indeed strict.

We have proved all ingredients of the statement that (N; >; 0;+; J) is a termination

model. The function ��x:��y:x+y+1 is projective in this model, so with Theorem 5.2.7,

we conclude that G�odel's T is strongly normalizing.

5.4. EXAMPLE: SURJECTIVE PAIRING 85

5.4 Example: Surjective Pairing

As illustration we show how surjective pairing can be speci�ed as a terminating HRS.

We prove termination by the method of Theorem 5.1.4.

We will use only the base type o. Furthermore, for any type �; � 2 T

�

(fog) we

have the following constants:

�

0

�;�

: � � � ! �

�

1

�;�

: � � � ! �

�

�;�

: � ! � ! � � �

The �rst two are the left- and right projection, respectively. The last one is the pairing

operator.

As higher-order rewrite rules we introduce all well-typed instances of the following

schemas:

�

0

(�xy) 7! x

�

1

(�xy) 7! y

�(�

0

x;�

1

x) 7! x

To prove termination, we apply the general recipe. As ordered domain, we choose

(N; >; 0;+). We interpret �

0

, �

1

and � as follows:

J(�

0

�;�

)(x; y) = x� S

���!�

0

(x; y)

J(�

1

�;�

)(x; y) = y � S

���!�

0

(x; y)

J(�

�;�

)(x)(y) = (x; y)� S

�!�!���

0

(x)(y) � 1

���

It can easily be veri�ed that this is a termination model for surjective pairing,

hence the system terminates. Because the ordered domain is projective and the HRS

contains no lambdas, also the combination of surjective pairing with �-reduction is

terminating (Theorem 5.2.7).

5.5 Example: Permutative Conversions in Natural

Deduction

The next example comes from proof theory in the style of Prawitz. In [Pra71] proofs

are formalized by natural deduction trees. Several reduction rules on those trees are

given, to bring them into a certain normal form. These reductions are divided in

proper reductions and permutative conversions. Strong normalization is then proved

via a re�ned notion of strong computability, called strong validity (see the Appendix

for a reproduction of this proof).

In [Gan80] also examples taken from proof theory occur. There a normalization

proof is given via hereditarily monotonic functionals, but the permutative conversions

are not dealt with. Girard gives another adaptation of Gandy's approach, which

can be extended to the full calculus, including permutative conversions (see [Gir87,

Exc. 2.C.10]). Instead of bounding reduction lengths by functionals, Girard uses the

86 CHAPTER 5. TERMINATION OF HRSs

length of a speci�c reduction path, given by a weak normalization theorem for the

full calculus.

We present a termination proof for the whole calculus, including the permutative

conversions. We start with introducing a linear notation for natural deduction trees,

derivation terms (Section 5.5.1). Then we translate the calculus of derivation terms

into the HRS H

9

, which is based on �

�

�

(Section 5.5.2). In Section 5.5.3 we prove

termination of H

9

, using the method of Section 5.1.1. The translation into H

9

will

be such that strong normalization of the calculus of derivation terms immediately

follows.

5.5.1 Proof Normalization in Natural Deduction

The set of �rst-order formulae that we work with, is de�ned inductively as follows.

P (r

1

; : : : ; r

n

) j A! B j A ^ B j 9x:A j 8x:A

Here and in the sequel A;B;C; : : : denote arbitrary formulae. Metavariables

r; s; t; : : : range over �rst-order terms. Atomic formulae are of the �rst form in the

de�nition above, where P is an n-ary predicate symbol. The set of free variables in a

formula (denoted by FV(A)) is de�ned as usually, i.e. 9x and 8x above bind precisely

the free occurrences of x in A.

Disjunction is not included, to avoid that we have to extend the previous the-

ory with coproduct types. This extension is possible (actually [Gan80, Kah95] treat

coproduct types), but not necessary for our purpose, namely to show that the seman-

tical proof method can deal with permutative conversions. Also negation is absent,

so we work in minimal logic, where negation plays no special rôle (? may be present

as 0-ary function symbol).

We now introduce derivation terms. They can be seen as linear notations for nat-

ural deduction trees (cf. [Pra71]), with assumptions labeled by variables. This cor-

responds to the Curry-Howard isomorphism, but now we add also existential quan-

ti�cation. Metavariables d; e; f range over derivation terms. Simultaneously with

derivations, the set of free assumptions in a derivation (denoted FA(d)) is de�ned.

With d

A

we denote that d derives the statement A, from the assumptions FA(d).

Finally, u; v denote arbitrary assumption variables, x; y; z denote object variables and

r; s; t range over object terms.

5.5. EXAMPLE: PERMUTATIVE CONVERSIONS 87

De�nition 5.5.1 Derivation terms are de�ned inductively, and simultaneously with

the set of free assumption variables (FA(d)) occurring in them.

1 u

A

FA(u) = u

2 (�u

A

:d

B

)

A!B

FA(�u:d) = FA(d) n fug

3 (d

A!B

e

A

)

B

FA(de) = FA(d) [FA(e)

4 hd

A

; e

B

i

A^B

FA(hd; ei) = FA(d) [FA(e)

5 �

0

(d

A^B

)

A

FA(�

0

(d)) = FA(d)

6 �

1

(d

A^B

)

B

FA(�

1

(d)) = FA(d)

7 (�x:d

A

)

8x:A

; provided (1) FA(�x:d) = FA(d)

8 (d

8x:A(x)

r)

A(r)

FA(dr) = FA(d)

9 9

+

[r; d

A(r)

]

9x:A(x)

FA(9

+

[r; d]) = FA(d)

10 9

�

[d

9x:A(x)

; y;u

A(y)

; e

B

]

B

; FA(9

�

[d; y;u; e]) = FA(d) [(FA(e) n fug)

provided (2)

The provisos are:

1. x =2 FV(B) for any u

B

2 FA(d).

2. y =2 FV(B) and y =2 FV(C) for any v

C

2 FA(e) n fug.

Using the �rst clause, assumption variables can be introduced. Clause (2), (4), (7)

and (9) are called introduction principles, because they introduce a connective. The

remaining rules, (3), (5), (6), (8) and (10) are the elimination principles. The last

construction, 9

�

[d

9x:A(x)

; y;u

A(y)

; e

B

]

B

can be depicted more traditionally as follows:

�

�

�

�

(d)

9x:A(x)

[u : A(y)]

�

�

�

�

(e)

B

[u]

B

In �u:d, the free occurrences of assumption u of d are bound. The same happens

with the free assumption u of e in the derivation 9

�

[d; y;u; e]; note that in the latter

derivation, the occurrences of u in d remain free. (This corresponds with the fact that

in the picture above the assumption A(y) is only discarded in the second subtree).

Also object variables can be bound. This happens in �x:d (which binds the free x's

of d) and in 9

�

[d; y;u; e] (which binds the free y's of e). This gives rise to the notion

FV(d), the free object variables in d, which can be de�ned inductively.

The following conversion rules are taken from [Pra71]. The �rst �ve are the proper

reductions, the last �ve are called permutative conversions. These are necessary to

88 CHAPTER 5. TERMINATION OF HRSs

obtain normal forms with a nice structure (i.e. with the subformula property).

(�u:d)e 7! d[u := e]

�

0

hd; ei 7! d

�

1

hd; ei 7! e

(�x:d)r 7! d[x := r]

9

�

[9

+

[r; d];x;u; e] 7! e[x; u := r; d]

(9

�

[d;x;u; e])f 7! 9

�

[d;x;u; (ef)]

�

0

(9

�

[d;x;u; e]) 7! 9

�

[d;x;u;�

0

(e)]

�

1

(9

�

[d;x;u; e]) 7! 9

�

[d;x;u;�

1

(e)]

(9

�

[d;x;u; e])r 7! 9

�

[d;x;u; (er)]

9

�

[9

�

[d;x;u; e]; y; v; f] 7! 9

�

[d;x;u; 9

�

[e; y; v; f]]

(renaming of bound variables may be needed to avoid unintended name conicts.)

The proper reductions remove direct detours in a proof. The permutative conver-

sions are needed, because also indirect detours exist. Such a hidden detour is made

direct by a number of permutative conversions, and then eliminated by a proper re-

duction. There is a permutative conversion for every elimination principle. As an

example, consider the following two-step reduction, which uses the �rst permutative

conversion followed by the �rst proper reduction.

(9

�

[d; y;u;�v:e])f ! 9

�

[d; y;u; (�v:e)f] ! 9

�

[d; y;u; e[v := f]] :

The �rst rewrite step is depicted below in the traditional notation. Note that the

resulting proof contains an ordinary detour, which was hidden before applying the

permutative conversion and could therefore not be eliminated immediately.

�

�

�

�

(d)

9x:A(x)

[u : A(y)] [v : B]

�

�

�

�

(e)

C

[v]

B ! C

[u]

B ! C

�

�

�

�

(f)

B

C

!

�

�

�

�

(d)

9x:A(x)

[u : A(y)] [v : B]

�

�

�

�

(e)

C

[v]

B ! C

�

�

�

�

(f)

B

C

[u]

C

5.5.2 Encoding Natural Deduction into an HRS

In this section we will encode natural deduction, with proper and permutative con-

versions, into the HRS H

9

. The translation proceeds as follows: �rst the formulae

are mapped onto types. Then derivation terms are translated into terms of a certain

signature. Finally, the reduction rules are translated into HRS rules.

5.5. EXAMPLE: PERMUTATIVE CONVERSIONS 89

Transforming the formulae to types is done by the well known technique of remov-

ing the dependencies on object terms, also called collapsing. The collapse of A will

be denoted by A

�

. In the following de�nition, P is an n-ary predicate symbol.

P (r

1

; : : : ; r

n

)

�

= o

(A! B)

�

= A

�

! B

�

(A ^B)

�

= A

�

�B

�

(9x:A)

�

= o�A

�

(8x:A)

�

= o! A

�

Clearly, for any formula A we have that A

�

2 T

�

(fog). The distinction between

implication and universal quanti�cation disappears. Existential quanti�ers and con-

junctions are translated into product types. The distinction between individuals and

atomic formulae could still be made, but is not needed. Both kinds of entities are

represented by one base type o.

The derivation terms are translated too. To this end we introduce a series of

constant symbols for the derivation tree forming constructions. The signature of H

9

contains for any �; � 2 T

�

(fog) the following constants. Most notable is the type of

9

�

.

app

�;�

: (� ! �)! � ! �

abs

�;�

: (� ! �)! � ! �

�

�;�

: � ! � ! � � �

�

0

�;�

: � � � ! �

�

1

�;�

: � � � ! �

9

+

�

: o! � ! o� �

9

�

�;�

: o� � ! (o! � ! �)! �

We deliberately excluded constants for 8-introduction and -elimination, because

universal quanti�cation becomes the same as implication after collapsing the types.

Every derivation tree d can be translated as a �-normal form d

�

in this signature in

the following inductive way (let � := A

�

and � := B

�

):

(u

A

)

�

= u

�

(�u

A

:d

B

)

�

= (abs

�;�

�u

�

:d

�

)

(d

A!B

e)

�

= (app

�;�

d

�

e

�

)

hd

A

; e

B

i

�

= (�

�;�

d

�

e

�

i)

�

0

(d

A^B

)

�

= (�

0

�;�

d

�

)

�

1

(d

A^B

)

�

= (�

1

�;�

d

�

)

(�x:d

A

)

�

= (abs

o;�

�x

o

:d

�

)

(d

8x:A

r)

�

= (app

o;�

d

�

r)

9

+

[r; d

A

]

�

= (9

+

�

rd

�

)

9

�

[d;x;u

A

; e

B

]

�

= (9

�

�;�

d

�

(�x

o

:�u

�

:e

�

))

90 CHAPTER 5. TERMINATION OF HRSs

The rules of the HRSH

9

consist of the following schemas, where �; �; � 2 T

�

(fog):

app

�;�

(abs

�;�

F)X 7! (FX)

�

0

�;�

(�

�;�

XY) 7! X

�

1

�;�

(�

�;�

XY) 7! Y

9

�

�;�

(9

+

�

(X;Y); F) 7! (FXY)

app

�;�

(9

�

�;�!�

XF)Y 7! (9

�

�;�

X �x

o

u

�

:(app

�;�

(Fxu)Y))

�

0

�;�

(9

�

�;���

XF) 7! (9

�

�;�

X �x

o

u

�

:(�

0

�;�

(Fxu)))

�

1

�;�

(9

�

�;���

XF) 7! (9

�

�;�

X �x

o

u

�

:(�

1

�;�

(Fxu)))

(9

�

�;�

(9

�

�;o��

XF)G) 7! (9

�

�;�

X �x

o

u

�

:(9

�

�;�

(Fxu)G))

Note that in the permutative conversions, Y and G come within the scope of the

binders �xu. This leads to an implicit renaming, when x or u occur in Y or G.

It is not di�cult to check that if d ! e for derivation terms d and e, then also

d

�

!

H

9

e

�

. The �rst rule deals with proper reductions for ! and 8; the second and

third with the proper ^-reductions and the fourth takes care of the proper 9-reduction.

The last four rules deal with the permutative conversions. Hence termination of H

9

implies termination of ! on derivation trees.

As an illustration, consider the proper!-reduction step (�u:d)e! d[u := e]. The

�rst derivation term translates to (app(abs�u:d

�

)e

�

). Now the �rst rule is applicable.

Literal replacement yields (�u:d

�

)e

�

, which has to be rewritten to �-normal form,

due to the de�nition of a rewrite step. This normal form is d

�

[u := e

�

], which is

�-normal because d

�

and e

�

are, and e

�

does not start with a �. It is easy to prove

that d

�

[u := e

�

] equals (d[u := e])

�

.

5.5.3 Termination of H

9

We apply Theorem 5.1.4 to prove termination ofH

9

. We have to provide a termination

model, i.e. an ordered domain with strict interpretations for the constants, such that

the rules are decreasing. As ordered domain we choose (N; >; 0;+). The interpretation

of abstraction, application, pair building and projections is chosen in the more or less

standard way:

J(abs

�;�

)(f)(x) = f(x)�

�

S

(�!�)!�!�

0

(f; x)

J(app

�;�

)(f)(x) = f(x)�

�

S

(�!�)!�!�

0

(f; x)� 1

�

J(�

�;�

)(x)(y) = (x; y)�

���

S

�!�!���

0

(x)(y)

J(�

0

�;�

)(x; y) = x�

�

S

���!�

0

(x; y)� 1

�

J(�

1

�;�

)(x; y) = y �

�

S

���!�

0

(x; y)� 1

�

These interpretations are built as \weakly monotonic" plus \strict", so they are

strict by Lemma 4.3.7. The elimination constants have an additional �1 to make

the �rst three proper reduction rules decreasing. This is not proved here in detail,

because it is completely analogous to the situation in Section 5.2.2 and 5.4.

5.5. EXAMPLE: PERMUTATIVE CONVERSIONS 91

The same trick for J(9

+

) and J(9

�

) will not work, due to the presence of the

permutative conversions. We put

J(9

+

�

)(x)(y) = (x; y)�

o��

S

o!�!o��

0

(x)(y) :

This is indeed strict, and J(9

+

)(x)(y)

wm

� (x; y). For J(9

�

) we have to �nd something

more complex.

An interpretation for 9

�

. To see how to de�ne J(9

�

), let us �rst concentrate on

the permutative conversions for eliminating implication (and universal quanti�cation)

and conjunction. Note that in these cases, the complexity of the type of the 9

�

-symbol

strictly decreases. This can be used as follows. We let 9

�

�;�!�

\pay the price" of the

9

�

�;�

that pops up on the right hand side of the corresponding permutative conversion

rule. Similarly, the interpretation of 9

�

�;���

has to take into account both 9

�

�;�

and

9

�

�;�

. Because the types decrease, we can capture this idea in an inductive de�nition.

We now de�ne A

�

: T

�

)T

�

, which calculates the \price" as indicated above.

A

o

(n) := n+ 1;

A

�!�

(f)(x) := A

�

(J(app)(f)(x))

A

���

(x) := (A

�

(J(�

0

)(x));A

�

(J(�

1

)(x)))

We need the following properties of A:

1. For all � 2 T

�

, A

�

is strict.

2. For all � 2 T

�

and x 2 WM

�

, A

�

(x)

wm

> x

Both can be proved straightforwardly by induction on �. The �rst statement uses

that J(app), J(�

0

) and J(�

1

) are strict. The second statement holds mainly because

we added +1 in the clause de�ning A

o

.

We will write A

n

�

(x) for the n-fold application of A

�

to x. We are now able to

de�ne the interpretation of 9

�

.

J(9

�

�;�

)(d)(e) = A

2

M(d)

�

(e(�

0

d)(S

�

0

� �

1

d)):

Let us �rst explain the intuition behind this interpretation. Due to the proper

reduction rule for 9

�

, we need at least e(�

0

d)(�

1

d). The S

0

�-part is added to achieve

strictness in e.

In the permutative conversions, the second argument of the 9

�

-symbols grows.

This has to be compensated somehow. As mentioned before, in the �rst three permu-

tative conversions the type of 9

�

goes down, which is used in the inductive de�nition

of A. Here the growing second argument is compensated by the decreasing types.

The most problematic rule is the permutative conversion for 9

�

. Here the type

doesn't go down. The only thing which goes down is the �rst argument of the 9

�

-

symbols involved. So the value of 9

�

has to weigh its �rst argument rather high,

to compensate for the increasing second argument. This explains the 2

M(d)

in the

92 CHAPTER 5. TERMINATION OF HRSs

previous de�nition. The exact reason for the power of 2 will become clear in the

proof that the last rule is decreasing.

We will now verify that the provided de�nition works, i.e. that (N; >; 0;+; J) is

indeed a termination model. To this end we still have to prove that J(9

�

) is strict

and that the rules containing 9

�

are decreasing.

Strictness of J(9

�

). We now show that for any �; � 2 T

�

, J(9

�

�;�

) is strict. Weak

monotonicity of 9

�

immediately follows from weak monotonicity of A. Next strictness

is proved. Let e; f; x; y be weakly monotonic, with e; f : (o ! � ! �) ! � and

x; y : o� �. We will prove strictness in the �rst, the second, and the next arguments,

respectively.

� If x

st

> y, then x

wm

� y and by monotonicity of e, e(�

0

x)(S

0

� �

1

x)

wm

�

e(�

0

(y)(S

0

� �

1

y)). Furthermore, 2

M(x)

> 2

M(y)

. Because for all weakly mono-

tonic z, A(z)

wm

> z, it follows that J(9

�

)(x)(e)

wm

> J(9

�

)(y)(e). This proves

strictness in the �rst argument.

� Next, assume that e

st

> f . Note that both �

0

x and S��

1

x are strict (the �rst is

of base type, the second is strict by Lemma 4.3.7). Hence e(�

0

x)(S

0

� �

1

x)

st

>

f(�

0

x)(S

0

��

1

x). Now J(9

�

)(x)(e)

wm

> J(9

�

)(x)(f) follows from the strictness

of A. This proves strictness in the second argument.

� Strictness in the next arguments directly follows from strictness of A.

Thus J(9

�

) is strict in all its arguments. �

Decreasingness of the rules. At this point, it remains to show that the last

proper reduction rule and the permutative conversion rules are decreasing. We start

with the proper one.

