Web Crawling and Web Dynamics

Web Dynamics

- The Web is growing at a high pace (exponential)
- Documents are updated
- Dynamics of the web is shifting
 - More dynamic and real-time information available
 - News
 - The dynamics of the web creates a set of tough challenges for all search engines
- The link structure is changing
 - Using the link structure in ranking creates a slow working positive feedback loop
- XML — understand the structure and semantics of the data is a key feature for the next generation engines
- **Goal**: The local store copy must be fresh
Local Store

- **Definition** A local store copy is a snapshot of the Web at the given crawling time for each document
Types of Crawlers

- *Periodic/batch crawlers*
 - Periodically rebuild the index from scratch

- *Incremental crawlers*
 - Updates/refreshes the local collection
 - Replaces “less-important” pages with new and “more-important” pages
Trend

- Web servers are today most commonly applications serving HTML files directly from a file system upon requests.
- More advanced publication systems tying business applications to the web servers.
- The percentage of the web that is actually indexable by search engines is decreasing (the deep web is growing)
Web Models

- Create a model for how documents are updated, e.g. web documents are updated as independent Poisson processes
 - Average document changed once every ten days
 - 50% of all documents are changed after 50 days
- Develop a crawling strategy that maximizes the freshness of the local store.
- Mechanisms for measuring the freshness of the local store.
Crawling strategies

- Freshness = probability of copy in local store is up-to-date
- Age = time since late update of real document
- Interesting measure = average freshness or age over all documents and time

- Refreshing documents using uniform update frequencies is always better than using document update frequencies that are proportional to the estimated document change frequencies

- The scheduling policy optimizing freshness penalizes documents that are changed *too often*
FAST crawler

- Incremental crawler
- Star network
- Only exchanging information about discovered hyperlinks
- *Static mapping* from hyperlink information to crawler machines
- Scales linearly with document storage capacity
- Robust with regards to failure (hyperlink information for an unavailable crawler machine is queued on the sending machine until the designated receiver again becomes available)
FAST crawler (cont.)

- Scheduling algorithm prioritizing retrieval of documents most likely to have been updated on the web.
- Will only retrieve new documents when old documents are removed from the local store (e.g., document does not exist on the web anymore).
- Maximizes freshness by spending as much as possible of the crawler capacity on refreshing documents that have actually changed.
- Adaptively computes estimate of the refresh frequencies.
- Decreases refresh interval if document changed; otherwise increases refresh interval.
- Avoids rescheduling any document more than once for each indexing cycle.