
Layout Problems

Tesi doctoral presentada al
Departament de Llenguatges i Sistemes Informàtics

de la Universitat Politècnica de Catalunya

per optar al grau de
Doctor Enginyer en Informàtica

per

Jordi Petit i Silvestre

sota la direcció del Doctor
Josep Dı́az Cort

Barcelona,  de maig de 

http://www.lsi.upc.es
http://www.lsi.upc.es
http://www.lsi.upc.es/~jpetit
http://www.lsi.upc.es/~diaz

This thesis was presented at the Departament de Llenguatges i Sistemes In-
formàtics of the Universitat Politècnica de Catalunya on May 25th, 2001.

The disseration committe consisted of:

• Jordi Cortadella Fortuny (Chair) — Departament de Llenguatges i Sis-
temes Informàtics, Universitat Politècnica de Catalunya.
• Maŕıa José Serna Iglésias (Secretary) — Departament de Llenguatges i

Sistemes Informàtics, Universitat Politècnica de Catalunya.
• Burkhard Monien — Department of Mathematics and Computer Science,

University of Paderborn.
• Philippe Flajolet — INRIA Rocquencourt.
• Oriol Serra Albó — Departament de Matemàtica Aplicada iv, Universitat

Politècnica de Catalunya.

Dedico aquest treball a la mare i a la Mireia.

Resum

Aquesta tesi doctoral presenta aspectes algoŕısmics provinents de l’estudi de
problemes d’arranjaments lineals de grafs. En particular, s’hi tracten els pro-
blemes següents: Minimum Linear Arrangement, Bandwidth, Cutwidth, Vertex
Separation, Sum Cut, Modified Cut, Edge Bisection i Vertex Bisection. Aquests
problemes representen una important classe de problemes computacionalment
dif́ıcils amb diferents aplicacions en diverses disciplines.

En primer lloc, s’ofereix un recull dels coneixements disponibles sobre
problemes d’arranjaments lineals. S’hi consideren aplicacions, resultats de com-
plexitat, fites inferiors, algorismes d’aproximació i heuŕıstiques.

Les aportacions comencen amb un estudi experimental pel problema Min-
imum Linear Arrangement. Es presenten diferents mètodes per obtenir fites
inferiors i diferents heuŕıstiques, que inclouen algorismes voraços, seqüenciació
espectral i cerca local. Aquests mètodes s’avaluen sobre un joc de proves amb
grafs aleatoris i grafs provinents d’aplicacions reals. Els resultats obtinguts
s’utilitzen per dissenyar una nova heuŕıstica paral·lelitzable per obtenir millors
solucions més ràpidament. Aquests resultats experimentals motiven certs as-
pectes que són desenvolupats posteriorment.

A continuació, es tracten diversos problemes d’arranjaments lineals sobre
grafs Gn,p. S’hi demostra que, amb probabilitat aclaparant, determinats pro-
blemes d’arranjaments lineals es poden aproximar amb un factor constant. De
fet, els resultats mostren que el cost de qualsevol solució factible es troba a un
factor constant del cost òptim.

Després, s’entra en l’estudi dels problemes d’arranjaments lineals per a
grafs amb certa estructura geomètrica. Es mostra que Bandwidth, Cutwidth i
Vertex Separation continuen essent NP-complets fins i tot quan es restringeixen
a grafs graella. També s’aporten solucions per a Vertex Separation, Sum Cut,
Bandwidth i Vertex Bisection sobre graelles quadrades, i es donen fites superiors
per a grafs graella generals.

Posteriorment, es consideren grafs graella aleatoris i grafs geomètrics alea-
toris. Es presenten teoremes de convergència que caracteritzen els costos dels
problemes en el règim subcŕıtic. També es presenten algorismes d’aproximació
que, per a alguns problemes, són asimptòticament òptims en el règim supercŕıtic.
Aquests resultats es troben fortament relacionats amb el teorema de BHH i
l’algorisme de dissecció de Karp per al TSP. Els resultats obtinguts són emprats
per comparar experimentalment diferents heuŕıstiques usades habitualment pel
problema Edge Bisection.

