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Exercise 1 (skyline construction)

Skyline

Given n points (x1, y1), ..., (xn, yn) in R2

 Give an algorithm for computing the points on the skyline ?

 What is the running time of your algorithm ?

skyline



Problem – expected skyline size ? 

Skyline size

 Consider n points (x1, y1), ..., (xn, yn) in R2

 Each xi and yi is selected independently
and uniformly at random from [0, 1]

 What is the expected skyline size ?
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Exercise 2 (dependent points)

Skyline size

 Describe an algorithm for generating n
distinct points (x1, y1), ..., (xn, yn) in R2

 Each xi and yi is selected uniformly at 
random from [0, 1]

 The points are not independent
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Generating random points
Assume the points are generated by the following algorithm

1) Generate n random x-values x1, ..., xn

2) sort the x-values in decreasing order

3) for decreasing xi generate random yi

(xi, yi) is a skyline point ⟺ yi = max(y1, ..., yi)

Prob[(xi, yi) skyline point] = 
1
i

since y1, ...,  yi independt and the same distribution, 
all permutations are equally likely, i.e. probability
yi to be largest among i values is 1/i

Skyline size
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Expected skyline size

Stochastic variable:   Xi = ቊ
1 if point i on skyline
0 otherwise

E[|skyline|] 

=   E[X1 + ∙∙∙ + Xn]

=   E[X1] + ∙∙∙ + E[Xn]

=   Σi Prob[(xi, yi) skyline point]

=   1
1

+ 1
2

+ ∙∙∙ + 1
n

=  σi=1..n
1
i

(harmonic number Hn)

≤   ln n + 1
Skyline size
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n-th Harmonic number Hn = 1/1 + 1/2 + 1/3 +∙∙∙+ 1/n =            1/i
n

i = 1Σ

1/n

n1 2 3 4 5

1/1

1/2

1/3
1/4

1/n

1/x dx =  [ ln x ]    = ln n – ln 1 = ln n∫
n

1

n

1
Hn – 1   Hn – 1/n

ln n + 1/n  Hn  ln n + 1

Harmonic numbers



Exercise 3 (divide-and-conquer skyline)

Skyline

Consider the following algorithm

 Find the topmost point p in O(n) time

 recurse on points to the right of p

Show that the expected running time  is O(n)

0 1

0

1

p



QuickSort – a randomized sorting algorithm

Quicksort(x1, ..., xn)
 Pick a random pivot element xi
 Partition remaining elements: S smaller than xi, and L larger than xi
 Recursively sort S and L

QuickSort

7 4 15 12 8 11 3 5 1 14 6

7 4 3 5 1 6 8 15 12 11 14

3 1 4 7 5 6 11 15 12 14

1 3 5 6 7 12 14 15

3 5 6 12 15

6



QuickSort – analysis I

Alternative Quicksort

 Consider a random permutation π of the input, such that
xπ(1) is the first pivot, then xπ(2), xπ(3), .... 

Observations

 Changes the order unsorted sublists are partitioned, but the 
pivots are still selected uniformly among the elements

 xi and xj are compared if and only if xi or xj is selected as a 
pivot before any element in the sorted list between xi and xj

QuickSort

xj xi

output



QuickSort – analysis II

E[comparisons by quicksort]

=  E[Σi<j cost of comparing xi and xj]

=  Σi<j E[cost of comparing xi and xj]

=  Σi<j
2

|r j − r(i)| + 1
where r(i) = position of xi in output

=  Σ1≤p<q≤n
2

q − p + 1

≤  2n∙Σ2≤d≤n
1
d

≤ 2n∙((ln n + 1) – 1)

= 2n∙ln n
QuickSort

xj xi

r(j) r(i)

qp

d

output



Exercise 4 (random search trees)

Construct a unbalanced binary search tree for n numbers
x1 <∙∙∙< xn by inserting the numbers in random order

 What is the probability that xj is an ancestor of xi ?

