
Documentation, testing and debugging
 docstring

 defensive programming

 assert

 test driven developement

 assertions

 testing

 unittest

 debugger

 static type checking (mypy)

Ensuring good quality code ?

Idea

Development UsageDesign phase

Coding User runs
program

Fix bug

Find bug

Testing success

Goal

 Develop programs that
work correctly

 Tools and techniques

runs forever / crash /
incorrect output /

explosion / ...

(hopefully)
correct

program

What is good code ?

 Readability
• well-structured

• documentation

• comments

• follow some standard structure (easy to recognize, follow PEP8 Style Guide)

 Correctness
• outputs the correct answer on valid input

• eventually stops with an answer on valid input (should not go in infinite loop)

 Reusable...

https://www.python.org/dev/peps/pep-0008/

Why ?
Documentation

 specification of
functionality

 docstring
• for users of the code

• modules

• methods

• classes

 comments
• for readers of the code

Testing

 Correct
implementation ?

 Try to predict
behavior on
unknown input ?

 Performance
guarantees ?

Debugging

 Where is the #!¤$
bug ?

”Program testing can be used to show the presence of bugs, but never to show their absence” ̶ Edsger W. Dijkstra

BaseException

+-- SystemExit

+-- KeyboardInterrupt

+-- GeneratorExit

+-- Exception

+-- StopIteration

+-- StopAsyncIteration

+-- ArithmeticError

| +-- FloatingPointError

| +-- OverflowError

| +-- ZeroDivisionError

+-- AssertionError

+-- AttributeError

+-- BufferError

+-- EOFError

+-- ImportError

| +-- ModuleNotFoundError

+-- LookupError

| +-- IndexError

| +-- KeyError

+-- MemoryError

+-- NameError

| +-- UnboundLocalError

+-- TypeError

+-- ValueError

| +-- UnicodeError

| +-- UnicodeDecodeError

| +-- UnicodeEncodeError

| +-- UnicodeTranslateError

|

+-- OSError

| +-- BlockingIOError

| +-- ChildProcessError

| +-- ConnectionError

| | +-- BrokenPipeError

| | +-- ConnectionAbortedError

| | +-- ConnectionRefusedError

| | +-- ConnectionResetError

| +-- FileExistsError

| +-- FileNotFoundError

| +-- InterruptedError

| +-- IsADirectoryError

| +-- NotADirectoryError

| +-- PermissionError

| +-- ProcessLookupError

| +-- TimeoutError

+-- ReferenceError

+-- RuntimeError

| +-- NotImplementedError

| +-- RecursionError

+-- SyntaxError

| +-- IndentationError

| +-- TabError

+-- SystemError

+-- Warning

+-- DeprecationWarning

+-- PendingDeprecationWarning

+-- RuntimeWarning

+-- SyntaxWarning

+-- UserWarning

+-- FutureWarning

+-- ImportWarning

+-- UnicodeWarning

+-- BytesWarning

+-- ResourceWarning

Built-in exceptions
(class hierarchy)

d
o

cs
.p

yt
h

o
n

.o
rg

/3
/l

ib
ra

ry
/e

xc
ep

ti
o

n
s.

h
tm

l

https://docs.python.org/3/library/exceptions.html

Testing for unexpected behaviour ?

infinite-recursion1.py

def f(depth):

f(depth + 1) # infinite recursion

f(0)

Python shell

| RecursionError: maximum recursion depth exceeded

infinite-recursion2.py

def f(depth):

if depth > 100:

print("runaway recursion???")

raise SystemExit # raise built-in exception

f(depth + 1)

f(0)

Python shell

| runaway recursion???

infinite-recursion3.py

import sys

def f(depth):

if depth > 100:

print("runaway recursion???")

sys.exit() # system function

f(depth + 1)

f(0)

Python shell

| runaway recursion???

raises SystemExit

 let the program eventually fail

 check and raise exceptions

 check and call sys.exit

Catching unexpected behaviour – assert
infinite-recursion4.py

def f(depth):

assert depth <= 100 # raise exception if False

f(depth + 1)

f(0)

Python shell

| File "...\infinite-recursion4.py", line 2, in f

| assert depth <= 100

| AssertionError

infinite-recursion5.py

def f(depth):

assert depth <= 100, "runaway recursion???"