Després, tot utilitzant el marc desenvolupat per tractar problemes d’arran-
jaments lineals i grafs geomètrics, s’analitzen certes propietats de les xarxes
geomètriques aleatòries: hamiltonicitat, emulació i arranjaments lineals.

Per acabar, es presenta l’anàlisi d’alguns problemes de comunicació en ar-
bres per a algunes classes de grafs aleatoris. S’obtenen algorimes d’aproximació.

Abstract

This doctoral dissertation deals with algorithmic issues arising in the study of
graph layout problems. Specifically, the following layout problems are consid-
ered: Minimum Linear Arrangement, Bandwidth, Cutwidth, Vertex Separation,
Sum Cut, Modified Cut, Edge Bisection and Vertex Bisection. These problems
represent an important class of hard problems with different applications in
various disciplines.

We start with a survey trying to give a complete view of the current state
of the art with respect to layout problems. We consider applications, complexity
results, lower bounds, approximation algorithms and heuristics.

The first contribution is an experimental study on the Minimum Linear
Arrangement problem. Several lower bounding methods and heuristics are pre-
sented, implemented and analyzed on a test suite of graphs. The results of the
resulting benchmarking are used in order to design a new parallel heuristic to
quickly discover better solutions. Latter, we develop some topics motivated by
these experimental results.

The study of layout problems on Gn,p graphs is then considered. We show
that, with overwhelming probability, several well known layout problems are
approximable within a constant on these graphs. In fact, our results establish
that the cost of any algorithm is within a constant factor of the optimal cost.

Afterwards, we undertake an study of layout problems on graphs with a
geometrical structure. We show that Bandwidth, Cutwidth and Vertex Sepa-
ration remain NP-complete even when restricted to grid graphs. We also give
solutions for Vertex Separation, Sum Cut, Bandwidth and Vertex Bisection
on square grids, and prove tight upper bounds for several layout problems on
general grid graphs.

We then consider random grid graphs and random geometric graphs. We
present convergence theorems that characterize the behavior of layout problems
on subcritical random grid graphs and subcritical random geometric graphs. We
present approximation algorithms that, for some layout problems, are asymp-
totically optimal for supercritical random geometric graphs. These results are
strongly related to the BHH theorem and Karp’s dissection algorithm for the
TSP. We use these theoretical results to draw an experimental analysis to com-
pare some popular heuristics for the Edge Bisection problem.

We then apply the framework developed to treat layout problems and
geometric graphs to analyze several properties of faulty random geometric net-
works. The considered properties are Hamiltonicity, emulation and layout costs.

Finally, we present an analysis for some communication tree problems on
several classes of random graphs. Approximation algorithms are obtained.

Acknowledgements

Many people have helped me while conducting this research. I would like to
thank, particularly, Josep Dı́az and Maŕıa Serna, with whom I have worked
constantly within this project. Since the first moment, they have guided me
in this research, and, continuously, they had their office’s doors open to share
discussions, answer my questions, and ask theirs.

During the development of this thesis, I also had the privilege to work with
Luca Trevisan, Paul Spirakis, Greg Sorkin, Mathew Penrose, Carme Àlvarez
and Rafel Cases. Some of them have became my coauthors. I would like to
thank them for being so patient and kind.

I am grateful to many people who have drawn my attention to certain
articles, have sent me their programs and have helped me executing them, or
have sent me graphs instances. Facing the risk of forgetting some of them, let
me cite, in no particular order, Thomas Römke, Ralf Diekmann, Robert Preis,
Marcus Peinado, Bruce Hendrickson, Georg Kliewer, Georg Skorobohatyj and
Sergei Bezrukov. Likewise, I would like to express my gratitude to my professors
José Luis Balcázar, Joaquim Gabarró, Ricard Gavaldà and Conrado Mart́ınez
who helped me in many ways. I would also thank the help and fun I have
got from my good companions Gabriel de Dietrich, Josep Llorenç Cruz, “xoku”
Fatos Xhafa, Sandra Moral, Xavier Molinero, Jordi Marco and Maria Josep
Blesa.

