Documentatlon testing and debugging

= docstring
= defensive programming
= assert
= test driven developement
= assertions
= testing
= unittest
= debugger
= static type checking (mypy)

Ensuring good quality code ?

i Development (hopefully) Usage
: COI’I’eCTJI
|

— L Coding } ﬂ, User runs

i program
PRV S
: I
L Fix bug } L Testing } |
: I
: /

\ l ’[
Find bu =" runs forever / crash /
5 | incorrect output /

explosion / ...

Design phase

SUcCcess

Goal

= Develop programs that
work correctly

R

= Tools and techniques

What is good code ?

= Readability
* well-structured
* documentation
e comments

* follow some standard structure (easy to recognize, follow PEP8 Style Guide)

= Correctness
e outputs the correct answer on valid input
* eventually stops with an answer on valid input (should not go in infinite loop)

= Reusable...

https://www.python.org/dev/peps/pep-0008/

Why ?

Documentation Testing Debugging
= specification of = Correct = Where is the #!15
functionality implementation ? bug ?
= docstring = Try to predict
e for users of the code behavior on
* modules unknown input ?
* methods = Performance
* classes guarantees ?
" comments
* for readers of the code

”Program testing can be used to show the presence of bugs, but never to show their absence” — Edsger W. Dijkstra

Built-in exceptions
(class hierarchy)

BaseException

+-—- SystemExit

+-- KeyboardInterrupt

+-- GeneratorExit

+-- Exception
+-- Stoplteration
+-- StopAsyncIteration
+-—- ArithmeticError

| +-- FloatingPointError
| +-- OverflowError
| +-- ZeroDivisionError

+—-- AssertionError

+—-—- AttributeError

+-- BufferError

+-- EOFError

+—-- ImportError

| +-- ModuleNotFoundError
+-- LookupError

| +-- IndexError

| +-- KeyError

+-- MemoryError

+—— NameError

| +-- UnboundLocalError
+-- TypeError

+-- ValueError

| +-- UnicodeError

| +-— UnicodeDecodeError
| +-- UnicodeEncodeError
| +-— UnicodeTranslateError

|
+-- OSError
| +-- BlockingIOError
| +-- ChildProcessError
| +-- ConnectionkError
| | +-- BrokenPipeError
| | +-- ConnectionAbortedError
| | +-- ConnectionRefusedError
| | +-- ConnectionResetError
| +-- FileExistsError
| +-- FileNotFoundError
| +-- InterruptedError
| +-- IsADirectoryError
| +-- NotADirectoryError
| +-- PermissionError
| +-- ProcessLookupError
| +-- TimeoutError
+-- ReferenceError
+-- RuntimeError
| +-—- NotImplementedError
| +-- RecursionError
+-- SyntaxError
| +-- IndentationError
| +-—- TabError
+-—- SystemError
+-- Warning
+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- RuntimeWarning
+-- SyntaxWarning
+-- UserWarning
+-- FutureWarning
+-- ImportWarning
+-- UnicodeWarning
+-- BytesWarning
+-- ResourceWarning

docs.python.org/3/library/exceptions.html

https://docs.python.org/3/library/exceptions.html

Testing for unexpected behaviour ?

infinite-recursionl.py

def f (depth) :
f (depth + 1)

infinite recursion
£(0)
Python shell

| RecursionError: maximum recursion depth exceeded

infinite-recursion2.py

def f (depth):
if depth > 100:
print ("runaway recursion???")
raise SystemExit # raise built-in exception
f (depth + 1)

£(0)

Python shell

| runaway recursion???

infinite-recursion3.py

import sys

def f (depth):
if depth > 100:
print ("runaway recursion???")
sys.exit() # system function

f(depth + 1) raises SystemExit

£(0)

Python shell

| runaway recursion???