f(depth + 1)

f(0)

Python shell

| File ".../infinite-recursion5.py", line 2, in f

| assert depth <= 100, "runaway recursion???"

| AssertionError: runaway recursion???

 keyword assert checks if
boolean expression is true,
if not, raises exception
AssertionError

 optional second parameter
passed to the constructor of
the exception

Disabling assert statements

 assert statements are
good to help check
correctness of program – but
can slow down program

 invoking Python with option
–O disables all assertions
(by setting __debug__ to
False)

docs.python.org/3/reference/simple_stmts.html#assert

https://docs.python.org/3/reference/simple_stmts.html#assert

Example

First try... (seriously, the bugs were not on purpose)

intsqrt_buggy.py

def int_sqrt(x):

low = 0

high = x

while low < high - 1:

mid = (low + high) / 2

if mid ** 2 <= x:

low = mid

else:

high = mid

return low

Python shell

> int_sqrt(10)

| 3.125 # 3.125 ** 2 = 9.765625

> int_sqrt(-10)

| 0 # what should the answer be ?

Let us add a specification...

intsqrt.py

def int_sqrt(x):

"""Compute the integer square root of an integer x.

Assumes that x is an integer and x >= 0

Returns integer floor(sqrt(x))"""

...

Python shell

> help(int_sqrt)

| Help on function int_sqrt in module __main__:

|
| int_sqrt(x)

| Compute the integer square root of an integer x.

| Assumes that x is an integer and x >= 0

| Returns integer floor(sqrt(x)) PEP 257 -- Docstring Conventions
www.python.org/dev/peps/pep-0257/

input
requirements

output
guarantees

d
o

cs
tr

in
g

 all methods, classes, and
modules can have a
docstring (ideally
have) as a specification

 for methods: summarize
purpose in first line,
followed by input
requirements and ouput
guarantees

 the docstring is assigned
to the object’s __doc__
attribute

https://www.python.org/dev/peps/pep-0257/

Let us check input requirements...

intsqrt.py

def int_sqrt(x):

"""Compute the integer square root of an integer x.

Assumes that x is an integer and x >= 0

Returns integer floor(sqrt(x))"""

assert isinstance(x, int)

assert 0 <= x

...

Python shell

> int_sqrt(-10)

| File "...\int_sqrt.py", line 7, in int_sqrt

| assert 0 <= x

| AssertionError

check input
requirements

 doing explicit checks for
valid input arguments is
part of defensive
programming and helps
spotting errors early

(instead of continuing
using likely wrong
values... resulting in a
final meaningless error)

Let us check if output correct...
intsqrt.py

def int_sqrt(x):

"""Compute the integer square root of an integer x.

Assumes that x is an integer and x >= 0

Returns integer floor(sqrt(x))"""

assert isinstance(x, int)

assert 0 <= x

...

assert isinstance(result, int)

assert result ** 2 <= x < (result + 1) ** 2

return result

Python shell

> int_sqrt(10)

| File "...\int_sqrt.py", line 20, in int_sqrt

| assert isinstance(result, int)

| AssertionError

check
output

 output check identifies
the error

mid = (low+high) / 2

 should have been

mid = (low+high) // 2

 The output check helps
us to ensure that
functions specification is
guaranteed in
applications

Let us test some input values...
intsqrt.py

def int_sqrt(x):

...

assert int_sqrt(0) == 0

assert int_sqrt(1) == 1

assert int_sqrt(2) == 1

assert int_sqrt(3) == 1

assert int_sqrt(4) == 2

assert int_sqrt(5) == 2

assert int_sqrt(200) == 14

Python shell

| Traceback (most recent call last):

| File "...\int_sqrt.py", line 28, in <module>

| assert int_sqrt(1) == 1

| File "...\int_sqrt.py", line 21, in int_sqrt

| assert result ** 2 <= x < (result + 1) ** 2

| AssertionError

 test identifies
wrong output for x = 1

Let us check progress of algorithm...
intsqrt.py

...

low, high = 0, x

while low < high - 1:

assert low ** 2 <= x < high ** 2

mid = (low + high) / 2

if mid ** 2 <= x:

low = mid

else:

high = mid

result = low

...