Finally, I am also indebted with Burkhard Monien, who has hosted me
with his impressive work group in Paderborn, while working in the alcom-
it project. I also thank Philippe Flajolet, from whom I have received much
encouragement. I am much obliged to them for accepting being part of my
thesis committee.

The mp3 file in the accompaining CD-ROM is a fragment of Einstein on
the Beach, an opera by Philip Glass. Reproduced with kind permission.

This research was partially supported by the alcom-it Project (Algo-
rithms and Complexity in Information Technology, European Union esprit
ltr Project 20244) and by the alcom-ft Project (Algorithms and Complexity
in Future Technologies, European Union Project IST-1999-14186).

http://www.lsi.upc.es/~diaz
http://www.lsi.upc.es/~diaz
http://www.cs.berkeley.edu/~luca
http://kronos.cti.gr/structure/Paul_Spirakis
http://www.research.ibm.com/people/s/sorkin
http://fourier.dur.ac.uk:8000/stats/people/mdp/mdp.html
http://www.lsi.upc.es/~alvarez
http://www.lsi.upc.es/~cases
http://www.uni-paderborn.de/~tomtom
http://www.uni-paderborn.de/cs/ag-monien/PERSONAL/DIEK/diek_large.jpg
http://www.robsy.de/
http://cartan.gmd.de/compchem/mp/mp.html
http://www.cs.sandia.gov/~bahendr/
http://www.uni-paderborn.de/cs/geokl
mailto:skorobohatyj@zib.de
http://math.uwsuper.edu/~sb/
http://www.lsi.upc.es/~balqui
http://www.lsi.upc.es/~gabarro
http://www.lsi.upc.es/~gavalda
http://www.lsi.upc.es/~conrado
http://dept-info.labri.u-bordeaux.fr/~dedietri/
http://www.ac.upc.es/homes/cruz
http://www.lsi.upc.es/~fatos
http://www.lsi.upc.es/~smoral
http://www.lsi.upc.es/~molinero
http://www.lsi.upc.es/~jmarco
http://www.lsi.upc.es/~mjblesa
http://www.lsi.upc.es/~mjblesa
http://www.uni-paderborn.de/fachbereich/AG/monien/PERSONAL/BM
http://pauillac.inria.fr/algo/flajolet
http://www.philipglass.com
http://www.dis.uniroma1.it/~alcom-it
http://www.brics.dk/ALCOM-FT

Contents

Contents i

Introduction 1

1 A Survey on Layout Problems 5
1.1 Introduction . 5
1.2 Definitions . 6
1.3 Basic observations . 12
1.4 Motivations and applications . 13
1.5 Complexity results . 20

1.5.1 NP-completeness results 20
1.5.2 Fixed parameter results 22
1.5.3 Positive results . 23

1.6 Lower bounds . 27
1.6.1 The Path method . 27
1.6.2 Bounds based on spectral properties 27
1.6.3 Bounds based on fundamental cuts 28

1.7 Approximation algorithms . 30
1.8 Heuristics . 33
1.9 Conclusion . 35

ii Contents

2 Experiments on the MinLA Problem 37
2.1 Introduction . 37
2.2 Lower and upper bounding methods 38

2.2.1 Lower bounds . 39
2.2.2 Approximation heuristics 41
2.2.3 The llsh toolkit for the MinLA problem 47

2.3 Test suite . 48
2.4 Experimental evaluation . 51

2.4.1 Experimental environment and representation of results . 51
2.4.2 Comparison of the lower bounding methods 54
2.4.3 Graphs with known minima 56
2.4.4 Comparing the Flip2 and Flip3 neighborhoods 57
2.4.5 Binomial random graphs versus geometric random graphs 57
2.4.6 Other graphs . 58
2.4.7 Viewing layouts . 59

2.5 The SS+SA heuristic . 59
2.5.1 The sequential SS+SA heuristic 61
2.5.2 The parallel SS+SA heuristics 63
2.5.3 Experimental evaluation 66

2.6 Conclusions . 73

3 Layout Problems and Binomial Random Graphs 93
3.1 Introduction . 93
3.2 Approximation results . 95
3.3 Conclusion . 101

