Question — How difficult is the triplet project
onascalel-10"7

a) 1 (I'm offended by how trivial the project was)

b) 2 (very easy)

c) 3 (a quite standard review exercise)

d) 4 (nottoo complicated, got some known concepts repeated)

e) 5 (good exercise to repeat standard programming techniques)

f) 6 (had to use more advanced techniqgues in a familiar way)

g) 7 (quite complicated, but manageable)

h) 8 (very abstract exercise, using complicated language constructs)
i) 9 (very complicated — barely manageable spending all my time)
j) 10 (this is a research project — could be an MSc thesis/PhD project)
k) 25 (this is wayyy too complicated for a university course)

Functions as objects

= |ambda
= higher-order functions
" map, filter, reduce

Aliasing functions — both user defined and builtin

Python shell

> def square (x):
return x * x

3

> square

| <function square at 0x0329A390>
> square (8)

| 64

> kvadrat = square

> kwvadrat (5)

| 25

> len

| <built-in function len>
> length = len

> length([1, 2, 3])

|

Functions as values

def square (x):
return x * x

def double (x) :
return 2 * x

while True:

answer = input ("square or double ? ")
if answer == "square":

f = square

break \ £ will refe

if answer == "diggifii,,///”' square 4
f = double

break call the fu
_ with argur
answer = input ("numbers:
L in = [int(x) £ in answer.split()]
L out = [f(x) for x in L in]

Python shell

square or double ? square
numbers: 3 6 7 9
[9, 36, 49, 81]

square or double ? double
numbers: 2 3 4 7 9
[4, 6, 8, 14, 18]

r to one of the functions
ind double refer to

nction £ is referring to
nent x

print (L_out)

Functions as values and namespaces

def what says (name) :
def say (message) :
print (name, "says:", message)
return say

alice = what says("Alice")
peter = what says("Peter")

alice ("Where is Peter?")
peter ("I am here")

Python shell

| Alice says: Where is Peter?
| Peter says: I am here

= what saysisafunction returning a
function (say)

* Each call to what says with asingle
string as its argument creates a new
say function with the current name
argument in its namespace

" |neachcalltoaaninstance ofa say
function, name refers to the string in
the namespace when the function
was created, and message is the
string given as an argument in the call

Question — What list is printed ?

def f(x):
def g(y)

nonlocal x

X:

x + 1

return x + vy

return g
a = 1 (3)
b = f (o)
print ([a(3),

b(2), a(4)])

~
|_\
-

~

~
00

~

y 9]
7, 9, 12]
7, 10, 10]
f) Don’t know

£

NG NG R BN BN
-

O © O -

map

" map (function, list) appliesthe function to each element of the

sequence list

* map (function, list,, .., list,) requires function to take k

arguments, and creates a sequence with the i’'th element being

function(list,[1], .., list, [1])

Python shell

> def square (x):
return x*x

> list (map (square, [1,2,3,4,5]))
| [1, 4, 9, 16, 25]

> def triple sum(x, y, z):
return x + y + z

> list(map(triple sum, [1,2,3],
| [12, 15, 18]

[4,5,6],

[7,8,9]1))

sorted

= Alist L. can be sorted using
sorted (L)

= A user defined order on the
elements can be defined by
providing a function using the
keyword argument kevy, that
maps elements to values with
some default ordering

Python shell

> def length square(p) :

X, Y=P
return x**2 + y**2 { no sqgrt

>L=101(,3), (2,5), (1,9), (2,2),
> list (map (length square, L))

| [34, 29, 82, 8, 25]

> sorted(L) # default lexicographical order

| [, 9, (2, 2), (2, 5), (3, 4), (5, 3)]

> sorted (L, key=length square) # order by length
| [(2, 2), (3, 4), (2, 5), (5, 3), (1, 9)]

(3,4)]

https://docs.python.org/3/library/functions.html#sorted

Question — What list does sorted produce ?

sorted([2, 3, -1, 5, -4, O,

a) [-o6, -4, -1, 0, 2, 3, 5, 8]
b) [0, 2, 3, 5, 8, -1, -4, -6
c) [0, -1, 2, 3, -4, 5, -6,

d [8, 5, 3, 2, 0, -1, -4, -0]
e) [0, 1, 2, 3, 4, 5, 6, 8]

f) Don’t know

3,

_'6] ’

key=abs)

Python shell

> abs (7)

| 7

> abs (-42)
| 42

filter

= filter (function, 1list) returnsthe subsequenece of 1ist where
function evaluates to true

= Essentially the same as

[x for x 1n list 1f function (x)]

Python shell

> def odd(x) :
return x $ 2 ==

> filter (odd, range(10))

| <filter object at 0x03970FDO0O>
> list(filter (odd, range(10)))

| [1, 3, 5, 7, 9]

reduce (in module functools)

= Python’s “reduce” function is in other languages often denoted "foldl”

reduce (£, [X{, Xy, X3, o, X)) = £(-E(E(x,X5),%X3)) X)

Python shell

> from functools import reduce

> def power(x, y):
return x**y

> reduce (power, [2, 2, 2, 2, 2])
| 65536

lambda (anonymous functions)

= |f you need to define a short function, that returns a value, and the
function is only used once in your program, then a lambda function
might be appropriate:

lambda arguments: expression

= Creates a function with no name that takes zero or more arguments,
and returns the value of the single expression

Python shell

> £ = lambda x, y : x + y

> £(2, 3)

| 5

> list(filter(lambda x: x % 2, range(10)))
| [1, 3, 5, 7, 9]

Examples: sorted using lambda

Python shell

> L = ['AHA', 'Oasis', 'ABBA', 'Beatles', 'AC/DC', 'B. B. King', 'Bangles', 'Alan Parsons']

> # Sort by length, secondary after input position (default, known as stable)
> sorted (L, key=len)
| ['AHA', 'ABBA', 'Oasis', 'AC/DC', 'Beatles', 'Bangles', 'B. B. King', 'Alan Parsons']

> # Sort by length, secondary alphabetically
> sorted (L, key=lambda s: (len(s), s))
| ['AHA', 'ABBA', 'AC/DC', 'Oasis', 'Bangles', 'Beatles', 'B. B. King', 'Alan Parsons']

> # Sort by most 'a's, if equal by number of 'b's, etc.
> sorted (L, key=lambda s: sorted([a.lower() for a in s if a.isalpha()] + ['~']))
| ['Alan Parsons', 'ABBA', 'AHA', 'Beatles', 'Bangles', 'AC/DC', 'Oasis', 'B. B. King']

> sorted([a.lower () for a in 'Beatles' if a.isalpha()] + ['~'])
| [lal, 'b'l lel, |e|, lll, Vs|, 't'l |~l]

History of lambda in programming languages

= |ambda calculus invented by Alonzo Church in 1930s
= Lisp has had lambdas since 1958
= C++ gotlambdasin C++11in 2011

= Java first got lambdas in Java 8 in 2014

