
Documentation, testing and debugging
 docstring

 defensive programming

 assert

 test driven developement

 assertions

 testing

 unittest

 debugger

 static type checking (mypy)

Ensuring good quality code ?

Idea

Development UsageDesign phase

Coding User runs
program

Fix bug

Find bug

Testing success

Goal

 Develop programs that
work correctly

 Tools and techniques

runs forever / crash /
incorrect output /

explosion / ...

(hopefully)
correct

program

What is good code ?

 Readability
• well-structured

• documentation

• comments

• follow some standard structure (easy to recognize, follow PEP8 Style Guide)

 Correctness
• outputs the correct answer on valid input

• eventually stops with an answer on valid input (should not go in infinite loop)

 Reusable...

https://www.python.org/dev/peps/pep-0008/

Why ?
Documentation

 specification of
functionality

 docstring
• for users of the code

• modules

• methods

• classes

 comments
• for readers of the code

Testing

 Correct
implementation ?

 Try to predict
behavior on
unknown input ?

 Performance
guarantees ?

Debugging

 Where is the #!¤$
bug ?

”Program testing can be used to show the presence of bugs, but never to show their absence” ̶ Edsger W. Dijkstra

BaseException

+-- SystemExit

+-- KeyboardInterrupt

+-- GeneratorExit

+-- Exception

+-- StopIteration

+-- StopAsyncIteration

+-- ArithmeticError

| +-- FloatingPointError

| +-- OverflowError

| +-- ZeroDivisionError

+-- AssertionError

+-- AttributeError

+-- BufferError

+-- EOFError

+-- ImportError

| +-- ModuleNotFoundError

+-- LookupError

| +-- IndexError

| +-- KeyError

+-- MemoryError

+-- NameError

| +-- UnboundLocalError

+-- TypeError

+-- ValueError

| +-- UnicodeError

| +-- UnicodeDecodeError

| +-- UnicodeEncodeError

| +-- UnicodeTranslateError

|

+-- OSError

| +-- BlockingIOError

| +-- ChildProcessError

| +-- ConnectionError

| | +-- BrokenPipeError

| | +-- ConnectionAbortedError

| | +-- ConnectionRefusedError

| | +-- ConnectionResetError

| +-- FileExistsError

| +-- FileNotFoundError

| +-- InterruptedError

| +-- IsADirectoryError

| +-- NotADirectoryError

| +-- PermissionError

| +-- ProcessLookupError

| +-- TimeoutError

+-- ReferenceError

+-- RuntimeError

| +-- NotImplementedError

| +-- RecursionError

+-- SyntaxError

| +-- IndentationError

| +-- TabError

+-- SystemError

+-- Warning

+-- DeprecationWarning

+-- PendingDeprecationWarning

+-- RuntimeWarning

+-- SyntaxWarning

+-- UserWarning

+-- FutureWarning

+-- ImportWarning

+-- UnicodeWarning

+-- BytesWarning

+-- ResourceWarning

Built-in exceptions
(class hierarchy)

d
o

cs
.p

yt
h

o
n

.o
rg

/3
/l

ib
ra

ry
/e

xc
ep

ti
o

n
s.

h
tm

l

https://docs.python.org/3/library/exceptions.html

Testing for unexpected behaviour ?

infinite-recursion1.py

def f(depth):

f(depth + 1) # infinite recursion

f(0)

Python shell

| RecursionError: maximum recursion depth exceeded

infinite-recursion2.py

def f(depth):

if depth > 100:

print("runaway recursion???")

raise SystemExit # raise built-in exception

f(depth + 1)

f(0)

Python shell

| runaway recursion???

infinite-recursion3.py

import sys

def f(depth):

if depth > 100:

print("runaway recursion???")

sys.exit() # system function

f(depth + 1)

f(0)

Python shell

| runaway recursion???

raises SystemExit

 let the program eventually fail

 check and raise exceptions

 check and call sys.exit

Catching unexpected behaviour – assert
infinite-recursion4.py

def f(depth):

assert depth <= 100 # raise exception if False

f(depth + 1)

f(0)

Python shell

| File "...\infinite-recursion4.py", line 2, in f

| assert depth <= 100

| AssertionError

infinite-recursion5.py

def f(depth):

assert depth <= 100, "runaway recursion???"

