Linear programming
" Example Numpy: PageRank
" scipy.optimize.linprog

= Example linear programming: Maximum flow

PageRank

PageRank - A NumPy / Jupyter / matplotlib example

= Google's original search engine ranked webpages using PageRank

= View the internet as a graph where nodes
correspond to webpages and directed edges
to links from one webpage to another webpage

= Google’s PageRank algorithm was described
in (ilpubs.stanford.edu:8090/361/, 1998)

The Anatomy of a Large-Scale Hypertextual
Web Search Engine

Sergey Brin and Lawrence Page

Computer Science Department,
Stanford University, Stanford, CA 94305, USA
sergey(@cs.stanford.edu and page@cs.stanford.edu

http://ilpubs.stanford.edu:8090/361/

Five different ways to compute
PageRank probabilities

Simulate random process manually by rolling dices 0 e

Simulate random process in Python

Computing probabilities using matrix multiplication
Repeated matrix squaring
Eigenvector for A=1

Random surfer model (simplified)

The PageRank of a node (web page) is the fraction
of the time one visits a node by performing an
infinite random traversal of the graph starting

at node 1, and in each step

= with probability 1/6 jumps to a random page
(probability 1/6 for each node)

= with probability 5/6 follows an outgoing edge
to an adjacent node (selected uniformly)

The above can be simulated by using a dice: Roll a dice. If it shows 6, jump to a random page by
rolling the dice again to figure out which node to jump to. If the dice shows 1-5, follow an outgoing
edge - if two outgoing edges roll the dice again and go to the lower number neighbor if it is odd.

Adjacency matrix and degree vector

pagerank.ipynb

import numpy as np

Adjacency matrix of the directed graph in the figure
(note that the rows/colums are 0-indexed, whereas in the figure the nodes are 1l-indexed)

G = np.array([[0, 1, O, O, O, O],
[o, 0O, O, 1, O, O],
[, 1, o, 0, 0, O],
[0, 1, O, O, 1, O],
[0, 1, O, O, O, 1],
[0, 1, O, O, O, O11)

n = G.shape[0] # number of rows in G
degree = np.sum(G, axis=1l, keepdims=True) # column vector with row sums = out-degrees

The below code handles sinks, i.e. nodes with outdegree zero (no effect on the graph above)

G =G + (degree == 0) # add edges from sinks to all nodes
degree = np.sum(G, axis=1, keepdims=True)

Simulate random walk (random surfer model)

pagerank.ipynb

from random import randint
STEPS = 1000000
adjacency list[i] is a list of all j where (i, Jj) is an edge of the graph.

adjacency list = [[j for j, e in enumerate(row) if e] for row in G]
count = np.zeros (n) # histogram over number of node visits
state = 0 # start at node with index 0
for _ in range (STEPS) :

count[state] += 1 # increment count for state

if randint(l, 6) == 6: # original paper uses 15% instead of 1/6

state = randint (0, 5)
else:

state = adjacency list[state] [randint (0, degree[state] - 1)]
print(adjacency list, count / STEPS, sep='\n')
Python shell

| [r11, 31, o, 11, [1, 41, [1, 51, [1]]
[0.039365 0.353211 0.02751 0.322593 0.1623 0.095021]

Simulate random walk (random surfer model)

Random Walk
pagerank. ipynb 350000 -
import matplotlib.pyplot as plt
plt.bar (range(6), count) 300000 +
plt.title ("Random Walk")
plt.xlabel ("node") @ 250000 1
plt.ylabel ("number of wvisits") ig
plt.show () « 200000 -

@
0
£ 150000 -
c
100000 A

50000 A

Transition matrix A

pagerank.ipynb

print (A7)

| [IO.
[0.
[0.5
[0.
[0.
[0.

Python shell

1.

R O OOOo
g 01 On
O OO O O o

A = G / degree

Normalize row sums to one. Note that 'degree'
is an n x 1 matrix, whereas G is an n x n matrix.
The elementwise division is repeated for each column of G

O O OO+ o

OO O O O O O
©O O O O O O

d d d hd hd d

Repeated matrix multiplication

pagerank.ipynb

We now want to compute the probability p"), to be

in vertex j after i steps. Let pl) = (pl), ..., p)).
Initially we have p©=(1, 0, ..., 0).
We compute a matrix M, such that pt) = M’ - p(0)

(assuming p© is a column vector).

If we let 1, denote the n x n matrix with 1 in each
entry, then M can be computed as:

(+1) 1 1 >N (), 4
Pj 6 n 62’0 kj

(i+1) _ (1 1 > T\ ()
P '(6 n1+6A>p

J

M

ITERATIONS = 20
p 0 = np.zeros((n, 1))
p 0[O0, 0] =1.0
M=1/ (6 *n) +5/ 6 *A.T
p=p0
prob = p # 'prob' will contain each
computed 'p' as a new column

for _ in range (ITERATIONS) :

pP=MG@p

prob = np.append(prob, p, axis=1)
print (p)
| [[0.03935185]

[0.35326184]

[0.02777778]

[0.32230071]

[0.16198059]

[0.09532722]]

Random Surfer Probabilities

1.0 node 0
node 1

Rate of

convergence rde 3
o @00*0
V

0.0 A

Probability
o
o)l

o
NN

o
MJ
1

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
. Iterations
pagerank.ipynb
x = range (ITERATIONS + 1)

for node in range(n) :
plt.plot(x, prob[node], label="node %s" % node)

plt.xticks (x)

plt.title ("Random Surfer Probabilities")
plt.xlabel ("Iterations")

plt.ylabel ("Probability")

plt.legend ()

plt.show ()