" |et the program eventually fail
= check and raise exceptions

" checkandcall sys.exit

Catching unexpected behaviour —assert

infinite-recursioné.py

def f (depth):
assert depth <= 100 # raise exception if False
f (depth + 1)

£(0)

Python shell

| File "...\infinite-recursiond.py", line 2, in f
| assert depth <= 100

| AssertionError

infinite-recursion5.py

def f (depth):

£ (depth + 1)

£(0)
Python shell
| File ".../infinite-recursion5.py", line 2, in £

| assert depth <= 100, "runaway recursion???"
| AssertionError: runaway recursion???

"= keyword assert checks if
boolean expression is true,
if not, raises exception
AssertionError

assert depth <= 100, "runaway recursion???"<«—— | & Optional second parameter

passed to the constructor of
the exception

Disabling assert statements

& Cormmand Prompt S0 x " assert statements are
good to help check

C:\Users\aul21\Desktop>python -O infinite-recursion5.py

Traceback (most recent call last): correctness Of program - bUt

File "infinite-recursion5.py", line 5, in <module>
f(e) n slow down program

File "infinite-recursion5.py", line 3, in f Cd p Og d
f(depth + 1)

File "infinite-recursion5.py", line 3, in f

f(depth + 1)

File "infinite- ion5.py”, line 3, in f (I i i i
lf?degzhl-r:ll? recursions.py ine in InVOkIng Python Wlth Optlon

[Previous line repeated 995 more times] =0 d|5ab|es a” asser‘“ons
RecursionError: maximum recursion depth exceeded .
(by setting debug to

False)

C:\Users\aul2l\Desktop>

docs.python.org/3/reference/simple stmts.html#assert

https://docs.python.org/3/reference/simple_stmts.html#assert

First try... (seriously, the bugs were not on purpose)

intsqrt buggy.py

def int sqrt(x):
low = 0
high = x
while low < high - 1:
mid = (low + high) / 2
if mid ** 2 <= x:
low = mid
else:
high = mid
return low

Python shell

> int sqrt(10)

| 3.125 # 3.125 ** 2 = 9.765625

> int sqrt(-10)

| 0 # what should the answer be ?

Let us add a specification...

intsqrt.py = all methods, classes, and

def int sqrt(x): modules can have a

a0 ("""Compute the integer square root of an integer x. docstring(idea”y

5 _ _ ot have) as a specification
& | Assumes that x is an integer and x >= 0« INPUL

2 : requirements .
T | Returns integer floor(sqrt(x))""" — = for methods: summarize

gﬂ;f:rt]tees purpose in first line,
followed by input

i requirements and ouput

> help(int_ sqrt) guarantees
Help on function int sqrt in module main

= the docstring is assigned

|

|

| int sqrt(x) to the object’s _dO c

| Compute the integer square root of an integer x. attribute

| Assumes that x is an integer and x >= 0

| Returns integer floor (sqrt(x)) PEP 257 -- Docstring Conventions

www.python.org/dev/peps/pep-0257/

https://www.python.org/dev/peps/pep-0257/

Let us check input requirements...

= doing explicit checks for

def int sqrt(x):
"""Compute the integer square root of an integer x.

Assumes that x is an integer and x >= 0
Returns integer floor(sqgrt(x))"""

assert isinstance(x, int) check input
assert 0 <= x requirements

Python shell

> int sqrt(-10)

| File "...\int sqgrt.py", line 7, in int sqrt
| assert 0 <= x

| AssertionError

valid input arguments is
part of defensive
programming and helps
spotting errors early

(instead of continuing
using likely wrong
values... resulting in a
final meaningless error)

Let us check if output correct...

def int sqrt(x):
"""Compute the integer square root of an integer x.