4 Layout Problems and Unit Disk Graphs 103
4.1 Introduction . 103
4.2 Complexity results . 107
4.3 Optimal layouts for square grids 112
4.4 Upper bounds for grid graphs . 118
4.5 Conclusion . 121

5 Layout Problems and Random Unit Disk Graphs 123
5.1 Introduction . 123

5.1.1 Random grid graphs and site percolation 126
5.1.2 Random geometric graphs 129
5.1.3 The Euclidean model . 132

5.2 Subcritical random grid graphs 133
5.2.1 Order of growth of minvs and mincw 134
5.2.2 Convergence results for minla, minmc and minsc 135
5.2.3 Experimental determination of βLA(p) 138

Contents iii

5.3 Connected random geometric graphs 139
5.3.1 Isoperimetric inequalities 141
5.3.2 Lower bounds for mineb, mincw and minla 145
5.3.3 Lower bounds for minvs, minsc, minvb and minbw . . . 148
5.3.4 Approximation algorithms 152
5.3.5 Experimental considerations 156

5.4 Subcritical random geometric graphs 164
5.4.1 Convergence results for mineb and minvb 164
5.4.2 Order of growth of mincw and minvs 166
5.4.3 Convergence results for minla, minmc and minsc 173

5.5 Conclusion . 175

6 Faulty Random Geometric Networks 181
6.1 Introduction . 181
6.2 Preliminaries . 183
6.3 Hamiltonian cycles . 185

6.3.1 Hamiltonian cycles in RGGs with vertex faults 185
6.3.2 Hamiltonian cycles in RGGs with edge faults 186

6.4 Emulations . 195
6.4.1 Emulation in RGGs with faulty vertices 195
6.4.2 Emulation in RGGs with faulty edges 197

6.5 Layout problems . 201
6.6 Conclusion . 205

7 Communication Tree Problems 207
7.1 Introduction . 207
7.2 Problems and preliminaries . 209
7.3 Tree layouts, routing trees and communication trees 215
7.4 Average . 218
7.5 Binomial random graphs . 223
7.6 Square grid graphs . 225
7.7 Random geometric graphs . 232
7.8 Conclusion . 235

A Appendix 237
A.1 Notation . 237
A.2 Background of probability theory 239

A.2.1 Basics . 239
A.2.2 Convergence . 241
A.2.3 Concentration bounds . 243

Bibliography 245

Introduction

Understanding is one of those things that science is about.

D. S. Johnson

Several well-known problems in Computer Science can be formulated as graph
layout problems. Loosely speaking, layout problems ask to order the vertices
of an input graph, in such a way that a particular cost function is optimized.
Layout problems are an important class of hard problems with many different
applications in various disciplines. Since their introduction in the sixties, layout
problems have been a great source of inspiration for researchers. This doctoral
dissertation deals with algorithmic issues arising in the study of layout problems.

The results exposed in this thesis were triggered by a question from my
advisor: “Why does this heuristic work?”. This is a difficult question, for which
this thesis does only provide a very partial answer. Rather, this dissertation
deepens in the study of layout problems on several restricted types of instances,
most of them given by a probabilistic distribution. But this thesis also includes
complexity results, average case results, experimental results and a few exact
algorithms, all oriented towards that original question.

This thesis is organized into seven chapters, all of them written as self-
contained as possible. In particular, each chapter finishes with its concluding
remarks, which include a discussion on the contributions of the chapter, some
open questions related to the material presented in the chapter, and the publi-
cations of the work presented in the chapter. I have preferred this presentation

2 Introduction

over the alternative of a final chapter of conclusions. On the other hand, outside
of this Introduction, I have tried to write the thesis with an impersonal style;
the use of the “we” pronoun should be understood as “the reader and me.”

With the exception of Chapter 1, titled “A survey on layout problems,”
the development of this dissertation roughly follows the chronological order in
which I performed this research. The choices of the topics considered in each
chapter were basically marked by the evolution of this research. In the following,
I would like to present this evolution and how it is reflected in the organization
of the thesis.