Let � be a weakly monotonic valuation. We write [[M]] for [[M]]

�

. Note that for

all weakly monotonic y and z, we have A(z)

wm

> z, S�z

wm

� z and J(9

+

)(y)(z)

wm

�

(y; z). Hence we have:

[[9

�

(9

+

XY)F]] = A

2

M([[9

+

XY]])

([[F]](�

0

[[9

+

XY]])(S

0

� �

1

[[9

+

XY]]))

wm

> [[F]](�

0

[[9

+

XY]])(S

0

� �

1

[[9

+

XY]])

wm

� [[F]](�

0

([[X]]; [[Y]]))(�

1

([[X]]; [[Y]]))

= [[FXY]] :

We proceed with the �rst permutative conversion. Let � again be an arbitrary

monotonic valuation, and [[M]] the value of M under �. We �rst introduce as abbre-

viations P := [[9

�

XF]] and Q := [[F]](�

0

[[X]])(S

0

� �

1

[[X]]). Then we compute the

left- and the right hand side of the rule:

[[app(9

�

�;�!�

XF)Y]] = P ([[Y]])� S

0

(P)([[Y]])� 1

wm

> P ([[Y]])

= A

2

M([[X]])

�!�

(Q)([[Y]])

5.5. EXAMPLE: PERMUTATIVE CONVERSIONS 93

[[9

�

�;�

X �xu:app(Fxu)Y]] = A

2

M([[X]])

�

([[app]](Q)([[Y]]))

Hence it su�ces to show that for any n, A

n+1

�!�

(Q)([[Y]])

wm

� A

n+1

�

([[app]](Q)([[Y]])).

This is proved by induction on n. If n = 0, then both sides are equal, by de�nition of

A

�!�

. In the successor step, we use that app(x)

wm

> x for weakly monotonic x, so

we have

A

n+2

�!�

(Q)[[Y]] = A

�!�

(A

n+1

�!�

(Q))[[Y]]

= A

�

([[app]](A

n+1

�!�

(Q))[[Y]]) by de�nition of A

�!�

wm

> A

�

(A

n+1

�!�

(Q)[[Y]])

wm

� A

�

(A

n+1

�

([[app]](Q)[[Y]])) by induction hypothesis

= A

n+2

�

([[app]](Q)[[Y]]):

Hence the �rst permutative conversion is decreasing. The proof that the second and

third permutative conversion rules are decreasing is very similar; again the de�nition

of A carries the burden of the proof. We omit the details.

We �nally show that also the last permutative conversion is decreasing. Again,

let � be a weakly monotonic valuation. [[M]] denotes the meaning of M under �. We

put as abbreviations P := [[9

�

�;o��

XF]] and Q := [[F]](�

0

[[X]])(S

0

� �

1

[[X]]). Before

doing the main computation, we need some little facts:

1. M(P) > M(Q).

2. M(P) > M([[X]]) + 1.

Ad 1. This follows from P = A

2

M([[X]])

(Q)

wm

� A(Q)

wm

> Q.

Ad 2. Note that for weakly monotonic x, A(x)

wm

> x and J(�

0

)(x)

wm

> �

0

(x).

Hence we have

M(P) = M

o

(�

0

P) +M(�

1

P)

� �

0

P

= �

0

(A

2

M([[X]])

o��

(Q))

� A

2

M([[X]])

o

(J(�

0

)(Q))

> A

2

M([[X]])

o

(�

0

(Q))

� 2

M([[X]])

� M([[X]]) + 1

From the two inequalities above, we obtain 2

M(P)

> 2

M(Q)

+2

M([[X]])

. At this point

we really need the powers of 2.

Now we compute for the last rule:

[[9

�

�;�

(9

�

�;o��

XF)G)]] = [[9

�

]](P)(G)

= A

2

M(P)

(G(�

0

P)(S

0

� �

1

P))

wm

> A

2

M([[X]])

(A

2

M(Q)

(G(�

0

P)(S

0

� �

1

P)))

wm

� A

2

M([[X]])

(A

2

M(Q)

(G(�

0

Q)(S

0

� �

1

Q)))

= A

2

M([[X]])

([[9

�

]](Q)(G))

= A

2

M([[X]])

([[9

�

]]([[F]](�

0

[[X]])(S

0

� �

1

[[X]]))(G))

= [[9

�

�;�

X �x

o

u

�

:(9

�

�;�

(Fxu)G)]]

94 CHAPTER 5. TERMINATION OF HRSs

We conclude that all rules are decreasing, so we have found a termination model. By

Theorem 5.1.4, H

9

is terminating.

5.6 Incompleteness and Possible Extensions

Contrary to Theorem 3.1.3, we have Theorem 5.1.4 only in one direction. The other

direction really fails, as illustrated by the following example, which is a simpli�cation

of the one occurring in [Kah96]. Hence our proof method is not complete.

Example. Consider the HRSH that has one base type, o, and one function symbol,

c : o! o and the following rule only, where F and X are variables:

c(F (FX)) 7! (FX)

This system terminates, because with any rewrite step the number of c-symbols de-

creases. This can be seen by considering an arbitrary �-instance of the rule. Assume

w.l.o.g. that F

�

= �x:s and X

�

= t with s and t in ��-normal form. Let j be the

number of occurrences of x in s (possibly 0), k the number of occurrences of c in

s and let ` be the number of occurrences of c in t. Then c(F (FX))

�

#

��

contains

1 + k + j � (k + j � `) occurrences of c, and (FX)

�

#

��

only k + j � `.

Assume, towards a contradiction, that (A;>; 0;+; C) is a termination model for

H. Note that by assigning ��y 2A:y to F and 0 to X (both weakly monotonic), we

get by decreasingness of the rewrite rule, C(0) > 0. Applying strictness of C we get

C(C(0)) > C(0). Now we de�ne a weakly monotonic function G by putting

G := ��x2A:if x < C(C(0)) then 0 else C(0) �

G is weakly monotonic (use that 0 < C(0) < C(C(0)) holds). G is chosen in such a

way that G(C(C(0))) = C(0) and G(C(0)) = 0. Now de�ne the weakly monotonic

valuation � such that �(F) := G and �(X) := C(C(0). By decreasingness we get:

C(0) = C(G(G(C(C(0))))) = [[c(F (F (X)))]]

�

> [[FX]]

�

= G(C(C(0))) = C(0);

which is impossible by irreexivity of >. Hence a termination model doesn't exist.�

Discussion. The reason that the previous example could not be handled by Theo-

rem 5.1.4 is that there exist too many weakly monotonic functionals, like G. Hence

we have to verify decreasingness for valuations involving G, although G cannot be

built from lambda terms. It seems that we can change our setup quite easily, by

restricting the class of weakly monotonic functions as follows: A function is modi�ed

weakly monotonic if in any argument, it either completely discards that argument, or

it strictly preserves the order in that argument. On number theoretic functions, f is

weakly monotonic if it is non-decreasing, while f is only modi�ed weakly monotonic

if f is either constant, or increasing.

It is possible to prove that any lambda term denotes a modi�ed weakly mono-

tonic functional. Moreover the whole theory of Chapter 4 seems to remain valid if

5.6. INCOMPLETENESS AND POSSIBLE EXTENSIONS 95

we replace \weakly monotonic" by \modi�ed weakly monotonic" everywhere. The

only di�erence is that the function Pred

�

is not modi�ed weakly monotonic, contra-

dicting the modi�ed version of Lemma 4.4.3.(3). This lemma is used in the proof of

Proposition 4.4.4. But this proposition is not used in the correctness proof of the

method.

Regarding the example above, we now have a modi�ed termination model (N; >

; 0;+;Succ). For any modi�ed weakly monotonic f 2 N)N , we have f(f(x)) � f(x),

so we get Succ(f(f(x)) > f(f(x) � f(x), so the rewrite rule is indeed decreasing in

this model.

Note that we do not have f(x) � x for modi�ed weakly monotonic f . This is

fortunate, in view of the non-terminating rewrite system c(FX) 7! X . Choosing �x:0

for F and c(0) for X yields the rewrite step c(0) 7! c(0).

It is not clear whether the modi�ed termination method is stronger than the

method we presented. We only have that it is not weaker. Moreover, it is not clear

at all that the modi�ed version is a complete termination method. Therefore we do

not systematically change to the modi�ed version.

Extensions of the method. The method for proving termination can be extended

in various directions. First, the underlying theory can be extended to other type

disciplines. Secondly, we can try more complex examples.

We already noted that coproduct types can be treated. In [Gan80, Kah95] this is

worked out in the setting of the hereditarily monotonic functionals. We don't see a

problem in adapting that work to the setting of our strict functionals, so this should

be a routine extension. We note that Loader uses an adaptation of the semantical

proof method in order to prove strong normalization of System F [Loa95]. We have

not investigated whether this approach can be generalized to arbitrary higher-order

rewrite systems with polymorphic types. (Nor is it clear whether such systems would

be useful).

As to other examples, it seems possible to treat the extension of G�odel's T to

countably branching trees (known as Kleene's O or as Zucker's T

1

trees). These trees

have constants 0

T

, Succ

T!T

and Lim

(o!T)!T

(the limit tree). Recursion over these

trees is expressed in three recursion rules,

RFGH0 7! F

RFGH(SuccX) 7! G(RFGHX)

RFGH(LimX) 7! H(�z

o

:(RFGH(Xz)))

We have not worked out the details for this system. Another challenge would be to

give a semantical termination proof for the system of Bar Recursion (see [Bez86] for

a termination proof using compact sets of terms).

96 CHAPTER 5. TERMINATION OF HRSs

Chapter 6

Computability versus

Functionals of Finite Type

In this chapter, we compare the semantic termination proofs, with the traditional

strong-normalization proofs, that use strong computability predicates. This chapter

is a full version of the paper that appeared as [Pol96].

The computability method is often attributed to Tait [Tai67], who used convert-

ibility predicates to prove a normal form theorem for various systems. Troelstra

[Tro73] uses similar predicates (now called strong computability) in strong normal-

ization proofs. Prawitz [Pra71] used a variant, to deal with permutative conversions,

arising from natural deduction for �rst order predicate logic (see the Appendix). Gi-

rard [Gir72] introduced a stronger variant, to deal with the impredicative system F.

For the moment we are interested in simply-typed lambda calculus and G�odel's T,

a system with higher-order primitive recursion; therefore we can stick to Troelstra's

variation on Tait's predicates.

We will compare this with the method to prove strong normalization by using

functionals of �nite type, invented by Gandy [Gan80] and discussed in Section 3.3.

In this method, to each typed term a functional of the same type is associated. This

functional is measured by a natural number. In order to achieve that a rewrite step

gives rise to a decrease of the associated number, the notion hereditarily monotonic

functional was developed. The number is an upper bound for the length of reduction

sequences starting from a certain term. De Vrijer [Vrij87] used a variant to compute

the exact length of the longest reduction sequence.

Gandy deals with simply-typed lambda calculus, G�odel's T and with �-reductions

in proof theory including disjunction and existential quanti�cation. However, the

permutative conversions for these connectives could not be dealt with. In Chapter 5 of

this thesis we showed how to generalize the semantical method to higher-order rewrite

systems [Pol94] and in Section 5.5, how to prove termination of the permutative

conversions with the extended theory [PS95].

In the literature, these two methods are often put in contrast (e.g. [Gan80, x 6.3]

97

98 CHAPTER 6. COMPUTABILITY VERSUS FUNCTIONALS

and [GLT89, x 4.4]). Using functionals seems to be more transparent and economizes

on proof theoretical complexity; strong computability should generalize to more com-

plex systems. On the other hand, seeing the two proofs one gets the feeling that

\somehow, the same thing is going on". Indeed De Vrijer [Vrij87, x 0.1] remarks that

a proof using strong computability can be seen as abstracting from concrete informa-

tion in the functionals that is not strictly needed in a termination proof, but which

provides for an estimate of reduction lengths.

In this chapter we will substantiate this feeling. First, the proof �a la Tait will

be decorated with concrete numbers. This is done by introducing binary predicates

SN(M;k), which mean that the term M may perform at most k reduction steps.

A formal, constructive proof of 9k:SN(M;k) is given for any M . From this proof,

we extract a program, via the modi�ed realizability interpretation. Remarkably, this

program equals (more or less) the functional [[LM

�

]]

�

L

, assigned to M in the proof �a

la Gandy.

The idea of using a realizability interpretation to extract functionals from Tait's

SN-proof already occurs in [Ber93]. In that paper, a program to compute the normal

form of a term is extracted. Our contribution is, that by extracting numerical upper

bounds for the length of reduction sequences, a comparison with Gandy's proof can

be made. Furthermore, we also deal with G�odel's T, which yields a sharper upper

bound than provided by Gandy's proof.

The chapter is organized as follows. In Section 6.1, we decorate Tait's SN-proof

for simply-typed lambda calculus. Modi�ed realizability is introduced in Section 6.2.

In Section 6.3 the proofs of Section 6.1 are formalized; also the program extraction is

carried out there. In Section 6.3.3, the extracted functionals are compared with those

used by Gandy. The same project is carried out for G�odel's T in Section 6.4. Other

possible extensions are considered in Section 6.5.

Notation. The notation is as in Section 2.4. Recall that ~� ! � means �

1

!

(�

2

! � � � ! (�

n

! �)) and M

~

N means (((MN

1

)N

2

) � � �N

n

) and �~x:N means

(�x

1

:(�x

2

: � � � (�x

n

:N))). We also use the following (less standard) notation for se-

quences of variables, terms and types:

� ~x

~�

:= x

�

1

1

; : : : ; x

�

n

n

� ~� ! ~� := ~� ! �

1

; : : : ; ~� ! �

n

�

~

M

~

N :=M

1

~

N; : : : ;M

n

~

N

� �~x:

~

M := �~x:M

1

; : : : ; �~x:M

n

Note that by this convention ~� ! � = �, the empty sequence and � ! � = �. In

particular, �! � = �.

6.1. STRONG COMPUTABILITY FOR TERMINATION OF �

!

�

99

6.1 Strong Computability for Termination of �

!

�

In this section, we present a well known proof that every reduction sequence of �-steps

is �nite. In fact we prove something more, because we prove that for any term M ,

there is an upper bound k such that SN(M;k) holds.

Tait's method to prove strong normalization starts with de�ning a \strong com-

putability" predicate which is stronger than \strong normalizability". The proof

consists of two parts: One part stating that strongly computable terms are strongly

normalizing, and one part stating that any term is strongly computable. The �rst

is proved with induction on the types (simultaneously with the statement that every

variable is strongly computable). The second part is proved with induction on the

term structure (in fact a slightly stronger statement is proved). We will present a

version of this proof that contains information about reduction lengths.

De�nition 6.1.1 The set of strongly computable terms is de�ned inductively as fol-

lows:

� SC

�

(M) i� there exists a k such that SN(M;k).

� SC

�!�

(M) i� for all N with SC

�

(N), we have SC

�

(MN).

Lemma 6.1.2 (SC Lemma)

(a) For all terms M , if SC(M) then there exists a k with SN(M;k).

(b) For all termsM of the form x

~

M , if there exists a k with SN(M;k), then SC(M).

In (b),

~

M may be the empty sequence.

Proof: (Simultaneous induction on the type of M)

(a) Assume SC(M).

IfM is of base type, then SC(M) just means that there exists a k with SN(M;k).

If M is of type � ! � , we take a variable x

�

, which is of the form x

~

M . Note

that x is in normal form, hence SN(x; 0) holds. By IH(b), SC(x); and by the

de�nition of SC(M), we obtain SC(Mx). By IH(a) we have that there exists a

k such that SN(Mx; k). We can take the same k as a bound for M , because

any reduction sequence from M gives rise to a sequence from Mx of the same

length. Hence SN(M;k) holds.

(b) Assume that M � x

~

M and SN(M;k) for some k.

If M is of base type, then the previous assumption forms exactly the de�nition

of SC(M).

If M has type � ! � , assume SC(N) for arbitrary N

�

. By IH(a), SN(N; `) for

some `. Because reductions in x

~

MN can only take place inside

~

M or N , we

have SN(x

~

MN; k + `). IH(b) yields that SC(x

~

MN). This proves SC(M).

100 CHAPTER 6. COMPUTABILITY VERSUS FUNCTIONALS

�

Lemma 6.1.3 (Abstraction Lemma) For all terms M;N and

~

P and variables x,

it holds that if SC(M [x := N]

~

P) and SC(N), then SC((�x:M)N

~

P).

Proof: (Induction on the type ofM

~

P .) LetM , x, N and

~

P be given, with SC(M [x :=

N]

~

P) and SC(N). Let � be the type of M

~

P .

If � = �, then by de�nition of SC, we have an ` such that SN(M [x := N]

~

P ; `). By

Lemma 6.1.2(a) we obtain the existence of k, such that SN(N; k). We have to show,

that there exists a p with SN((�x:M)N

~

P ; p). We show that we can put p := k+`+1.

Consider an arbitrary reduction sequence of (�x:M)N

~

P . Without loss of gener-

ality, we assume that it consists of �rst a steps in M (yielding M

0

), b steps in

~

P

(yielding

~

P

0

) and c steps in N (yielding N

0

). After this the outermost redex is con-

tracted, yielding M

0

[x := N

0

]

~

P

0

, and �nally d steps occur. Clearly, c � k. Notice

that we also have a reduction sequence M [x := N]

~

P �

�

M

0

[x := N

0

]

~

P

0

of at least

a + b steps (we cannot count reductions in N , because we do not know whether x

occurs free in M). So surely, a + b + d � `. Summing this up, we have that any

reduction sequence from (�x:M)N

~

P has length at most k + `+ 1.

Let � = �! � . Assume SC(P), for arbitrary P

�

. Then by de�nition of SC(M [x :=

N]

~

P), we have SC

�

(M [x := N]

~

PP), and by IH SC((�x:M)N

~

PP). This proves

SC((�x:M)N

~

P). �

Lemma 6.1.4 (Main Lemma) For all terms M and substitutions �, if SC(x

�

) for

all free variables x of M , then SC(M

�

).

Proof: (Induction on the structure of M .) Let M and � be given, such that SC(x

�

)

for all x 2 FV(M).

If M � x, then the last assumption yields SC(M

�

).

If M � NP , we have SC(N

�

) and SC(P

�

) by IH for N and P . Then by de�nition

of SC(N

�

), we have SC(N

�

P

�

), hence by equality of N

�

P

�

and (NP)

�

, SC(M

�

)

follows.

IfM � �x:N , assume that SC(P) for an arbitrary P . By IH for N , applied on the

substitution �[x := P], we see that SC(N

�[x:=P]

), hence by equality SC((N

�

)[x := P]).

Now we can apply Lemma 6.1.3, which yields that SC((�x:N

�

)P). Again by using

equality, we see that SC((�x:N)

�

P) holds. This proves SC(M

�

). (Note that implicitly

renaming of bound variables is required.) �

Theorem 6.1.5 For any term M there exists a k, such that SN(M;k).

Proof: Let � be the identity substitution, with as domain the free variables of M .

By Lemma 6.1.2(b), SC(x) is guaranteed. Now we can apply Lemma 6.1.4, yielding

SC(M

�

). Because M

�

�M , we obtain SC(M). Lemma 6.1.2(a) yields the existence

of a k with SN(M;k). �

6.2. A REFINEMENT OF REALIZABILITY 101

6.2 A Re�nement of Realizability

As mentioned before, we want to extract the computational content from the SN-proof

of Section 6.1. To this end we use modi�ed realizability, introduced by Kreisel [Kre59].

In [Tro73, x 3.4] modi�ed realizability is presented as a translation of HA

!

into it-

self. This interpretation eliminates existential quanti�ers, at the cost of introducing

functions of �nite type (functionals), represented by �-terms.

Following Berger [Ber93], we present modi�ed realizability as an interpretation of

a �rst order fragment (MF) into a higher-order, negative (i.e. 9-free) fragment (NH).

We will also take over a re�nement by Berger, which treats speci�c parts of a proof

as computationally irrelevant.

6.2.1 The Modi�ed Realizability Interpretation

A formula can be seen as the speci�cation of a program. E.g. 8x:9y:P (x; y) speci�es

a program f of type o!o, such that 8x:P (x; f(x)) holds. In general a sequence of

programs is speci�ed.

