Two geometric medians (≥ 3 points)

The optimal bisector (defined by the two geometric medians) partitions the points into two sets A and B. Claim There exists a line through two input points, that separates A and B, where the two points are either both in A or both in B .
Proof. Consider the cases...

Case 1: Parallel shift bisector away from side with most points, until reaching point p_{1}, and turn line until it touches p_{2} or p_{3} on the same side. Line $p_{1} p_{2}$ or $p_{1} p_{3}$ is a valid bisector.

Case 2: Parallel shift bisector away from side with most points, until reaching point p_{1}, and turn line until it touches the first points p_{2} and p_{3} on other side. Assume wlog. p_{2} is furtherst away from the true bisector. Turn line through p_{2} until it touches the first point p_{4} (possibly $\left.p_{4}=p_{3}\right)$. The line $p_{2} p_{4}$ is a valid bisector.