I started the research presented in this dissertation with an experimental
study on the Minimum Linear Arrangement problem. Chapter 2, “Experiments
on the MinLA Problem,” presents and discusses this empirical work, which
involves different types of sequential and parallel heuristics as well as differ-
ent families of sparse graphs. The theoretical study done in the subsequent
three chapters is a consequence of some of the outcomes of these experimental
observations.

As a way to understand the empirical results obtained for the Minimum
Linear Arrangement problem on Gn,p graphs, in Chapter 3, “Layout Problems
and Binomial Random Graphs,” I present a theoretical study for several lay-
out problems on this type of graphs. Briefly stated, the obtained results show
that the ratio between the best and worst feasible solutions is bounded by a
small constant. The conclusion being that Gn,p graphs do not offer an informa-
tive framework in which to analyze heuristics for layout problems, I looked for
alternative distributions of random graphs.

The selected alternative was already present in Chapter 2, where I had
observed major differences in the behavior of binomial random graphs and ran-
dom geometric graphs. So I entered upon the study of random geometric graphs,
which also carried the study of random grid graphs. Chapter 5, “Layout Prob-
lems and Random Unit Disk Graphs,” presents the results obtained within this
study. These random graphs have a different behavior with respect to lay-
out problems according to two regimes well distinguished by percolation theory.
For the so-called subcritical regime, I present several convergence theorems that
precisely characterize the behavior of layout problems on random grid graphs
and random geometric graphs. For the so-called supercritical regime of random
geometric graphs, I present approximation algorithms that, for some layout
problems, are asymptotically optimal. These theoretical results are strongly
related with classical results on probabilistic analysis of Euclidean optimization
problems, but to the best of my knowledge, they have never been observed on
graphs. In order to show that these new analytical results on supercritical ran-
dom geometric graphs may give more insight to analyze and compare heuristics,
Chapter 5 also reports on new smaller but more focussed experiments.

Introduction 3

To obtain these results, in Chapter 4, “Layout Problems and Unit Disk
Graphs,” I present solutions for some open layout problems on square grid
graphs, and tight upper bounds to layout problems for grid graphs. I also
consider the hardness of some layout problems on geometric instances.

While the development of the results in Chapters 4 and 5 ran in parallel,
I think it is more clear to expose first the deterministic results, and afterwards
the probabilistic ones.

The topic of Chapter 6, “Faulty Random Geometric Networks,” was mo-
tivated by the observation that the geometric graphs introduced in Chapter 5
could be used as a model for a wireless network. A natural question to inves-
tigate where the the properties of these networks in the presence of random
faults. In that chapter, I present algorithms to find Hamiltonian paths in faulty
random geometric graphs, algorithms to emulate random geometric graphs on
faulty random geometric graphs with a small slowdown, and an analysis of some
layout problems on faulty random geometric graphs.

Finally, some recent interesting communication tree problems that gener-
alize layout problems were drawn to my attention. Chapter 7, “Communication
Tree Problems,” presents the obtained results. That chapter analyses several
communication tree parameters for certain proposed algorithms on the different
classes of random graphs already introduced in the previous chapters.

The dissertation finishes with an Appendix. Its goal is to introduce some
tools from probability theory that are used all through the theoretical develop-
ments in this thesis, and to summarize my notation.

I feel that this dissertation exposes thoroughly the properties of several
layout problems on some families of graphs, thus contributing to their under-
standing. Due to my original engineering training, I am particularly glad to have
undertaken this study using both analytic and experimental techniques, trying
to gain insight from one and another. As stated above, several questions arising
in Chapter 2 have not been tackled as, for instance, the theoretical insight of
some heuristics on random geometric graphs. I believe this is an exciting open
field for future work.

This thesis is distributed with a CD-ROM that contains programs, inputs,
and an hypertext electronic version of this dissertation as a Portable Document
File (PDF). Since a few pictures are in color, the PDF file will enable the reader
to print them on a color printer, or display them on a screen.