A re�nement by Berger enables to express that existentially quanti�ed variables

are independent of certain universal variables, by underlining the universal ones. In

8x:9y:P (x; y) the underlining means that y is not allowed to depend on x. So a

number m is speci�ed, with 8x:P (x;m). This could of course also be speci�ed by

the formula 9y:8x:P (x; y), but in speci�cations of the form 8x:P (x) ! 9y:Q(x; y)

the underlining cannot be eliminated that easily. This formula speci�es a number m,

such that 8x:P (x) ! Q(x;m) holds. The 8x cannot be pushed to the right, nor can

the 9y be pulled to the left, without changing the intuitionistic meaning.

Speci�cations are expressed in minimal many-sorted �rst-order logic (MF). This

logic is based upon a many-sorted �rst-order signature. Terms over such a signature

are de�ned as usual (r; s; t; : : : denote arbitrary terms). The formulae of MF are either

atomic (P

~

t), or of the form ' ! , 8x

�

:', 8x

�

:' or 9x

�

:'. Here '; ; : : : denote

arbitrary MF formulae. This logic is Minimal, because negation is not included, and

it quanti�es over First-order objects only.

As programming language, we use the simply-typed lambda calculus. Because

programs are higher-order objects, MF cannot talk about them. To express correct-

ness of programs, we introduce Negative Higher-order logic (NH). The terms of NH

are simply typed �-terms considered modulo ��, with the MF sorts as base types, MF

function symbols as constants and with the MF predicate symbols. We let r; s; t; : : :

range over equivalence classes of ��-equal terms. The formulae are atomic (P~s),

or composed from ' ! or 8x

�

:'. Here '; ; : : : denote arbitrary NH formulae.

Negative means that there are no existential quanti�ers, and Higher-order refers to

the objects.

Below we de�ne �('), the sequence of types of the programs speci�ed by the

MF formula '. This operation is known as \forgetting dependencies" (of types on

terms). Furthermore, if ~s is a sequence of programs of type �('), we de�ne an NH

formula ~smr ' (modi�ed realizes). This NH formula expresses correctness of ~s with

102 CHAPTER 6. COMPUTABILITY VERSUS FUNCTIONALS

respect to the speci�cation '. Both notions are de�ned with recursion on the logical

complexity of the formula '.

De�nition 6.2.1 (modi�ed realizability interpretation)

�(P

~

t) := �

�('!) := �(') ! �()

�(8x

�

:') := �! �(')

�(8x

�

:') := �(')

�(9x

�

:') := �; �(')

�mr P

~

t := P

~

t

~smr '! := 8~x

�(')

:(~xmr ')! (~s~xmr)

~smr 8x

�

:' := 8x

�

:(~sxmr ')

~smr 8x

�

:' := 8x

�

:(~smr ')

r; ~smr 9x

�

:'(x) := ~smr '(r)

In the mr-clauses, x

�

should not occur in ~s and ~x should be fresh. Note that

only existential quanti�ers give rise to a longer sequence of types. In particular, if

' has no existential quanti�ers, then �(') = �. (We use that ~� ! � = �). Nested

implications give rise to arbitrarily high types. In 8x

�

', the program speci�ed by '

may not depend on x, so the \� !" is discarded in the � -clause. In the mr-clause,

the programs ~s do not get x as input, as intended. But to avoid that x becomes free

in ', we changed Berger's de�nition by adding 8x

�

.

By induction on the structure of the MF-formula ' one sees that if ~s is of type

�('), then ~smr ' is a correct formula of NH, so in particular, it will not contain 9-

and 8-quanti�ers (nor of course the symbol mr).

Strictly speaking, '(r) in the last clause is not an MF-formula, because r is not

a �rst-order term, but only a lambda term of base type. This can be repaired by

enlarging the domain of mr to such formulae. In any case, mr maps formulae of MF

to formulae of NH.

6.2.2 Derivations and Program Extraction

In the previous section we introduced the formulae of MF, the formulae of NH and a

translation of the former into the latter. In this section we will introduce proofs for

MF and for NH. The whole point will be, that from an MF proof of ' a program can

be extracted, together with an NH proof that this program meets its speci�cation '.

Proofs are formalized by derivation terms, a linear notation for natural deduc-

tion. Derivation terms are de�ned as the least set containing assumption variables

(u

'

; v

; : : :) and closed under certain syntactic operations. To express some side con-

ditions, the sets of free assumption variables (FA(d)) and of computational relevant

variables (CV(d)) are de�ned simultaneously. By convention, x and y range over

object variables. We let d, e range over derivations.

The di�erence with De�nition 5.5.1 is that we don't have conjunction, but we do

have the 8x quanti�er and we now have higher-order objects.

6.2. A REFINEMENT OF REALIZABILITY 103

The introduction rule for the 8-quanti�er has an extra proviso: we may only extend

a derivation d of ' to one of 8x:', if x is not computationally relevant in d. Roughly

speaking, all free object variables of d occurring as argument of a 8-elimination or as

witness in an 9-introduction are computationally relevant.

De�nition 6.2.2 (derivations, free assumptions, computational relevant variables)

assumptions : u

'

! -introduction : (�u

'

:d

)

'!

! -elimination : (d

'!

e

'

)

8-introduction : (�x

�

:d

'

)

8x

�

:'

provided (1)

8-elimination : (d

8x

�

:'(x)

t

�

)

'(t)

8-introduction : (�x

�

:d

'

)

8x

�

:'

provided (2)

8-elimination : (d

8x

�

:'(x)

t

�

)

'(t)

9-introduction : (9

+

[t

�

; d

'(t)

])

9x

�

:'(x)

9-elimination : (9

�

[d

9x

�

:'(x)

; y;u

'(y)

; e

])

provided (3)

FA(u) = fug CV(u) = ;

FA(�u:d) = FA(d) n fug CV(�u:d) = CV(d)

FA(de) = FA(d) [FA(e) CV(de) = CV(d) [CV(e)

FA(�x:d) = FA(d) CV(�x:d) = CV(d) n fxg

FA(dt) = FA(d) CV(dt) = CV(d) [FV(t)

FA(�x:d) = FA(d) CV(�x:d) = CV(d)

FA(dt) = FA(d) CV(dt) = CV(d)

FA(9

+

[t; d]) = FA(d) CV(9

+

[t; d]) = CV(d) [FV(t)

FA(9

�

[d; y;u; e]) CV(9

�

[d; y;u; e])

= FA(d) [(FA(e) n fug) = CV(d) [(CV(e) n fyg)

where the provisos are:

(1) x =2 FV() for any u

2 FA(d).

(2) x =2 FV() for any u

2 FA(d) and moreover, x =2 CV(d).

(3) y =2 FV() and y =2 FV(�) for all v

�

2 FA(e) n fug.

An MF-derivation is a derivation with all quanti�er rules restricted to base types.

An NH-derivation is a derivation without the 8x and the 9-rules. We will write

� `

MF

 if there exists a derivation d

, with all free assumptions among �. Likewise

for `

NH

.

From MF-derivations, we can read o� a program and a correctness proof for this

program. This is best illustrated by the 9

+

rule: If we use this rule to prove 9x:'(x),

then we immediately see the witness t and a proof d of '(t). In general, we can

de�ne ep(d), the sequence of extracted programs from a derivation d. To deal with

assumption variables in d, we �x for every assumption variable u

'

a sequence of object

variables ~x

�(')

u

. The extracted program is de�ned with respect to this choice.

104 CHAPTER 6. COMPUTABILITY VERSUS FUNCTIONALS

De�nition 6.2.3 (extracted program from MF-derivations)

ep(u

'

) := ~x

�(')

u

ep(�u

'

:d

) := �~x

�(')

u

:ep(d)

ep(d

'!

e

'

) := ep(d)ep(e)

ep(�x

�

:d

'

) := �x

�

:ep(d)

ep(d

8x

�

:'(x)

t

�

) := ep(d)t

ep(�x

�

:d

'

) := ep(d)

ep(d

8x

�

:'(x)

t

�

) := ep(d)

ep(9

+

[t

�

; d

'(t)

]) := t; ep(d)

ep(9

�

[d; y;u

'(y)

; e

]) := ep(e)[y := s][~x

u

:=

~

t];where s;

~

t = ep(d

9x

�

:'(x)

)

The whole enterprise is justi�ed by the following

Theorem 6.2.4 (Correctness [Ber93]) If d is an MF derivation of ', then there

exists an NH derivation �(d) of ep(d)mr '. Moreover, the only free assumptions in

�(d) are of the form ~x

u

mr , for some assumption u

occurring in d already.

Proof: First the following facts are veri�ed by induction on d:

1. FV(ep(d)) �

S

f~x

u

ju 2 FA(d)g [CV(d).

2. ep(d

'

) is a sequence of terms of type �(').

We now de�ne �(d) by induction on d.

�(u

'

) := u

~x

u

mr'

�(�u

'

:d

) := �~x

�(')

u

:�u

~x

u

mr'

:�(d)

�(de) := �(d)ep(d)�(e)

�(�x

�

:d) := �x

�

:�(d)

�(dt) := �(d)t

�(�x

�

:d) := �x

�

:(�(d))

�(dt) := �(d)t

�(9

+

[t; d

'(t)

]) := �(d)

�(9

�

[d

9x:'(x)

; y;u

'(y)

; e

]) := �(e)[y := s][~x

u

:=

~

t][u := �(d)];

where s;

~

t = ep(d)

By induction on d one veri�es that �(d) is a valid proof of the correctness formula,

and that its free assumption variables are of the form u

~x

u

mr'

for u

'

2 FA(d). We

only deal with three cases, see e.g. [Ber93] for the other cases:

!

+

: By the induction hypothesis, �(d) : ep(d)mr . Then �(�u:d) proves

8~x

u

:(~x

u

mr '! ep(d)mr)

� 8~x

u

:(~x

u

mr '! (�~x

u

:ep(d))~x

u

mr) (identify �-equal terms)

� 8~x

u

:(~x

u

mr '! (ep(�u:d))~x

u

mr) (de�nition ep)

� ep(�u:d)mr ('!) (de�nition mr).

8

+

: By induction hypothesis, we have �(d) proves ep(d)mr '. By the proviso of 8

+

,

x =2 CV(d), hence (by the �rst fact about ep(d)) x =2 FV(ep(d)). Furthermore,

x doesn't occur in free assumptions of d, hence not in assumptions of �(d), so

�x:�(d) is a correct derivation of 8x:(ep(d)mr '), which is equivalent (because

x =2 FV(ep(d))) to ep(�x:d)mr 8x:'.

6.2. A REFINEMENT OF REALIZABILITY 105

9

�

: Let s;

~

t := ep(d). By induction hypothesis we have proofs �(d) of ep(d) mr

9x:'(x) �

~

t mr '(s) and �(e) of ep(e) mr , possibly with u

~x

u

mr'(y)

among

its free assumption variables. As neither y nor ~x

u

occur in , �(e)[y :=

s][~x

u

:=

~

t] (possibly with u

~

t
mr'(s)

among its free assumption variables) is a

proof of (ep(e)[y := s][~x

u

:=

~

t]) mr . Hence �(9

�

[d; y;u; e]) is a proof of

ep(9

�

[d; y;u; e])mr , with the intended free assumptions.

�

6.2.3 Realization of Axioms for Equality, Negation, Induction

In this section we will explore the use of axioms. If we use an axiom ax

'

(as open

assumption) in a proof d of MF, then the extracted program ep(d) contains free

variables ~x

�(')

ax

(as holes), and the correctness proof �(d) contains free assumption

variables ax : ~x

ax

mr ' (according to Theorem 6.2.4).

The goal is to complete the program in a correct way. More speci�cally, we look for

potential realizers

~

t

ax

, such that we can �nd an NH-derivation d

ax

of the correctness

statement

~

t

ax

mr '. The derivation d

ax

may contain acceptable assumptions. If such

a proof exists, we call

~

t

ax

the realizer of the axiom. This is a exible notion, because

we have not speci�ed which assumptions are acceptable. The extracted program can

be completed by taking ep(d)[~x

ax

:=

~

t

ax

]. The correctness proof can be mended by

substituting the subproof d

ax

for the free assumption variable ax. It is clear that the

justi�cation of postulated principles should be given in terms of NH, because in this

logic the correctness proofs live.

We will summarize several situations that can arise by adding realizable axioms to

MF. The various possibilities are characterized by the realizers and the assumptions

needed in the correctness proofs. Moreover, we will briey mention their typical use.

In the subsequent sections the correctness of these axioms is described in more detail.

We distinguish:

1. True 9-free axioms: they have a trivial realizer � and the correctness proof

contains the same axioms (up to underlinings). These will typically be non-

logical 9-free axioms that are true in the intended model, e.g. symmetry of =.

The computation is not a�ected by these and the correctness proof relies on true

assumptions. This enables us to reduce the amount of proof to be formalized.

We will bene�t a lot of it in Section 6.3.

2. Purely logical axioms with absolute realizers, i.e. realizers that have a correctness

proof without any assumptions. These will be purely logical axioms, exploiting

the realizability interpretation of the 8-quanti�er. They give some insight in

the meaning of the 8-quanti�er. Some of them will be used in Section 6.4.3.

3. Axiom schemata with realizers for which the correctness proof contains new

instances of the same schema. Typical examples are \ex falso quod libet" and

\replacement of equals by equals".

106 CHAPTER 6. COMPUTABILITY VERSUS FUNCTIONALS

4. Induction axioms. The realizers are operators for simultaneous primitive re-

cursion; the correctness proof is given in an extended framework. Induction is

needed to deal with G�odel's T in Section 6.4.

This is well known theory, apart from the axioms under (2), which explore the

special nature of the 8-quanti�er. Axioms as under (1) are exploited in [Ber93]. Case

(3) and (4) can be found in [Tro73].

6.2.3.1 9-free Axioms and Harrop Formulae

Consider a 9-free MF formula '. We have �(') = �, so the only potential realizer is the

empty sequence. Let '

0

be the formula obtained from ' by deleting all underlinings.

We have � mr ' � '

0

. So the program obtained from a proof using ' as an axiom

will be correct, whenever '

0

is true. In this sense we are allowed to axiomatize new

predicates and functions by 9-free axioms.

More generally, we can consider the class of Harrop formulae, i.e. ' with �(') = �.

Roughly speaking, these formulae don't have existential quanti�ers in their conclusion.

They have the empty sequence as a potential realizer. However, we lose the property

that �mr ' � '

0

, as the following example shows:

�mr (8x

o

:9y

o

:Q(x; y))! P (

~

t
) � 8f

o!o

:(8x

o

:Q(x; fx))! P (

~

t
)

We are tempted to write this last formula as (9f

o!o

:8x

o

:Q(x; fx))! P (

~

t), but this

is neither a formula of NH nor of MF. HA

!

+ AC is needed, to prove (�mr ')$ '

for all Harrop formulae '.

6.2.3.2 Realizable Axioms

Inspection of the derivation rules for MF reveals an asymmetry. Although the intro-

duction rule for 8 has a stronger proviso than that of 8, the elimination rules are the

same. The result is that there are some principles that are intuitively true, but not

provable in MF. One of them is (8x:9y:') ! 9y:8x:': If for all x there exists a y

independent of x, then one such y su�ces for all x. So the witness for y on the left

hand side should also su�ce on the right hand side. This suggests to postulate this

formula as an axiom, with the identity as realizer.

Admitting axioms like this one, goes a step further than admitting 9-free formulae

as axioms. In the case of 9-free formulae, we can remove all underlinings from the

proof, and we obtain a correct proof in a well known logic (i.e. usual minimal �rst-order

predicate logic). If we use the axiom above, this is no longer possible, as it becomes

false (even classically) after removing the underlining. On the other hand, for the

axioms in this section we can postulate realizers that have a closed correctness proof.

In this respect they have a �rm base. We will propose the following axiom schemata,

where H ranges over Harrop Formulae, i.e. �(H) = �. IP stands for independence of

6.2. A REFINEMENT OF REALIZABILITY 107

premise and IU stands for independence of underlined quanti�er.

IU : (8x:9y

�

:') ! 9y

�

:8x:'

IP : (H ! 9x

�

:') ! 9x

�

:(H ! ') (x =2 FV(H))

intro : (8x:H) ! 8x:H

The �rst two have associated type �; �(') ! �; �(') and they are realized by the

identity on sequences of this type. The third is realized by the empty sequence. We

compute the correctness formulae, which have trivial proofs in NH:

IU : (�y

�

; ~z

�(')

:y; ~z)mr ((8x:9y

�

:')! 9y

�

:8x:')

� 8y; ~z:(y; ~z mr 8x:9y

�

:')! y; ~z mr 9y

�

:8x:'

� 8y; ~z:(8x:(~z mr '))! 8x:(~z mr ')

IP : (�x; ~z:x; ~z)mr ((H ! 9x

�

:')! 9x

�

:(H ! '))

� 8x; ~z:(�mr H ! ~z mr ')! (�mr H ! ~z mr ')

intro : �mr (8x:H ! 8x:H)

� (8x:(�mr H))! 8x:(�mr H)

This leads to the following

Theorem 6.2.5 Second Correctness Theorem

If IP+IU+intro `

MF

' then there exists a sequence

~

t such that `

NH

~

t mr '. If

d

'

is the MF-derivation,

~

t can be obtained from ep(d) by replacing all free variables

introduced by the axioms IP, IU and intro by the identity.

We will not address the question whether the inverse of this correctness result

also holds. In [Tro73, x 3.4.8] it is proved that HA

!

+IP+AC, axiomatizes modi�ed

realizability. However, AC is neither a formula of MF nor of NH, as it contains

both higher-order variables and existential quanti�ers, so we cannot use that result

here directly. Axiomatizing modi�ed realizability is interesting, because it gives more

understanding of the 8-quanti�er.

6.2.3.3 Axioms for Negation and Equality

We have seen how to realize 9-free axioms. It is not always possible to axiomatize

predicates 9-free. We will for example need equality, with the axiom schema s = t!

'(s) ! '(t). Another example is negation, with axioms ? ! ', which can be dealt

with in a similar way as equality.

Let = be a binary predicate symbol. The usual axioms of reexivity, symmetry

and transitivity are 9-free and hence harmless. Instances of the replacement schema

may contain existential quanti�ers. Let repl stand for axioms of the form s = t !

'(s) ! '(t). We will provide for realizers such that the correctness formula gets

provable in NH enriched with the schema repl.

108 CHAPTER 6. COMPUTABILITY VERSUS FUNCTIONALS

Note that �(s = t ! '(s) ! '(t)) � �(') ! �('). The identity can be taken as

realizer, as the following calculation shows:

�~x

�(')

:~xmr s = t! '(s)! '(t)

� s = t! 8~x:~xmr '(s)! ~xmr '(t);

which can be proved using the repl schema on NH-formulae. This means that we

can use equality axioms within our proofs. Because they are realized by the empty

sequence, or by the identity on sequences, we can discard their use when extracting the

program. The correctness proofs contain the same axioms schema, which is regarded

as valid.

6.2.3.4 Induction Axioms

It is straightforward to introduce induction in this context. Induction can be postu-

lated by introducing axioms

ind

'

: '(0)! (8n; '(n)! '(Sn))! 8n:'(n) :

In the general case, induction can be realized by simultaneous primitive recursion

operators (See [Tro73, x 1.6.16, x 3.4.5]). We will only need the special case that

�(') = �, so the induction formula is realized by exactly one term. In this case, the

usual recursion operator is a potential realizer. However, for the correctness proof we

have to extend NH in two directions: We have to add induction axioms to it and we

have to consider object terms modulo �R-equality. Let �(') = �, then we show that

in extended NH, R

�

mr ind

'

is provable.

