
Backwards Analysis

Gerth Stølting Brodal

Pre-talent track activity in Algorithms, Department of Computer Science, Aarhus University, January 29, 2020

Dominated points

No points

Pareto optimal / non-dominated points / skyline

Skyline

Vilfredo Pareto (1848–1923)

Pareto optimal

Exercise 1 (skyline construction)

Skyline

Given n points (x1, y1), ..., (xn, yn) in R2

 Give an algorithm for computing the points on the skyline ?

 What is the running time of your algorithm ?

skyline

Problem – expected skyline size ?

Skyline size

 Consider n points (x1, y1), ..., (xn, yn) in R2

 Each xi and yi is selected independently
and uniformly at random from [0, 1]

 What is the expected skyline size ?

0 1

0

1

Exercise 2 (dependent points)

Skyline size

 Describe an algorithm for generating n
distinct points (x1, y1), ..., (xn, yn) in R2

 Each xi and yi is selected uniformly at
random from [0, 1]

 The points are not independent

0 1

0

1

Generating random points
Assume the points are generated by the following algorithm

1) Generate n random x-values x1, ..., xn

2) sort the x-values in decreasing order

3) for decreasing xi generate random yi

(xi, yi) is a skyline point ⟺ yi = max(y1, ..., yi)

Prob[(xi, yi) skyline point] =
1
i

since y1, ..., yi independt and the same distribution,
all permutations are equally likely, i.e. probability
yi to be largest among i values is 1/i

Skyline size

0 1

0

1

(xi, yi)

(x1, y1)

Expected skyline size

Stochastic variable: Xi = ቊ
1 if point i on skyline
0 otherwise

E[|skyline|]

= E[X1 + ∙∙∙ + Xn]

= E[X1] + ∙∙∙ + E[Xn]

= Σi Prob[(xi, yi) skyline point]

= 1
1

+ 1
2

+ ∙∙∙ + 1
n

= σi=1..n
1
i

(harmonic number Hn)

≤ ln n + 1
Skyline size

0 1

0

1

(xi, yi)

(x1, y1)

n-th Harmonic number Hn = 1/1 + 1/2 + 1/3 +∙∙∙+ 1/n = 1/i
n

i = 1Σ

1/n

n1 2 3 4 5

1/1

1/2

1/3
1/4

1/n

1/x dx = [ln x] = ln n – ln 1 = ln n∫
n

1

n

1
Hn – 1 Hn – 1/n

ln n + 1/n Hn ln n + 1

Harmonic numbers

Exercise 3 (divide-and-conquer skyline)

Skyline

Consider the following algorithm

 Find the topmost point p in O(n) time

 recurse on points to the right of p

Show that the expected running time is O(n)

0 1

0

1

p

QuickSort – a randomized sorting algorithm

Quicksort(x1, ..., xn)
 Pick a random pivot element xi
 Partition remaining elements: S smaller than xi, and L larger than xi
 Recursively sort S and L

QuickSort

7 4 15 12 8 11 3 5 1 14 6

7 4 3 5 1 6 8 15 12 11 14

3 1 4 7 5 6 11 15 12 14

1 3 5 6 7 12 14 15

3 5 6 12 15

6

QuickSort – analysis I

Alternative Quicksort

 Consider a random permutation π of the input, such that
xπ(1) is the first pivot, then xπ(2), xπ(3),

Observations

 Changes the order unsorted sublists are partitioned, but the
pivots are still selected uniformly among the elements

 xi and xj are compared if and only if xi or xj is selected as a
pivot before any element in the sorted list between xi and xj

QuickSort

xj xi

output

QuickSort – analysis II

E[comparisons by quicksort]

= E[Σi<j cost of comparing xi and xj]

= Σi<j E[cost of comparing xi and xj]

= Σi<j
2

|r j − r(i)| + 1
where r(i) = position of xi in output

= Σ1≤p<q≤n
2

q − p + 1

≤ 2n∙Σ2≤d≤n
1
d

≤ 2n∙((ln n + 1) – 1)

= 2n∙ln n
QuickSort

xj xi

r(j) r(i)

qp

d

output

Exercise 4 (random search trees)

Construct a unbalanced binary search tree for n numbers
x1 <∙∙∙< xn by inserting the numbers in random order

 What is the probability that xj is an ancestor of xi ?

