Class hierarcies

" inheritance

* method overriding
" super

= multiple inheritance

Calling methods of a class

" |f an object ob 7 of class C has a
method method, then usually
you call obj.method ()

" |tis possible to call the method
in the class directly using
C.method, where the object is
the first argument

C.method (ob7)

class X:
def set x(self, x):
self.x = x

def get x(self):
return self.x

obj = X()
obj.set x(42)

print ("obj.get x() =", obj.get x())
print("obj.x =", obj.x)
print ("X.get x(obj) =", X.get x(obj))

Python shell

| obj.get x() = 42
| obj.x = 42
| X.get x(obj) = 42

Classes and Objects

class Person

set name (name)
get name ()

set address (address)
get address|()

class Student

set name (name)
get name ()

set address (address)
get address|()

set 1d(student id)
get 1d()

set grade (course,
get grades ()

grade)

instance

—

instance

|

’
U4

-

oS T N -

Observation: students and employees
are persons with additional attributes

Person object

name =
address =

'"Mickey Mouse'

'"Mouse Street 42, Duckburg'

Student object

name =

address =
id = '1094
grades = {

'"Donald Duck'

'Duck Steet 13,

Duckburg'

'programming' 'A'

Employee object

name =
address =
employer =

'Goofy'

'Clumsy Road 7, Duckburg'
'Yarvard University'

\

~

B ————

\

Classes and Objects
Goal — avoid redefining the 4 methods below

N .
SEE TEnie (meme,) from person class again in student class
get name ()

set address (address)
get address|()

class Student class Person:

N N N N B BN NN BN BN NN BN RN SN NN NN NN SN BN BN BN BN BN BN BN B B Ny,

Ifset_name (name) person \I def set_name (self, name) .
lget name () ATAVIES | self.name = name

Eset_address(address)

iget address ()

def get name (self):
return self.name

Smm——— ST mmSmsmsmssmsssss s - def set address(self, address):
set_id(student_1d) self.address = address
et 1d
get_1d{) def get address(self):
set grade (course, grade) return self.address

get grades ()

Classes inheritance

class Person

set name (name)
get name ()

set address (address)
get address|()

class Student

N N N N B BN NN BN BN NN BN RN SN NN NN NN SN BN BN BN BN BN BN BN B B Ny,

fset_name(name) person)

:get name () attributes 1
| _

Iset address (address)
iget address ()

set 1d(student id)
get 1d()

set grade (course, grade)
get grades ()

class Student inherits from class Person
class Person is the base class of Student

class Student (Person) :
def set id(self, student id):
self.id = student id

def get id(self):
return self.id

def set grade(self, course, grade):
self.grades[course] = grade

def get grades(self):
return self.grades

Classes constructors

class Person

set name (name)
get name ()

set address (address)
get address|()

class Student

fset_name(name) person)

:get_name () attributes |
1
Eset_address(address)
1

iget address ()

set i1d(student id)
get 1d()

set grade (course, grade)
get grades ()

class Person:

def __init (self): } constructor for

self.name = None
Person class

self.address = None

class Student (Person) :
def init (self):
self.id = None
self.grades = {}
Person. init (self)

! constructor for
Student class

Notes
1) IfStudent. init isnot defined, then
Person. init will be called

2) Student. 1init mustcall Person. 1init to

initialize the name and address attributes

super()

set name (name)
get name ()

set address (address)
get address|()

class Student

N N N N B BN NN BN BN NN BN RN SN NN NN NN SN BN BN BN BN BN BN BN B B Ny,

fset_name(name) person)

:get_name () attributes |
1
Eset_address(address)
1

iget address ()

set i1d(student id)
get 1d()

set grade (course,
get grades ()

grade)

class Person:
def init (self):
self.name = None
self .address = None

class Student (Person) :

def init (self):

self.id = None
self.grades = {}

Toreer—aas b [eo g

super (). init ()

Notes

}

alternative
constructor

1) Function super () searches for attributes in base class
2) super is often a keyword in other OO languages, like Java and C++
3) Notesuper (). init () doesnotneed self asargument

Method search order

set name (name)
get name ()

set address (address)
get address|()

parent class

class Student (Person) Student object

get_1d() < address = 'Duck Steet 13, Duckburg'
set grade (course, grade) id = '1094" |
get grades () grades = {'programming' : 'A' }

class object

class Person

set name (name)
get name ()

Class hierarchy

set address (address)
get address|()

TN

class Student (Person) class Employee (Person)

set id(student id) set employer (employer)
get 1d() get employer ()

set grade (course, grade)
get grades ()

Method overriding

class A:
def say(self):
print ("A says hello")

class B(A): # B is a subclass of A
def say(self):
print ("B says hello")

super () .say ()
Python shell

> B() .say()
| B says hello

| A says hello

In Java one can use the keyword "finallvy” to
prevent any subclass to override a method

Python shell

> class A() :
def f (self):
print ("Af")
self.g()
def g(self):
print ("Ag")

> class B(A) :
def g(self):
print ("Bg")

H |l

B()
0

v b o

>
>
|

Question —What doesb. £ () print ?

Attributekrror
Af Ag

Af Bg

Don’t know

Undefind methods in superclass ?