Python shell

| Traceback (most recent call last):

| File "...\int_sqrt.py", line 28, in <module>

| assert int_sqrt(1) == 1

| File "...\int_sqrt.py", line 21, in int_sqrt

| assert result ** 2 <= x < (result + 1) ** 2

| AssertionError

 test identifies wrong
output for x = 1

 but invariant apparently
correct ???

 problem
low == result == 0

high == 1

implies loop never entered

 output check identifies the
error

high = x

 should have been
high = x + 1

check invariant
for loop

intsqrt.py

def int_sqrt(x):

"""Compute the integer square root of an integer x.

Assumes that x is an integer and x >= 0

Returns the integer floor(sqrt(x))"""

assert isinstance(x, int)

assert 0 <= x

low, high = 0, x + 1

while low < high - 1:

assert low ** 2 <= x < high ** 2

mid = (low + high) // 2

if mid ** 2 <= x:

low = mid

else:

high = mid

result = low

assert isinstance(result, int)

assert result ** 2 <= x < (result + 1) ** 2

return result

assert int_sqrt(0) == 0

assert int_sqrt(1) == 1

assert int_sqrt(2) == 1

assert int_sqrt(3) == 1

assert int_sqrt(4) == 2

assert int_sqrt(5) == 2

assert int_sqrt(200) == 14

Final program

We have used assertions to:

 Test if input arguments / usage is
valid (defensive programming)

 Test if computed result is correct

 Test if an internal invariant in the
computation is satisfied

 Perform a final test for a set of
test cases (should be run
whenever we change anything in
the implementation)

Which checks would you add to the below code?

binary-search.py

def binary_search(x, L):

"""Binary search for x in sorted list L

Assumes x is an integer, and L a non-decreasing list of integers

Returns index i, -1 <= i < len(L), where L[i] <= x < L[i+1],

assuming L[-1] = -infty and L[len(L)] = +infty"""

low, high = -1, len(L)

while low + 1 < high:

mid = (low + high) // 2

if x < L[mid]:

high = mid

else:

low = mid

result = low

return result

binary-search-assertions.py

def binary_search(x, L):

"""Binary search for x in sorted list L

Assumes x is an integer, and L a non-decreasing list of integers

Returns index i, -1 <= i < len(L), where L[i] <= x < L[i+1],

assuming L[-1] = -infty and L[len(L)] = +infty"""

assert isinstance(x, int)

assert isinstance(L, list)

assert all([isinstance(e, int) for e in L])

assert all([L[i] <= L[i + 1] for i in range(len(L) - 1)])

low, high = -1, len(L)

while low + 1 < high:

assert (low == -1 or L[low] <= x) and (high == len(L) or x < L[high])

mid = (low + high) // 2

if x < L[mid]:

high = mid

else:

low = mid

result = low

assert ((result == -1 and (len(L) == 0 or x < L[0]))

or (result == len(L) - 1 and x >= L[-1])

or (0 <= result < len(L) - 1 and L[result] <= x < L[result + 1]))

return result

assert binary_search(42, []) == -1

assert binary_search(42, [7]) == 0

assert binary_search(7, [42]) == -1

assert binary_search(7, [42,42,42]) == -1

assert binary_search(42, [7,7,7]) == 2

assert binary_search(42, [7,7,7,56,81]) == 2

assert binary_search(8, [1,3,5,7,9]) == 3

inefficient

test cases

o
u

tp
u

t
in

p
u

t
lo

o
p

Testing – how ?

 Run set of test cases
• test all cases in input/output specification (black box testing)

• test all special cases (black box testing)

• set of tests should force all lines of code to be tested (glass box testing)

 Visual test

 Automatic testing
• Systematically / randomly generate input instances

• Create function to validate if output is correct (hopefully easier than finding
the solution)

 Formal verification
• Use computer programs to do formal proofs of correctness, like using Coq

https://coq.inria.fr/

Visual testing – Convex hull computation

Correct Bug !
(not convex)

binary-search-doctest.py Python shell

def binary_search(x, L):

"""Binary search for x in sorted list L

Examples:

>>> binary_search(42, [])

-1

>>> binary_search(42, [7])

0

>>> binary_search(42, [7,7,7,56,81])

2

>>> binary_search(8, [1,3,5,7,9])