 What is the expected depth of a node xi ?
15

8 17

13

10

3

5

Random search trees

Insert: 15, 8, 17, 13, 3, 5, 10

Convex hull

Convex hull
= smallest polygon enclosing all points

Convex hull

Exercise 5: Convex hull

Convex hull

Give an O(n∙log n) worst-case algorithm finding the Convex Hull

Convex hull – randomized incremental
1) Let p1, ..., pn be a random permutation of the points

2) Compute convex hull of {p1, p2, p3}

3) c = (p1 + p2 + p3) / 3

4) for i = 4 to n insert pi and construct Hi from Hi-1 :
if pi inside Hi-1 skip, otherwise insert pi in Hi-1 and delete chain inside

Convex hull

c
p1

p2

p3

c
H3

pi

Hi-1

Convex hull – inserting pi

Convex hull

c

pi
e

Hi-1

Convex hull – inserting pi

Convex hull

c

pi
e

Hi-1

How to find e for pi ?

store set of points with e
and reference to e from pi

 Each point inserted / deleted / inside at most once in convex hull

 E[# point-edge updates]

= E[Σ4≤i≤n Σp p updated on insertion i]

= Σ4≤i≤n Σp E[p updated on insertion i]

≤ Σ4≤i≤n Σp
2

i − 3

≤ 2n∙(ln n + 1)

since p only updated on
insertion i if pi is u or v

 Total expected time O(n∙log n)

Convex hull - analysis

Convex hull

c

Hi

e

p

u

v

Binary search - but forgot to sort the array...
(a debugging case)

Binary searching unsorted array

2 3 41 31 11 13 7 17 23 47 19 43 5 29 37

2

3

41 11 23 19

43

5

29

37

31

7

4713

17

useful

useful

useful

not
reachable

find(41)

How many cells can ever be
reached by a binary search ?

Reachable nodes – analysis
Pr[vi useful] = |Li| / Σj|Lj|

E[# useful nodes at level] = Σi (|Li| / Σj|Lj|) = 1

E[# useful nodes in tree] = height - 1

E[# reachable nodes in tree] ≤ height2 = O(log2 n)

v1 v4v3v2

4331

17

useful

useful

]-∞,17[]17,43[∅]43,∞[

L1 = { 2,3,4,5,11 } L2 = ∅ L3 = { 19,23,29,37,41 } L4 = { 47 }

useful nodes ?

Binary searching unsorted array

Closest pair

Given n points, find pair (p, q) with minimum distance

Algorithm (idea)

 permute points randomly p1, p2, ..., pn

 for i = 2..n compute Δi = distance between closest pair for p1, ..., pi

Observation

 Pr[Δi < Δi-1] ≤
2
i

since minimum distance can only decrease
if pi is defining Δi

p

q

Closest pair

Closest pair – grid cells

Δi-1

 Construct grid cells with side-length Δi-1

 Point (x, y) in cell (x/Δi−1 , y/Δi−1) Note: ℝ → ℕ

 ≤ 4 points in cell if all pairwise distances ≥ Δi-1

 Neighbors of pi within distance Δi-1 are in ≤ 9 cells

 Store non-empty cells in a hash tabel (using randomization)

 Rebuild grid whenever Δi decreases

Analysis

 E[rebuild cost] = E[Σ3≤i≤n rebuild cost inserting pi]
= Σ3≤i≤n E[rebuild cost inserting pi] ≤ Σ3≤i≤n

2
i

∙ i ≤ 2n

 Total expected time O(n)

pi

Closest pair

Handin (Treaps)

A treap is a binary search tree with a random priority
assigned to each element when inserted (in the example
elements are white and priorities yellow).

A left-to-right inorder traversal gives the elements
in sorted order, whereas the priorities satisfy heap order,
i.e. priorities increase along a leaf-to-root path.

a) Argue that an arbitrary element in a treap of size n has expected
depth O(log n)

b) Describe how to insert an element into a treap and give running time

13
0.5

21
0.4

3
0.1

11
0.3

7
0.9

8
0.1

Treaps

References

 Raimund Seidel, Backwards Analysis of Randomized Geometric Algorithms, in Pach J. (eds) New
Trends in Discrete and Computational Geometry. Algorithms and Combinatorics, vol 10, 37-67.
Springer, Berlin, Heidelberg 1993. DOI: 10.1007/978-3-642-58043-7_3 (public available at
CiteSeerX). [Chapters 4-5]

 Sariel Har-Peled, Backwards analysis, lecture notes, 2018. sarielhp.org. [Chapters 35.1-35.3]

 Raimund Seidel and Cecilia R. Aragon, Randomized search trees, Algorithmica, 16(4–5), 464–497,
1996. DOI 10.1007/BF01940876.

 David R. Karger, Philip N. Klein, Robert E. Tarjan, A randomized linear-time algorithm to find
minimum spanning trees, Journal of the ACM, 42(2), 321-328, 1995. DOI 10.1145/201019.201022.

 Timothy M. Chan, Backwards analysis of the Karger-Klein-Tarjan algorithm for minimum spanning
trees, Information Processing Letters, 67(6), 303-304, 1998. DOI 10.1016/S0020-0190(98)00129-X.

References

https://doi.org/10.1007/978-3-642-58043-7_3
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.2357
https://sarielhp.org/teach/notes/algos/files/35_backward.pdf
https://doi.org/10.1007/BF01940876
https://doi.org/10.1145/201019.201022
https://doi.org/10.1016/S0020-0190(98)00129-X

