1 Lecture 1

1.1 Introduction

In this sequence of lectures I will talk about Functional Data Structures, i.e., data structures suitable for functional programming languages.

- Purely functional languages do not allow destructive updates, no assignments,
- lists and tuples are the basic tools for building data structures,
- data structures can be viewed as graphs with nodes of out-degree $O(1)$. Integers, chars, etc. are stored at nodes of degree zero, and
- nodes cannot be modified.

We start with giving two natural examples illustrating the limitations of the built-in list representation of the functional language Hugs.

Most of the work presented has been done by Cris Okasaki from Carnegie Mellon University.

1.1.1 Example: List reversion

In a functional programming language it usually takes linear time to concatenate two lists (linear in the length of the first list). We consider a natural implementation of a function reversing a list which is based on list concatenation. It turns out that the running time of the list reversing procedure is quadratic - for a problem which obviously can be solved in linear time.

Two purposes: Introduce some syntax, and illustrate aspects of lists in the functional language Haskell.

The following is an example taken from the book:

“Haskell: The craft of functional programming,” by S. Thompson, page 140.

List reversing program:

— Reverse.hs —
rev :: [t] -> [t]
rev [] = []
rev (e:l) = (rev l) ++ [e]

Explanation:

- line 1 = type definition: Function rev takes a list of elements of type t and returns a list of elements of type t.
- lines 2-3 = implementation: Two cases, captured by patterns: the reverse of an empty list is the empty list, and the reverse of a nonempty list with first-element e and tail l is recursively defined. ++ denotes list-catenation.

[[SLIDE]] Experiments show that list reversion requires time \(\Theta(n^2) \).
The reason: List catenation takes time linear in the length of the first list.
Blackboard example: [1,2,3]++[4,5].
A more efficient representation of lists supporting constant time catenation will be given later in this course (3. lecture).

1.1.2 Example: Array indexing

The !! operator selects the \(i \)th index of a list. We results of testing !! from the prelude of Hugs were:
Conclusion: It takes time $O(n)$ to select the nth element of a list.

A more efficient list representation allowing faster indexing will be given next.

1.2 Random Access Lists

Would like to extend the usual lists with fast random accesses:

<table>
<thead>
<tr>
<th>operation</th>
<th>balanced</th>
<th>random access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push (cons)</td>
<td>1</td>
<td>$\log n$</td>
</tr>
<tr>
<td>Head/Tail</td>
<td>1</td>
<td>$\log n$</td>
</tr>
<tr>
<td>Lookup/Update</td>
<td>n</td>
<td>$\log n$</td>
</tr>
</tbody>
</table>

By storing a list as a balanced tree all operations can be done in logarithmic time. To support the standard operations Head/Tail/Cons at the head of a list in constant time we need to do something different, i.e., combine the two solutions.

1.2.1 Skew binary numbers

A skew binary number is a number d_ℓ, \ldots, d_2, d_1

where

- $d_i \in \{0, 1, 2\}$
- $d_j = 2 \Rightarrow \forall i < j : d_i = 0$

Example: 11001200

The number represented by d_ℓ, \ldots, d_2, d_1 is

$$\sum_{i=1}^\ell d_i \cdot (2^i - 1)$$

FACT: Every number has a unique skew binary representation.
FACT: \(2^{i+1} - 1 = 2 \cdot (2^i - 1) + 1\)

Increment:
- Let \(j\) be given such that \(d_j \neq 0, \forall i < j : d_i = 0\)
- If \(d_j = 1\) then \(d_i := d_i + 1, \text{else } d_j = 0\) and \(d_{j+1} := d_{j+1} + 1\)

Decrement:
- Let \(j\) be given such that \(d_j \neq 0, \forall i < j : d_i = 0\)
- \(d_j := d_j - 1\). If \(j > 1\) then \(d_{j-1} := d_{j-1} + 2\)

List representation:
- Let a list be represented by a sequence of **complete binary trees** of size \(2^i - 1\)
- The sequence of trees correspond to the skew binary representation of the length of the list
- A preorder traversal of the trees reveals the stored list

Example: \([1,2,3,4,5,6,7,8,9,10,11,12,13]\) =

\[
\begin{array}{cccccccccccc}
1 & 3 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\end{array}
\]

