
Linear programming
 Example Numpy: PageRank

 scipy.optimize.linprog

 Example linear programming: Maximum flow

PageRank

PageRank - A NumPy / Jupyter / matplotlib example
Central to Google's original search engine was the ranking of webpages using PageRank.

View the internet as a graph where nodes correspond to
webpages and directed edges to links from one webpage
to another webpage.

In the following we consider a very simple graph with
six nodes and where every node has one or two
outgoing edges.

The original description of the PageRank computation
can be found in the research paper below containing an
overview of the original infrastructure of the Google search engine.

 Sergey Brin and Lawrence Page. The Anatomy of a Large-Scale Hypertextual Web
Search Engine. Seventh International World-Wide Web Conference (WWW 1998).
[http://ilpubs.stanford.edu:8090/361/]

http://ilpubs.stanford.edu:8090/361/

Five different ways to compute
PageRank probabilities

1) Simulate random process manually by rolling dices

2) Simulate random process in Python

3) Computing probabilities using matrix multiplication

4) Repeated matrix squaring

5) Eigenvector for λ = 1

Random surfer model (simplified)

The PageRank of a node (web page) is the fraction
of the time one visits a node by performing an
infinite random traversal of the graph where one
starts at node 1, and in each step performs:

 with probability 1/6 jumps to a random page
(probability 1/6 for each node)

 with probability 5/6 follows an outgoing edge
to an adjacent node (selected uniformly)

The above can be simulated by using a dice: Roll a dice. If it shows 6, jump to a random page by
rolling the dice again to figure out which node to jump to. If the dice shows 1-5, follow an outgoing
edge - if two outgoing edges roll the dice again and go to the lower number neighbor if it is odd.

tiny.cc/pagerank

https://tiny.cc/pagerank

pagerank.ipynb

import numpy as np

Adjacency matrix of the directed graph in the figure

(note that the rows/colums are 0-indexed, whereas in the figure the nodes are 1-indexed)

G = np.array([[0, 1, 0, 0, 0, 0],

[0, 0, 0, 1, 0, 0],

[1, 1, 0, 0, 0, 0],

[0, 1, 0, 0, 1, 0],

[0, 1, 0, 0, 0, 1],

[0, 1, 0, 0, 0, 0]])

n = G.shape[0] # number of rows in G

degree = np.sum(G, axis=1, keepdims=1) # creates a column vector with row sums = out-degrees

The below code handles sinks, i.e. nodes with outdegree zero (no effect on the graph above)

G = G + (degree == 0) # add edges from sinks to all nodes

degree = np.sum(G, axis=1, keepdims=1)

Adjacency matrix and degree vector

pagerank.ipynb

from random import randint

STEPS = 1000000

adjacency_list[i] is a list of all j where (i, j) is an edge of the graph.

adjacency_list = [[col for col in range(n) if G[row, col]] for row in range(n)]

count = [0] * n # histogram over number of node visits

state = 0 # start at node with index 0

for _ in range(STEPS):

count[state] += 1

if randint(1, 6) == 6: # original paper uses 15% instead of 1/6

state = randint(0, 5)

else:

d = len(adjacency_list[state])

state = adjacency_list[state][randint(0, d - 1)]

print(adjacency_list, [c / STEPS for c in count], sep="\n")

Python shell

| [[1], [3], [0, 1], [1, 4], [1, 5], [1]]

[0.039371, 0.353392, 0.027766, 0.322108, 0.162076, 0.095287]

Simulate random walk (random surfer model)

pagerank.ipynb

import matplotlib.pyplot as plt

plt.bar(range(6), count)

plt.title("Random Walk")

plt.xlabel("node")

plt.ylabel("number of visits")

plt.show()

Simulate random walk (random surfer model)

pagerank.ipynb

A = G / degree # Normalize row sums to one. Note that 'degree'

is an n x 1 matrix, whereas G is an n x n matrix.

The elementwise division is repeated for each column of G

print(A)

Python shell

| [[0. 1. 0. 0. 0. 0.]

[0. 0. 0. 1. 0. 0.]

[0.5 0.5 0. 0. 0. 0.]