f(depth + 1)

f(0)

Python shell

| File ".../infinite-recursion5.py", line 2, in f

| assert depth <= 100, "runaway recursion???"

| AssertionError: runaway recursion???

 keyword assert checks if
boolean expression is true,
if not, raises exception
AssertionError

 optional second parameter
passed to the constructor of
the exception

Disabling assert statements

 assert statements are
good to help check
correctness of program – but
can slow down program

 invoking Python with option
–O disables all assertions
(by setting __debug__ to
False)

docs.python.org/3/reference/simple_stmts.html#assert

https://docs.python.org/3/reference/simple_stmts.html#assert

Example

First try... (seriously, the bugs were not on purpose)

intsqrt_buggy.py

def int_sqrt(x):

low = 0

high = x

while low < high - 1:

mid = (low + high) / 2

if mid ** 2 <= x:

low = mid

else:

high = mid

return low

Python shell

> int_sqrt(10)

| 3.125 # 3.125 ** 2 = 9.765625

> int_sqrt(-10)

| 0 # what should the answer be ?

Let us add a specification...

intsqrt.py

def int_sqrt(x):

"""Compute the integer square root of an integer x.

Assumes that x is an integer and x >= 0

Returns integer floor(sqrt(x))"""

...

Python shell

> help(int_sqrt)

| Help on function int_sqrt in module __main__:

|
| int_sqrt(x)

| Compute the integer square root of an integer x.

| Assumes that x is an integer and x >= 0

| Returns integer floor(sqrt(x)) PEP 257 -- Docstring Conventions
www.python.org/dev/peps/pep-0257/

input
requirements

output
guarantees

d
o

cs
tr

in
g

 all methods, classes, and
modules can have a
docstring (ideally
have) as a specification

 for methods: summarize
purpose in first line,
followed by input
requirements and ouput
guarantees

 the docstring is assigned
to the object’s __doc__
attribute

https://www.python.org/dev/peps/pep-0257/

Let us check input requirements...

intsqrt.py

def int_sqrt(x):

"""Compute the integer square root of an integer x.

Assumes that x is an integer and x >= 0

Returns integer floor(sqrt(x))"""

assert isinstance(x, int)

assert 0 <= x

...

Python shell

> int_sqrt(-10)

| File "...\int_sqrt.py", line 7, in int_sqrt

| assert 0 <= x

| AssertionError

check input
requirements

 doing explicit checks for
valid input arguments is
part of defensive
programming and helps
spotting errors early

(instead of continuing
using likely wrong
values... resulting in a
final meaningless error)

Let us check if output correct...
intsqrt.py

def int_sqrt(x):

"""Compute the integer square root of an integer x.

Assumes that x is an integer and x >= 0

Returns integer floor(sqrt(x))"""

assert isinstance(x, int)

assert 0 <= x

...

assert isinstance(result, int)

assert result ** 2 <= x < (result + 1) ** 2

return result

Python shell

> int_sqrt(10)

| File "...\int_sqrt.py", line 20, in int_sqrt

| assert isinstance(result, int)

| AssertionError

check
output

 output check identifies
the error

mid = (low+high) / 2

 should have been

mid = (low+high) // 2

 The output check helps
us to ensure that
functions specification is
guaranteed in
applications

Let us test some input values...
intsqrt.py

def int_sqrt(x):

...

assert int_sqrt(0) == 0

assert int_sqrt(1) == 1

assert int_sqrt(2) == 1

assert int_sqrt(3) == 1

assert int_sqrt(4) == 2

assert int_sqrt(5) == 2

assert int_sqrt(200) == 14

Python shell

| Traceback (most recent call last):

| File "...\int_sqrt.py", line 28, in <module>

| assert int_sqrt(1) == 1

| File "...\int_sqrt.py", line 21, in int_sqrt

| assert result ** 2 <= x < (result + 1) ** 2

| AssertionError

 test identifies
wrong output for x = 1

Let us check progress of algorithm...
intsqrt.py

...

low, high = 0, x

while low < high - 1:

assert low ** 2 <= x < high ** 2

mid = (low + high) / 2

if mid ** 2 <= x:

low = mid

else:

high = mid

result = low

...