Assumes that x is an integer and x >= 0
Returns integer floor(sqrt(x))"""

assert isinstance(x, int)
assert 0 <= x

assert isinstance (result, int) check
assert result ** 2 <= x < (result + 1) ** 2 output
return result

Python shell

> int sqrt(10)

| File "...\int sqgrt.py", line 20, in int sqrt
| assert isinstance (result, int)

| AssertionError

output check identifies
the error

mid = (low+high) / 2

should have been
mid = (low+high) // 2

The output check helps
us to ensure that
functions specification is
guaranteed in
applications

Let us test some input values...

def int sqrt(x):

assert int sqrt(0) ==
assert int sqrt(l) ==
assert int sqrt(2) ==
assert int sqrt(3) ==
assert int sqrt(4) ==
assert int sqrt(5) == 2

assert int sqrt(200) == 14

N R RKRRLRO

File "...\int sqgrt.py",
assert int sqrt(l) ==
File "...\int sqgrt.py",

assert result ** 2 <=
AssertionError

Python shell

Traceback (most recent call last):

line 28, in <module>
1

line 21, in int sqrt
X < (result + 1) ** 2

test identifies
wrong output forx =1

Let us check progress of algorithm...

intsqrt.py

low, high = 0, x
while low < high - 1:
assert low ** 2 <= x < high ** 2
mid = (low + high) / 2
if mid ** 2 <= x:
low = mid
else:
high = mid
result = low

check invariant
for loop

Python shell

Traceback (most recent call last):

File "...\int sqgrt.py", line 28, in <module>
assert int sqrt(l) == 1
File "...\int sqgrt.py", line 21, in int sqrt

assert result ** 2 <=

AssertionError

X < (result + 1) ** 2

test identifies wrong
output forx =1

but invariant apparently
correct ??7?

problem

low == result == 0
high == 1

implies loop never entered

output check identifies the
error

high = x
should have been
high = x + 1

Final program

We have used assertions to:

= Test if input arguments / usage is
valid (defensive programming)

= Test if computed result is correct

= Test if an internal invariant in the
computation is satisfied

= Perform a final test for a set of
test cases (should be run
whenever we change anything in
the implementation)

intsqrt.py

def int sqrt(x):

Assumes that x is an integer and x >= 0
Returns the integer floor(sqrt(x))"""

assert isinstance(x, int)
assert 0 <= x

low, high =0, x + 1
while low < high - 1:
assert low ** 2 <= x < high ** 2
mid = (low + high) // 2
if mid ** 2 <= x:
low = mid
else:
high = mid
result = low

assert isinstance (result, int)
assert result ** 2 <= x < (result + 1) ** 2

return result

assert int sqrt(0) ==
assert int sqrt(l) ==
assert int sqrt(2) ==
assert int sqrt(3) ==
assert int sqrt(4) ==
assert int sqrt(5) == 2

assert int sqrt(200) == 14

N R RRO

"""Compute the integer square root of an integer x.

Which checks would you add to the below code?

binary-search.py

def binary search(x, L):
"""Binary search for x in sorted list L

Assumes x is an integer, and L a non-decreasing list of integers

Returns index i, -1 <= i < len(L), where L[i] <= x < L[i+1],
assuming L[—l] = —lnfty and L[len(L)] — +inftynnn

low, high = -1, len(L)
while low + 1 < high:
mid = (low + high) // 2
if x < L[mid]:
high = mid
else:
low = mid
result = low

return result

binary-search-assertions.py

def binary search(x, L):
"""Binary search for x in sorted list L

Assumes x is an integer, and L a non-decreasing list of integers

Returns index i, -1 <= i < len(L), where L[i] <= x < L[i+l1],
assuming L[—l] = —1nfty and L[len(L)] — +inftyuuu

assert isinstance(x, int)
assert isinstance (L, list)

assert all([isinstance (e, int) for e in L]) inefficient
assert all([L[i] <= L[i + 1] for i in range(len(L) - 1)])

low, high = -1, len(L)
while low + 1 < high:
{ assert (low == -1 or L[low] <= x) and (high == len(L) or x < L[high])
mid = (low + high) // 2
if x < L[mid]:
high = mid
else:
low = mid
result = low

input

loop

?5 assert ((result == -1 and (len(L) == 0 or x < L[0]))

f} or (result == len(L) - 1 and x >= L[-1])

8 or (0 <= result < len(L) - 1 and L[result] <= x < L[result + 1]))
return result

assert binary search (42, []) == -1 b

assert binary search (42, [7]) == 0

assert binary search(7, [42]) == -1

assert binary search (7, [42,42,42]) == -1 > test cases

assert binary search (42, [7,7,7]) ==
assert binary search (42, [7,7,7,56,81]) ==
assert binary search(8, [1,3,5,7,9]) ==

Testing—how ?