Tail:

\[
\begin{array}{cccccccccccc}
2 & 3 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\end{array}
\]

or Cons(0,.)

\[
\begin{array}{cccccccccccc}
0 & 1 & 3 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\end{array}
\]

— FunctionalArray.hs —

```
module FunctionalArray where

data Tree t = Leaf t | Node t (Tree t) (Tree t)
type Func_array t = [(Int,Tree t)]
list_empty :: Func_array t
list_isempty :: Func_array t -> Bool
list_head :: Func_array t -> t
list_tail :: Func_array t -> Func_array t
list_cons :: t -> Func_array t -> Func_array t
list_lookup :: Func_array t -> Int -> t
list_update :: Func_array t -> Int -> t -> Func_array t
tree_lookup :: Int -> Tree t -> Int -> t
  tree_update :: Int -> Tree t -> Int -> t -> Tree t
tree_lookup size (Leaf e) 0 = e
  tree_lookup size (Node e t1 t2) i |
    i<size’ = tree_lookup size’ t1 (i-1)
    otherwise = tree_lookup size’ t2 (i-1-size’)
  where size’ = div size 2
  tree_update size (Leaf e) 0 v = Leaf v
  tree_update size (Node e t1 t2) 0 v = Node e t1 t2
  tree_update size (Node e t1 t2) i v |
    i<size’ = tree_update size’ t1 (i-1) v)
    otherwise = Node e t1 (tree_update size’ t2 (i-1-size’) v)
  where size’ = div size 2
```
list_empty = []
list_isempty [] = True
list_isempty _ = False
list_head ((_,Leaf e):_) = e
list_head ((_,Node e _ _):_) = e
list_tail ((_,Leaf e):l) = l
list_tail ((size,Node e t1 t2):l) = ((size’,t1):(size’,t2):l)
where size’ = div size 2
list_cons e ((size1,t1):(size2,t2):l)
| size1==size2 = ((1+2 * size1),Node e t1 t2):l
| otherwise = ((1,Leaf e):(size1,t1):(size2,t2):l)
list_cons e l = ((1,Leaf e):l)
list_lookup ((size,t):l) i
| i<size = tree_lookup size t i
| otherwise = list_lookup l (i-size)
list_update ((size,t):l) i v
| i<size = ((size,tree_update size t i v):l)
| otherwise = ((size,t):list_update l (i-size) v)

The graph shows the time for performing lookups to a list with 1001 = 511 + 255 + 127 + 63 + 31 + 2 * 7 elements
Cris Okasaki has done some experimental work in Standard ML, and observed that in random access lists never
perform worse than a factor of two compared to standard lists.

Note: Finger search trees could also be used to obtain the same asymptotic bounds, but it is non-trivial to adopt
well-known finger search trees to a functional setting.

Note: Skew binary numbers will be used in the implementation of efficient priority queues.

1.3 Stacks

Stacks can be implemented as
— Stack.hs —

module Stack where
type Stack t = [t]
push :: Stack t -> t -> Stack t
pop :: Stack t -> (t,Stack t)
empty :: Stack t
push l e = (e:l)
pop (e:l) = (e,l)
empty = []

1.4 Queues

The semantics can be described by the following Haskell code:
— Queue1.hs —

module Queue where
type Queue t = [t]
inject :: Queue t -> t -> Queue t
pop :: Queue t -> (t,Queue t)
empty :: Queue t
inject l e = l ++ [e]
pop (e:l) = (e,l)
empty = []

Bottleneck: Inject requires linear time, because of the linear time ++ operator!

A standard implementation which is efficient in the amortized sense is given by the code. The amortized time for each operation is $O(1)$. A queue is represented by a pair of lists (l,r) such that $l + + (r 	ext{ reverse})$ is equal to the queue as a list.
— Queue2.hs —

module Queue where
type Queue t = ([t],[t])
inject :: Queue t -> t -> Queue t
pop :: Queue t -> (t,Queue t)
empty :: Queue t
inject (l,r) e = (l,(e:r))
pop ((e:l),r) = (e,(l,r))
pop ([],(e:r)) = pop (reverse (e:r),[[]])
empty = ([[]],[[]])

Notice that pop requires linear time when reverse is performed.
Example: $[1,2,3,4,5,6,7]$ could be represented by the pair (l,r) such that $l + + r$ is equal to the queue as a list.
Amortized analysis:
$\Phi(Q) = |r|$, if $Q = (l,r)$
\Rightarrow pop and inject take amortized constant time.