Repeated squaring

A

M- (-+-(M-(M-p0)))--+) = MK-p(0) = M2'%8¥. p(0) = (...((M2)2)2--.)2.p(O)

k multiplications, k power of 2

pagerank. ipynb

from math import log

MP = M

for in range(l + int(log(ITERATIONS, 2))):
MP = MP @ MP

p=MP @p O

print (p)

Python shell

| [[0.03935185]
[0.35332637]
[0.02777778]
[0.32221711]
[0.16203446]
[0.09529243]]

PageRank : Computing eigenvector forA =1

= We want to find a vector p, with |p| =1, where Mp = p,
i.e. an eigenvector p for the eigenvalue A =1

pagerank. ipynb

eigenvalues, eigenvectors = np.linalg.eig (M)

idx = eigenvalues.argmax () # find the largest eigenvalue (= 1)

p = np.real (eigenvectors|[:, idx]) # .real returns the real part of complex numbers
p /= p.sum() # normalize p to have sum 1

print (p)

Python shell

| [0.03935185 0.3533267 0.02777778 0.32221669 0.16203473 0.09529225]

PageRank : Note on practicality

" |n practice an explicit matrix for billions of nodes is infeasible, since
the number of entries would be order of 1018

" |nstead use sparse matrices (in Python modul scipy.sparse)and
stay with repeated multiplication

Linear programming

scipy.optimize.linprog

= scipy.optimize.linprog can solve linear programs of the following
form, where one wants to find an n x 1 vector x satisfying:

-

_

Minimize:

Subjectto: A, - x
- X

cl-x

A

€q

"\ dimension

c:nxl
< by, Ap:mxn b,:mxl
= b, Aqikxn bey: kx 1

J

NB: For industrial strength linear solvers, use solvers like Cplex or Gurobi

https://pypi.org/project/cplex/
https://www.gurobi.com/documentation/8.1/quickstart_windows/py_python_interface

Linear programming example

Maximize
3:x, +2:X,
Subject to
2-x,+1-x,<10
5, +6:x,24
-3-x,+7:x,=8

0

X2

Minimize
- (3-x, + 2:x,)
Subject to
2-x,+1-x,<10
-5:x, +-6:x, <-4
-3-x,+7:x,=8

3x1+ 2x>

2x1+x2 =10
S5x1+6x72 =4
—3x1+7x:=8
(3.65,2.71)

- 50
10

- 40

—10
0.0

2.5

5.0
X1

7.5 10.0

linear programming.py

import numpy as np
from scipy.optimize import linprog

c = np.array([3, 2])
A ub = np.array([[2, 1],
[-5, -6]]) # multiplied by -1
b ub = np.array([10, -4])
A eq = np.array([[-3, 7]1])
b eq = np.array([8])
res = linprog(-c, # maximize = minimize the negated
A ub=A ub,
b ub=b ub,
A eg=A eq,
b eg=b eq)

print(res) # res.x is the optimal vector

Python shell

-16.35294117647059

'Optimization terminated successfully.‘
3

array ([O. ,
0

True
array([3.64705882, 2.70588235])

| fun:
message:
nit:

slack:
status:

30.47058824])

success:
X:

Maxmium flow

Solving maximum flow using linear programming

Maximize
flow
+
X7. X3 value
Subject to
Xy <4
X, <3
x,<1
2
X3<1 Zc
O ©
X, <3 §§
source g
Xg <3
x;<1
Xg <5
X; =X, + Xg S
— +
We will use the scipy.optimize.linprog function to solve the maximum flow problem X3+ Xg+ Xg=Xg| = U
on the above directed graph. We want to send as much flow from node A to node F. Xy + X=X+ X5 §

Edges are numbered 0..8 and each edge has a maximum capacity.))
Note: solution not unique

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html

Solving maximum flow using linear programming

x is a vector describing the flow along each edge

c is a vector that to add the flow along the edges (7 and 8)
to the sink (F), i.e. a function computing the flow value

A, and b, is a set of capacity constraints, for each edge
flow < capacity

A.q,and b, is a set of flow conservation constraints, for
each non-source and non-sink

node (B, C, D, E), requiring
that the flow into equals
the flow out of a node

Maximize

' x, <31 O
' +[-x < capacity

' 0=-Xt Xt X3 .
1 0=-X3-X5-Xg+Xg!
1 0=-Xx, - x4+x6+x7

capacity

flow
conservation

constraints

maximum-flow.py

import numpy as np

#

#

#

print (res)

conservation = np.array ([

0

sinks = np.array ([0,

res = linprog(-sinks,
A eg=conservation,
b eqg=np.zeros (conservation.shape[0]),
A ub=np.eye (capacity.size),
b ub=capacity)

[

[_

[

[
1 2
o, O,
0 1

capacity = np.array([4, 3,

14

~

OO Rr OO
~

~

from scipy.optimize import linprog

1 2 3 4 5 6 7
1, O, 0, 1, 1[OI Ol
0! 1/ 1! 0! 0/ 0/ O/
o, 0,-1, 0,-1,-1, O,
Or'_ll OI'_lr 0! 1/ 1/
4 5 6 7 8

o, 0, 0, 1, 1])

3 4 5 6 7 8

1, 3, 1, 3, 1, 5])

Python shell

fun:
message:
nit:
slack:

the solution found varies

H H H
M OQW

status:
success:

with the scipy version

> X

source

=5,0

'Optimization terminated successfully.'

9
array([2.,
0

True
array([2.,

0.

3.

14

