Linear programming
" Example Numpy: PageRank
" scipy.optimize.linprog

= Example linear programming: Maximum flow



PageRank



PageRank - A NumPy / Jupyter / matplotlib example

= Google's original search engine ranked webpages using PageRank

= View the internet as a graph where nodes
correspond to webpages and directed edges
to links from one webpage to another webpage

= Google’s PageRank algorithm was described
in (ilpubs.stanford.edu:8090/361/, 1998)

The Anatomy of a Large-Scale Hypertextual
Web Search Engine

Sergey Brin and Lawrence Page

Computer Science Department,
Stanford University, Stanford, CA 94305, USA
sergey(@cs.stanford.edu and page@cs.stanford.edu


http://ilpubs.stanford.edu:8090/361/

Five different ways to compute
PageRank probabilities

Simulate random process manually by rolling dices 0 e

Simulate random process in Python

Computing probabilities using matrix multiplication
Repeated matrix squaring
Eigenvector for A=1




Random surfer model (simplified)

The PageRank of a node (web page) is the fraction
of the time one visits a node by performing an
infinite random traversal of the graph starting

at node 1, and in each step

= with probability 1/6 jumps to a random page
(probability 1/6 for each node)

= with probability 5/6 follows an outgoing edge
to an adjacent node (selected uniformly)

The above can be simulated by using a dice: Roll a dice. If it shows 6, jump to a random page by
rolling the dice again to figure out which node to jump to. If the dice shows 1-5, follow an outgoing
edge - if two outgoing edges roll the dice again and go to the lower number neighbor if it is odd.



Adjacency matrix and degree vector

pagerank.ipynb

import numpy as np

# Adjacency matrix of the directed graph in the figure
# (note that the rows/colums are 0-indexed, whereas in the figure the nodes are 1l-indexed)

G = np.array([[0, 1, O, O, O, O],
[o, 0O, O, 1, O, O],
[, 1, o, 0, 0, O],
[0, 1, O, O, 1, O],
[0, 1, O, O, O, 1],
[0, 1, O, O, O, O11)

n = G.shape[0] # number of rows in G
degree = np.sum(G, axis=1l, keepdims=True) # column vector with row sums = out-degrees

# The below code handles sinks, i.e. nodes with outdegree zero (no effect on the graph above)

G =G + (degree == 0) # add edges from sinks to all nodes
degree = np.sum(G, axis=1, keepdims=True)




Simulate random walk (random surfer model)

pagerank.ipynb

from random import randint
STEPS = 1000000
# adjacency list[i] is a list of all j where (i, Jj) is an edge of the graph.

adjacency list = [[j for j, e in enumerate(row) if e] for row in G]
count = np.zeros (n) # histogram over number of node visits
state = 0 # start at node with index 0
for _ in range (STEPS) :

count[state] += 1 # increment count for state

if randint(l, 6) == 6: # original paper uses 15% instead of 1/6

state = randint (0, 5)
else:

state = adjacency list[state] [randint (0, degree[state] - 1)]
print(adjacency list, count / STEPS, sep='\n')
Python shell

| [r11, 31, o, 11, [1, 41, [1, 51, [1]]
[0.039365 0.353211 0.02751 0.322593 0.1623 0.095021]




Simulate random walk (random surfer model)

Random Walk
pagerank. ipynb 350000 -
import matplotlib.pyplot as plt
plt.bar (range(6), count) 300000 +
plt.title ("Random Walk")
plt.xlabel ("node") @ 250000 1
plt.ylabel ("number of wvisits") ig
plt.show () « 200000 -
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Transition matrix A

pagerank.ipynb

print (A7)

| [IO.
[0.
[0.5
[0.
[0.
[0.

Python shell
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A = G / degree

# Normalize row sums to one. Note that 'degree'
# is an n x 1 matrix, whereas G is an n x n matrix.
# The elementwise division is repeated for each column of G
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Repeated matrix multiplication

pagerank.ipynb

We now want to compute the probability p"), to be

in vertex j after i steps. Let pl) = (pl), ..., p) ).
Initially we have p©=(1, 0, ..., 0).
We compute a matrix M, such that pt) = M’ - p(0)

(assuming p© is a column vector).

If we let 1, denote the n x n matrix with 1 in each
entry, then M can be computed as:

(+1) 1 1 >N (), 4
Pj 6 n 62’0 kj

(i+1) _ (1 1 > T\ ()
P '(6 n1+6A>p

J

M

ITERATIONS = 20
p 0 = np.zeros((n, 1))
p 0[O0, 0] =1.0
M=1/ (6 *n) +5/ 6 *A.T
p=p0
prob = p # 'prob' will contain each
# computed 'p' as a new column

for _ in range (ITERATIONS) :

pP=MG@p

prob = np.append(prob, p, axis=1)
print (p)
| [[0.03935185]

[0.35326184]

[0.02777778]

[0.32230071]

[0.16198059]

[0.09532722]]




Random Surfer Probabilities
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pagerank.ipynb
x = range (ITERATIONS + 1)

for node in range(n) :
plt.plot(x, prob[node], label="node %s" % node)

plt.xticks (x)

plt.title ("Random Surfer Probabilities")
plt.xlabel ("Iterations")

plt.ylabel ("Probability")

plt.legend ()

plt.show ()