R

�

mr ind

'

� 8x:(xmr '(0))! 8f:(f mr 8n:'(n)! '(Sn))! 8n:(Rxfn)mr '(n) :

So assume x mr '(0) and f mr 8n:'(n) ! '(Sn). By induction on n we prove

(Rxfn)mr '(n).

If n = 0, we identify Rxf0 with x, and the �rst assumption applies.

If n = (Sm), we may assume that (Rxfm)mr '(m) (IH). Our second hypothesis

can be rewritten to 8n:8y:(y mr '(n)) ! (fny) mr '(Sn). This can be applied to

m and (Rxfm) and after identi�cation of Rxf(Sm) with fm(Rxfm), it follows that

Rxf(Sm)mr '(Sm).

6.3 Formal Comparison for �-Reduction

In this section the proof of Section 6.1 will be formalized in �rst-order predicate logic,

as introduced in Section 6.2. This is not unproblematic as the informal proof contains

induction on types and terms, which is not a part of the framework. This is solved by

de�ning a series of proofs, by recursion over types or terms. In this way the induction

is shifted to the metalevel. There is a price to be paid: instead of a uniform function

U , such that U(M) computes the desired upper bound for a term M , we only extract

6.3. FORMAL COMPARISON FOR �-REDUCTION 109

for anyM an expression Upper[M], which computes an upper bound for termM only.

So here we lose a kind of uniformity. It is well known that the absence of a uniform

�rst-order proof is essential, because the computability predicate is not arithmetizable

[Tro73, x 2.3.11].

Another incompleteness arises, because some combinatorial results will be plugged

in as axioms. This second incompleteness is harmless for our purpose, because all these

axioms are formulated without using existential quanti�ers. Hence they are realized

by the empty sequence (and �nding formal proofs for these facts would be waste of

time).

6.3.1 Fixing Signature and Axioms

As to the language, we surely have to represent �-terms. To this end, we adopt for each

type � new sorts V

�

and T

�

, that interpret variables and terms modulo �-conversion of

type �, respectively. Constants of sort V

�

are added to represent variables (we write

x for the formal representation of x). Function symbols for typed application and

abstraction are included as well. With M , we denote the representation of a �-term

M in this �rst-order language, using the following function symbols:

Var

�

: V

�

! T

�

, to inject variables into terms;

�

�;�

: T

�!�

� T

�

! T

�

, denoting typed application;

��

�;�

: V

�

� T

�

! T

�!�

, denoting typed abstraction.

Note that x is overloaded: it can be of sort T

�

and of sort V

�

. We use r, s

and t as formal variables over T

�

; x and y are variables of sorts V

�

; We abbreviate

((s � t

1

) � � � � � t

n

) by s �

~

t. Type decoration is often suppressed.

Note that e.g. �x:x � ��(y ;Var(y)), for some arbitrary but �xed choice of

y. Although the terms in the intended model are taken modulo �-conversion, the

�rst-order terms cannot have this feature. We will also need function symbols to

represent simultaneous substitution: for any sequence of types �; �

1

; : : : ; �

n

, a symbol

(; ; : : : := ; ; : : :) of arity T

�

� V

�

1

� � � � � V

�

n

� T

�

1

� � � � � T

�

n

! T

�

. The

intended meaning of s(~x :=

~

t) is the simultaneous substitution in s of x

i

by t

i

. If for

some i and j, x

i

and x

j

happen to be the same, the �rst occurrence from left to right

takes precedence (so the other substitution is simply discarded).

In order to represent upper bounds for reduction sequences, we introduce a sort

nat, denoting the natural numbers, with constants 0

nat

, 1

nat

and + of arity nat�

nat ! nat, with their usual meaning. We use m and n for formal variables over sort

nat.

Finally, we add binary predicate symbols =

�

for equality on sort T and SN

�

of arity T

�

� nat, representing the binary SN-relation of De�nition 2.2.1.

We can now express the axioms that will be used in the formal proof. We will

use the axiom schema repl : s = t ! '(s) ! '(t) to replace equals by equals.

Furthermore, we use all well typed instances of the following axiom schemata.

1. 8x: SN

�

(Var(x); 0)

110 CHAPTER 6. COMPUTABILITY VERSUS FUNCTIONALS

2. 8x;

~

t; s;m; n: SN

�!�

(Var(x) �

~

t;m)! SN

�

(s; n)! SN

�

(Var(x) � h

~

t; si;m+ n)

3. 8s; x;m: SN

�

(s � Var(x);m)! SN

�!�

(s;m)

4. 8r; y; ~x; s;

~

t; ~r;m; n: SN

�

(r(y; ~x := s;

~

t) � ~r;m)! SN

�

(s; n)!

SN

�

(��(y; r)(~x :=

~

t) � hs; ~r i;m+ n+ 1)

5. 8

~

t : t

i

= Var(x

i

)(

~

x :=

~

t), provided i is the �rst occurrence of x

i

in

~

x .

6. 8r; s; ~x;

~

t: r(~x :=

~

t) � s(~x :=

~

t) = (r � s)(~x :=

~

t)

7. 8s; ~x: s(~x := Var(~x)) = s, where Var(~x) stands for Var(x

1

); : : : ;Var(x

m

)

In the formal proofs, we will refer to these axioms by number (e.g. ax

5

). Axioms 1{3

express simple combinatorial facts about SN. The equations 5{7 axiomatize substitu-

tion. Axiom 4 is a mix, integrating a basic fact about reduction and an equation for

substitution. The reason for this mixture is that we thus avoid variable name clashes.

This is the only axiom that needs some elaboration.

In the intended model, (�x:r)[~x :=

~

t] equals �x:(r[~x :=

~

t]), because we can

perform an �-conversion, renaming x. However, we cannot postulate the similar

equation

8x; ~x;

~

t; r: ��(x; r)(~x :=

~

t) = ��(x; r(~x :=

~

t))

as an axiom, because we cannot avoid that e.g. t

1

gets instantiated by a term con-

taining the free variable x, such that the same x would occur both bound and free.

Now in the proof of Lemma 6.1.3 it is shown how the reduction length of (�y:t)s~r

can be estimated from the reduction lengths of s and t[y := s]~r. After substituting

r[~x :=

~

t] for t, and using the abovementioned equation (thus avoiding that variables

in

~

t become bound), we get Axiom 4.

6.3.2 Proof Terms and Extracted Programs

As in the informal proof, we de�ne formulae SC

�

(t) by induction on the type �. These

will occur as abbreviations in the formal derivations.

�

SC

�

(t) := 9n

nat

:SN

�

(t; n)

SC

�!�

(t) := 8s

T

�

:SC

�

(s)! SC

�

(t � s)

Due to the underlined quanti�er, �(SC

�

(s)) = �

0

, where �

0

is obtained from � by

renaming base types � to nat. In the sequel, the prime (

0

) will be suppressed. The

underlined quanti�er takes care that numerical upper bounds only use numerical

information about subterms: the existential quanti�er hidden in SC(t � s) can only

use the existential quanti�er in SC(s); not s itself. In fact, this is the reason for

introducing the underlined quanti�er.

6.3. FORMAL COMPARISON FOR �-REDUCTION 111

6.3.2.1 Formalizing the SC Lemma.

We proceed by formalizing Lemma 6.1.2. We will de�ne proofs

�

�

: 8t: SC

�

(t)! 9n:SN

�

(t; n) and

	

�

: 8x;

~

t: (9m:SN

�

(Var(x) �

~

t;m))! SC

�

(Var(x) �

~

t)

with simultaneous induction on �:

�

�

:= �t:�u

SC(t)

:u

�

�!�

:= �t�u

SC(t)

:

9

�

[�

�

(t � Var(x))

�

uVar(x)(

�

x9

+

[0; (ax

1

x)])

�

;

m; v

SN(t�Var(x);m)

;

9

+

[m; (ax

3

txmv)]]

	

�

:= �x

~

t:�u

9m:SN(Var(x)�

~

t;m)

:u

	

�!�

:= �x;

~

t: �u

9m:SN(Var(x)�

~

t;m)

:�s:�v

SC(s)

:

9

�

[u;m;u

SN(Var(x)�

~

t;m)

0

;

9

�

[(�

�

sv);n; v

SN(s;n)

0

;

	

�

x

~

ts 9

+

[(m+ n); (ax

2

x

~

tsmnu

0

v

0

)]]]

Having the concrete derivations, we can extract the computational content, using

the de�nition of ep. Note that the underlined parts are discarded, and that an 9-

elimination gives rise to a substitution. The resulting functionals are ep(�

�

) : �! nat

and ep(

�

) : nat! �,

ep(�

�

) = �x

u

:x

u

ep(�

�!�

) = �x

u

:m[m := ep(�

�

)(x

u

(ep(

�

)0))]

= �x

u

:ep(�

�

)(x

u

(ep(

�

)0))

ep(

�

) = �x

u

:x

u

ep(

�!�

) = �x

u

:�x

v

:ep(

�

)(m+ n)[n := ep(�

�

)x

v

][m := x

u

]

= �x

u

:�x

v

:ep(

�

)(x

u

+ (ep(�

�

)x

v

))

6.3.2.2 Formalizing the Abstraction Lemma.

We proceed by formalizing Lemma 6.1.3, which deals with abstractions. Let r have

sort T

~�!�

, and each r

i

sort T

�

i

(so r � ~r has sort T

�

). Let s have sort T

�

, y sort V

�

,

each t

i

sort T

�

i

and each x

i

sort V

�

i

. We construct proofs

�

�;�;~�;~�

: 8r; y; ~x; s;

~

t; ~r: SC

�

(r(y; ~x := s;

~

t) � ~r)!SC

�

(s)!

SC

�

(��(y; r)(~x :=

~

t) � hs; ~r i)

by induction on �. This corresponds to the induction on � in the informal proof.

The base case uses Axiom 4. Only the �rst two subscripts will be written in the

sequel.

112 CHAPTER 6. COMPUTABILITY VERSUS FUNCTIONALS

�

�;�

= �r; y; ~x;s;

~

t; ~r: �u

SC

�

(r(y;~x:=s;

~

t)�~r)

:�v

SC(s)

:

9

�

[u;m;u

SN(r(y;~x:=s;

~

t)�~r;m)

0

;

9

�

[(�

�

sv);n; v

SN(s;n)

0

;

9

+

[m+ n+ 1; (ax

4

ry~xs

~

t~rmnu

0

v

0

)]]]

�

�!�;�

= �r; y; ~x;s;

~

t; ~r: �u

SC(r(y;~x:=s;

~

t)�~r)

:�v

SC(s)

:

�r

0

:�w

SC

�

(r

0

)

:(�

�;�

ry~xs

~

t~rr

0

(ur

0

w)v)

Having these proofs, we can extract their programs, using the de�nition of ep. In

this way we get ep(�

�;�

) : �! � ! �,

ep(�

�;�

) = �x

u

:�x

v

:(m+ n+ 1)[n := ep(�

�

)x

v

][m := x

u

]

= �x

u

:�x

v

:(x

u

+ (ep(�

�

)x

v

) + 1)

ep(�

�!�;�

) = �x

u

:�x

v

:�x

w

:(ep(�

�;�

)(x

u

x

w

)x

v

)

6.3.2.3 Formalizing the Main Lemma.

The main lemma (6.1.4) states that every term M is strongly computable, even

after substituting strongly computable terms for variables. The informal proof of

Lemma 6.1.4 is by induction on M . Therefore, we can only give a formal proof for

each M separately. Given a term M with all free variables among ~x, we construct by

induction on the term structure of M a proof

�

M;~x

: 8t

1

; : : : ; t

n

: SC(t

1

)! � � � ! SC(t

n

)! SC(M (

~

x :=

~

t)):

�

x

i

;~x

:= �

~

t:�~u:(repl (ax

5

~

t) u

i

)

�

MN;~x

:= �

~

t:�~u:(repl (ax

6

M N

~

x

~

t) (�

M;~x

~

t~u N (

~

x :=

~

t) (�

N;~x

~

t~u)))

�

�x:M;~x

:= �

~

t:�~u:�s:�v

SC(s)

:(�

�;�

M

0

y

~

x s

~

t (�

M

0

;y;~x

s

~

tv~u)v),

where in the last equation, we assume that �x:M = ��(y ; M

0

), with x : � and

M : �.

Again we extract the programs from these formal proofs. Because the realizer of

repl is the identity, we can safely drop it from the extracted program. For terms M

�

with free variables among ~x, each x

i

: �

i

, we get ep(�

M;~x

) : ~� ! �,

ep(�

x

i

;~x

) = �~x

u

:x

u;i

ep(�

MN;~x

) = �~x

u

:(ep(�

M;~x

)~x

u

(ep(�

N;~x

)~x

u

))

ep(�

�x:M;~x

) = �~x

u

:�x

v

:(ep(�

�;�

)(ep(�

M

0

;y;~x

)x

v

~x

u

)x

v

);

where again it is assumed that �x:M = ��(y ; M

0

), x : � and M : �.

6.3.2.4 Formalization of the Theorem.

Now we are able to give a formal proof of 9n:SN(M ;n), for any termM . Extracting

the computational content of this proof, we get an upper bound for the length of re-

duction sequences starting from M . We will de�ne formal proofs

M

: 9n:SN(M ;n)

6.3. FORMAL COMPARISON FOR �-REDUCTION 113

for each term M (M denotes the representation of M). Let ~x be the sequence of

free variables in M : �, each x

i

: �

i

.

M

:= (�

�

M (repl (ax

7

M

~

x) (�

M;~x

Var(

~

x)	

1

� � �	

n

)));

where 	

i

:= (

�

i

x

i

9

+

[0; (ax

1

x

i

)]) is a proof of SC(Var(x

i

)) (is de�ned in Sec-

tion 6.3.2.1) and Var(

~

x) stands for Var(x

1

); : : : ;Var(x

n

). As extracted program,

we get ep(

M

) : nat,

ep(

M

) = ep(�

�

)(ep(�

M;~x

)(ep(

�

1

)0) � � � (ep(

�

n

)0))

6.3.3 Comparison with Gandy's Proof

In order to compare the extracted programs from the formalized proofs with the

strictly monotonic functionals used by Gandy [Gan80], we recapitulate these programs

and introduce a readable notation for them.

M

�

: � ! nat := ep(�

�

)

S

�

0

: � := ep(

�

)0

A

�;�

: �! � ! � := ep(�

�;�

)

[[M

�

]]

~x 7!

~

t

: � := ep(�

M;~x

)

~

t

Upper[M] : nat := ep(

M

):

Function application is written more conventionally as f(x) and some recursive def-

initions are unfolded. Assuming that � = �

1

! � � � ! �

n

! nat, these functionals

obey the following equations:

M

�

(f) = f(S

�

1

0

; : : : ; S

�

n

0

)

S

�

0

(~x) = M

�

1

(x

1

) + � � �+M

�

n

(x

n

)

A

�;�

(f; y; ~x) = f(~x) +M

�

(y) + 1

[[x

i

]]

~x7!

~

t

= t

i

[[MN]]

~x7!

~

t

= [[M]]

~x7!

~

t

([[N]]

~x7!

~

t

)

[[�x

�

:M

�

]]

~x7!

~

t

(y) = A

�;�

([[M]]

x;~x7!y;

~

t

; y)

Upper[M

�

] = M

�

([[M]]

~x7!

~

S

0

):

The Correctness Theorem 6.2.4 guarantees that SN(M ;Upper[M]) is provable in NH,

so Upper[M] puts an upper bound on the length of reduction sequences fromM . This

expression can be compared with the functionals in the proof of Gandy.

First of all, the ingredients are the same. In [Gan80] a functional (L, see Sec-

tion 3.3.2) is de�ned, that plays the rôle of both S

0

and M (and indeed, S

�!nat

0

= M

�

).

S is a special strictly monotonic functional and M serves as a measure on function-

als. Then Gandy gives a translation M

�

of a term M , by assigning the special strict

functional to the free variables, and interpreting �-abstraction by a �I term, so that

reductions in the argument will not be forgotten. This corresponds to our [[M]]

~x7!

~

S

0

,

where in the �-case the argument is remembered by A

�;�

and eventually added to the

result. Finally, Gandy shows that in each reduction step the measure of the assigned

114 CHAPTER 6. COMPUTABILITY VERSUS FUNCTIONALS

functionals decreases. So the measure of the non-standard interpretation serves as an

upper bound.

Looking into the details, there is one slight di�erence. The bound Upper[M] is

sharper than the upper bound given by Gandy. The reason is that Gandy's special

functional (resembling S and M by us) is ine�cient. It obeys the equation (with

� = �

1

! � � � ! �

n

! nat)

L

�

(x

1

; : : : ; x

n

) := L

�

1

!nat

(x

1

) + 2

0

L

�

2

!nat

(x

2

) + � � �+ 2

n�2

L

�

n

!nat

(x

n

):

Gandy de�nes L

�

with a + functional on all types and a peculiar induction. By

program extraction, we found functionals de�ned by simultaneous induction, using

an extra argument as accumulator (see the de�nition of ep(�) and ep()), thus

avoiding the + functional and the implicit powers of 2.

We conclude this section by stating that program extraction provides a useful

tool to compare the two SN-proofs in the case of simply-typed lambda calculus. The

program extracted from the decorated proof �a la Tait is very similar to the upper

bound expression that Gandy used.

6.4 Extension to G�odel's T

G�odel's T extends simply-typed lambda calculus with higher-order primitive recur-

sion. The set of base types includes o, the type of natural numbers. Constants 0

o

and

S

o!o

are added. For each type �, we add a constant R

�

: � ! (o! � ! �)! o! �.

The following rules express higher-order primitive recursion:

R

�

MN0 7!M and R

�

MN(SP) 7! NP (R

�

MNP) :

With!

�R

we denote the compatible closure of the � rule and the two recursion rules.

It is a well known fact that !

�R

is a terminating rewrite relation.

The proof �a la Tait of this fact (see e.g. [Tro73, 2.2.31]) extends the case of the

�-rule, by proving that the new constants are strongly computable. We will present

a version with concrete upper bounds. It turns out to be rather cumbersome to give

a concrete number. Some e�ort has been put in identifying and proving the right

\axioms" (Lemma 6.4.2{6.4.5) from which the decorated proof can be constructed

(Lemma 6.4.6, 6.4.7). The extracted upper bounds are compared with the functionals

used by Gandy (Section 6.4.4).

6.4.1 Changing the Interpretation of SN(M;n)

Consider the following consequence of SC

o!o

(r) for �xed r. This formula is equivalent

to 8p:8m:SN(p;m) ! 9n:SN(rp; n). So we can bound the reduction length of rp

uniformly in the upper bound for p. More precisely, if SN(p;m) then SN(rp; [[r]](m)).

A stronger uniformity principle appears in [Vrij87, x 2.3.4]).

The uniformity principle does not hold if we substitute R

o

MN for r: Although

SN(S

k

0; 0) holds for each k, RMN(S

k

0) can perform k reduction steps. So SC(RMN)

6.4. EXTENSION TO G

�

ODEL'S T 115

cannot hold. This shows that it is impossible to prove SC(R) with SC as in De�ni-

tion 6.1.1. Somehow, the numerical value (k) has to be taken into account too.

To proceed, we have to change the interpretation of the predicate SN(M;n). We

have to be a bit careful here, because speaking about the numerical value of a term

M would mean that we assume the existence of a unique normal form. The following

de�nition avoids this assumption:

De�nition 6.4.1

1. Second interpretation of SN: SN(M;n) holds if and only if for all reduction

sequences of the form M � N

0

!

�R

N

1

!

�R

� � � !

�R

N

m

� S

k

(P), we have

m+ k � n. Note that k can only be non-zero for terms of type o.

2. A �nite reduction sequence M

0

!

�R

� � � !

�R

M

n

is maximal if M

n

is normal

(i.e. there is no term N with M

n

!