Python shell

| Traceback (most recent call last):

| File "...\int_sqrt.py", line 28, in <module>

| assert int_sqrt(1) == 1

| File "...\int_sqrt.py", line 21, in int_sqrt

| assert result ** 2 <= x < (result + 1) ** 2

| AssertionError

 test identifies wrong
output for x = 1

 but invariant apparently
correct ???

 problem
low == result == 0

high == 1

implies loop never entered

 output check identifies the
error

high = x

 should have been
high = x + 1

check invariant
for loop

intsqrt.py

def int_sqrt(x):

"""Compute the integer square root of an integer x.

Assumes that x is an integer and x >= 0

Returns the integer floor(sqrt(x))"""

assert isinstance(x, int)

assert 0 <= x

low, high = 0, x + 1

while low < high - 1:

assert low ** 2 <= x < high ** 2

mid = (low + high) // 2

if mid ** 2 <= x:

low = mid

else:

high = mid

result = low

assert isinstance(result, int)

assert result ** 2 <= x < (result + 1) ** 2

return result

assert int_sqrt(0) == 0

assert int_sqrt(1) == 1

assert int_sqrt(2) == 1

assert int_sqrt(3) == 1

assert int_sqrt(4) == 2

assert int_sqrt(5) == 2

assert int_sqrt(200) == 14

Final program

We have used assertions to:

 Test if input arguments / usage is
valid (defensive programming)

 Test if computed result is correct

 Test if an internal invariant in the
computation is satisfied

 Perform a final test for a set of
test cases (should be run
whenever we change anything in
the implementation)

Which checks would you add to the below code?

binary-search.py

def binary_search(x, L):

"""Binary search for x in sorted list L

Assumes x is an integer, and L a non-decreasing list of integers

Returns index i, -1 <= i < len(L), where L[i] <= x < L[i+1],

assuming L[-1] = -infty and L[len(L)] = +infty"""

low, high = -1, len(L)

while low + 1 < high:

mid = (low + high) // 2

if x < L[mid]:

high = mid

else:

low = mid

result = low

return result

binary-search-assertions.py

def binary_search(x, L):

"""Binary search for x in sorted list L

Assumes x is an integer, and L a non-decreasing list of integers

Returns index i, -1 <= i < len(L), where L[i] <= x < L[i+1],

assuming L[-1] = -infty and L[len(L)] = +infty"""

assert isinstance(x, int)

assert isinstance(L, list)

assert all([isinstance(e, int) for e in L])

assert all([L[i] <= L[i + 1] for i in range(len(L) - 1)])

low, high = -1, len(L)

while low + 1 < high:

assert (low == -1 or L[low] <= x) and (high == len(L) or x < L[high])

mid = (low + high) // 2

if x < L[mid]:

high = mid

else:

low = mid

result = low

assert ((result == -1 and (len(L) == 0 or x < L[0]))

or (result == len(L) - 1 and x >= L[-1])

or (0 <= result < len(L) - 1 and L[result] <= x < L[result + 1]))

return result

assert binary_search(42, []) == -1

assert binary_search(42, [7]) == 0

assert binary_search(7, [42]) == -1

assert binary_search(7, [42,42,42]) == -1

assert binary_search(42, [7,7,7]) == 2

assert binary_search(42, [7,7,7,56,81]) == 2

assert binary_search(8, [1,3,5,7,9]) == 3

inefficient

test cases

o
u

tp
u

t
in

p
u

t
lo

o
p

Testing – how ?

 Run set of test cases
• test all cases in input/output specification (black box testing)

• test all special cases (black box testing)

• set of tests should force all lines of code to be tested (glass box testing)

 Visual test

 Automatic testing
• Systematically / randomly generate input instances

• Create function to validate if output is correct (hopefully easier than finding
the solution)

 Formal verification
• Use computer programs to do formal proofs of correctness, like using Coq

https://coq.inria.fr/

Visual testing – Convex hull computation

Correct Bug !
(not convex)

binary-search-doctest.py Python shell

def binary_search(x, L):

"""Binary search for x in sorted list L

Examples:

>>> binary_search(42, [])

-1

>>> binary_search(42, [7])

0

>>> binary_search(42, [7,7,7,56,81])

2

>>> binary_search(8, [1,3,5,7,9])