In general a list is divided into a left and right part, and is stored as a pair consisting of the left part plus the reverse of the right part. The reverse of the right part allows efficient inject operations.

Unfortunately functional data structures are persistent, i.e., all old data structures are remembered. This implies that an expensive pop operation causing a list reversion can be repeated over and over again without doing any insertions.

To overcome this problem the expensive operation is spread over a sequence of operations by doing the list reversion and concatenation incrementally in advance \Rightarrow Real time queue (all operations take worst-case $O(1)$ time).
— Queue3.hs —

module Queue where
type Queue t = ([t],[t],Work t)
inject :: Queue t -> t -> Queue t
pop :: Queue t -> (t,Queue t)
empty :: Queue t
progress :: Queue t -> Queue t
progress' :: Queue t -> Queue t
data Work t = Nil | Rev [t] [t] | Cat Int [t] [t] [t]
inject (l,r,w) e = progress(progress(progress (l,e:r,w)))
pop (e:l,r,w) = (e, progress(progress(progress' (l,r,w))))
empty = ([],[],Nil)
progress (l,Nil) = (l,Nil)
progress (l,Rev e:r) = (l,Rev (e:r))
progress (l,Cat 1 e:r) = (l,Cat (e:r) 1 1)
progress (l,Cat s e:r) = (l,Cat (s) e:r 1 1)
progress (l,Cat 0 r1) = (l,Nil)
progress (l,Cat s r1 e:l) = (l,Cat (s) r1 e:l 1 1)
progress' w = progress w

Approach: (l,r,incremental-work)
{l,r,Nil} -> (l,Rev [] r)
{l,Rev ll []} -> ll=reverse r
{l,Cat 0 [] l 1} -> rl=reverse l, s=|r1|
{l,Cat 1 r1 [] 1} -> rl=reverse rl+1, l=|l+11
{l,Nil} -> (l2,Nil)

It can be shown that applying progress 3 times is sufficient to guarantee $Q \neq \emptyset \Rightarrow l \neq \emptyset$.

1.5 Double ended queues - deques

— Deque.hs —

module Deque where
type Queue t = [t]
push :: Queue t -> t -> Queue t
pop :: Queue t -> (t,Queue t)
inject :: Queue t -> t -> Queue t
eject :: Queue t -> (t,Queue t)
empty :: Queue t
push l e = [e] ++ l
pop (e:l) = (e,l)
inject [e] = (e,[])
eject [e] = (e,e)
eject (e:l) = (e',e:l')
 where (e',l') = eject l
empty = []

Notice that inject and eject take linear time!

1.5.1 Amortized solution

Again represent the list as a pair of lists (l, r), but now when a list l or r becomes empty, split the remaining non-empty list evenly among the two new l and r lists.

— Deque2.hs —

module Deque where
type Queue t = ([t],[t])
push :: Queue t -> t -> Queue t
pop :: Queue t -> (t,Queue t)
inject :: Queue t -> t -> Queue t
inject (l,r) e = (l,e:r)

eject :: Queue t -> (t,Queue t)
eject (l,e:r) = (e,(l,r))
eject (l,[]) = eject (l',r')
where l'=take s l
r'=reverse (drop s r)
s=div (length l) 2

empty :: Queue t
empty = ([],[])
get_min ((Node e r c):l)
 | e<e1 = ((Node e r c),l)
 | e>=e1 = ((Node e1 r1 c1),((Node e r c):l1))
 where (Node e1 r1 c1,l1) = get_min l

