
Backwards Analysis

Gerth Stølting Brodal

Pre-talent track activity in Algorithms, Department of Computer Science, Aarhus University, January 29, 2020

Dominated points

No points

Pareto optimal / non-dominated points / skyline

Skyline

Vilfredo Pareto (1848–1923)

Pareto optimal

Exercise 1 (skyline construction)

Skyline

Given n points (x1, y1), ..., (xn, yn) in R2

 Give an algorithm for computing the points on the skyline ?

 What is the running time of your algorithm ?

skyline

Problem – expected skyline size ?

Skyline size

 Consider n points (x1, y1), ..., (xn, yn) in R2

 Each xi and yi is selected independently
and uniformly at random from [0, 1]

 What is the expected skyline size ?

0 1

0

1

Exercise 2 (dependent points)

Skyline size

 Describe an algorithm for generating n
distinct points (x1, y1), ..., (xn, yn) in R2

 Each xi and yi is selected uniformly at
random from [0, 1]

 The points are not independent

0 1

0

1

Generating random points
Assume the points are generated by the following algorithm

1) Generate n random x-values x1, ..., xn

2) sort the x-values in decreasing order

3) for decreasing xi generate random yi

(xi, yi) is a skyline point ⟺ yi = max(y1, ..., yi)

Prob[(xi, yi) skyline point] =
1
i

since y1, ..., yi independt and the same distribution,
all permutations are equally likely, i.e. probability
yi to be largest among i values is 1/i

Skyline size

0 1

0

1

(xi, yi)

(x1, y1)

Expected skyline size

Stochastic variable: Xi = ቊ
1 if point i on skyline
0 otherwise

E[|skyline|]

= E[X1 + ∙∙∙ + Xn]

= E[X1] + ∙∙∙ + E[Xn]

= Σi Prob[(xi, yi) skyline point]

= 1
1

+ 1
2

+ ∙∙∙ + 1
n

= σi=1..n
1
i

(harmonic number Hn)

≤ ln n + 1
Skyline size

0 1

0

1

(xi, yi)

(x1, y1)

n-th Harmonic number Hn = 1/1 + 1/2 + 1/3 +∙∙∙+ 1/n = 1/i
n

i = 1Σ

1/n

n1 2 3 4 5

1/1

1/2

1/3
1/4

1/n

1/x dx = [ln x] = ln n – ln 1 = ln n∫
n

1

n

1
Hn – 1   Hn – 1/n

ln n + 1/n  Hn  ln n + 1

Harmonic numbers

Exercise 3 (divide-and-conquer skyline)

Skyline

Consider the following algorithm

 Find the topmost point p in O(n) time

 recurse on points to the right of p

Show that the expected running time is O(n)

0 1

0

1

p

QuickSort – a randomized sorting algorithm

Quicksort(x1, ..., xn)
 Pick a random pivot element xi
 Partition remaining elements: S smaller than xi, and L larger than xi
 Recursively sort S and L

QuickSort

7 4 15 12 8 11 3 5 1 14 6

7 4 3 5 1 6 8 15 12 11 14

3 1 4 7 5 6 11 15 12 14

1 3 5 6 7 12 14 15

3 5 6 12 15

6

QuickSort – analysis I

Alternative Quicksort

 Consider a random permutation π of the input, such that
xπ(1) is the first pivot, then xπ(2), xπ(3),

Observations

 Changes the order unsorted sublists are partitioned, but the
pivots are still selected uniformly among the elements

 xi and xj are compared if and only if xi or xj is selected as a
pivot before any element in the sorted list between xi and xj

QuickSort

xj xi

output

QuickSort – analysis II

E[comparisons by quicksort]

= E[Σi<j cost of comparing xi and xj]

= Σi<j E[cost of comparing xi and xj]

= Σi<j
2

|r j − r(i)| + 1
where r(i) = position of xi in output

= Σ1≤p<q≤n
2

q − p + 1

≤ 2n∙Σ2≤d≤n
1
d

≤ 2n∙((ln n + 1) – 1)

= 2n∙ln n
QuickSort

xj xi

r(j) r(i)

qp

d

output

Exercise 4 (random search trees)

Construct a unbalanced binary search tree for n numbers
x1 <∙∙∙< xn by inserting the numbers in random order

 What is the probability that xj is an ancestor of xi ?

