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Exercise 1 (skyline construction)

Given n points (x;, 4), ..., (x,, ¥,) in R?

" Give an algorithm for computing the points on the skyline ?
= What is the running time of your algorithm ?

Skyline



Problem — expected skyline size ?

= Consider n points (x;, y4), ..., (x,, y,) in R?
= Each x;and y; is selected independently

A
and uniformly at random from [0, 1] )
= What is the expected skyline size ? —— e
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Exercise 2 (dependent points)

= Describe an algorithm for generating n
distinct points (x4, y,), ..., (x,, ¥,) in R?

= Each x;and y; is selected uniformly at , t
random from [0, 1]
---

= The points are not independent "Te-?
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Generating random points

Assume the points are generated by the following algorithm

1) Generate n random x-values x, ..., x,

2) sort the x-values in decreasing order A

3) for decreasing x; generate random y, '
O (x;, ¥;)
(x, v) is a skyline point & y. = max(y,, ..., y) [~ 7°° c-?
. . 1 |
Prob[(x, y,) skyline point] = H o ° . '~
since y,, ..., ¥;independt and the same distribution, e o !y
all permutations are equally likely, i.e. probability _ M L,
y; to be largest among i values is 1/i 0 1

Skyline size



Expected skyline size

Stochastic variable: X; = {1 it point / on skyline

0 otherwise
E[|skyline]] A
= E[X;+ -+ X] 1
= E[Xl] + - + E[Xn] ___?__6__,()(/')’;)
- Z,. Probl(x; y.) skyline point] o5 O :_*
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- 173 n O o o :4".‘1 v
= Z,-zl._n% (harmonic number H,) o 1
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Exercise 3 (divide-and-conquer skyline)

Consider the following algorithm
* Find the topmost point p in O(n) time
" recurse on points to the right of p

Show that the expected running time is O(n)

Skyline



QuickSort — a randomized sorting algorithm

Quicksort(xy, ..., x,)
= Pick a random pivot element x;

= Partition remaining elements: S smaller than x;, and L larger than x;
= Recursively sort Sand L

QuickSort



QuickSort — analysis |

Alternative Quicksort

= Consider a random permutation it of the input, such that
X1y IS the first pivot, then x ), X3y, ...

Observations

= Changes the order unsorted sublists are partitioned, but the
pivots are still selected uniformly among the elements

= x;and x; are compared if and only if x; or x; is selected as a
plvot before any element in the sorted list between Xx;and x;

output

H EPEEFIEE B




QuickSort — analysis |

E[comparisons by quicksort]
= E[2,; cost of comparing x; and x]

i<j

= 2,.; E[cost of comparing x; and x|]

= 2. rh —f(i)l — Where r(i) = position of x; in output

= ZlSp<an q _,29+ 1

< 2n 'zzstn%/ output r(j) i)

< 2n-((lnn+1)—1) L ---- L
= 2n-Inn \ J /



Exercise 4 (random search trees)

Construct a unbalanced binary search tree for n numbers
X, << x_ by inserting the numbers in random order

= What is the probability that x; is an ancestor of x; ?

= What is the expected depth of a node x; ?

Insert: 15, 8,17, 13, 3,5, 10

Random search trees




Convex hull

Convex hull
= smallest polygon enclosing all points

Convex hull



Exercise 5: Convex hull

Give an O(n-log n) worst-case algorithm finding the Convex Hull

Convex hull



Convex hull — randomized incremental

1) Letp,, ..., p, be arandom permutation of the points
2) Compute convex hull of {p,, p,, p3}
3) c=(py+p,+p3)/3

4) fori=4to ninsertp,and construct H,from H.,:
if p; inside H., skip, otherwise insert p; in H.; and delete chain inside
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Convex hull —inserting p;

H., %)

Convex hull




Convex hull —inserting p;

P;

-
-
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How to find e for p, ?

store set of points with e
and reference to e from p,

Convex hull



Convex hull - analysis

= Each point inserted / deleted / inside at most once in convex hull

= E[# point-edge updates] P
= E[24, 2, p updated on insertioni] U s
= 24<i<n 2p Elp updated on insertion i

2
s z4Si£n zp -3 O-

< 2n(lnn+1)

since p only updatedon /Y TNe ST .
insertion i if p;is u or v

= Total expected time O(n-log n) ' 0

Convex hull
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Binary search - but forgot to sort the array...

(a dEbuggmg case) W How many cells can ever be
reached by a binary search ?
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Reachable nodes — analysis

Pr[ v, useful 1= |L;| / 5|L;]
E[ # useful nodes atlevel ] =2,( |L;| /&|L;] )=1
E[ # useful nodes in tree ] = height - 1

E[ # reachable nodes in tree ] < height? = O(log? n)

useful

useful

# useful nodes? --€YB------{y )--—--—--£/ - --- - - .
L,={23,4,511} L,=@ 1,={19,23,29,37,41} L,={47}

Binary searching unsorted array



Closest pair ° °

Given n points, find pair (p, g) with minimum distance °

Algorithm (idea)
= permute points randomly = p,, p,, ..., b,
= fori=2..ncompute A, = distance between closest pair for p,, ..., p

Observation

2 : . :
"= Pr[A,<A,] < = since minimum distance can only decrease

if p; is defining A,

Closest pair



Closest pair — grid cells

= Construct grid cells with side-length A , I *

= Point (x, y) in cell (|x/A,_.], ly/A.;]) Note: R — N 7

= <4 pointsin cell if all pairwise distances = A, , (:p\)
= Neighbors of p; within distance A, ; are in <9 cells =

= Store non-empty cells in a hash tabel (using randomization) Z:l

= Rebuild grid whenever A, decreases
Analysis

= E[rebuild cost] = E[2,,., rebuild cost inserting p]
= 2,.., E[rebuild cost inserting p,] < Z3S,-Snl.g - i<2n

"= Total expected time O(n)

Closest pair



Handin (Treaps)

A treap is a binary search tree with a random priority
assigned to each element when inserted (in the example
elements are white and priorities yellow).

A left-to-right inorder traversal gives the elements
in sorted order, whereas the priorities satisfy heap order,
i.e. priorities increase along a leaf-to-root path.

a) Argue that an arbitrary element in a treap of size n has expected
depth O(log n)

b) Describe how to insert an element into a treap and give running time
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