�R

N). An in�nite reduction sequence is

always maximal.

So SN(M;n) means that for any reduction sequence from M to some P , n is at least

the length of this sequence plus the number of leading S-symbols in P . Note that

SN(M;n) already holds, if n bounds the length plus value of all maximal reduction

sequences from M .

We settle the important question to what extent the proofs of Section 6.3 remain

valid. Because these are formal proofs, with SN just as a predicate symbol, the

derivation terms remain correct. These derivation terms contain axioms, the validity

of which was shown in the intended model. But we have changed the interpretation

of the predicate symbol SN. So what we have to do, is to verify that the axioms of

Section 6.3.1 remain correct in the new interpretation.

The axiom schema repl, ax

5

, ax

6

and ax

7

are independent of the interpretation

of SN. Axioms 1, 2 and 3 remain true, because the terms in their conclusion have

no leading S-symbols (note that 1 and 2 have a leading variable; 3 is of arrow type).

Axiom 4 is proved by a slight modi�cation of the proof of Lemma 6.1.3. The following

observation is used: If (�x:M)N

~

P �

�R

S

`

(Q) for some Q, then at some point we

contract the outermost �-redex, say (�x:M

0

)N

0

~

P

0

!

�

M

0

[x := N

0

]

~

P

0

. The latter is

also a reduct of M [x := N]

~

P , so ` is already bounded by the upper bound for the

numerical value of this term.

6.4.2 Informal Decorated Proof

The goal of this section is to prove that the constants (especially R) are strongly

computable. To this end, we �rst need some basic facts, about the length of the

reduction sequences.

From now on we use r; s; t for metavariables over lambda terms as well as for

formal variables ranging over lambda terms. We reserve p; q for metavariables or

formal variables ranging over lambda terms of type o. a; b; c; d; e; i; j; k; `;m; n are

metavariables or formal variables over sort nat.

116 CHAPTER 6. COMPUTABILITY VERSUS FUNCTIONALS

6.4.2.1 The Basic Facts

To prove SC(0), SC(S) and SC(R), we need some axioms, expressing basic truths

about SN. In this section, ! is written for !

�R

. For 0 and S we have:

Lemma 6.4.2

1. SN(0

o

; 0

nat

)

2. 8p:8m:SN

o

(p;m)! SN

o

((Sp);m+ 1).

Proof: 0 is normal and has no leading S-symbols. If (Sp) !

n

S

k

(r) for some n, k

and r, then p !

n

S

k�1

(r). From SN(p;m) we obtain k + n � m+ 1. This holds for

every reduction sequence, so SN((Sp);m+ 1) holds. �

It is less clear which facts we need for the recursion operator. To prove SC(R

�

)

(see Lemma 6.4.7), we need to prove SC

�

(Rstp) for strongly computable s, t and p.

If p is strongly computable, then SN(p;m) holds for some m. By induction on m,

we will prove 8p:(SN(p;m)! SC

�

(Rstp)). We need two axioms to establish the base

case and the step case of this induction. For the base case, we need (schematic in the

type �):

Lemma 6.4.3

8s; t; ~r; p; `; n: SN

�

(s~r; `)! SN

o!�!�

(t; n)! SN

o

(p; 0)! SN

�

(R

�

stp~r; `+ n+ 1).

Proof: Assume SN(s~r; `), SN(t; n) and SN(p; 0). The latter assumption tells that p is

normal and cannot be a successor. If p 6� 0, then reductions in Rstp~r can only occur

inside s, t and ~r, and these are bounded by ` + n. Also if p � 0, the assumptions

exclude that there exists an in�nite internal reduction. Hence a maximal reduction

of Rstp~r will consist of �rst �nitely many steps within s, t and ~r (of respectively a, b

and c steps, say) followed by an application of the �rst recursion rule, and �nally d

more steps (we show below that also d is �nite). This gives a reduction of the form:

Rst0~r !

a+b+c

Rs

0

t

0

0

~

r

0

! s

0

~

r

0

!

d

S

i

(r)

We can construct a reduction sequence from s~r via s

0

~

r

0

to S

i

(r) of length a + c + d.

By the �rst assumption, a + c + d + i � `, by the second assumption b � n, so

a+ b+ c+1+ d+ i � `+n+1. As this upper bound holds for an arbitrary maximal

reduction sequence, it holds for all reduction sequences, so we get SN(Rstp~r; `+n+1).

�

The next lemma is needed for the step case. Note that if SN(p;m+1) holds, then

p may reduce to either 0 (in at most m + 1 steps) or to (Sp

0

) (in at most m steps).

This explains the �rst two hypotheses of the following lemma.

Lemma 6.4.4

8s; t; ~r; `;m; n: SN

�

(s~r; `)!

�

8q:SN

o

(q;m)! SN

�

(tq(Rstq)~r; n)

�

!

�

8p:SN

o

(p;m+ 1)! SN

�

(Rstp~r; `+m+ n+ 1)

�

6.4. EXTENSION TO G

�

ODEL'S T 117

Proof: Assume SN

�

(s~r; `), 8q:SN(q;m) ! SN

�

(tq(Rstq)~r; n) and SN(p;m + 1), for

arbitrary s; t; ~r; `;m; n and p. Consider an arbitrary maximal reduction sequence from

Rstp~r. The assumptions exclude that there exists an in�nite internal reduction. So

the maximal reduction consists of �nitely many reduction steps inside s, t, p and ~r

(of a, b, c and d steps to the terms s

0

, t

0

, p

0

and

~

r

0

, respectively), followed by an

application of a recursion rule when applicable, and concluded by some more steps.

We make a case distinction to the shape of the reduct p

0

after the initial internal

steps:

Case A: p

0

� 0 Then the maximal reduction has the following shape:

Rstp~r !

a+b+c+d

Rs

0

t

0

0

~

r

0

! s

0

~

r

0

!

e

S

i

(r)

We can construct a reduction from s~r to S

i

(r) of a + d + e steps, hence, by the

�rst assumption, a + d + e + i � `. From the third assumption, we get c �

m + 1. To bound b, we can only use the second hypothesis. Note that S

m

(0) is

normal, hence SN(S

m

(0);m) holds. Furthermore, Rst(S

m

0) can perform at least

m + 1 reduction steps. Now we apply the second assumption to S

m

0, which yields

SN(t(S

m

0)(Rst(S

m

0)); n). This term can perform at least b+m+1 steps, so b+m+1 �

n. Now the reduction sequence can be bounded, viz. a + b + c + d + 1 + e + i �

`+ b+m+ 2 � `+ n+ 1.

Case B: p

0

� (Sq) Then the maximal reduction has the following shape:

Rstp~r !

a+b+c+d

Rs

0

t

0

(Sq)

~

r

0

! t

0

q(Rs

0

t

0

q)

~

r

0

!

e

S

i

(r)

First, SN(q;m) holds, because if q !

j

S

k

(q

0

), then p!

c+j

S

k+1

(q

0

), so c+ j+k+1 �

m+1, hence j + k � m. Next note, that there is a reduction from tq(Rstq)~r to S

i

(r)

of a + 2b + d + e steps. Now the second assumption can be applied, which yields

that a + 2b + d + e + i � n. Finally, c � m. Adding up all information, we get

a+ b+ c+ d+ 1 + e+ i � m+ n+ 1.

Case C: If cases A and B do not apply, then p

0

is normal (because a maximal reduction

sequence is considered), and no recursion rule applies. The reduction sequence has

length a+ b+ c+d and the result has no leading S-symbols. Now c � m+1, a+d � `

and b+m+ 1 � n can be obtained as in Case A. Clearly a+ b+ c+ d � `+ n.

In all cases, the length of the maximal reduction plus the number of leading S-

symbols is bounded by `+m+n+1, so indeed SN(Rstp~r; `+m+n+1) holds. (Note

that in fact we have the even sharper upper bound n+ 1 +max(`;m).) �

The nice point is that this lemma is 9-free, so it hides no computational content.

Unfortunately, it is not strong enough to enable the induction step in the proof of

SC(R). We have 8q:SN(q;m) ! SC(Rstq) as induction hypothesis, and we may

assume SN(p;m + 1). In order to apply Lemma 6.4.4, we are obliged to give an n,

such that 8q:SN(q;m) ! SN(tq(Rstq)~r; n) holds, but using the induction hypothesis

we can only �nd an n for each q separately.

We give two solutions of this problem. Both solutions rely on the fact that the

upper bound n above doesn't really depend on q. In the formalism of Section 6.2,

this is expressed by the 8q-quanti�er.

118 CHAPTER 6. COMPUTABILITY VERSUS FUNCTIONALS

The �rst solution uses the axioms IP and IU, which gives us the following infer-

ence:

�

8q:SN(q;m)! 9n:SN(tq(Rstq)~r; n)

�

!

�

9n:8q:SN(q;m)! SN(tq(Rstq)~r; n)

�

The advantage is that we use a general method. The disadvantage is that after remov-

ing the underlinings in the obtained derivation, the proof is no longer valid, because

IU is clearly false after removing the underlinings. However, formally speaking this

is not a problem, because the correctness proof doesn't rely on IU (Theorem 6.2.5).

The other solution changes Lemma 6.4.4, by relaxing the second hypothesis of it

and by weakening its conclusion consequently. We then get an axiom which can be

used in the proof of SC(R), but it contains existential quanti�ers and consequently

we have to plug in a realizer by hand. This leads to:

Lemma 6.4.5

8s; t; ~r; `;m: SN

�

(s~r; `)!

�

8q:SN

o

(q;m)! 9n:SN

�

(tq(Rstq)~r; n)

�

!

�

8p:SN

o

(p;m+ 1)! 9n:SN

�

(Rstp~r; `+m+ n+ 1)

�

The justi�cation of this lemma has to be given in terms of NH, as pointed out

in Section 6.2.3. Lemma 6.4.5 contains existential quanti�ers, so we have to insert a

realizer. Of course we take as realizer �n:n. Now it can be veri�ed that

�n:nmr (Lemma 6.4.5) � (Lemma 6.4.4) :

Strictly speaking, we don't need a proof of this lemma, because it is realizable

(by the identity). This statement corresponds to Lemma 6.4.4, so the correctness

proof has already been given. But we motivated this lemma by the wish to obtain a

valid proof after removing the underlining, and in that case it is important that the

axioms are true (not only realizable). Therefore we prove the previous lemma, with

the underlinings omitted.

Proof: Assume SN

�

(s~r; `), 8q:SN(q;m) ! 9n:SN

�

(tq(Rstq)~r; n) and SN(p;m + 1).

Consider a reduction sequence from Rstp~r of i steps to a term S

j

(r), such that i+ j

is maximal. For this sequence one of the cases A, B or C in the proof of Lemma 6.4.4

applies. In all cases we �nd an appropriate q with SN(q;m), that we can use to

instantiate the second assumption. This yields an n, for which SN

�

(tq(Rstq)~r; n)

holds. Now i+ j can be bounded by `+m+ n+ 1, just as in the applicable case of

Lemma 6.4.4. �

6.4.2.2 The Constants are Strongly Computable

Eventually, we can prove that the new constants are strongly computable. The Nu-

meral Lemma is a direct consequence of Lemma 6.4.2. The Recursor Lemma uses

Lemmas 6.4.3, 6.4.5 and 6.1.2. The SC-formula is an abbreviation introduced in

Section 6.3.2. The proofs below are in MF, so the underlining is important.

6.4. EXTENSION TO G

�

ODEL'S T 119

Lemma 6.4.6 (Numeral Lemma) SC(0) and SC(S).

Lemma 6.4.7 (Recursor Lemma) For all �, SC(R

�

) is strongly computable.

Proof: Note that R

�

has type � ! (o ! � ! �) ! o ! �. We assume SC(s),

SC(t) and SC(p) for arbitrary terms s, t and p. We have to show SC

�

(R

�

stp). From

the de�nition of SC

o

(p) we obtain 9m:SN(p;m). Now 8m:8p:SN(p;m) ! SC(Rstp)

is proved by induction on m, which �nishes the proof.

Case 0: Let SN(p; 0). Let arbitrary, strongly computable ~r be given. We have to

prove 9k:SN(Rstp~r; k). From SC(s) and SC(~r) we get SC(s~r), hence SN(s~r; `) for

some ` (using the de�nition of SC repeatedly). Lemma 6.1.2 and the assumption SC(t)

imply SN(t; n) for some n. Now Lemma 6.4.3 applies, yielding SN(Rstp~r; `+ n+ 1).

So we put k := `+ n+ 1.

Case m+1: Assume 8q:SN(q;m)! SC(Rstq) (IH) and SN(p;m+1). Let arbitrary,

strongly computable ~r be given. We have to prove 9k:SN(Rstp~r; k). As in Case 0, we

obtain SN(s~r; `) for some `. In order to apply Lemma 6.4.5, we additionally have to

prove 8q:SN(q;m)! 9n:SN(tq(Rstq)~r; n).

So assume SN(q;m) for arbitrary q. This implies SC(q) and, by IH, SC(Rstq).

Now by de�nition of SC(t), we have SC(tq(Rstq)~r), i.e. SN(tq(Rstq)~r; n) for some n.

Now Lemma 6.4.5 applies, yielding SN(Rstp~r; ` +m + n

0

+ 1) for some n

0

. We put

k := `+m+ n

0

+ 1. �

The alternative proof uses 6.4.4, IP and IU instead of Lemma 6.4.5.

6.4.3 Formalized Proof

In order to formalize the proof of Section 6.4.2, we extend the language of Section 6.3.1

with constants 0

T

o

and in�nitely many R

�

of sort T

�!(o!�!�)!o!�

. Note the di�er-

ence between 0

T

o

and 0

nat

. Only on sort nat induction axioms will be postulated.

6.4.3.1 List of Additional Axioms

In the formalized proof, we use instances of induction (for formulae with a single

realizer) and the axioms below, which are underlined versions of Lemma 6.4.2{6.4.5.

Axioms 10, 11a and 11b are schematic in �. To enhance readability, we don't write

the in�x application symbol �, so e.g. s~r denotes s � ~r.

8. SN(0

T

o

; 0

nat

)

9. 8p;m: SN(p;m)! SN(Sp;m+ 1)

10. 8s; t; ~r; p; `; n: SN

�

(s~r; `) ! SN

o!�!�

(t; n) ! SN

o

(p; 0) ! SN

�

(R

�

stp~r; `+ n+

1)

11a. 8s; t; ~r; `;m; n: SN

�

(s~r; `)!

�

8q:SN

o

(q;m)! SN

�

(tq(Rstq)~r; n)

�

!

�

8p:SN

o

(p;m+ 1)! SN

�

(R

�

stp~r; `+m+ n+ 1)

�

120 CHAPTER 6. COMPUTABILITY VERSUS FUNCTIONALS

11b. 8s; t; ~r; `;m: SN

�

(s~r; `)!

�

8q:SN

o

(q;m)! 9n:SN

�

(tq(Rstq)~r; n)

�

!

�

8p:SN

o

(p;m+ 1)! 9n:SN

�

(R

�

stp~r; `+m+ n+ 1)

�

6.4.3.2 Realization of Axiom 11

By the underlining, it becomes clear that in Axiom 11b, the existentially quanti�ed

n, doesn't depend on q and p. We show that Axiom 11a is equivalent in NH to the

correctness statement \the identity realizes Axiom 11b":

�n

nat

:nmr 8s; t; ~r; `;m: SN

�

(s~r; `)!

�

8q:SN(q;m)! 9n:SN

�

(tq(Rstq)~r; n)

�

!

�

8p:SN(p;m+ 1)! 9n:SN

�

(Rstp~r; `+m+ n+ 1)

�

� 8s; t; ~r; `;m: SN

�

(s~r; `)!

8n:

�

nmr

�

8q:SN(q;m)! 9n:SN

�

(tq(Rstq)~r; n)

�

!

nmr

�

8p:SN(p;m+ 1)! 9n:SN

�

(Rstp~r; `+m+ n+ 1)

�

�

� 8s; t; ~r; `;m: SN

�

(s~r; `)!

8n:

�

�

8q:SN(q;m)! SN

�

(tq(Rstq)~r; n)

�

!

�

8p:SN(p;m+ 1)! SN

�

(Rstp~r; `+m+ n+ 1)

�

�

6.4.3.3 Formalization of the Numeral and Recursor Lemma

We �rst give the formal proof �

0

of the formula SC(0), which abbreviates 9n:SN(0; n):

�

0

:= 9

+

[0; ax

8

]

ep(�

0

) � 0

Now the formal proof �

S

of the formula SC(S), which after unfolding the de�nition

of SC equals 8p:(9m:SN(p;m))! 9n:SN(Sp; n) follows:

�

S

:= �p:�u

SC(p)

:9

�

[u;m;u

SN(p;m)

1

; 9

+

[m+ 1; (ax

9

pmu

1

)]]

ep(�

S

) � �x

u

:x

u

+ 1

Finally, we de�ne formal proofs �

R

of SC(R

�

), schematic in �. As mentioned in

Section 6.4.2, we give two alternatives. Both use Axiom 10 in the base case of the in-

duction. In the induction step, the �rst uses Axiom 11a, IP and IU and the other uses

Axiom 11b. The latter one is closest to the informal proof of Section 6.4.2. To enhance

readability, we will write �~r:�~w instead of the more correct �r

1

:�w

1

:�r

2

:�w

2

: � � �.

�

R

:= �s:�u

SC(s)

:�t:�v

SC(t)

:�p:�w

SC(p)

:9

�

[w;m;w

SN(p;m)

1

; (ind Base Step m p w

1

)],

where ind is induction w.r.t. 8m:8p:SN(p;m)! SC

�

(Rstp).

Base := �p:�a

SN(p;0)

:�~r:�~w

SC(~r)

:

9

�

[(u~r ~w); `;u

SN(s~r;`)

1

;

6.4. EXTENSION TO G

�

ODEL'S T 121

9

�

[(�

o!�!�

tv);n; v

SN(t;n)

1

;

9

+

[`+ n+ 1; (ax

10

st~rp`nu

1

v

1

a)]]]

and

Step := �m:�IH

8q:SN(q;m)!SC(Rstq)

�p:�a

SN(p;m+1)

:�~r:�~w

SC(~r)

:

9

�

[(u~r ~w); `;u

SN(s~r;`)

1

;

9

�

[(ax

11b

st~r`mu

1

�

�q:�b

SN(q;m)

:(vq(9

+

[m; b])(Rstq)(IH qb)~r ~w)

�

pa);

n; c

SN(Rstp~r;`+m+n+1)

;

9

+

[`+m+ n+ 1; c]]]:

In the alternative proof, only the induction step di�ers. We can exchange Step for:

Step

0

:= �m:�IH

8q:SN(q;m)!SC(Rstq)

�p:�a

SN(p;m+1)

:�~r:�~w

SC(~r)

:

9

�

[(u~r ~w); `;u

SN(s~r;`)

1

;

9

�

[(IU (IP �q:�b

SN(q;m)

:

�

vq(9

+

[m; b])(Rstq)(IH qb)~r ~w

�

));

n; c

8q:SN(q;m)!SN(tq(Rstq)~r;n)

;

9

+

[`+m+ n+ 1; (ax

11a

st~r`mnu

1

cpa)]]]

The proof uses induction, so the extracted program will use recursion. The struc-

ture of the induction formula reveals that ep(ind) = R

�

. The extracted program of

the Recursor Lemma is:

ep(�

R

) � �x

u

:�x

v

:�x

w

:(R

�

ep(Base) ep(Step) x

w

);

where

ep(Base) � � ~x

w

:(x

u

~x

w

) + (ep(�

o!�!�

)x

v

) + 1

ep(Step) =

�

ep(Step

0

) =

�

�m:�x

IH

:� ~x

w

:(x

u

~x

w

) +m+ (x

v

mx

IH

~x

w

) + 1

The extracted program of Step contains ep(ax

11b

), that of Step

0

contains ep(IU)

and ep(IP). All these axioms are realized by the identity, which we left out.