1.7 Skew Binomial Queues — Brodal, Okasaki 1996

— SkewBQ.hs —

module SkewBQ where
data Tree t = Node t Int [Tree t] [t]
type SkewBQ t = [Tree t]

empty :: Ord t => SkewBQ t
is_empty :: Ord t => SkewBQ t -> Bool
insert :: Ord t => t -> SkewBQ t -> SkewBQ t
meld :: Ord t => SkewBQ t -> SkewBQ t -> SkewBQ t
find_min :: Ord t => SkewBQ t -> t
delete_min :: Ord t => SkewBQ t -> SkewBQ t
link :: Ord t => Tree t -> Tree t -> Tree t
skew_link :: Ord t => t -> Tree t -> Tree t -> Tree t
rank (Node _ r _ _) = r
element (Node e _ _ _) = e
link (Node e1 r1 c1 z1) (Node e2 r2 c2 z2)
 | e1<=e2 = Node e1 (r1 + 1) ((Node e2 r2 c2 z2):c1) z1
 | e1>e2 = Node e2 (r2 + 1) ((Node e1 r1 c1 z1):c2) z2
skew_link e v1 v2
 | e3<=e = Node e3 r3 c3 (e:z3)
 | e3>e = Node e3 r3 c3 (e3:z3)
 where (Node e3 r3 c3 z3) = link v1 v2
empty = []
is_empty q = null q
insert e (v1:v2:l)
 | rank v1==rank v2 = ((skew_link e v1 v2):l)
 | otherwise = ((Node e 0 [] []):v1:v2:l)
insert e l = ((Node e 0 [] []):l)
is [] v = [v]
is (v1:l1) v2
 | rank v1> rank v2 = (v2:v1:l1)
 | rank v1==rank v2 = ins l (link v1 v2)
uniqify [] = []
uniqify (v:l) = ins l v
meld_unique [] l = l
meld_unique l [] = l
meld_unique (v1:l1) (v2:l2)
 | rank v1<rank v2 = (v1:(meld_unique l1 (v2:l2)))
 | rank v1>rank v2 = (v2:(meld_unique l2 (v1:l1)))
 | otherwise = ins (meld_unique l1 l2) (link v1 v2)
meld l1 l2 = meld_unique (uniqify l1) (uniqify l2)
find_min [v] = element v
find_min (v:l) = min (element v) (find_min l)
delete_min q = foldr insert (meld l (reverse c)) z
 where ((Node e r c z),l) = get_min q
get_min [v] = [v,[]]
get_min (v:l)
 | element v< element v1 = (v,l)
 | element v>=element v1 = (v1,v:l1)
 where (v1,l1) = get_min l
1.8 Data structural bootstrapping — Brodal, Okasaki 1996

FindMin and Meld in $O(1)$ time. Elements are pairs (item, skew-BQ), where the skew-BQ is over elements (not items).

— BootSkew.hs —

```haskell
module SkewRoot where

import SkewBQ

data BootSkew t = Empty | Nonempty (Elm t)

data Elm t = Element t (SkewBQ (Elm t))

instance Eq t => Eq (Elm t) where
  (Element e1 q1) == (Element e2 q2) = e1 == e2

instance Ord t => Ord (Elm t) where
  (Element e1 q1) <= (Element e2 q2) = e1 <= e2

empty' :: Ord t => BootSkew t
is_empty' :: Ord t => BootSkew t -> Bool
insert' :: Ord t => t -> BootSkew t -> BootSkew t
meld' :: Ord t => BootSkew t -> BootSkew t -> BootSkew t
find_min' :: Ord t => BootSkew t -> t
delete_min' :: Ord t => BootSkew t -> BootSkew t

empty' = Empty

is_empty' Empty = True
is_empty' (Nonempty _) = False

insert' e q = meld' (Nonempty (Element e empty)) q
meld' Empty q = q
meld' q Empty = q
meld' (Nonempty (Element e1 q1)) (Nonempty (Element e2 q2))
  | e1 <= e2 = Nonempty (Element e1 (insert (Element e2 q2) q1))
  | e1 > e2 = Nonempty (Element e2 (insert (Element e1 q1) q2))

find_min' (Nonempty (Element e _)) = e
delete_min' (Nonempty (Element _ q))
  | is_empty q = Empty
  | otherwise = Nonempty (Element e1 (meld q1 q2))
  where Element e1 q1 = find_min q
       q2 = delete_min q
```

2 Lecture 2

2.1 Lazy functional data structures

2.2 Example: Search trees

ListToTree converts a list of integers into a search tree by a recursive procedure like quicksort.