Repeated squaring

A

M- (-+-(M-(M-p0)))--+) = MK-p(0) = M2'%8¥. p(0) = (...((M2)2)2--.)2.p(O)

k multiplications, k power of 2

pagerank. ipynb

from math import log

MP = M

for in range(l + int(log(ITERATIONS, 2))):
MP = MP @ MP

p=MP @p O

print (p)

Python shell

| [[0.03935185]
[0.35332637]
[0.02777778]
[0.32221711]
[0.16203446]
[0.09529243]]




PageRank : Computing eigenvector forA =1

= We want to find a vector p, with |p| =1, where Mp = p,
i.e. an eigenvector p for the eigenvalue A =1

pagerank. ipynb

eigenvalues, eigenvectors = np.linalg.eig (M)

idx = eigenvalues.argmax () # find the largest eigenvalue (= 1)

p = np.real (eigenvectors|[:, idx]) # .real returns the real part of complex numbers
p /= p.sum() # normalize p to have sum 1

print (p)

Python shell

| [0.03935185 0.3533267 0.02777778 0.32221669 0.16203473 0.09529225]




PageRank : Note on practicality

" |n practice an explicit matrix for billions of nodes is infeasible, since
the number of entries would be order of 1018

" |nstead use sparse matrices (in Python modul scipy.sparse)and
stay with repeated multiplication



Linear programming



scipy.optimize.linprog

= scipy.optimize.linprog can solve linear programs of the following
form, where one wants to find an n x 1 vector x satisfying:

-

\_

Minimize:

Subjectto: A, - x
- X

cl-x

A

€q

"\ dimension

c:nxl
< by, Ap:mxn b,:mxl
= b, Aqikxn bey: kx 1

J

NB: For industrial strength linear solvers, use solvers like Cplex or Gurobi



https://pypi.org/project/cplex/
https://www.gurobi.com/documentation/8.1/quickstart_windows/py_python_interface

Linear programming example

Maximize
3:x, +2:X,
Subject to
2-x,+1-x,<10
5, +6:x,24
-3-x,+7:x,=8

0

X2

Minimize
- (3-x, + 2:x,)
Subject to
2-x,+1-x,<10
-5:x, +-6:x, <-4
-3-x,+7:x,=8

3x1+ 2x>

2x1+x2 =10
S5x1+6x72 =4
—3x1+7x:=8
(3.65,2.71)
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linear programming.py

import numpy as np
from scipy.optimize import linprog

c = np.array([3, 2])
A ub = np.array([[ 2, 1],
[-5, -6]]) # multiplied by -1
b ub = np.array([10, -4])
A eq = np.array([[-3, 7]1])
b eq = np.array([8])
res = linprog(-c, # maximize = minimize the negated
A ub=A ub,
b ub=b ub,
A eg=A eq,
b eg=b eq)

print(res) # res.x is the optimal vector

Python shell

-16.35294117647059

'Optimization terminated successfully.‘
3

array ([ O. ,
0

True
array([3.64705882, 2.70588235])

| fun:
message:
nit:

slack:
status:

30.47058824])

success:
X:




Maxmium flow



Solving maximum flow using linear programming

Maximize
flow
+
X7. X3 value
Subject to
Xy <4
X, <3
x,<1
2
X3<1 Zc
O ©
X, <3 §§
source g
Xg <3
x;<1
Xg <5
X; =X, + Xg S
— +
We will use the scipy.optimize.linprog function to solve the maximum flow problem X3+ Xg+ Xg=Xg| = U
on the above directed graph. We want to send as much flow from node A to node F. Xy + X=X+ X5 §

Edges are numbered 0..8 and each edge has a maximum capacity. ) )
Note: solution not unique


https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html

Solving maximum flow using linear programming

x is a vector describing the flow along each edge

c is a vector that to add the flow along the edges (7 and 8)
to the sink (F), i.e. a function computing the flow value

A, and b, is a set of capacity constraints, for each edge
flow < capacity

A.q,and b, is a set of flow conservation constraints, for
each non-source and non-sink

node (B, C, D, E), requiring
that the flow into equals
the flow out of a node

Maximize

' x, <31 O
' +[-x < capacity

' 0=-Xt Xt X3 .
1 0=-X3-X5-Xg+Xg!
1 0=-Xx, - x4+x6+x7

capacity

flow
conservation

constraints




maximum-flow.py

import numpy as np

#

#

#

print (res)

conservation = np.array ([

0

sinks = np.array ([0,

res = linprog(-sinks,
A eg=conservation,
b eqg=np.zeros (conservation.shape[0]),
A ub=np.eye (capacity.size),
b ub=capacity)

[
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capacity = np.array([4, 3,
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from scipy.optimize import linprog

1 2 3 4 5 6 7
1, O, 0, 1, 1[ OI Ol
0! 1/ 1! 0! 0/ 0/ O/
o, 0,-1, 0,-1,-1, O,
Or'_ll OI'_lr 0! 1/ 1/
4 5 6 7 8

o, 0, 0, 1, 1])

3 4 5 6 7 8

1, 3, 1, 3, 1, 5])

Python shell

fun:
message:
nit:
slack:

the solution found varies

H H H
M OQW

status:
success:

with the scipy version

> X

source

=5,0

'Optimization terminated successfully.'

9
array([2.,
0

True
array([2.,

0.

3.
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