Remark: In [Tro73, x 2.2.18] K�onig's Lemma (or intuitionistically the Fan Theorem)

is used to prove that in the reduction tree of a strongly normalizing term, the maximal

value is bounded. To avoid this, one can either prove uniqueness of normal forms, or

strengthen SC by stating properties of reduction trees, which is rather cumbersome.

In our proof K�onig's Lemma is avoided by having a binary SN-predicate, which gives

an upper bound on the numerical value.

122 CHAPTER 6. COMPUTABILITY VERSUS FUNCTIONALS

6.4.4 Comparison with Gandy's Functionals

We compare the results of the program extraction, with the functionals given in

[Gan80, PS95] and Section 5.3. First, we present the extracted programs in a more

readable fashion. Note that the programs contain the primitive recursor R

�

, because

Lemma 6.4.7 contains induction on a formula ' with �(') = �. Using the notation

of Section 6.3.3, the extracted functionals read:

[[0]] = 0

[[S]](m) = m+ 1

[[R

�

]](x; f; 0; ~z) = x(~z) +M

o!�!�

(f) + 1

[[R

�

]](x; f;m+ 1; ~z) = x(~z) +m+ f(m; [[R

�

]](x; f;m); ~z) + 1

These clauses can be added to the de�nition of [[]] (Section 6.3.3), which now

assigns a functional to each term of G�odel's T. This also extends Upper[], which

now computes the upper bound for reduction lengths of terms in G�odel's T. But,

due to the changed interpretation of the SN-predicate, we know even more. In fact,

Upper[M] puts an upper bound on the length plus the numerical value of each reduc-

tion sequence. More precisely, if M !

i

S

j

(N) then i+ j � Upper[M].

Gandy's SN-proof can be extended by giving a strictly monotonic interpretation

R

�

of R, such that the recursion rules are decreasing. The functional used by Gandy

resembles the one above, but gives larger upper bounds. It obeys the following equa-

tions:

R

�

(x; f; 0; ~z) = x(~z) + L(f) + 1

R

�

(x; f;m+ 1; ~z) = f(m;R

�

(x; f;m); ~z) + R

�

(x; f;m; ~z) + 1:

Here L is Gandy's version of the functionalM (see Section 6.3.3). Clearly, the successor

step of R

�

uses the previous result twice, whereas [[R]] uses it only once. Both are

variants of the usual recursor. In the base case, the step function f is remembered

by both. This is necessary, because the �rst recursor rule drops its second argument,

while reductions in this argument may not be discarded. In step m + 1 the two

versions are really di�erent; R

�

adds the results of the steps 0; : : : ;m, while [[R]] only

adds the result of step 0 and the numerical argument m. The addition of the result

of step 0 is necessary to achieve monotonicity of [[R]] in its third argument. But note

that in the case that x, f and m are constantly zero, [[R]](x; f; 0; ~z) = [[R]](x; f; 1; ~z).

Hence [[R]] is not strictly monotonic in its third argument. To amend this, we had to

modify the 1 into a 2 in the proof using strict functionals (Section 5.3).

We conclude by stating that also for G�odel's T, program extraction reveals a

similarity between the SN proof �a la Tait and the SN proof of Gandy. However, the

extracted functional from Tait's proof gives a sharper upper bound than the functional

given by Gandy. Moreover, because we changed our interpretation of SN(M;n) in

order to verify the axioms, we know that this sharper upper bound holds for the

sum of the length and the numerical value of each reduction sequence. Both results

however, could have been easily obtained when using functionals directly.

6.5. CONCLUSION 123

6.5 Conclusion

With two case studies we showed, that modi�ed realizability is a useful tool to reveal

the similarity between SN-proofs using strong computability and SN-proofs using

strictly monotonic functionals. The extra e�ort for G�odel's T has paid o�, because we

found sharper upper bounds than in [Gan80, PS95]. Moreover, the new upper bound

puts a bound on the sum of the length and the numerical value of each reduction

sequence. This information helps to improve the proof that uses strictly monotonic

functionals (Section 5.3).

We think that our method can be applied more often. In a typical computability

proof SC-predicates are de�ned by induction on types. It is then proved by induction

on terms, that any term satis�es SC. By induction on the types, SN follows. After

decorating such a proof with an administration for reduction lengths, the appropriate

modi�ed realizability interpretation maps SC-predicates to functionals of the original

type and SN-predicates to numbers. The extracted program follows the induction on

terms to obtain a non-standard interpretation of the term. This object is mapped to

an upper bound by the proof that SC implies SN.

The realizability interpretation follows the type system closely. To deal with

G�odel's T, induction was added. In the same way, conjunction and disjunction

can be added to deal with products and coproducts (see also [Gan80]). Recently,

Loader [Loa95] extended Gandy's proof to System F. As he points out, Girard's SN

proof for System F (using reducibility candidates, see e.g. [GLT89]) can be deco-

rated, after which modi�ed realizability yields the same upper bound expressions.

Another extension could deal with recursion over in�nitely branching trees (known

as Kleene's O or Zucker's T

1

-trees).

A problem arises with the permutative conversions for existential quanti�ers in �rst

order logic. The semantical proof given in Section 5.5 is based on strict functionals.

Prawitz [Pra71] gives an SN-proof using strong validity (SV), see the Appendix.

But the SV-predicate is de�ned using a general inductive de�nition, hence the com-

putational contents of Prawitz's proof is not clear. Consequently, the two SN-proofs

cannot be related by our method.

124 CHAPTER 6. COMPUTABILITY VERSUS FUNCTIONALS

Appendix A

Strong Validity for the

Permutative Conversions

In [Pra71] Prawitz proves strong normalization for a rewrite relation on proof trees of

full classical logic. The rewrite rules include not only the usual �-rules, but also the so

called permutative reductions. In this appendix we reproduce this proof, with some

minor modi�cations. Instead of proof trees, derivation terms are used. The de�nition

of an end segment is formalized (De�nition 5). In the de�nition of strong validity a

little deviation of the de�nition in [Pra71] can be found. Lemma 6, 7 and 11 are not

proved in [Pra71]. Note that in Section 5.5 we give a semantical termination proof of

this system without disjunction.

0. Variable conventions

u, v : assumption variables.

d, e, f , g : derivation terms.

x, y : individual variables.

s, t : individual terms.

~�,

~

� : �nite sequences of variables and terms.

', , � : formulae of predicate logic, without :.

2 : f�;&;_;8; 9g.

i : f0; 1g.

k, l, `, m, n : natural numbers.

1. Derivation terms and free assumptions

� u

'

, FA(u) = fug.

� �

+

hu

'

; d

i

'!

, FA(�

+

hu; di) = FA(d) n fug.

� �

�

hd

'!

; e

'

i

, FA(�

�

hd; ei) = FA(d) [FA(e).

125

126 APPENDIX. STRONG VALIDITY

� &

+

hd

'

; e

i

'^

, FA(&

+

hd; ei) = FA(d) [FA(e).

� &

�

i

hd

'

0

^'

1

i

'

i

, FA(&

�

i

hdi) = FA(d).

� _

+

i

hd

'

i

i

'

0

_'

1

, FA(_

+

i

hdi) = FA(d).

� _

�

hd

'_

; u

'

; e

�

; v

; f

�

i

�

,

FA(_

�

hd; u; e; v; fi) = FA(d) [(FA(e) n fug) [(FA(f) n fvg).

� 8

+

hx; d

'

i

8x'

, FA(8

+

hx; di) = FA(d),

(provided x =2 FV(), for any u

2 FA(d)).

� 8

�

hd

8x'

; ti

'[x:=t]

, FA(8

�

hd; ti) = FA(d).

� 9

+

ht; d

'[x:=t]

i

9x'

, FA(9

+

ht; di) = FA(d).

� 9

�

hd

9x'

; x; u

'

; e

i

, FA(9

�

hd; x; u; ei) = FA(d) [(FA(e) n fug),

(provided x =2 FV() and x =2 FV(�), for any v

�

2 FA(e) n fug).

On each line of this de�nition, d, e and f (if present) are immediate subderivations

of the de�ned term, as opposed to x, u and v, which are not. In the lines de�ning a

2

�

term, d is called the major premise of the derivation term being de�ned.

2. Reduction rules We want to study termination of the rewrite relation generated

by the following rules.

1. �

�

h�

+

hu; di; ei 7! d[u := e].

2. &

�

i

h&

+

hd

0

; d

1

ii 7! d

i

.

3. _

�

h_

+

i

hdi; u

0

; e

0

; u

1

; e

1

i 7! e

i

[u

i

:= d].

4. 8

�

h8

+

hx; di; ti 7! d[x := t].

5. 9

�

h9

+

ht; di; x; u; ei 7! e[x; u := t; d].

6. 2

�

h9

�

hd; x; u; ei; ~�i 7! 9

�

hd; x; u;2

�

he; ~�ii.

7. 2

�

h_

�

hd; u; e; v; fi; ~�i 7! _

�

hd; u;2

�

he; ~�i; v;2

�

hf; ~�ii.

The right hand side of each rule is called an immediate reduct of the corresponding

left hand side. In case this rule is among the �rst �ve, we call this reduct a proper

reduct. In the last two cases we call it a permutative reduct. We write d! e, if e can

be obtained by replacing a subterm of d by an immediate reduct of it.

3. Lemma If 2

+

h�

1

; : : : ; �

n

i ! e, then (for some

~

� and 1 � k � n) e =

2

+

h�

1

; : : : ; �

n

i, �

k

is an immediate subderivation, �

k

! �

k

and for all 1 � ` � n

except k, �

`

= �

`

.

127

4. Lemma If d! d

0

, then d[x; u := t; e]! d

0

[x; u := t; e].

5. Segment relation To formalize the sentence in Prawitz: \e occurs in an end

segment of d", we de�ne an inductive binary relation ES on derivation terms: ES(d; e)

if

1. d = e, or

2. d = 9

�

hf; x; u; d

0

i and ES(d

0

; e), for some f , x, u, or

3. d = _

�

hf; u; d

0

; v; d

1

i and ES(d

i

; e), for some i, f , u, v, d

0

, d

1

.

6. Lemma

Let ES(d

1

; 9

+

ht; ei). Then for some d

2

, 9

�

hd

1

; x; u; fi !

+

d

2

, and ES(d

2

; f [x; u :=

t; e]).

Proof: Induction over the de�nition of ES(d

1

).

1. If d

1

= 9

+

ht; ei, we can put d

2

:= f [x; u := t; e], for this is a proper reduct of

9

�

hd

1

; x; u; fi.

2. If d

1

= 9

�

hg; y; v; d

0

i, with ES(d

0

; 9

+

ht; ei), then we have an existential per-

mutative reduction 9

�

hd

1

; x; u; fi ! 9

�

hg; y; v; 9

�

hd

0

; x; u; fii. Now by the in-

duction hypothesis we have a reduction of the last term to 9

�

hg; y; v; d

0

2

i, with

ES(d

0

2

; f [x; u := t; e]). This is our d

2

.

3. If d

1

= _

�

hg

1

; v

1

; e

1

; v

2

; e

2

i, with ES(e

1

; 9

+

ht; ei), then we have a permutative

reduction 9

�

hd

1

; x; u; fi ! _

�

hg

1

; v

1

; 9

�

he

1

; x; u; fi; v

2

; 9

�

he

2

; x; u; fii. Now

the induction hypothesis yields a reduction to _

�

hg

1

; v

1

; d

0

; v

2

; 9

�

he

2

; x; u; fii,

with ES(d

0

; f [x; u := t; e]). This term is taken as d

2

. The case ES(e

2

; 9

+

ht; ei)

is similar. �

7. Lemma If ES(d

1

;_

+

i

hei), then for some d

2

, we have _

�

hd

1

; v

0

; e

0

; v

1

; e

1

i !

+

d

2

,

and ES(d

2

; e

i

[v

i

:= e]).

Proof: Similar to the proof of Lemma 6. �

8. Strong validity The predicate Strongly Valid (SV) is de�ned on derivations

terms by the following clauses. It proceeds by induction on the formula the terms

prove, and for a �xed formula it is an inductive de�nition.

1. SV(&

+

hd; ei) if SV(d) and SV(e).

2. SV(_

+

i

hdi) if SV(d).

3. SV(9

+

ht; di) if SV(d).

128 APPENDIX. STRONG VALIDITY

4. SV(�

+

hu; di) if for any e with SV(e), SV(d[u := e]).

5. SV(8

+

hx; di) if for any t, SV(d[x := t]).

6. If d is not an introduction, then SV(d) if

(a) for all d

0

with d! d

0

, SV(d

0

);

(b) and if d = _

�

hd

1

; u

0

; e

0

; u

1

; e

1

i, then

(i) SV(e

0

) and SV(e

1

), and

(ii) if d

1

� d

0

and ES(d

0

;_

+

i

hei), then SV(e

i

[u

i

:= e]);

(c) and if d = 9

�

hd

1

; x; u; ei, then

(i) SV(e), and

(ii) if d

1

� d

0

and ES(d

0

; 9

+

ht; fi), then SV(e[x; u := t; f]).

Remark. In fact, 6.b.(ii) and 6.c.(ii) are superuous as shown by [Joa95, p. 99].

The reason is that these parts can be proved after Lemma 11 has been proved. This

not only simpli�es the de�nition, but also the proof of Lemma 12.

9. Lemma Let d

1

! d

2

and SV(d

1

). Then SV(d

2

).

Proof: Induction over the de�nition of SV(d

1

).

1. Let d

1

= &

+

hd; ei, with SV(d) and SV(e). By Lemma 3, we know that d

2

=

&

+

hd

0

; e

0

i, with d ! d

0

and e = e

0

, or e ! e

0

and d = d

0

. Then by induction

hypothesis, SV(d

0

) and SV(e

0

), so SV(&

+

hd

0

; e

0

i).

2,3. The cases d

1

= _

+

i

hdi and d

1

= 9

+

ht; di can be proved in the same way.

4. Let d

1

= �

+

hu; di and SV(d[u := e]), whenever SV(e). By Lemma 3, d

2

=

�

+

hu; d

0

i and d ! d

0

. Let e be given with SV(e). By Lemma 4, d[u := e] !

d

0

[u := e] and by induction hypothesis, SV(d

0

[u := e]). Therefore SV(d

2

).

5. The case d

1

= 8

+

hx; di can be proved similarly.

6. If d

1

is not an introduction, we get SV(d

2

) from De�nition 8.6.a. �

10. Theorem If SV(d) then SN(d).

Proof: Induction over the de�nition of SV(d).

1. If d = &

+

he; e

0

i with SV(e) and SV(e

0

), then by induction hypothesis, SN(e)

and SN(e

0

). An in�nite rewrite sequence of d would lead to an in�nite rewrite

sequence in e, or in e

0

(by Lemma 3 and the pigeon hole principle). It follows

that SN(d).

2,3. These cases go similarly.

129

4. Let d = �

+

hu; ei. Note that SV(u). (It is not an introduction, and it trivially

satis�es 8.6.a{c). By De�nition 8.4, SV(e), so SN(e) by induction hypothesis.

By Lemma 3, an in�nite rewrite sequence from d leads to an in�nite rewrite

sequence in e. It follows that SN(d).

5. Case d = 8

+

hx; ei follows similarly.

6. Assume that d is not an introduction and SV(e), for any e with d ! e. By

induction hypothesis, SN(e) whenever d! e. But then also SN(d). �

11. Lemma

1. If ES(d; e) and SV(d) then SV(e).

2. If ES(d; e) and e! e

0

, then there exists a d

0

, such that ES(d

0

; e

0

) and d! d

0

.

3. If ES(d; e) and SN(d) then SN(e).

Proof:

1. Let ES(d; e) and SV(d). We proceed with induction over the de�nition of

ES(d; e).

{ If d = e, then clearly SV(e).

{ If d = 9

�

hd

1

; x; u; d

2

i and ES(d

2

; e), then by De�nition 8.6.c.(i) for d,

SV(d

2

). So the induction hypothesis applies, yielding SV(e).

{ If d = _

�

hd

1

; u

0

; e

0

; u

1

; e

1

i, and ES(e

i

; e), then by De�nition 8.6.b.(i) for

d, SV(e

i

), and by induction hypothesis SV(e).

2. Let ES(d; e) and e! e

0

. Again the proof is by induction on ES(d; e).

{ If d = e, then we can simply choose d

0

:= e

0

.

{ If d = 9

�

hd

1

; x; u; d

2

i, and ES(d

2

; e), we have by induction hypothesis a

term d

0

2

, with d

2

! d

0

2

and ES(d

0

2

; e). We put d

0

:= 9

�

hd

1

; x; u; d

0

2

i.

{ Case d = _

�

hd

1

; u

0

; e

0

; u

1

; e

1

i can be proved similarly.

3. This is a direct consequence of (2). �

12. Lemma If the following conditions are satis�ed, then SV(2

�

h~�i)

1. SN(�

`

), for any ` such that �

`

is an immediate subderivation.

2. If 2 2 f&;�;8g, then SV(�

`

), for any ` such that �

`

is an immediate subderiva-

tion.

3. If 2 2 f_; 9g, then clauses 8.6.b and 8.6.c of the de�nition of strongly valid are

satis�ed.

130 APPENDIX. STRONG VALIDITY

Proof: To any derivation tree d = 2

�

h~�i, we assign an induction value, which is a

triple (k; l;m). The induction values are ordered lexicographically. The components

of this value are:

k = the length of the longest reduction from the major premise of d.

l = the depth of the major premise of d.

m = the sum of the lengths of the longest reductions from the immediate sub-

derivations of d.

Let (1), (2) and (3) be satis�ed for some d = 2

�

h~�i, with induction value (k; l;m).

Note that k and m are �nite, by assumption (1). We have to show 6.a{c of De�nition

8, but (b) and (c) are assumed under (3). So let d ! d

0

, and our task is to prove

SV(d

0

). We distinguish three cases.

I. d

0

is obtained by reducing a proper subterm of d. Then d

0

= 2

�

h

~

�i, with

�

`

! �

`

for some immediate subderivation �

`

. The other immediate subterms

are not changed. Let (k

0

; l

0

;m

0

) be the induction value of d

0

. If �

`

was the

major premise of d, then k > k

0

. Otherwise, k = k

0

, l = l

0

, and m > m

0

. So the

induction value is lowered, and we can use the induction hypothesis, which says

that it is enough to prove (1), (2) and (3) for d

0

.

1. follows from (1) for d.

2. follows from (2) for d, using Lemma 9 for �

`

.

3. Let d = 9

�

hd

1

; x; u; e

1

i, then d

0

= 9

�

hd

2

; x; u; e

2

i, with d

1

! d

2

and

e

1

= e

2

, or d

1

= d

2

and e

1

! e

2

. We have to prove 8.6.c.(i),(ii) for d

0

.

(i) follows from 8.6.c.(i) for d, using Lemma 9 in case e

1

! e

2

.

(ii) Let d

2

� d

3

, with ES(d

3

; 9

+

ht; fi). Then also d

1

� d

3

. With 8.6.c.(ii)

for d, it follows that SV(e

1

[x; u := t; f]). Then also SV(e

2

[x; u := t; g]).

(If e

1

! e

2

, we use Lemma 4 and 9).

The case d = _

�

hd

1

; u

1

; e

1

; u

2

; e

2

i can be proved similarly.

II. d

0

is a proper reduct of d. In this case, d = 2

�

h2

+

h

~

�

1

i;

~

�

2

i. We consider the

possibilities:

1. d = &

�

i

h&

+

hd

1

; d

2

ii. Then we have to prove SV(d

i

). From (2) for d, we

know SV(&

+

hd

1

; d

2

i), with De�nition 8.1 it follows that SV(d

i

).