1
A Survey on Layout Problems

1.1 Introduction

Graph layout problems are a particular class of combinatorial optimization prob-
lems whose goal is to find a linear layout of an input graph in such way that
a certain objective function is optimized. A linear layout is a labelling of the
vertices of a graph with distinct integers. A large amount of relevant problems
in different domains can be formulated as graph layout problems. These include
optimization of networks for parallel computer architectures, VLSI circuit de-
sign, information retrieval, numerical analysis, computational biology, graph
theory, scheduling and archaeology. Moreover, the minimal values of some lay-
out costs are also related to interesting graph theoretic invariants of graphs.
Most interesting graph layout problems are NP-hard and their decisional ver-
sions NP-complete, but, for most of their applications, feasible solutions with an
almost optimal cost are sufficient. As a consequence, approximation algorithms
and effective heuristics are welcome in practice.

Because of their importance, there exist a lot of results related with layout
problems. In this chapter we try to give a complete view of the current state of
the art with respect to graph layout problems. Our focus is biased to algorithmic
issues. There exist other surveys that deal with several aspects of graph layout
problems, and this chapter generously intersects with them; see references [24,
46, 48, 60, 164, 183, 186].

The road map for this chapter is as follows: First of all, in Section 1.2,
we formally define the layout problems we are interested in. In Section 1.3, we

6 A Survey on Layout Problems

state some basic but useful results for these layout problems. Motivations and
applications for the study of layout problems are surveyed in Section 1.4. In
Section 1.5, we present complexity results on layout problems, including fixed
parameterized results and results for particular classes of graphs. In Section 1.6
we present several proposed techniques to obtain lower bounds. Finally, in
Sections 1.7 and 1.8, we survey approximation algorithms and heuristics.

1.2 Definitions

In this section we give the definition of several graph layout problems and as-
sociated concepts. They will be used all through the thesis.

We use graph theoretic definitions and notations that, for the most part,
conform to the standard ones in computer science. Unless mentioned otherwise,
graphs are finite, undirected, and without loops. Given a graph G, its vertex
set is denoted by V (G) and its edge set by E(G). The notation uv stands for
the undirected edge {u, v}. The degree of a vertex u in a graph G is denoted
as deg(u) = degG(u) and the maximal degree of G as ∆(G). The notation
Γ(u) = ΓG(u) stands for the neighborhood of a vertex u in G, that is, the set
{v ∈ V (G) : uv ∈ E(G)}.

A linear layout, or simply a layout, of an undirected graph G = (V,E)
with n = |V | vertices is a bijective function ϕ : V → [n]. The set of all layouts
of G is denoted Φ(G). A layout is also called a linear arrangement, a labeling
or a numbering of the vertices of a graph, because each of its n vertices receives
a different label in 1, 2, . . . , n.

Given a layout ϕ of a graph G = (V,E) and an integer i, we define the
sets L(i, ϕ,G) = {u ∈ V : ϕ(u) 6 i} and R(i, ϕ,G) = {u ∈ V : ϕ(u) > i}.
The edge cut at position i of ϕ is defined as

θ(i, ϕ,G) = |{uv ∈ E : u ∈ L(i, ϕ,G) ∧ v ∈ R(i, ϕ,G)}|
and the modified edge cut at position i of ϕ as

ζ(i, ϕ,G) = |{uv ∈ E : u ∈ L(i, ϕ,G) ∧ v ∈ R(i, ϕ,G) ∧ ϕ(u) 6= i}|.
The vertex cut or separation at position i of ϕ is defined as

δ(i, ϕ,G) = |{u ∈ L(i, ϕ,G) : ∃v ∈ R(i, ϕ,G) : uv ∈ E}|.
Given a layout ϕ of G and an edge uv ∈ E, the length of uv on ϕ is

λ(uv, ϕ,G) = |ϕ(u)− ϕ(v)|.
To ease future reference, these measures are summarized in Table 1.1 on

page 10.

1.2 Definitions 7

a

b

c

d

e

f

g

h

i

(a) G = (V,E).

θ(i, ϕ, G) = 6

ζ(i, ϕ, G) = 4δ(i, ϕ, G) = 3

L(i, ϕ, G) R(i, ϕ, G)

λ(gi,ϕ, G) = 5

a ch g b d ef i

1 2 3 i = 4 5 6 7 8 9

(b) Graphical representation of ϕ. Dividing the layout at i = 4,
left vertices are shown in light yellow, right vertices in dark green,

cut edges and separator vertices are bold.