— SearchTree.hs —

```haskell
module SearchTree where

data Tree t = Empty | Node t (Tree t) (Tree t)

member :: Ord t => t -> Tree t -> Bool
listToTree :: Ord t => [t] -> Tree t

member x Empty = False
member x (Node e l r)
  | x==e = True
  | x<e = member x l
  | x>e = member x r

listToTree [] = Empty
listToTree l = Node e (listToTree left) (listToTree right)
  where (e:l1) = l
       left = [ x | x<-l1, x<=e ]
```

10
right = [x | x<-l1, x>e]

Experiment shows that member on a subtree not yet build is expensive: 1) First random members are expensive, 2) latter members become cheaper.

Intuitive: The first \(t \) random queries are spread uniformly, i.e. all nodes in the top \(\log t \) levels are visited, but thereafter the searches are in disjoint subtrees. Cost of creating a node is proportional to the size of the subtree rooted at the node (distributing the elements left-and-right). Total cost \(O(t \log n + n \log t) \), since

Top levels: \(n \star \log t \)

For each path: \(t \star n/t \)

Searches: \(t \star \log n \)

2.3 Example: Lazy list catenation

We consider the effect of lazy list catenation:

```
take n ([1..100]++(reverse [101..200]))
```

![Graph](image.png)

2.4 Amortized analysis reviewed

2.5 Queues

Consider the following code for a queue implementation based on representing a queue by a left half and a right half where the left part always is the largest.

— Queue4.hs —

```haskell
module Queue where
type Queue t = (Int,[t],Int,[t])
inject :: Queue t -> t -> Queue t
pop :: Queue t -> (t,Queue t)
adjust :: Queue t -> Queue t
empty :: Queue t -> Queue t
size :: Queue t -> Int
```
inject \((s_1,l,s_r,r)\) \(e = \text{adjust} (s_1,l,s_r+1,e:r)\)

pop \((s_1,e:l,s_r,r)\) = \((e,\text{adjust} (s_1-1,l,s_r,r))\)

adjust \((s_1,l,s_r,r)\)
\[
| \quad sl>=sr = (sl,l,sr,r) \\
| \text{otherwise} = (sl+sr,l++(\text{reverse} r),0,[])
\]

empty = \((0,[]),0,[]\)

size \((sl,_,sr,_)\) = \(sl + sr\)

The crucial point is that ++ is performed in a lazy fashion, i.e., the expensive reverse operation is postponed until all elements of 1 has been removed from the queue.

Theorem The above implementation supports all operations in amortized constant time.

2.6 Binomial queues

Analysis of the following code...

— Binomial.hs —

```haskell
data Tree t = Node t Int [Tree t]
type BinomialQ t = [Tree t]

empty :: Ord t => BinomialQ t
is_empty :: Ord t => BinomialQ t -> Bool
insert :: Ord t => BinomialQ t -> t -> BinomialQ t
meld :: Ord t => BinomialQ t -> BinomialQ t -> BinomialQ t
find_min :: Ord t => BinomialQ t -> t
delete_min :: Ord t => BinomialQ t -> BinomialQ t

link (Node e1 r1 c1) (Node e2 r2 c2)
\[
| e1<e2 = Node e1 (r1 +1) ((Node e2 r2 c2):c1) \\
| e1>=e2 = Node e2 (r2 +1) ((Node e1 r1 c1):c2) 
\]

ins [] v = [v]
is_empty q = null q
insert q e = ins q (Node e 0 [])
imed [] q = q
meld q [] = q
meld ((Node e1 r1 c1):l1) ((Node e2 r2 c2):l2)
\[
| r1<r2 = ((Node e1 r1 c1):(meld l1 ((Node e2 r2 c2):l2))) \\
| r1>r2 = ((Node e2 r2 c2):(meld l2 ((Node e1 r1 c1):l1))) \\
| r1==r2 = ins (meld l1 l2) (link (Node e1 r1 c1) (Node e2 r2 c2))
\]

find_min [(Node e r c)] = e
find_min ((Node e r c):l) = min e (find_min l)

delete_min q = meld l (reverse c)
where ((Node e r c),l) = get_min q
get_min [(Node e r c)] = ((Node e r c),[])
get_min ((Node e r c):l)
\[
| e<e1 = ((Node e r c),l) \\
| e>=e1 = ((Node e r c):l),((Node e r c):l1))
\]
where (Node e1 r1 c1,l1) = get_min l
```

12
3 Lecture 3

3.1 Catenable lists

3.2 Strict implementation

3.3 Lazy implementation