3

"""

low, high = -1, len(L)

while low + 1 < high:

mid = (low + high) // 2

if x < L[mid]:

high = mid

else:

low = mid

return low

import doctest

doctest.testmod(verbose=True)

| Trying:

| binary_search(42, [])

| Expecting:

| -1

| ok

| Trying:

| binary_search(42, [7])

| Expecting:

| 0

| ok

| Trying:

| binary_search(42, [7,7,7,56,81])

| Expecting:

| 2

| ok

| Trying:

| binary_search(8, [1,3,5,7,9])

| Expecting:

| 3

| ok

| 1 items had no tests:

| __main__

| 1 items passed all tests:

| 4 tests in __main__.binary_search

| 4 tests in 2 items.

| 4 passed and 0 failed.

| Test passed.

doctest

docs.python.org/3/library/doctest.html

 Python module

 Test instances (pairs of
input and corresponding
output) are written in the
doc strings, formatted as in
an interactive Python
session

https://docs.python.org/3/library/doctest.html

binary-search-pytest.py

def binary_search(x, L):

"""Binary search for x in sorted list L"""

low, high = -1, len(L)

while low + 1 < high:

mid = (low + high) // 2

if x < L[mid]:

high = mid

else:

low = mid

return low

def test_binary_search():

assert binary_search(42, []) == -1

assert binary_search(42, [7]) == 0

assert binary_search(42, [7,7,7,56,81]) == 2

assert binary_search(8, [1,3,5,7,9]) == 3

import pytest

def test_types():

with pytest.raises(TypeError):

_ = binary_search(5, ['a', 'b', 'c'])

Shell

> pytest binary-search-pytest.py

| ============= test session starts =============

| platform win32 -- Python 3.7.2, pytest-4.3.1, ... 0.9.0

| collected 2 items

| binary-search-pytest.py .. [100%]

| ============= 2 passed in 0.06 seconds =============

pytest

 Run all tests stored in
functions prefixed by test
or test prefixed test
functions or methods inside
Test prefixed test classes

 pip install pytest

 Run the pytest program
from a shell

pytest.org

https://docs.pytest.org/

unittest

docs.python.org/3/library/unittest.html

binary-search-unittest.py

def binary_search(x, L):

"""Binary search for x in sorted list L"""

low, high = -1, len(L)

while low + 1 < high:

mid = (low + high) // 2

if x < L[mid]:

high = mid

else:

low = mid

return low

import unittest

class TestBinarySearch(unittest.TestCase):

def test_search(self):

self.assertEqual(binary_search(42, []), -1)

self.assertEqual(binary_search(42, [7]), 0)

self.assertEqual(binary_search(42, [7,7,7,56,81]), 2)

self.assertEqual(binary_search(8, [1,3,5,7,9]), 3)

def test_types(self):

self.assertRaises(TypeError, binary_search, 5, ['a', 'b', 'c'])

unittest.main(verbosity=2)

Python shell

| test_search (__main__.TestBinarySearch) ... ok

| test_types (__main__.TestBinarySearch) ... ok

| --

| Ran 2 tests in 0.051s

| OK

 Python module

 A comprehensive object-oriented
test framework, inspired by the
corresponding JUnit test framework
for Java

https://docs.python.org/3/library/unittest.html

Debugger (IDLE)

 When an exception has stopped the program, you can examine the
state of the variables using Debug > Stack Viewer in the Python shell

Stepping through a program (IDLE debugger)
 Debug > Debugger in the Python shell opens Debug Control window

 Right click on a code line in editor to set a “breakpoint” in your code

 Debug Control: Go run until next breakpoint is encountered;
Step execute one line of code; Over run function call without details;
Out finish current function call; Quit Stop program;

Concluding remarks

 Simple debugging: add print statements

 Test driven development Strategy for code development, where
tests are written before the code

 Defensive programming add tests (assertions) to check if
input/arguments are valid according to specification

 When designing tests, ensure coverage
(the set of test cases should make sure all code lines get executed)

 Python testing frameworks: doctest, unittest, pytest, ...