3

"""

low, high = -1, len(L)

while low + 1 < high:

mid = (low + high) // 2

if x < L[mid]:

high = mid

else:

low = mid

return low

import doctest

doctest.testmod(verbose=True)

| Trying:

| binary_search(42, [])

| Expecting:

| -1

| ok

| Trying:

| binary_search(42, [7])

| Expecting:

| 0

| ok

| Trying:

| binary_search(42, [7,7,7,56,81])

| Expecting:

| 2

| ok

| Trying:

| binary_search(8, [1,3,5,7,9])

| Expecting:

| 3

| ok

| 1 items had no tests:

| __main__

| 1 items passed all tests:

| 4 tests in __main__.binary_search

| 4 tests in 2 items.

| 4 passed and 0 failed.

| Test passed.

doctest

docs.python.org/3/library/doctest.html

 Python module

 Test instances (pairs of
input and corresponding
output) are written in the
doc strings, formatted as in
an interactive Python
session

https://docs.python.org/3/library/doctest.html

binary-search-pytest.py

def binary_search(x, L):

"""Binary search for x in sorted list L"""

low, high = -1, len(L)

while low + 1 < high:

mid = (low + high) // 2

if x < L[mid]:

high = mid

else:

low = mid

return low

def test_binary_search():

assert binary_search(42, []) == -1

assert binary_search(42, [7]) == 0

assert binary_search(42, [7,7,7,56,81]) == 2

assert binary_search(8, [1,3,5,7,9]) == 3

import pytest

def test_types():

with pytest.raises(TypeError):

_ = binary_search(5, ['a', 'b', 'c'])

Shell

> pytest binary-search-pytest.py

| ============= test session starts =============

| platform win32 -- Python 3.7.2, pytest-4.3.1, ... 0.9.0

| collected 2 items

| binary-search-pytest.py .. [100%]

| ============= 2 passed in 0.06 seconds =============

pytest

 Run all tests stored in
functions prefixed by test
or test prefixed test
functions or methods inside
Test prefixed test classes

 pip install pytest

 Run the pytest program
from a shell

pytest.org

https://docs.pytest.org/

unittest

docs.python.org/3/library/unittest.html

binary-search-unittest.py

def binary_search(x, L):

"""Binary search for x in sorted list L"""

low, high = -1, len(L)

while low + 1 < high:

mid = (low + high) // 2

if x < L[mid]:

high = mid

else:

low = mid

return low

import unittest

class TestBinarySearch(unittest.TestCase):

def test_search(self):

self.assertEqual(binary_search(42, []), -1)

self.assertEqual(binary_search(42, [7]), 0)

self.assertEqual(binary_search(42, [7,7,7,56,81]), 2)

self.assertEqual(binary_search(8, [1,3,5,7,9]), 3)

def test_types(self):

self.assertRaises(TypeError, binary_search, 5, ['a', 'b', 'c'])

unittest.main(verbosity=2)

Python shell

| test_search (__main__.TestBinarySearch) ... ok

| test_types (__main__.TestBinarySearch) ... ok

| --

| Ran 2 tests in 0.051s

| OK

 Python module

 A comprehensive object-oriented
test framework, inspired by the
corresponding JUnit test framework
for Java

https://docs.python.org/3/library/unittest.html

Debugger (IDLE)

 When an exception has stopped the program, you can examine the
state of the variables using Debug > Stack Viewer in the Python shell

Stepping through a program (IDLE debugger)
 Debug > Debugger in the Python shell opens Debug Control window

 Right click on a code line in editor to set a “breakpoint” in your code

 Debug Control: Go  run until next breakpoint is encountered;
Step  execute one line of code; Over  run function call without details;
Out  finish current function call; Quit  Stop program;

Concluding remarks

 Simple debugging: add print statements

 Test driven development  Strategy for code development, where
tests are written before the code

 Defensive programming  add tests (assertions) to check if
input/arguments are valid according to specification

 When designing tests, ensure coverage
(the set of test cases should make sure all code lines get executed)

 Python testing frameworks: doctest, unittest, pytest, ...