Figure 1.1: A graph G and a graphical representation of the
layout ϕ = {(a, 1), (b, 5), (c, 3), (d, 7), (e, 8), (f, 6), (g, 4), (i, 9), (h, 2)}

together with some layout measures.

8 A Survey on Layout Problems

A common way to represent a layout ϕ of a graph G is to align its vertices
on a line, mapping each vertex u to position ϕ(u), as shown in Figure 1.1. This
graphical representation gives an easy understanding of the previously defined
measures: By drawing a vertical line just after position i and before position
i+ 1, the vertices at the left of the line belong to L(i, ϕ,G) and the vertices at
the right of the line belong to R(i, ϕ,G). It is easy to compute the cut θ(i, ϕ,G)
by counting the number of edges that cross the vertical line. The modified cut
ζ(i, ϕ,G) counts all the edges in θ(i, ϕ,G) except those that have vertex ϕ−1(i)
as endpoint. It is also easy to compute the separation δ(i, ϕ,G) by counting
the number of vertices at the left of the vertical line that are joined with some
vertex at the right of the vertical line. Finally, the length λ(uv, ϕ,G) of an edge
uv corresponds to the natural distance between its endpoints.

Given a layout ϕ of a graph G = (V,E), its reversed layout is denoted ϕR

and is given by ϕR(u) = |V | − ϕ(u) + 1 for all u ∈ V .
A layout cost is a function F that associates to each layout ϕ of a graph

G an integer F (ϕ,G). Let F be a layout cost; the optimization layout problem
associated with F consists in determining some layout ϕ∗ ∈ Φ(G) of an input
graph G such that

F (ϕ∗, G) = min
ϕ∈Φ(G)

F (ϕ,G).

In the following we will use the following notation for any F and G:

minF (G) = min
ϕ∈Φ(G)

F (ϕ,G),

maxF (G) = max
ϕ∈Φ(G)

F (ϕ,G),

avgF (G) =
1

|V (G)|!
∑

ϕ∈Φ(G)

F (ϕ,G).

The particular costs we are interested in are listed below, together with
the layout problems they give raise to:

• Bandwidth (Bandwidth): Given a graph G = (V,E), find a layout ϕ∗ ∈
Φ(G) such that bw(ϕ∗, G) = minbw(G) where

bw(ϕ,G) = max
uv∈E

λ(uv, ϕ,G).

• Minimum Linear Arrangement (MinLA): Given a graph G = (V,E), find
a layout ϕ∗ ∈ Φ(G) such that la(ϕ∗, G) = minla(G) where

la(ϕ,G) =
∑

uv∈E
λ(uv, ϕ,G).

1.2 Definitions 9

• Cutwidth (Cutwidth): Given a graph G = (V,E), find a layout ϕ∗ ∈
Φ(G) such that cw(ϕ∗, G) = mincw(G) where

cw(ϕ,G) = max
i∈[|V |]

θ(i, ϕ,G).

• Modified Cut (ModCut): Given a graph G = (V,E), find a layout ϕ∗ ∈
Φ(G) such that mc(ϕ∗, G) = minmc(G) where

mc(ϕ,G) =
∑

i∈[|V |]
ζ(i, ϕ,G).

• Vertex Separation (VertSep): Given a graph G = (V,E), find a layout
ϕ∗ ∈ Φ(G) such that vs(ϕ∗, G) = minvs(G) where

vs(ϕ,G) = max
i∈[|V |]

δ(i, ϕ,G).

• Sum Cut (SumCut): Given a graph G = (V,E), find a layout ϕ∗ ∈ Φ(G)
such that sc(ϕ∗, G) = minsc(G) where

sc(ϕ,G) =
∑

i∈[|V |]
δ(i, ϕ,G).