" Run set of test cases
* test all cases in input/output specification (black box testing)
* test all special cases (black box testing)
* set of tests should force all lines of code to be tested (glass box testing)

= \isual test

= Automatic testing

 Systematically / randomly generate input instances

 Create function to validate if output is correct (hopefully easier than finding
the solution)

= Formal verification
* Use computer programs to do formal proofs of correctness, like using Cog

https://coq.inria.fr/

Visual testing — Convex hull computation

Correct Bug !
(not convex)

doctest

def binary search(x, L): | Trying:
"""Binary search for x in sorted list L | binary search (42, [])
Expecting:
= Python module Examples : : Pl
. . >>> binary search (42, []) | ok
= Test instances (pairs of -1 | Trying:
input and Corresponding g>> binary search (42, [7]) : . bil_'largof_search(42, [71)
. . Xpecting:
Output) are written in the >>> binary search (42, [7,7,7,56,81]) | 0
. . 2 | ok
dO(.: Strlngsf formatted as in >>> binary search(8, [1,3,5,7,9]) | Trying:
an interactive Python 3 | binary search(42, [7,7,7,56,81])
session " : S
low, high = -1, len(L) | ok
while low + 1 < high: | Trying:
mid = (low + high) // 2 | binary search(8, [1,3,5,7,9])
if x < L[mid]: | Expecting:
high = mid | 3
else: | ok
low = mid | 1 items had no tests:
return low | __main
| 1 items passed all tests:
import doctest | 4 tests in _ main__ .binary search
doctest. testmod (verbose=True) | 4 tests in 2 items.
| 4 passed and 0 failed.
| Test passed.

docs.python.org/3/library/doctest.html

https://docs.python.org/3/library/doctest.html

pytest

= Run all tests stored in
functions prefixed by test
or test prefixed test
functions or methods inside
Test prefixed test classes

= pip 1nstall pytest

" Runthepytest program
from a shell

pytest.org

binary-search-pytest.py

def binary search(x, L):
"""Binary search for x in sorted list L"""

low, high = -1, len(L)
while low + 1 < high:
mid = (low + high) // 2
if x < L[mid]:
high = mid
else:
low = mid
return low

def test binary search():
assert binary search (42,
assert binary search (42,
assert binary search (42,
assert binary search(8,

[1) == -1

[71) ==
[7,7,7,56,81]) ==
[1,3,5,7,9]1) == 3

import pytest

def test types():
with pytest.raises (TypeError) :
= binary search(5, ['a',

'b', IC'])

> pytest binary-search-pytest.py

| ============= test session starts =============

| platform win32 -- Python 3.7.2, pytest-4.3.1, ... 0.
| collected 2 items

| binary-search-pytest.py .. [100%]

| e 2 passed in 0.06 seconds =============

9.

Shell

0

https://docs.pytest.org/

binary-search-unittest.py

def binary search(x, L):
"""Binary search for x in sorted list L"""

unittest row, high = 1, len(h

while low + 1 < high:
mid = (low + high) // 2

= Python module if x < L[mid]:
high = mid
= A comprehensive object-oriented elseiow _ mid
test framework, inspired by the return low
corresponding JUnit test framework e S
for Java

class TestBinarySearch (unittest.TestCase) :
def test search(self):
self.assertEqual (binary search (42, []), -1)
self.assertEqual (binary search (42, [7]), O0)
self.assertEqual (binary search (42, [7,7,7,56,81]), 2)
self.assertEqual (binary search(8, [1,3,5,7,9]), 3)

def test types(self):
self.assertRaises (TypeError, binary search, 5, ['a', 'b', 'c'])

unittest.main (verbosity=2)