Python shell Python shell

> class A(): > class A():
def f (self): def f(self): method g undefined in class A;
print ("Af") print ("Af") subclasses must implement g
self.g() self.g() «— to be able to call £
def g(self): > class B(A): in Java, A would have been
print ("Ag") def g(self): required to be declared an
> class B(A): print ("Bg") abstract class
def g(self): > b = B()
print ("Bg") > b.£()
> b = B() | Af .
> b.£() | Bg / can create instance of A
| Af > a = A() ~_ fails since g is not
| Bg > a.f() < defined in class A
> a = A() | Af
> a.f£() | AttributeError: 'A' object has no attribute 'g’
| Af
| Ag

Name mangling and inheritance

Python shell

> class A():
def f (self):

Pt o0 = ThecalltoA. ginA. f forcesa
def _ g(self): callto g to stay within A
print ("Ag")

> class B(A):

def g(self): .
Tint ("Bq™) = Recall that due to name mangling,

B() __gisaccessibleasA. A g
)

Multiple inheritance

= A class can inherit attributes from
multiple classes (in example two)

= When calling a method defined in
several ancestor classes, Python
executes only one of the these
(in the example say hello)

= Which one is determined by the so
called ”"C3 Method Resolution Order”
(originating from the Dylan language)

Raymond Hettinger, Super considered super!
Conference talk at PyCon 2015

multiple inheritance.py

class Alice:
def say hello(self):
print("Alice says hello")
def say good night (self):
print ("Alice says good night")
class Bob:
def say hello(self):
print ("Bob says hello")
def say good morning(self):
print ("Bob says good morning")
class X(Alice, Bob): # Multiple inheritance
def say(self):
self.say good morning()

self.say hello() # C3 resolution
Alice.say hello(self) # from Alice
Bob.say hello (self) # from Bob

self.say good night ()

Python shell

> X () .say/()
Bob says good morning

|
| Alice says hello e since Alice before Bob
| Alice says hello in list of super classes

| Bob says hello
| Alice says good night

control.pptx
control.pptx

C3 Method

> X. mro

" | (<cl ' in .X'>, <cl ' in .Alice'>,
resolution order celass ' Tmain “hob'y, <class Tobjectis)

> help (X)
| Help on class X in module _ main
. | class X(Alice, Bob)
Use help (class) tO | | Method resolution order:
determine the resolution X
order for the class i

builtins.object
Methods defined here:
say (self)

= oraccessthe mro

|
|
|
|
|
. — |
attribute of the class

| say good night(self)
| say hello(self)

| Methods inherited from Bob:

|

|

|

|

|

|

|

| | Methods inherited from Alice:
|

|

|

|

|

|

| | say_good morning(self)

Question — Who says hello ? Bob says good morning

inheritance.py

class Alice:
def say hello(self):
print ("Alice says hello")

class Bob: -

def say hello(self): a) Alice
print ("Bob says hello")

def say good morning(self): b) Bob

self.say hello()
print ("Bob says good morning")
class X(Alice, Bob): # Multiple inheritance
pass

c) Dont’ know

X () .say _good morning ()

...example of code injection using multiple inheritance and where body of new class is empty

Comparing objects and classes

= id(obj) returnsa unique identifyer for an object (in CPython the memory address)
" objl is obj2 testsif id(objl)==id (obj2)
" type(obj) andobj. class returnthe class of an object

" isinstance (object, class) checksifan objectis of a particularclass, ora
derived subclass

= jssubclass(classl, class?) checksif classl isasubclassof class?

is is not for integers, strings, ... and is is not ==

Python shell

500 + 500 is 1000
True
x = 500
x + x is 1000
False
True
for x in range (0, 1000):
if x -1+ 1 is not x:
print (x)
break

vV —V —V V —V

| 257

if x+1 -1 is not x:
print (x)

e break

x + x == 1000 # int. eqg (...

> for x in range(0, -1000, -1):

Python shell

> "abe" is "abc"
| True
> "abe" is "xabec"[1l:]
| False
> x, y = "abec", "xabc"[1l:]
> X,y
| ('abe', 'abce')
> x is y
| False
>x =y # x.__eq_ (y)
| True

= Only use is on objects !

= Eventhough isinstance (42, object)
and isinstance ("abc", object) are
true, do not use is on integers and strings |

Comparison of OO in Python, Java and C++

= private, public, —in Python everything in an object is public

= class inheritance — core concept in OO programming
* Python and C++ support multiple inheritance

* Java only allows single inheritance, but Java “interfaces” allow for something
like multiple inheritance

= Python and C++ allows overloading standard operators (+, *, ...).
In Java it is not possible.

= QOverloading methods

* Python extremely dynamic (hard to say anything about the behaviour of a
program in general)

 Java and C++’s type systems allow several methods with same name in a class,
where they are distinguished by the type of the arguments, whereas Python
allows only one method that can have * and ** arguments

C++ example

= Multiple methods with
identical name (print)

" The types distinguish the
different methods

printing.py

class MyClass:
def print(self, wvalue):
if isinstance(value, int):
print ('An integer', value)
elif isinstance(value, str):
print ('A string', wvalue)

= MyClass ()
int (42)

C
C.pr
C.print("abc")

printing.cpp

#include <iostream>
using namespace std;

class MyClass {
public:
void print(int x) {
cout << "An integer " << x << endl;
};
void print(string s) {
cout << "A string " << s << endl;
}i
};
main() {
MyClass C;

C.print (42);

C.print("abc") ;
}

Shell

| An integer 42
| A string abc

