Rom Pinchasi

Halving Lines and Measure Concentration in the Plane

Given a set P of n points in the plane and a collection of k halving lines of $P l_1, \ldots, l_k$, indexed according to the increasing order of their slopes, we denote by $d(l_j, l_j + 1)$ the number of points in P that lie above $l_j + 1$ and below l_j. We prove an upper bound of $O(nk^{1/3})$ for the sum $\sum_{j = 1}^{k-1} d(l_j, l_j + 1)$. We show how this problem is related to the halving lines problem and provide several consequences about measure concentration in \mathbb{R}^2.