[0. 0.5 0. 0. 0.5 0.]

[0. 0.5 0. 0. 0. 0.5]

[0. 1. 0. 0. 0. 0.]]

Transition matrix A

Repeated matrix multiplication

We now want to compute the probability p(i)
j to be

in vertex j after i steps. Let p(i) = (p(i)
0,…,p(i)

n−1).

Initially we have p(0) = (1,0,…,0).

We compute a matrix M, such that p(i) = Mi ∙ p(0)

(assuming p(0) is a column vector).

If we let 1n denote the n × n matrix with 1 in each
entry, then M can be computed as:

pj
(i+1)

=
1

6

1

n
+

5

6

k

pk
(i)
Ak,j

p
(i+1)

= M∙p
(i)

M =
1

6

1

n
1n +

5

6
AT

pagerank.ipynb

ITERATIONS = 20

p_0 = np.zeros((n, 1))

p_0[0, 0] = 1.0

M = 1 / (6 * n) + 5 / 6 * A.T

p = p_0

prob = p # 'prob' will contain each

computed 'p' as a new column

for _ in range(ITERATIONS):

p = M @ p

prob = np.append(prob, p, axis=1)

print(p)

Python shell

| [[0.03935185]

[0.35326184]

[0.02777778]

[0.32230071]

[0.16198059]

[0.09532722]]

pagerank.ipynb

x = range(ITERATIONS + 1)

for node in range(n):

plt.plot(x, prob[node], label="node %s" % node)

plt.xticks(x)

plt.title("Random Surfer Probabilities")

plt.xlabel("Iterations")

plt.ylabel("Probability")

plt.legend()

plt.show()

Rate of
convergence

Repeated squaring
M⋅(⋯(M⋅(M⋅p(0)))⋯) = Mk⋅p(0) = M2logk⋅p(0) = (⋯((M2)2)2⋯)2⋅p(0)

pagerank.ipynb

from math import ceil, log

MP = M

for _ in range(int(ceil(log(ITERATIONS + 1, 2)))):

MP = MP @ MP

p = MP @ p_0

print(p)

Python shell

| [[0.03935185]

[0.35332637]

[0.02777778]

[0.32221711]

[0.16203446]

[0.09529243]]

log k

k multiplications, k power of 2

PageRank : Computing eigenvector for λ = 1

 We want to find a vector p, with |p| = 1, where Mp = p,
i.e. an eigenvector p for the eigenvalue λ = 1

pagerank.ipynb

eigenvalues, eigenvectors = np.linalg.eig(M)

idx = eigenvalues.argmax() # find the largest eigenvalue (= 1)

p = np.real(eigenvectors[:, idx]) # .real returns the real part of complex numbers

p /= p.sum() # normalize p to have sum 1

print(p)

Python shell

| [0.03935185 0.3533267 0.02777778 0.32221669 0.16203473 0.09529225]

PageRank : Note on practicality

 In practice an explicit matrix for billions of nodes is infeassable, since
the number of entries would be order of 1018.

 Instead one has to work with sparse matrices (in Python modul
scipy.sparse) and stay with repeated multiplication

Linear programming

scipy.optimize.linprog

 scipy.optimize.linprog can solve linear programs of the following
form, where one wants to find a n x 1 vector x satisfying:

dimension

Minimize: cT∙x c : n x 1

Subject to: Aub∙x ≤ bub Aub : m x n bub : m x 1
Aeq∙x = beq Aeq : k x n beq : k x 1

NB: For industrial strength linear solvers, use solvers like Cplex or Gurobi

https://pypi.org/project/cplex/
https://www.gurobi.com/documentation/8.1/quickstart_windows/py_python_interface

Linear programming example

Minimize
- (3∙x1 + 2∙x2)

Subject to
2∙x1 + 1∙x2 ≤ 10
-5∙x1 + -6∙x2 ≤ -4
-3∙x1 + 7∙x2 = 8

Maximize
3∙x1 + 2∙x2

Subject to
2∙x1 + 1∙x2 ≤ 10
5∙x1 + 6∙x2 ≥ 4
-3∙x1 + 7∙x2 = 8

֞

linear_programming.py

import numpy as np

from scipy.optimize import linprog

c = np.array([3, 2])