Python shell

| test_search (_ main__ .TestBinarySearch) ... ok

| test_types (__main_ .TestBinarySearch) ... ok

| e e e e e e e e e e e e = e
| Ran 2 tests in 0.051s

| OK

docs.python.org/3/library/unittest.html

https://docs.python.org/3/library/unittest.html

Debugger (IDLE)

= When an exception has stopped the program, you can examine the
state of the variables using Debug > Stack Viewer in the Python shell

| & Python 3.6.4 Shell

Eile Edit Shell Debug
Go to File/Line

Debugger

Stack Viewer

Auto-open Stack Viewer

Options Window Help

credits™ or "license ()" for more information.

>>> int sqgrt (10)

t X

4:d48eceb, Dec 19 2017, 06:04:45) [MSC v.1900 32 bit (Intel)]

\aul2l\Desktop\ipsal8\code\slides\14 testing\intsqgrt buggy.py

Traceback (most recent call last):
File "<pyshell#0>", line 1, in <module>
int sqrt(10)
File "C:\Users\aul2l\Desktop\ipsal@8\code\slides\14 testing\intsgrt buggy.py"
line 10, in int sqgrt
agsert isinstance (low, int)
AssertionError
>5> |

Ln: 12 Col: 4

| & idle — O

AssertionError:
idlelib.run.runcode(...), line 474: exec(code, self.locals)

__main__.<module>(...), line 1:
] _main_.int_sqrt(...), line 10: assert isinstance(low, int)

.

(] <locals>

t: mid = 3.125

high = 3.75
low = 3.125

Lo x= 10

#-_] <globals>

Stepping through a program (IDLE debugger)

= Debug > Debugger in the Python shell opens Debug Control window

= Right click on a code line in editor to set a “breakpoint” in your code

= Debug Control: Go = run until next breakpoint is encountered;

Step = execute one line of code; Over = run function call without details;
Out -2 finish current function call; Quit = Stop program;

I_& intsgrt_buggy.py - C:\Users\au121\Desktop\ipsal.. —] X

File

Edit Format Run Options Window Help

int sqrt(x):

low = 0
high = x
low < high - 1:
mid = (low + high) / 2
if mid ** 2 <= x:
low = mid Cut
high = mid Paste
low

Clear Breakpoint

Ln: 6 Col: 25

L& Debug Control —
[v Stack ¥ Source

Go | Step | Over | Out | Quit |
¥ Locals | Globals

[& Python 3.6.4 Shell

Go to File/Line

Debugger n wir

Stack Viewer
Auto-open Stack Viewer

| X

b, Dec 19 2017, 06:04:45) [M5C v.19

" or "license ()™ for more

informatio

Ln:3 Col:4

intsqrt_buggy.py:6: int_sqrt()

'bdb'.run(), line 431: exec(cmd, globals, locals)
'__main__".<module>(), line 1: int_sqrt(10)
> '_main__"int_sqrt(), line & if mid ** 2 <= x

high 10
low 0

mid 3.0
X 10

|

X

Concluding remarks

= Simple debugging: add print statements

= Test driven development = Strategy for code development, where
tests are written before the code

= Defensive programming = add tests (assertions) to check if
input/arguments are valid according to specification

= When designing tests, ensure coverage
(the set of test cases should make sure all code lines get executed)

= Python testing frameworks: doctest, unittest, pytest, ...