2. d = �

�

h�

+

hu; d

1

i; d

2

i. We have to prove SV(d

1

[u := d

2

]). From (2) for d,

we know that SV(�

+

hu; d

1

i), and SV(d

2

). By De�nition 8.4 SV(d

1

[u :=

d

2

]) follows.

3. d = 8

�

h8

+

hx; d

1

i; ti can be proved similarly.

4. d = 9

�

h9

+

ht; d

1

i; x; u; d

2

i. We have to prove SV(d

2

[x; u := t; d

1

]). From

8.6.c.(ii) for d, this follows immediately.

5. d = _

�

h_

+

i

hd

1

i; u

1

; e

1

; u

2

; e

2

i goes similarly.

131

III. d

0

is a permutative reduct of d. We only treat existential permutative reduc-

tions. Then d = 2

�

h9

�

hd

1

; x; u; d

2

i;

~

�i, and d

0

= 9

�

hd

1

; x; u;2

�

hd

2

;

~

�ii, with

induction value (k

0

; l

0

;m

0

). Both k

0

and m

0

are �nite, as will be shown soon

under (1). We have to prove SV(d

0

). Note that the major premise of d

0

is an

immediate subderivation of the major premise of d. Therefore k

0

� k, and l

0

< l,

so we can apply the induction hypothesis, which says that it su�ces to prove

(1), (2) and (3) for d

0

.

1. SN(d

1

) follows from (1) for d. SN(2

�

hd

2

;

~

�i) follows by Theorem 10 from

SV(2

�

hd

2

;

~

�i), which we are going to prove in (3).

2. is satis�ed trivially.

3. We have to prove 8.6.c for d

0

, so (i) SV(2

�

hd

2

;

~

�i) and (ii) If d

1

� d

0

1

,

with ES(d

0

1

; 9

+

ht; fi), then SV(2

�

hd

2

[x; u := t; f];

~

�i). (

~

� doesn't contain

x and u, because d is a correct derivation.) We �rst deduce some facts:

F1. SN(

~

�), SN(9

�

hd

1

; x; u; d

2

i) and SN(d

2

). (follows from (1) for d.)

F2. If 2 2 f&;�;8g, then SV(

~

�), SV(9

�

hd

1

; x; u; d

2

i) and SV(d

2

). The

�rst and second follow from (2) for d; the third follows from the second

by De�nition 8.6.c.(i).

Now we are going to prove (i) and (ii).

(i) Let (k

1

; l

1

;m

1

) be the induction value of 2

�

hd

2

;

~

�i. Then k

1

� k,

and l

1

< l, so we can apply the induction hypothesis, which grants

us to prove (1), (2) and (3) for 2

�

hd

2

;

~

�i. (1) follows from F1 and

(2) follows from F2. For (3), let 2 2 f_; 9g. We only treat case 9,

case _ going similarly. Then d = 9

�

h9

�

hd

1

; x; u; d

2

i; y; v; d

3

i, and d

0

=

9

�

hd

1

; x; u; 9

�

hd

2

; y; v; d

3

ii. We have to prove 8.6.c.(i) and 8.6.c.(ii)

for 9

�

hd

2

; y; v; d

3

i, or more precisely, SV(d

3

) and if d

2

� d

0

2

, with

ES(d

0

2

; 9

+

hs; gi), then SV(d

3

[y; v := s; g]). The �rst follows from

8.6.c.(i) for d. The other from 8.6.c.(ii) for d, as 9

�

hd

1

; x; u; d

2

i �

9

�

hd

1

; x; u; d

0

2

i, and by De�nition 5, ES(9

�

hd

1

; x; u; d

0

2

i; 9

+

hs; gi).

(ii) Let d

1

� d

0

1

, and ES(d

0

1

; 9

+

ht; fi). Let (k

2

; l

2

;m

2

) be the induction

value assigned to 2

�

hd

2

[x; u := t; f];

~

�i. We have the following fact,

as a direct consequence of Lemma 6:

F3. For some e, 9

�

hd

1

; x; u; d

2

i !

+

e and ES(e; d

2

[x; u := t; f]).

From F3 and Lemma 11.2, we have k

2

< k, so the induction hypothesis

applies, and we only need to show (1), (2) and (3) for 2

�

hd

2

[x; u :=

t; f];

~

�i.

1. SN(

~

�) by F1, SN(d

2

[x; u := t; f]), by F3 and F1 and Lemma 11.3.

2. Let 2 2 f&;�;8g. Then SV(

~

�) by F2, and SV(d

2

[x; u := t; f]),

by 8.6.c.(ii) for 9

�

hd

1

; x; u; d

2

i, which is strongly valid by F2.

3. Let 2 2 f_; 9g. Again we only do case 9, as the other case

goes in the same way. Then d = 9

�

h9

�

hd

1

; x; u; d

2

i; y; v; d

3

i,

132 APPENDIX. STRONG VALIDITY

and d

0

= 9

�

hd

1

; x; u; 9

�

hd

2

; y; v; d

3

ii. We have to prove 8.6.c for

9

�

hd

2

[x; u := t; f]; y; v; d

3

i. More precisely, we have to prove (i)

SV(d

3

), and (ii) If d

2

[x; u := t; f] � d

0

2

, with ES(d

0

2

; 9

+

hs; gi),

then SV(d

3

[y; v := s; g]). (i) follows from 8.6.c.(i) for d, and

(ii) follows from 8.6.c.(ii) for d, if we can �nd an e

0

, such that

9

�

hd

1

; x; u; d

2

i � e

0

and ES(e

0

; 9

+

hs; gi). Take e as in F3, then

from Lemma 11.2, we get e

0

, such that e� e

0

, and ES(e

0

; d

0

2

). By

transitivity of both � and ES this e

0

satis�es. �

13. Strong validity under substitution A substitution (�) is a correctness

preserving mapping which maps free term variables to terms and free assumption

variables to derivation terms. A substitution is strongly valid (SV(�)) if it maps as-

sumption variables to strongly valid derivations terms. A derivation term d is called

strongly valid under substitution (SV

�

(d)) if for any strongly valid substitution �,

SV(d

�

). Clearly SV

�

(d) implies SV(d).

14. Theorem SV

�

(d).

Proof: Induction on the structure of d.

� Let d = u, let SV(�). Then d

�

= u, or d

�

= �(u). The �rst is strongly valid,

because it is normal (De�nition 8.6.a); the second is strongly valid, because �

is.

� If d = &

+

hd

1

; d

2

i, then by induction hypothesis, SV

�

(d

1

) and SV

�

(d

2

). Let

SV(�), then SV(d

�

1

) and SV(d

�

2

). By De�nition 8.1, SV(&

+

hd

1

; d

2

i

�

).

� d = 9

+

ht; d

1

i and d = _

+

i

hd

1

i go similarly.

� If d = �

+

hu; d

1

i, then by induction hypothesis, SV

�

(d

1

). So, if SV(e) and

SV(�), then SV(d

�[u:=e]

1

). By De�nition 8.4, SV(�

+

hu; d

1

i

�

).

� d = 8

+

hx; d

1

i goes in the same way.

� Let d = 2

�

h~�i. Let SV(�). We have to prove (1), (2) and (3) of Lemma 12

for d

�

. By induction hypothesis, SV(�

�

`

), for immediate subderivations �

`

. By

Theorem 10, also SN(�

�

`

). This proves (1) and (2). For (3), we have to prove

8.6.b and 8.6.c for d.

Let d = 9

�

hd

1

; x; u; d

2

i. By induction hypothesis, SV

�

(d

2

) and SV

�

(d

1

), so

SV(d

�

2

) and SV(d

�

1

). Furthermore, if d

�

1

� d

0

, with ES(d

0

; 9

+

ht; ei), then by

Lemma 9, SV(d

0

), by Lemma 11.1, SV(9

+

ht; ei), and by De�nition 8.3, SV(e).

We conclude that SV(d

�

2

[x; u := t; e]). This proves 8.6.c.

The case that d = _

�

hd

1

; u

0

; e

0

; u

1

; e

1

i (8.6.b) goes similarly. �

15. Main theorem SN(d).

Proof: Theorem 10 and Theorem 14. �

Bibliography

[AB91] G.J. Akkerman and J.C.M. Baeten. Term rewriting analysis in process

algebra. Technical Report CS-R9130, CWI, June 1991.

[Acz78] P. Aczel. A general Church-Rosser theorem. Technical report, University

of Manchester, July 1978.

[AGM92] S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum, editors. Handbook of

Logic in Computer Science, volume II. Oxford University Press, 1992.

[AGM94] D.J. Andrews, J.F. Groote, and C.A. Middelburg, editors. Proceedings

of the International Workshop on Semantics of Speci�cation Languages,

Utrecht, The Netherlands, 1993, Workshops in Computing. Springer-

Verlag, 1994.

[Aka93] Y. Akama. On Mints' reduction for ccc-calculus. In Bezem and Groote

[BG93], pages 1{12.

[Bak92] S. van Bakel. Complete restrictions of the intersection type discipline.

Theoretical Computer Science, 102(1):135{163, August 1992.

[Bar84] H.P. Barendregt. The Lambda Calculus. Its Syntax and Semantics. North-

Holland, Amsterdam, second, revised edition, 1984.

[Bar92] H.P. Barendregt. Lambda calculi with types. In Abramsky et al.

[AGM92], pages 117{310.

[Ber93] U. Berger. Program extraction from normalization proofs. In Bezem and

Groote [BG93], pages 91{106.

[Bez86] M.A. Bezem. Bar Recursion and Functionals of Finite Type. PhD thesis,

Utrecht University, October 1986.

[BFG94] F. Barbanera, M. Fern�andez, and H. Geuvers. Modularity of strong nor-

malization and conuence in the algebraic-�-cube. In Proceedings of the

Ninth Annual IEEE Symposium on Logic in Computer Science, Paris,

France, pages 406{415, juli 1994. To appear in the Journal of Functional

Programming.

133

134 BIBLIOGRAPHY

[BG90] V. Breazu-Tannen and J. Gallier. Polymorphic rewriting conserves al-

gebraic strong normalization. Theoretical Computer Science, 83:3{28,

1990.

[BG93] M. Bezem and J.F. Groote, editors. Proceedings of the First Interna-

tional Conference on Typed Lambda Calculi and Applications, Utrecht,

The Netherlands, volume 664 of Lecture Notes in Computer Science.

Springer Verlag, 1993.

[BK84] J.A. Bergstra and J.W. Klop. The algebra of recursively de�ned processes

and the algebra of regular processes. In Proceedings of the 11

th

ICALP,

Antwerpen, volume 172 of Lecture Notes in Computer Science, pages

82{95. Springer-Verlag, 1984.

[Bre88] V. Breazu-Tannen. Combining algebra and higher-order types. In Pro-

ceedings of the Third Annual IEEE Symposium on Logic in Computer

Science, Edinburgh, Scotland, pages 82{90, July 1988.

[Bru72] N.G. de Bruijn. Lambda calculus notation with nameless dummies, a

tool for automatic formula manipulation, with application to the Church{

Rosser theorem. Indagationes Math., 34:381{392, 1972.

[CFC58] H.B. Curry, R. Feys, and W. Craig. Combinatory Logic, volume 1. North-

Holland, Amsterdam, 1958. Second printing 1968.

[Chu40] A. Church. A formulation of the simple theory of types. Journal of

Symbolic Logic, 5:56{68, 1940.

[CK94] R. Di Cosmo and D. Kesner. Simulating expansions without expansions.

Mathematical Structures in Computer Science, 4:315{362, 1994.

[CR36] A. Church and J.B. Rosser. Some properties of conversion. Transactions

of the American Mathematical Society, 39:472{482, 1936.

[Der82] N. Dershowitz. Orderings for term-rewriting systems. Theoretical Com-

puter Science, 17(3):279{301, March 1982.

[Der87] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computa-

tion, 3(1):69{116, 1987. Corrigendum: 4 (3): 409{410.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen,

editor, Handbook of Theoretical Computer Science, volume B, chapter 6,

pages 243{320. Elsevier, 1990.

[Dou92] D.J. Dougherty. Adding algebraic rewriting to the untyped lambda cal-

culus. Information and Computation, 101:251{267, 1992.

[Dou93] D.J. Dougherty. Some lambda calculi with categorical sums and products.

In Kirchner [Kir93], pages 137{151.

BIBLIOGRAPHY 135

[Fer95] M.C.F. Ferreira. Termination of Term Rewriting. PhD thesis, Univer-

siteit Utrecht, November 1995.

[Gan80] R.O. Gandy. Proofs of strong normalization. In J.R. Hindley and J.P.

Seldin, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda

Calculus and Formalism, pages 457{477. Academic Press, London, 1980.

[Ges94] A. Geser. An improved general path order. Technical Report MIP-9407,

Fakult�at f�ur Mathematik und Informatik, Universit�at Passau, June 1994.

[Gir72] J.-Y. Girard. Interpr�etation fonctionelle et �elimination des coupures dans

l'arithm�etique d'ordre sup�erieur. PhD thesis, Universit�e Paris VII, 1972.

[Gir87] J.-Y. Girard. Proof theory and Logical Complexity, volume I. Studies in

Proof Theory. Bibliopolis, Napoli, 1987.

[GLT89] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of

Cambridge tracts in theoretical computer science. Cambridge University

Press, Cambridge, 1989.

[GP90] J.F. Groote and A. Ponse. The syntax and semantics of �CRL. Technical

Report CS-R9076, CWI, Amsterdam, 1990.

[GP94] J.F. Groote and A. Ponse. Proof theory for �CRL: a language for pro-

cesses with data. In Andrews et al. [AGM94], pages 232{251.

[HL78] G. Huet and D.S. Lankford. On the uniform halting problem for term

rewriting systems. Technical Report Rapport Laboria 283, INRIA, 1978.

[HMMN94] J. Heering, K. Meinke, B. M�oller, and T. Nipkow, editors. Proceedings

of the First International Workshop on Higher-Order Algebra, Logic and

Term Rewriting, Amsterdam, The Netherlands, HOA '93, volume 816 of

Lecture Notes in Computer Science. Springer-Verlag, 1994.

[HO80] G. Huet and D. Oppen. Equations and rewrite rules { a survey. In

Formal Language Theory { Perspectives and Open Problems, pages 349{

405. Academic Press, 1980.

[Hsi95] J. Hsiang, editor. Proceedings of the Sixth International Conference on

Rewriting Techniques and Applications, Kaiserslautern, Germany, vol-

ume 914 of Lecture Notes in Computer Science. Springer-Verlag, 1995.

[JO91] J.-P. Jouannaud and M. Okada. Executable higher{order algebraic spec-

i�cation languages. In Proceedings of the Sixth Annual IEEE Symposium

on Logic in Computer Science, Amsterdam, The Netherlands, pages 350{

361, 1991.

[Joa95] Felix Joachimski. Kontrolloperatoren und klassische Logik. Master's

thesis, Mathematisches Institut der Universit�at M�unchen, 1995.

136 BIBLIOGRAPHY

[JR96] J.-P. Jouannaud and A. Rubio. A recursive path ordering for higher-

order terms in �-long �-normal form. In Proceedings of the Seventh In-

ternational Conference on Rewriting Techniques and Applications, New

Brunswick, NJ, USA, pages 108{122, 1996.

[Kah95] S. Kahrs. Towards a domain theory for termination proofs. In Hsiang

[Hsi95], pages 241{255.

[Kah96] S. Kahrs. Termination proofs in an abstract setting. Obtainable via

http://www.dcs.ed.ac.uk/generated/home-links/smk/, 1996.

[Kir93] C. Kirchner, editor. Proceedings of the Fifth International Conference on

Rewriting Techniques and Applications, Montreal, Canada, volume 690

of Lecture Notes in Computer Science. Springer-Verlag, 1993.

[KL80] S. Kamin and J.J. L�evy. Two generalizations of the recursive path order-

ing. Technical report, University of Illinois, 1980.

[Klo80] J.W. Klop. Combinatory Reduction Systems. PhD thesis, Rijksuniver-

siteit Utrecht, Amsterdam, 1980.

[Klo92] J.W. Klop. Term rewriting systems. In Abramsky et al. [AGM92], pages

1{116.

[KOR93] J.W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory re-

duction systems, introduction and survey. Theoretical Computer Science,

121(1{2):279{308, December 1993.

[Kre59] G. Kreisel. Interpretation of analysis by means of constructive functionals

of �nite types. In A. Heyting, editor, Constructivity in Mathematics,

pages 101{128. North-Holland, 1959.

[Loa95] R. Loader. Normalisation by translation. Note distributed on \types"

mailing list. Obtainable via http://sable.ox.ac.uk/~loader/, April

1995.

[Lor94] C.A. Loria-Saenz. A Theoretical Framework for Reasoning about Pro-

gram Construction based on Extensions of Rewrite Systems. PhD thesis,

Fachbereich Informatik der Universit�at Kaiserslautern, 1994.

[LP95] O. Lysne and J. Piris. A termination ordering for higher order rewrite

systems. In Hsiang [Hsi95], pages 26{40.

[LS93] C.A. Loria-Saenz and Joachim Steinbach. Termination of combined

(rewrite and �-calculus) systems. In Rusinowitch and R�emy [RR93],

pages 143{147.

BIBLIOGRAPHY 137

[Mid89] A. Middeldorp. A su�cient condition for the termination of the direct

sum of term rewriting systems. In Proceedings of the Fourth Annual

IEEE Symposium on Logic in Computer Science , Paci�c Grove, pages

396{401, 1989.

[Mil91] D. Miller. A logic programming language with lambda-abstraction, func-

tion variables, and simple uni�cation. In P. Schroeder-Heister, editor,

Extensions of Logic Programming: International Workshop, T�ubingen

FRG, 1989, volume 475 of Lecture Notes in Computer Science, pages

253{281. Springer-Verlag, 1991.

[MOZ96] A. Middeldorp, H. Ohsaki, and H. Zantema. Transforming termination

by self-labelling. Technical Report UU-CS-1996-15, Utrecht University,

1996. To appear in CADE-13.

[Ned73] R.P. Nederpelt. Strong Normalization in a Typed Lambda Calculus with

Lambda Structured Types. PhD thesis, Eindhoven Technological Univer-

sity, The Netherlands, 1973.

[New42] M.H.A. Newman. On theories with a combinatorial de�nition of \equiv-

alence". Annals of Mathematics, 43(2):223{243, 1942.

[Nip91] T. Nipkow. Higher-order critical pairs. In Proceedings of the Sixth An-

nual IEEE Symposium on Logic in Computer Science, Amsterdam, The

Netherlands, pages 342{349, 1991.

[Nip93] T. Nipkow. Orthogonal higher-order rewrite systems are conuent. In

Bezem and Groote [BG93], pages 306{317.

[Oos94] V. van Oostrom. Conuence for Abstract and Higher-Order Rewriting.

PhD thesis, Vrije Universiteit, Amsterdam, 1994.

[OR94] V. van Oostrom and F. van Raamsdonk. Comparing combinatory re-

duction systems and higher-order rewrite systems. In Heering et al.

[HMMN94], pages 276{304.

[Pol94] J.C. van de Pol. Termination proofs for higher-order rewrite systems. In

Heering et al. [HMMN94], pages 305{325.

[Pol96] J.C. van de Pol. Two di�erent strong normalization proofs? Computabil-

ity versus functionals of �nite type. In G. Dowek, J. Heering, K. Meinke,

and B. M�oller, editors, Proceedings of the Second International Work-

shop on Higher-Order Algebra, Logic and Term Rewriting, Paderborn,

Germany, HOA '95, volume 1074 of Lecture Notes in Computer Science,

pages 201{220. Springer-Verlag, 1996.