 What is the expected depth of a node xi ?
15

8 17

13

10

3

5

Random search trees

Insert: 15, 8, 17, 13, 3, 5, 10

Convex hull

Convex hull
= smallest polygon enclosing all points

Convex hull

Exercise 5: Convex hull

Convex hull

Give an O(n∙log n) worst-case algorithm finding the Convex Hull

Convex hull – randomized incremental
1) Let p1, ..., pn be a random permutation of the points

2) Compute convex hull of {p1, p2, p3}

3) c = (p1 + p2 + p3) / 3

4) for i = 4 to n insert pi and construct Hi from Hi-1 :
if pi inside Hi-1 skip, otherwise insert pi in Hi-1 and delete chain inside

Convex hull

c
p1

p2

p3

c
H3

pi

Hi-1

Convex hull – inserting pi

Convex hull

c

pi
e

Hi-1

Convex hull – inserting pi

Convex hull

c

pi
e

Hi-1

How to find e for pi ?

store set of points with e
and reference to e from pi

 Each point inserted / deleted / inside at most once in convex hull

 E[# point-edge updates]

= E[Σ4≤i≤n Σp p updated on insertion i]

= Σ4≤i≤n Σp E[p updated on insertion i]

≤ Σ4≤i≤n Σp
2

i − 3

≤ 2n∙(ln n + 1)

since p only updated on
insertion i if pi is u or v

 Total expected time O(n∙log n)

Convex hull - analysis

Convex hull

c

Hi

e

p

u

v

Binary search - but forgot to sort the array...
(a debugging case)

Binary searching unsorted array

2 3 41 31 11 13 7 17 23 47 19 43 5 29 37

2

3

41 11 23 19

43

5

29

37

31

7

4713

17

useful

useful

useful

not
reachable

find(41)

How many cells can ever be
reached by a binary search ?

Reachable nodes – analysis
Pr[vi useful] = |Li| / Σj|Lj|

E[# useful nodes at level] = Σi (|Li| / Σj|Lj|) = 1

E[# useful nodes in tree] = height - 1

E[# reachable nodes in tree] ≤ height2 = O(log2 n)

v1 v4v3v2

4331

17

useful

useful

]-∞,17[]17,43[∅]43,∞[

L1 = { 2,3,4,5,11 } L2 = ∅ L3 = { 19,23,29,37,41 } L4 = { 47 }

useful nodes ?

Binary searching unsorted array

Closest pair

Given n points, find pair (p, q) with minimum distance

Algorithm (idea)

 permute points randomly  p1, p2, ..., pn

 for i = 2..n compute Δi = distance between closest pair for p1, ..., pi

Observation

 Pr[Δi < Δi-1] ≤
2
i

since minimum distance can only decrease
if pi is defining Δi

p

q

Closest pair

Closest pair – grid cells

Δi-1

 Construct grid cells with side-length Δi-1

 Point (x, y) in cell (x/Δi−1 , y/Δi−1) Note: ℝ → ℕ

 ≤ 4 points in cell if all pairwise distances ≥ Δi-1

 Neighbors of pi within distance Δi-1 are in ≤ 9 cells

 Store non-empty cells in a hash tabel (using randomization)

 Rebuild grid whenever Δi decreases

Analysis

 E[rebuild cost] = E[Σ3≤i≤n rebuild cost inserting pi]
= Σ3≤i≤n E[rebuild cost inserting pi] ≤ Σ3≤i≤n

2
i

∙ i ≤ 2n

 Total expected time O(n)

pi

Closest pair

Handin (Treaps)

A treap is a binary search tree with a random priority
assigned to each element when inserted (in the example
elements are white and priorities yellow).

A left-to-right inorder traversal gives the elements
in sorted order, whereas the priorities satisfy heap order,
i.e. priorities increase along a leaf-to-root path.

a) Argue that an arbitrary element in a treap of size n has expected
depth O(log n)

b) Describe how to insert an element into a treap and give running time

13
0.5

21
0.4

3
0.1

11
0.3

7
0.9

8
0.1

Treaps

References

 Raimund Seidel, Backwards Analysis of Randomized Geometric Algorithms, in Pach J. (eds) New
Trends in Discrete and Computational Geometry. Algorithms and Combinatorics, vol 10, 37-67.
Springer, Berlin, Heidelberg 1993. DOI: 10.1007/978-3-642-58043-7_3 (public available at
CiteSeerX). [Chapters 4-5]

 Sariel Har-Peled, Backwards analysis, lecture notes, 2018. sarielhp.org. [Chapters 35.1-35.3]

 Raimund Seidel and Cecilia R. Aragon, Randomized search trees, Algorithmica, 16(4–5), 464–497,
1996. DOI 10.1007/BF01940876.

 David R. Karger, Philip N. Klein, Robert E. Tarjan, A randomized linear-time algorithm to find
minimum spanning trees, Journal of the ACM, 42(2), 321-328, 1995. DOI 10.1145/201019.201022.

 Timothy M. Chan, Backwards analysis of the Karger-Klein-Tarjan algorithm for minimum spanning
trees, Information Processing Letters, 67(6), 303-304, 1998. DOI 10.1016/S0020-0190(98)00129-X.

References

https://doi.org/10.1007/978-3-642-58043-7_3
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.2357
https://sarielhp.org/teach/notes/algos/files/35_backward.pdf
https://doi.org/10.1007/BF01940876
https://doi.org/10.1145/201019.201022
https://doi.org/10.1016/S0020-0190(98)00129-X