Mypy – a static type checker for Python

 Static type checking tries to
analyze a program for potential
type errors without executing
the program

 Installing:

pip install mypy

 Running Python will cause an error
during execution, whereas using
mypy the error will be found
without executing the program

 Standard (and required) in statically
typed languages like Java, C, C++

Experimental

mypy-simple.py

print("start")

print(42 + "abc") # error

print("end")

Shell

> python mypy-simple.py

| start

| TypeError: unsupported operand type(s)

for +: 'int' and 'str'

> mypy mypy-simple.py

| mypy-simple.py:2: error: Unsupported

operand types for + ("int" and "str")

mypy-lang.org
PEP 484 - Type Hints

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwitnuqf5I7hAhWHAxAIHTJWA-kQFjAAegQIBxAB&url=http%3A%2F%2Fmypy-lang.org%2F&usg=AOvVaw2bn63UXnfMdWbR3mNQ0dkV
https://www.python.org/dev/peps/pep-0484/

Type hints (PEP 484)

 Python allows type hints in
programs

 They are ignored at run-time by
Python, but useful for static type
analysis (mypy)

 Syntax

variable : type

variable : type = value

mypy-basic-types.py

x : int # type hint

x = 42

x = "abc" # type error

y : int = 42 # type hint

y = "abc" # type error

z = 42

z = "abc" # type changed from int to str

print(x, y, z)

Shell

> python mypy-basic-types.py

| abc abc abc

> mypy mypy-basic-types.py

| mypy-basic-types.py:3: error: Incompatible

types in assignment (expression has type

"str", variable has type "int")

| mypy-basic-types.py:6: error: ...

| mypy-basic-types.py:9: error: ...

Type hints – functions

Syntax

def name(variable : type, ...) -> return type

 Note: for functions and methods function.__annotations__ is a dictionary with the annotation

mypy-function.py Shell

def f(x: int, units: str) -> str:

return str(x) + " " + units

def g(x, units: str) -> str:

return str(x) + " " + units

print(f(3, "cm"))

print(f("one", "meter"))

print(g(3, "cm"))

print(g("one", "meter"))

> python mypy-function.py

| 3 cm

| one meter

| 3 cm

| one meter

> mypy mypy-function.py

| mypy-function.py:8: error: Argument 1

to "f" has incompatible type "str";

expected "int"

Type hints – objects

mypy-classes.py

class A:

pass

class B(A):

pass

class C:

pass

a : A

b : B

c : C

a = A()

a = B() # valid, B subclass of A

a = C() # error

b = A() # error

b = B()

b = C() # error

c = A() # error

c = B() # error

c = C()

Shell

> mypy mypy-classes.py

| mypy-classes.py:15: error: Incompatible types in assignment (expression has type "C", variable has type "A")

| mypy-classes.py:16: error: Incompatible types in assignment (expression has type "A", variable has type "B")

| mypy-classes.py:18: error: Incompatible types in assignment (expression has type "C", variable has type "B")

| mypy-classes.py:19: error: Incompatible types in assignment (expression has type "A", variable has type "C")

| mypy-classes.py:20: error: Incompatible types in assignment (expression has type "B", variable has type "C")

More type hints... see PEP 484 for even more...

mypy-typing.py

from typing import Mapping, Set, List, Tuple, Union, Optional

S : Set = {} # error {} dictionary

S2 : Set[int] = {1, 2, "abc"} # error "abc" is not int

D : Mapping[int, int] = {1: 42, 'a': 1} # error 'a' is not int

T : Tuple[int, str] = (42, 7) # error 7 is not str

L : List[Union[int, str]] = [42, 'a', None] # list can only contain int and str

L2 : List[Optional[str]] = ['abc', None, 42] # list can only contain str og None

Shell

> mypy mypy-function.py

| mypy-typing.py:3: error: Incompatible types in assignment (expression has type "Dict[<nothing>,

<nothing>]", variable has type "Set[Any]")

| mypy-typing.py:4: error: Argument 3 to <set> has incompatible type "str"; expected "int"

| mypy-typing.py:5: error: Dict entry 1 has incompatible type "str": "int"; expected "int": "int"

| mypy-typing.py:6: error: Incompatible types in assignment (expression has type "Tuple[int, int]",

variable has type "Tuple[int, str]")

| mypy-typing.py:7: error: List item 2 has incompatible type "None"; expected "Union[int, str]"

| mypy-typing.py:8: error: List item 2 has incompatible type "int"; expected "Optional[str]"

PEP 484 - Type Hints

https://www.python.org/dev/peps/pep-0484/