Mypy – a static type checker for Python

 Static type checking tries to
analyze a program for potential
type errors without executing
the program

 Installing:

pip install mypy

 Running Python will cause an error
during execution, whereas using
mypy the error will be found
without executing the program

 Standard (and required) in statically
typed languages like Java, C, C++

Experimental

mypy-simple.py

print("start")

print(42 + "abc") # error

print("end")

Shell

> python mypy-simple.py

| start

| TypeError: unsupported operand type(s)

for +: 'int' and 'str'

> mypy mypy-simple.py

| mypy-simple.py:2: error: Unsupported

operand types for + ("int" and "str")

mypy-lang.org
PEP 484 - Type Hints

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwitnuqf5I7hAhWHAxAIHTJWA-kQFjAAegQIBxAB&url=http%3A%2F%2Fmypy-lang.org%2F&usg=AOvVaw2bn63UXnfMdWbR3mNQ0dkV
https://www.python.org/dev/peps/pep-0484/

Type hints (PEP 484)

 Python allows type hints in
programs

 They are ignored at run-time by
Python, but useful for static type
analysis (mypy)

 Syntax

variable : type

variable : type = value

mypy-basic-types.py

x : int # type hint

x = 42

x = "abc" # type error

y : int = 42 # type hint

y = "abc" # type error

z = 42

z = "abc" # type changed from int to str

print(x, y, z)

Shell

> python mypy-basic-types.py

| abc abc abc

> mypy mypy-basic-types.py

| mypy-basic-types.py:3: error: Incompatible

types in assignment (expression has type

"str", variable has type "int")

| mypy-basic-types.py:6: error: ...

| mypy-basic-types.py:9: error: ...

Type hints – functions

Syntax

def name(variable : type, ...) -> return type

 Note: for functions and methods function.__annotations__ is a dictionary with the annotation

mypy-function.py Shell

def f(x: int, units: str) -> str:

return str(x) + " " + units

def g(x, units: str) -> str:

return str(x) + " " + units

print(f(3, "cm"))

print(f("one", "meter"))

print(g(3, "cm"))

print(g("one", "meter"))

> python mypy-function.py

| 3 cm

| one meter

| 3 cm

| one meter

> mypy mypy-function.py

| mypy-function.py:8: error: Argument 1

to "f" has incompatible type "str";

expected "int"

Type hints – objects

mypy-classes.py

class A:

pass

class B(A):

pass

class C:

pass

a : A

b : B

c : C

a = A()

a = B() # valid, B subclass of A

a = C() # error

b = A() # error

b = B()

b = C() # error

c = A() # error

c = B() # error

c = C()

Shell

> mypy mypy-classes.py

| mypy-classes.py:15: error: Incompatible types in assignment (expression has type "C", variable has type "A")

| mypy-classes.py:16: error: Incompatible types in assignment (expression has type "A", variable has type "B")

| mypy-classes.py:18: error: Incompatible types in assignment (expression has type "C", variable has type "B")

| mypy-classes.py:19: error: Incompatible types in assignment (expression has type "A", variable has type "C")

| mypy-classes.py:20: error: Incompatible types in assignment (expression has type "B", variable has type "C")

More type hints... see PEP 484 for even more...

mypy-typing.py

from typing import Mapping, Set, List, Tuple, Union, Optional

S : Set = {} # error {} dictionary

S2 : Set[int] = {1, 2, "abc"} # error "abc" is not int

D : Mapping[int, int] = {1: 42, 'a': 1} # error 'a' is not int

T : Tuple[int, str] = (42, 7) # error 7 is not str

L : List[Union[int, str]] = [42, 'a', None] # list can only contain int and str

L2 : List[Optional[str]] = ['abc', None, 42] # list can only contain str og None

Shell

> mypy mypy-function.py

| mypy-typing.py:3: error: Incompatible types in assignment (expression has type "Dict[<nothing>,

<nothing>]", variable has type "Set[Any]")

| mypy-typing.py:4: error: Argument 3 to <set> has incompatible type "str"; expected "int"

| mypy-typing.py:5: error: Dict entry 1 has incompatible type "str": "int"; expected "int": "int"

| mypy-typing.py:6: error: Incompatible types in assignment (expression has type "Tuple[int, int]",

variable has type "Tuple[int, str]")

| mypy-typing.py:7: error: List item 2 has incompatible type "None"; expected "Union[int, str]"

| mypy-typing.py:8: error: List item 2 has incompatible type "int"; expected "Optional[str]"

PEP 484 - Type Hints

https://www.python.org/dev/peps/pep-0484/