 What is the expected depth of a node xi ?
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Random search trees

Insert: 15, 8, 17, 13, 3, 5, 10



Convex hull

Convex hull
= smallest polygon enclosing all points

Convex hull



Exercise 5: Convex hull

Convex hull

Give an O(n∙log n) worst-case algorithm finding the Convex Hull



Convex hull – randomized incremental
1) Let p1, ..., pn be a random permutation of the points

2) Compute convex hull of {p1, p2, p3}

3) c = (p1 + p2 + p3) / 3

4) for i = 4 to n insert pi and construct Hi from Hi-1 :
if pi inside Hi-1 skip, otherwise insert pi in Hi-1 and delete chain inside

Convex hull

c
p1

p2

p3

c
H3

pi

Hi-1



Convex hull – inserting pi

Convex hull

c

pi
e

Hi-1



Convex hull – inserting pi

Convex hull

c

pi
e

Hi-1

How to find e for pi ?

store set of points with e
and reference to e from pi



 Each point inserted / deleted / inside at most once in convex hull

 E[# point-edge updates]

=  E[Σ4≤i≤n Σp p updated on insertion i]

=  Σ4≤i≤n Σp E[p updated on insertion i]

≤  Σ4≤i≤n Σp
2

i − 3

≤  2n∙(ln n + 1)

since p only updated on 
insertion i if pi is u or v

 Total expected time O(n∙log n)

Convex hull - analysis

Convex hull

c
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e
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Binary search - but forgot to sort the array...
(a debugging case)

Binary searching unsorted array

2 3 41 31 11 13 7 17 23 47 19 43 5 29 37

2

3

41 11 23 19

43

5

29

37

31

7

4713

17

useful

useful

useful

not 
reachable

find(41)

How many cells can ever be
reached by a binary search ? 



Reachable nodes – analysis
Pr[ vi useful ] = |Li| / Σj|Lj|

E[ # useful nodes at level ] = Σi ( |Li| / Σj|Lj| ) = 1

E[ # useful nodes in tree ] = height - 1

E[ # reachable nodes in tree ] ≤ height2 = O(log2 n)

v1 v4v3v2

4331

17

useful

useful

]-∞,17[ ]17,43[∅ ]43,∞[

L1 = { 2,3,4,5,11 } L2 = ∅ L3 = { 19,23,29,37,41 } L4 = { 47 }

# useful nodes ?

Binary searching unsorted array



Closest pair

Given n points, find pair (p, q) with minimum distance

Algorithm (idea)

 permute points randomly  p1, p2, ..., pn

 for i = 2..n compute Δi = distance between closest pair for p1, ..., pi

Observation

 Pr[Δi < Δi-1] ≤ 
2
i

since minimum distance can only decrease
if pi is defining Δi

p

q

Closest pair



Closest pair – grid cells

Δi-1

 Construct grid cells with side-length Δi-1

 Point (x, y) in cell ( x/Δi−1 , y/Δi−1 )   Note: ℝ → ℕ

 ≤ 4 points in cell if all pairwise distances ≥ Δi-1

 Neighbors of pi within distance Δi-1 are in ≤ 9 cells

 Store non-empty cells in a hash tabel (using randomization)

 Rebuild grid whenever Δi decreases

Analysis

 E[rebuild cost] = E[Σ3≤i≤n rebuild cost inserting pi]
= Σ3≤i≤n E[rebuild cost inserting pi] ≤ Σ3≤i≤n

2
i

∙ i ≤ 2n

 Total expected time O(n)

pi

Closest pair



Handin (Treaps)

A treap is a binary search tree with a random priority
assigned to each element when inserted (in the example
elements are white and priorities yellow).

A left-to-right inorder traversal gives the elements
in sorted order, whereas the priorities satisfy heap order, 
i.e. priorities increase along a leaf-to-root path.

a) Argue that an arbitrary element in a treap of size n has expected
depth O(log n)

b) Describe how to insert an element into a treap and give running time
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