A_ub = np.array([[2, 1],

[-5, -6]]) # multiplied by -1 to get <=

b_ub = np.array([10, -4])

A_eq = np.array([[-3, 7]])

b_eq = np.array([8])

res = linprog(-c, # maximize = minimize the negated

A_ub=A_ub,

b_ub=b_ub,

A_eq=A_eq,

b_eq=b_eq)

print(res) # res.x is the optimal vector

Python shell

| fun: -16.35294117647059

message: 'Optimization terminated successfully.‘

nit: 3

slack: array([0. , 30.47058824])

status: 0

success: True

x: array([3.64705882, 2.70588235])

Maxmium flow

Solving maximum flow using linear programming

We will use the 'scipy.optimize.linprog' function to solve the maximum flow problem

on the above directed graph. We want to send as much flow from node A to node F.

Edges are numbered 0..8 and each edge has a maximum capacity.

A

B D

C E

F
x0

x1

x2

x5

x4

x3

x6

x8

x7

3

4 1

1

5

1
3

3

1
source sink

Maximize
x7 + x8

Subject to
x0 ≤ 4
x1 ≤ 3
x2 ≤ 1
x3 ≤ 1
x4 ≤ 3
x5 ≤ 1
x6 ≤ 3
x7 ≤ 1
x8 ≤ 5
x1 = x4 + x5

x0 = x2 + x3

x3 + x5 + x6 = x8

x2 + x4 = x6 + x7

ca
p

ac
it

y
co

n
st

ra
in

ts
fl

o
w

co

n
se

rv
at

io
n

flow
value

= 2

= 1

= 2
= 1

= 2
= 3

= 4

= 1

= 1

Note: solution not unique

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html

 x is a vector describing the flow along each edge

 c is a vector that to add the flow along the edges
(7 and 8) to the sink (F), i.e. a function computing
the value of the flow

 Aub and bub is a set of capacity constraints, for
each edge flow ≤ capacity

 Aeq and beq is a set of flow conservation
constraints, for each non-source and non-sink
node (B, C, D, E), requiring that the flow into
equals the flow out of a node

Solving maximum flow using linear programming

Maximize
x7 + x8

Subject to
x0 ≤ 4
x1 ≤ 3
x2 ≤ 1
x3 ≤ 1
x4 ≤ 3
x5 ≤ 1
x6 ≤ 3
x7 ≤ 1
x8 ≤ 5

0 = - x1 + x4 + x5

0 = - x0 + x2 + x3

0 = - x3 - x5 - x6 + x8

0 = - x2 - x4 + x6 + x7

ca
p

ac
it

y
co

n
st

ra
in

ts
fl

o
w

co

n
se

rv
at

io
n

flow
valuecT∙x

Aub∙x ≤ bub

Aeq∙x = beq = 0

I∙x ≤ capacity

֞

maximum-flow.py

import numpy as np

from scipy.optimize import linprog

edges = 9

0 1 2 3 4 5 6 7 8

conservation = np.array([[0,-1, 0, 0, 1, 1, 0, 0, 0], # B

[-1, 0, 1, 1, 0, 0, 0, 0, 0], # C

[0, 0, 0,-1, 0,-1,-1, 0, 1], # D

[0, 0,-1, 0,-1, 0, 1, 1, 0]]) # E

0 1 2 3 4 5 6 7 8

sinks = np.array([0, 0, 0, 0, 0, 0, 0, 1, 1])

0 1 2 3 4 5 6 7 8

capacity = np.array([4, 3, 1, 1, 3, 1, 3, 1, 5])

res = linprog(-sinks,

A_eq=conservation,

b_eq=np.zeros(conservation.shape[0]),

A_ub=np.eye(edges),

b_ub=capacity)

print(res)

Python shell

| fun: -5.0

message: 'Optimization terminated successfully.'

nit: 9

slack: array([2., 0., 0., 0., 1., 0., 1., 0., 1.])

status: 0

success: True

x: array([2., 3., 1., 1., 2., 1., 2., 1., 4.])