Mypy — a static type checker for Python

= Static type checking tries to
analyze a program for potential
type errors without executing
the program

" |nstalling:
plp install mypy

= Running Python will cause an error
during execution, whereas using
mypy the error will be found
without executing the program

= Standard (and required) in statically
typed languages like Java, C, C++

Experimental

mypy-simple.py
print ("start")

print (42 + "abe") # error
print ("end")

Shell

> python mypy-simple.py

| start

| TypeError: unsupported operand type (s)
for +: 'int' and 'str'

> mypy mypy-simple.py

| mypy-simple.py:2: error: Unsupported
operand types for + ("int" and '"str")

mypy-lang.org
PEP 484 - Type Hints

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwitnuqf5I7hAhWHAxAIHTJWA-kQFjAAegQIBxAB&url=http%3A%2F%2Fmypy-lang.org%2F&usg=AOvVaw2bn63UXnfMdWbR3mNQ0dkV
https://www.python.org/dev/peps/pep-0484/

Type hints (PEP 484)

int # type hint

42

"abc" # type error

int = 42 §# type hint

= "abe" # type error

= 42

= "abe" # type changed from int to str

= Python allows type hints in
programs

N N KK X X X

" They are ignored at run-time by

Python, but useful for static type T

analysis (mypy)

> python mypy-basic-types.py

| abe abe abc

> mypy mypy-basic-types.py

| mypy-basic-types.py:3: error: Incompatible

variable : type = value types in assignment (expression has type
"str", wvariable has type "int")

| mypy-basic-types.py:6: error:

| mypy-basic-types.py:9: error:

= Syntax

variable : type

Type hints — functions

Syntax
def name(variable :

def f£(x: int, units: str) -> str:
return str(x) + " " + units

def g(x, units: str) -> str:
return str(x) + " " + units

print(£(3, "cm"))

print (f ("one", "meter"))

print(g(3, "cm"))

print (g("one", "meter"))

type,

mypy-function.py Shell

-

python mypy-function.py
3 cm

one meter

3 cm

one meter

>
|
|
|
|
> mypy mypy-function.py
|

expected "int"

= Note: for functions and methods function.

annotations

—-> return type

mypy-function.py:8: error: Argument 1
to "f" has incompatible type "str";

is a dictionary with the annotation

Type hints — objects

class A: a = A()
pass a =B() # valid, B subclass of A
a=C() # error
class B(A): b = A() # error
pass b = B()
class C: b =C() # error
c = A() # error
pass c = B() # error
a : A c = C()
b : B
c : C

Shell

> mypy mypy-classes.p

| mypy-classes.py:15: error: Incompatible types in assignment (expression has type "C", variable has type "A")
| mypy-classes.py:16: error: Incompatible types in assignment (expression has type "A", variable has type "B")
| mypy-classes.py:18: error: Incompatible types in assignment (expression has type "C", variable has type "B")
| mypy-classes.py:19: error: Incompatible types in assignment (expression has type "A", variable has type "C")
| mypy-classes.py:20: error: Incompatible types in assignment (expression has type "B", variable has type "C")

More type hints... see PEP 484 for even more...

from typing import Mapping, Set, List, Tuple, Union, Optional

error {} dictionary
error "abc" is not int
error 'a' is not int
error 7 is not str

S : Set = {}

S2 : Set[int] = {1, 2, "abc"}

D : Mapping[int, int] = {1: 42, 'a': 1}
T : Tuple[int, str] = (42, 7)

L : List[Union[int, str]] = [42, 'a',6 None] list can only contain int and str
L2 : List[Optional[str]] = ['abc', None, 42] list can only contain str og None

Shell

> mypy mypy-function.py

| mypy-typing.py:3: error: Incompatible types in assignment (expression has type "Dict[<nothing>,
<nothing>]", variable has type "Set[Any]")

| mypy-typing.py:4: error: Argument 3 to <set> has incompatible type "str"; expected "int"

| mypy-typing.py:5: error: Dict entry 1 has incompatible type "str": "int",; expected "int": "int"

| mypy-typing.py:6: error: Incompatible types in assignment (expression has type "Tuple[int, int]",
variable has type "Tuple[int, str]")

| mypy-typing.py:7: error: List item 2 has incompatible type "None"; expected "Union[int, str]"

| mypy-typing.py:8: error: List item 2 has incompatible type "int"; expected "Optional[str]"

= o o d 9 dE

PEP 484 - Type Hints

https://www.python.org/dev/peps/pep-0484/