[Pra71] D. Prawitz. Ideas and results in proof theory. In Jens Erik Fenstad,

editor, Proc. of the Second Scandinavian Logic Symposium, pages 235{

307, Amsterdam, 1971. North{Holland.

138 BIBLIOGRAPHY

[PS95] J.C. van de Pol and H. Schwichtenberg. Strict functionals for termination

proofs. In M. Dezani-Ciancaglini and G. Plotkin, editors, Proceedings of

the Second International Conference on Typed Lambda Calculi and Appli-

cations, Edinburgh, Scotland, volume 902 of Lecture Notes in Computer

Science, pages 350{364. Springer-Verlag, 1995.

[Raa96] F. van Raamsdonk. Conuence and Normalisation for Higher-Order

Rewriting. PhD thesis, Vrije Universiteit, Amsterdam, 1996.

[RR93] M. Rusinowitch and J.-L. R�emy, editors. Proceedings of the Third In-

ternational Workshop on Conditional Term Rewriting Systems, Pont-�a-

Mousson, France, CTRS '92, volume 656 of Lecture Notes in Computer

Science. Springer-Verlag, 1993.

[Rus87] M. Rusinowitch. On termination of the direct sum of term rewriting

systems. Information Processing Letters, 26:65{70, 1987.

[Sel94] M.P.A. Sellink. Verifying process algebra proofs in type theory. In An-

drews et al. [AGM94], pages 315{339.

[S�r96] M.H. S�rensen. Strong normalization from weak normalization

in typed lambda-calculi. Technical report, University of Copen-

hagen, Denmark, 1996. Submitted for publication; obtainable via

http://www.diku.dk/research-groups/topps/personal/rambo.html.

[Tai67] W.W. Tait. Intensional interpretation of functionals of �nite types I.

Journal of Symbolic Logic, 32:198{212, 1967.

[Toy87] Y. Toyama. Counterexamples to termination for the direct sum of term

rewriting systems. Information Processing Letters, 25:141{143, 1987.

[Tro73] A.S. Troelstra. Metamathematical Investigation of Intuitionistic Arith-

metic and Analysis. Number 344 in LNM. Springer Verlag, Berlin, 1973.

Second corrected edition appeared as report ILLC X-93-05, University of

Amsterdam, 1993.

[Vrij87] R. de Vrijer. Exactly estimating functionals and strong normalization.

Proceedings of the Koninklijke Nederlandse Akademie van Wetenschap-

pen, 90(4):479{493, December 1987.

[Wol93] D.A. Wolfram. The Clausal Theory of Types, volume 21 of Cambridge

tracts in theoretical computer science. Cambridge University Press, Cam-

bridge, 1993.

[Zan94] H. Zantema. Termination of term rewriting: Interpretation and type

elimination. Journal of Symbolic Computation, 17:23{50, 1994.

[Zan95] H. Zantema. Termination of term rewriting by semantic labelling. Fun-

damenta Informaticae, 24:89{105, 1995.

Index

M #

��

, 22

M

�

, 42

wm

�, 48, 65

hm

>, 40

st

>, 55, 65

wm

>, 49, 65

[[M]]

�;J

, 38

hMi, 77

a#, 14

�, 52

`

MF

, 103

`

NH

, 103

� � � , 17, 64

!

R

, 15, 25

!

�

, 21

!

��

, 22

!

�

, 22

n

�

, 52

abstract reduction system, 13

alpha conversion, 19

arity, 17

ARS, 13

associativity of +, 67

�-HRS, 26

bound variable, 19

Church-Rosser, 13

closed term, 15

collapsing rule, 15

conuence, 13

context, 25

CR, 13

curried version of TRS, 30

CV(d), 103

decreasing rule, 34, 70

derivation term, 103, 125

duplicating rule, 15

", 12

empty sequence, 12

end segment, 127

ep, 104

equivalence relation, 12

extensional equality, 38

extracted program, 104

FA(d), 103

factor, 17

�nitely branching, 13

free assumptions, 103

free variables, 19

functionals, 37

hereditarily monotonic, 40

of �nite type, 37

strict, 55

weakly monotonic, 48

FV(M), 19

hereditarily monotonic functionals, 40

H

lam

, 77

HM, 40

H

pnf

, 29, 73

HRS, 25

I

�

, 58

identity element, 60

interpretation

of base types, 38

of constants, 38

of terms, 38

139

140 INDEX

of variables, see valuation

intro, 107

IP, 107

IU, 107

lambda-I terms, 20

�

!

�

, 21

�

�

�

, 64

�

!

��

, 22

�I-terms, 20

L, 42

local conuence, 13

M, 58

MF, 101

modi�ed realizability, 102

monotone algebra, 34, 70

mr, 102

N

�n

, 11

NH, 101

order, see partial order

ordered domain, 52

partial order, 12

pattern, 20

pre-order, 12

preservation statement, 54

projective, 78

quasi-order, see pre-order

res(�), 17, 64

restricted �-expansion, 22

result type, 17, 64

rewrite step, 25

rule

closure of, 26

decreasing, 70

S, 58

S

0

, 58

SC, 99

sequence, 12

signature

�rst-order, 15

higher-order, 17

simple types, 17

SN, 13

SN(M;n), 115

ST , 55, 65

strict functionals, 55

strict partial order, see partial order

strictly monotonic, 12

strong computability, 99

strong normalization, 13

strong validity, 127

substitution, 15, 19

substitution calculus, 24

SV, 127

T, 37, 65

T

!

(B), 17

�('), 102

term

closed, 15

term rewriting system, 15

termination, 13

termination model, 34

TL(�), 17, 64

TRS, 15

type

factor of, 17

level, 17, 64

simple, 17

valuation, 34, 38

variable convention, 20

WCR, 13

weak conuence, 13

weak normalization, 13

weakly monotonic functionals, 48

well-founded, 12

WM, 48, 65

WN, 13

Samenvatting

Herschrijven en Terminatie

Het woord herschrijven suggereert een berekeningsproces. De objecten die berekend

worden zijn uitdrukkingen in een bepaalde formele taal. Een berekening bestaat uit

een aantal stappen. In elke stap wordt een deel van de uitdrukking vervangen door

een andere, al naar gelang de regels dit toestaan. Deze regels vari�eren van systeem

tot systeem. Met een herschrijfsysteem bedoelen we een collectie van regels. Op deze

wijze wordt een herschrijfrij s

0

! s

1

! s

2

! � � � gevonden.

In principe kan een herschrijfrij oneindig lang worden. De berekening geeft dan

geen resultaat. De berekening kan ook termineren. Dat gebeurt wanneer we een s

n

vinden waarop geen enkele regel meer van toepassing is. In dat geval is de herschrijfrij

eindig. Zo'n s

n

noemen we een normaalvorm. De gevonden normaalvorm is het

resultaat van de berekening.

Een interessante vraag die we bij een herschrijfsysteem kunnen stellen, is of de

regels een oneindige herschrijfrij toestaan, of niet. We zeggen dat het systeem ter-

minerend is, als alle herschrijfrijen eindig zijn. In een terminerend herschrijfsysteem

kan iedere uitdrukking berekend worden. We lopen daarbij niet het gevaar in een

oneindige berekening te belanden. Hoe vervelend dat laatste is, weet iedereen die zelf

geprogrammeerd heeft. Stel namelijk dat een bepaalde berekening al erg lang duurt.

Het is dan moeilijk uit te maken of we nog wat langer moeten wachten, of dat er

werkelijk een oneindige lus in het programma zit. Dit voorbeeld toont ook aan dat

het in het algemeen moeilijk is om terminatie te bewijzen, want een test geeft geen

uitsluitsel.

Twee andere interessante eigenschappen die een herschrijfsysteem kan hebben,

zijn conuentie en zwakke terminatie. In het vervolg schrijven we s � t wanneer s

in nul, �e�en of meer stappen naar t herschreven kan worden. Zwakke terminatie geldt,

als er voor iedere uitdrukking s een normaalvorm t is, zodanig dat s � t. Dus ook

bij zwakke terminatie kan iedere uitdrukking berekend worden. Echter, naast deze

ene succesvolle berekening kan er ook heel goed een oneindige berekening zijn die in

s begint. Om dit uit te sluiten is (echte) terminatie nodig. Terminatie impliceert

zwakke terminatie.

Een systeem heet conuent, als er voor iedere r; s; t waarvoor r � s en r � t geldt,

een u bestaat met de eigenschap s � u en t � u. In woorden betekent dit dat als

141

142 SAMENVATTING

er twee verschillende berekeningen in r starten, we die altijd zo kunnen voortzetten

dat ze weer bij elkaar komen. Deze eigenschap is belangrijk, omdat hij garandeert

dat normaalvormen uniek zijn. (Als s en t hierboven normaalvormen zijn, dan moet

u in 0 stappen uit s volgen, dus u en s zijn gelijk. Evenzo zijn u en t aan elkaar

gelijk, dus s en t zijn dezelfde normaalvorm). Zwakke terminatie garandeert alleen

dat iedere uitdrukking minstens �e�en normaalvorm heeft; conuentie garandeert dat

iedere uitdrukking hoogstens �e�en normaalvorm heeft.

Er is ook een begrip zwak conuent. Een herschrijfsysteem is zwak conuent als er

voor iedere r; s; t waarvoor r ! s en r ! t geldt, een u bestaat met de eigenschap s�

u en t� u. De gemeenschappelijke opvolger wordt nu dus alleen gegarandeerd na een

�e�enstapsberekening. Zwakke conuentie impliceert niet dat de normaalvormen uniek

zijn. Het is wel gemakkelijker aan te tonen dan conuentie, omdat we geen divergente

herschrijfrijen hoeven te beschouwen, maar alleen divergente herschrijfstappen.

De vraag rijst nu, waarom we ons met terminatie bezighouden. Immers, in een

zwak terminerend en conuent herschrijfsysteem heeft iedere uitdrukking een unieke

normaalvorm. Er zijn twee belangrijke redenen. Een praktische reden is, dat een

zwak terminerend systeem ook oneindige herschrijfrijen toelaat. Daarom is er nog

een strategie nodig om de juiste berekening te vinden. Bij een terminerend systeem

kunnen we onbekommerd herschrijfstappen toepassen; dit proces stopt altijd. De

theoretische reden om terminatie te beschouwen is een oud resultaat (1942) dat termi-

natie en zwakke conuentie samen conuentie impliceren. Dus voor een terminerend

systeem is zwakke conuentie voldoende om het bestaan van unieke normaalvormen

te garanderen.

Hogere orde herschrijfsystemen

Herschrijfsystemen kunnen worden ingedeeld naar de formele taal waaruit de uit-

drukkingen genomen worden. In termherschrijfsystemen zijn de uitdrukkingen eerste

orde termen. Die worden gebouwd uit functiesymbolen (met een vast aantal argu-

menten) en variabelen. Als voorbeeld nemen we een paar operaties op getallen. Om

met eindig veel functiesymbolen alle natuurlijke getallen te kunnen representeren,

voeren we de symbolen 0 (geen argumenten) en s (successor, �e�en argument) in. Het

getal 3 is de derde successor van 0, en wordt dus gerepresenteerd als s(s(s(0))). Verder

gebruiken we a voor optellen (twee argumenten). We kunnen nu optellen de�ni�eren

door de volgende regels:

�

a(X; 0) 7! X

a(X; s(Y)) 7! s(a(X;Y))

Hierin zijn X en Y variabelen waar willekeurige termen voor ingevuld mogen worden.

Een herschrijfstap ontstaat door een deel van een expressie waar de linkerkant van een

regel op past, te vervangen door de corresponderende rechterkant. Voor de variabelen

in de regel mogen daarbij termen ingevuld worden. Als voorbeeld controleren we of

2 + 1� 3:

a(s(s(0)); s(0))! s(a(s(s(0)); 0))! s(s(s(0)))

SAMENVATTING 143

Een ander formalisme is de lambdacalculus. Dit is een formalisme voor het ma-

nipuleren van functies. De twee manieren om lambdatermen samen te stellen komen

overeen met de volgende operaties op functies: Een functie toepassen op een argument

(applicatie) en een functie de�ni�eren door middel van een voorschrift (abstractie). De

notatie is als volgt: MN betekent de toepassing vanM op N ; �x:M betekent de func-

tie die x naar M stuurt; hierbij mag de variabele x in M voorkomen. Het verband

tussen applicatie en abstractie wordt gelegd door de �-regel:

(�x:M)N 7! M [x := N]

In woorden: het resultaat van de functie die x op M afbeeldt, toegepast op N is

M , waarin alle voorkomens van x vervangen zijn door N . Een voorbeeld van de

toepassing van de �-regel is: (�x:x

2

+ 8 � x)3 ! 3

2

+ 8 � 3. We werken alleen met

getypeerde lambdatermen. Een van de redenen is dat de �-regel alleen termineert,

wanneer we de verzameling lambdatermen beperken tot getypeerde termen. De types

leggen het domein en bereik van de functies vast.

Hogere orde herschrijfsystemen combineren termherschrijfsystemen met lambda-

calculus. Ze vormen op twee manieren een uitbreiding van termherschrijfsystemen. In

de eerste plaats kunnen voor variabelen nu ook functies ingevuld worden; niet alleen

termen. Verder kunnen in deze systemen gebonden variabelen voorkomen. Door deze

verhoogde uitdrukkingskracht kunnen in hogere orde herschrijfsystemen ook trans-

formaties op programma's (met locale variabelen), formules (met gekwanti�ceerde

variabelen) en bewijzen (met variabelen voor abstracties) beschreven worden. Dit

vergroot het toepassingsgebied van herschrijfsystemen aanzienlijk.

Een voorbeeld van een functie die gebruik maakt van functievariabelen is d(ubbel):

d(F;X) 7! F (F (X))

Een voorbeeld van een functie die gebonden variabelen gebruikt is:

�

P

i�0

E 7! E[i := 0]

P

i�s(n)

E 7! a(

P

i�n

E;E[i := s(n)])

De eerste functie past zijn eerste argument tweemaal toe op het tweede argument.

De andere functie sommeert de waarden van de expressie E[i] voor 0 � i � n. In

hogere orde herschrijven wordt E[i] opgevat als functie, namelijk �i:E. De substitutie

E[i := 0] kunnen we dan eenvoudig opvatten als de applicatie (�i:E)0. De �-regel

wordt gebruikt om de substitutie echt uit te voeren.

Terminatie via de semantische methode

Een interpretatie van een herschrijfsysteem is een verzameling A, met voor ieder

functiesymbool f een functie over A met het juiste aantal argumenten. Elke term

kan nu ge��nterpreteerd worden als een element in A (gegeven een waarde voor de

variabelen). We schrijven [[t]] voor de interpretatie van t in A. Zo'n interpretatie is

een model als iedere herschrijfregel na interpretatie een ware gelijkheid is.

144 SAMENVATTING

Het (bestaande) idee van een semantisch terminatiebewijs is nu om een interpre-

tatie te zoeken, waarin de linkerkant van elke regel groter is dan de rechterkant (in

plaats van gelijk aan). Extra eisen zijn dat de ordening geen oneindig dalende rij mag

bevatten, en dat de gebruikte functies strikt monotoon moeten zijn. Dat laatste wil

zeggen, dat als x > y dan f(� � �x � � �) > f(� � � y � � �). Zo'n interpretatie noemen we een

terminatiemodel. Dit bestaat dus uit de volgende ingredi�enten:

1. Een welgefundeerde parti�ele ordening (A;>).

2. Voor ieder functiesymbool f een strikt monotone functie over A met het juiste

aantal argumenten.

3. Voor iedere regel l 7! r geldt dat [[l]] > [[r]], dit laatste onder de interpretatie

gegeven onder 2 en voor iedere mogelijke invulling van de variabelen.

We bewijzen nu dat een termherschrijfsysteem dat een terminatiemodel heeft ter-

minerend moet zijn. Wegens (2) en (3) gaat bij iedere herschrijfstap de bijbehorende

interpretatie omlaag. Hierbij is (2) vereist, omdat een herschrijfstap ook een deel van

een term kan vervangen. De context waarin dit gebeurt moet de ordening respecteren.

Zodoende correspondeert iedere herschrijfrij met een evenlange dalende keten in A.

Wegens (1) is deze keten eindig, dus de oorspronkelijke herschrijfrij is ook eindig.

We verduidelijken de methode door te bewijzen dat de regels voor optelling een

terminerend systeem vormen. Beschouw als ordening de natuurlijke getallen met de

gebruikelijke groter-dan relatie. Voor 0; s; a kiezen we de volgende interpretatie:

[[0]] = 1

[[s]](x) = x+ 1

[[a]](x; y) = x+ 2y

Deze functies zijn strikt monotoon, en > is welgefundeerd. We hoeven dus alleen nog

maar (3) te controleren. Dit kan gemakkelijk gedaan worden:

[[a(x; 0)]] = x+ 2 > x = [[x]]

[[a(x; s(y))]] = x+ 2(y + 1) > x+ 2y + 1 = [[s(a(x; y))]]

Dus het termherschrijfsysteem dat optelling de�ni�eert is terminerend.

Omdat hogere orde herschrijfsystemen op lambdatermen werken, moeten de ter-

minatiemodellen voor dergelijke systemen op functies gebaseerd zijn. Dit proefschrift

bevat een geschikte uitbreiding van het begrip strikt monotoon tot functies van hogere

types. Ook wordt een willekeurige parti�ele ordening op A uitgebreid tot een parti�ele

ordening op functies over A. Zo wordt het begrip terminatiemodel ook toepasbaar op

hogere orde herschrijfsystemen. We bewijzen dat een hogere orde herschrijfsysteem

termineert als het een terminatiemodel heeft.

SAMENVATTING 145

Resultaten van dit Proefschrift

1. We introduceren het begrip terminatiemodel en bewijzen dat een hogere orde

herschrijfsysteem termineert als het een terminatiemodel heeft.

2. Hieruit kan gemakkelijk een methode gedestilleerd worden om terminatie van

hogere orde herschrijfsystemen te bewijzen.

3. Deze methode wordt ondersteund door een scala aan rekenregels op functies van

hoger type.

4. De methode wordt toegepast op verschillende niet triviale voorbeelden. De be-

langrijkste zijn G�odel's T en een systeem dat natuurlijke deducties normalizeert;

dit laatste systeem bevat ook de gecompliceerde permutatieve conversies.

5. De hoofdstelling levert een nieuw bewijs van de stelling, dat een terminerend

termherschrijfsysteem uitgebreid met �-reductie in de getypeerde lambdacalcu-

lus weer termineert.

6. De semantische methode wordt uitgebreid vergeleken met een bestaande me-

thode, die gebaseerd is op het begrip sterke berekenbaarheid.

146 SAMENVATTING

Curriculum Vitae

� Geboren op 6 april 1969 te Barneveld.

� 1981{1987: Ongedeeld VWO aan de Van Lodenstein Scholengemeenschap te

Amersfoort.

� 1987{1992: Studie Informatica aan de Rijksuniversiteit Utrecht. Cum Laude

afgestudeerd op het onderwerp \Modularity in many-sorted term rewriting sys-

tems". Tweejarig studentassistentschap \begeleiding van buitenlandse studen-

ten".

� 1992{1996: AIO bij de Faculteit der Wijsbegeerte aan de Universiteit Utrecht.

� 1994: Wetenschappelijk onderzoeker aan het Mathematisches Institut van de

Ludwig{Maximilians{Universit�at te M�unchen.

� 1996 { : Postdoc bij de Technische Universiteit Eindhoven, Faculteit Wiskunde

en Informatica, sectie Technische Toepassingen. Onderzoek naar formele metho-

den voor de speci�catie van systeemeisen aan Command & Control systemen.

Jaco van de Pol

147

