Comparison Based Merging

Upper and Lower bounds
Merging

Input: Two sorted lists X and Y of length n and m.

We may assume $n \geq m$.

\[n \]

X: ________________________________

\[m \]

Y: __________________

Theorem:

In a comparison based model, the complexity of merging X and Y is

\[\Theta(m(\log(n/m) + 1)) \]
Simple Upper Bounds

Standard Merge:
\[\Theta(n + m) \]

Binary Insertion of \(Y \) in \(X \):
\[\Theta(m \log n) \]

For "large" \(m \) (\(m = \Theta(n) \)):
\[\Theta(n + m) = \Theta(m(\log(n/m) + 1)) \]

For "small" \(m \) (e.g. \(m = O(\sqrt{n}) \)):
\[\Theta(m \log n) = \Theta(m(\log(n/m) + 1)) \]
The Simple Bounds are Sub-Optimal

E.g. for $m = \Theta(n / \log n)$:

$$\Theta(n + m) = \Theta(n)$$

$$\Theta(m \log n) = \Theta(n)$$

$$\Theta(m(\log(n/m) + 1)) = \Theta(n \frac{\log \log n}{\log n}) = o(n)$$
Graphically

\[n + m = 200 \]

\[m \log n \]

\[m(\log(n/m) + 1) \]
Better Upper Bound

\[\text{if } x_i < y_j \]
\[i++ \]
\[\text{else} \]
\[\text{binary search from } x_{i-1} \text{ to } x_i \]
\[j++ \]

Number of comparisons:

\[m + m \log(n/m) \]
Lower Bound

There are \(\binom{n+m}{m} \) different possible results of the merging two sorted lists of lengths \(n \) and \(m \).

So any decision tree for merging must have at least that many leaves.

It must hence have height at least

\[
\log\left(\binom{n+m}{m}\right)
\]
Lemmas

For $n \geq m$:

1)
\[
\binom{n + m}{m} = \frac{(n + m)(n + m - 1) \cdots (n + 1)}{m(m - 1) \cdots 1} \geq \left(\frac{n}{m} \right)^m
\]

2)
\[
\binom{n + m}{m} \geq \binom{2m}{m} \geq \frac{2m(2m - 1) \cdots (m + 1)}{m(m - 1) \cdots 1}
\]

\[
\geq 2\left(\frac{m}{m} \right) 2\left(\frac{m - 1/2}{m - 1} \right) 2\left(\frac{m - 2/2}{m - 2} \right) 2\left(\frac{m - 3/2}{m - 3} \right) \cdots \geq 2^m
\]
Lemmas

3)

\[h(n) \geq f(n) \text{ and } h(n) \geq g(n) \]

\[\iff \]

\[h(n) \geq \max\{f(n), g(n)\} \]

4)

For \(f \) and \(g \) positive:

\[\max\{f(n), g(n)\} = \Theta(f(n) + g(n)) \]
Lower Bound Computation

\[
\log\left(\binom{n + m}{m}\right)
\geq \max\{\log(2^m), \log((n/m)^m)\}
= \max\{m, m \log(n/m)\}
= \Omega(m + m \log(n/m))
\]