• Profile (Profile): Given a graph G = (V,E), find a layout ϕ∗ ∈ Φ(G)
such that pr(ϕ∗, G) = minpr(G) where

pr(ϕ,G) =
∑

u∈V

(
ϕ(u)− min

v∈Γ∗(u)
ϕ(v)

)

and Γ∗(u) = {u} ∪ {v ∈ V : uv ∈ E}.
• Edge Bisection (EdgeBis): Given a graph G = (V,E), find a layout
ϕ∗ ∈ Φ(G) such that eb(ϕ∗, G) = mineb(G) where

eb(ϕ,G) = θ(
⌊

1
2 |V |

⌋
, ϕ,G).

• Vertex Bisection (VertBis): Given a graph G = (V,E), find a layout
ϕ∗ ∈ Φ(G) such that vb(ϕ∗, G) = minvb(G) where

vb(ϕ,G) = θ(
⌊

1
2 |V |

⌋
, ϕ,G).

The definitions of these layout problems are summarized in Table 1.2.
Strictly speaking, the Edge Bisection and Vertex Bisection problems are not
layout problems. However, they fit in our framework for layout problems and
we shall consider them in the following.

10 A Survey on Layout Problems

L(i, ϕ,G) = {u ∈ V : ϕ(u) 6 i}
R(i, ϕ,G) = {u ∈ V : ϕ(u) > i}

θ(i, ϕ,G) = |{uv ∈ E : u ∈ L(i, ϕ,G) ∧ v ∈ R(i, ϕ,G)}|
ζ(i, ϕ,G) = |{uv ∈ E : u ∈ L(i, ϕ,G) ∧ v ∈ R(i, ϕ,G) ∧ ϕ(u) 6= i}|
δ(i, ϕ,G) = |{u ∈ L(i, ϕ,G) : ∃v ∈ R(i, ϕ,G) : uv ∈ E}|

λ(uv, ϕ,G) = |ϕ(u)− ϕ(v)|, uv ∈ E

Table 1.1: Layout measures for a layout ϕ of a graph G = (V,E).

1.2 Definitions 11

Problem Name Cost

Bandwidth Bandwidth bw(ϕ,G) = maxuv∈E λ(uv, ϕ,G)

Min. Lin. Arrangement MinLA la(ϕ,G) =

{∑
uv∈E λ(uv, ϕ,G)∑n
i=1 θ(i, ϕ,G)

Cutwidth Cutwidth cw(ϕ,G) = maxni=1 θ(i, ϕ,G)

Modified Cut ModCut mc(ϕ,G) =
∑n
i=1 ζ(i, ϕ,G)

Vertex Separation VertSep vs(ϕ,G) = maxni=1 δ(i, ϕ,G)

Sum Cut SumCut sc(ϕ,G) =
∑n
i=1 δ(i, ϕ,G)

Profile Profile pr(ϕ,G) =

{
ϕ(u)−minv∈Γ∗(u) ϕ(v)
sc(ϕR, G)

Edge Bisection EdgeBis eb(ϕ,G) = θ(bn/2c , ϕ,G)

Vertex Bisection VertBis vb(ϕ,G) = δ(bn/2c , ϕ,G)

Table 1.2: Layout problems and costs for a graph G = (V,E) with
|V | = n.

12 A Survey on Layout Problems

1.3 Basic observations

At this point it is relevant to point out some basic but important facts:

Observation 1.1. For any graph G = (V,E) and any layout ϕ of G, the total
edge length equals the sum of all edge cuts in the layout:

∑

uv∈E
λ(uv, ϕ,G) =

∑

i∈[|V |]
θ(i, ϕ,G).

This fact was first noticed by Harper [120]. It follows from the obser-
vation that any edge uv ∈ E with ϕ(u) < ϕ(v) contributes ϕ(v) − ϕ(u)
to the left hand side and 1 to each one of the terms θ(ϕ(u), ϕ,G), θ(ϕ(u) +
1, ϕ,G), . . . , θ(ϕ(v), ϕ,G) in the right hand side.

Observation 1.2. For any graph G = (V,E) and any layout ϕ of G,

pr(ϕ,G) = sc(ϕR, G).

This is due to the fact that each vertex u ∈ V contributes one unit ϕ(u) −
minv∈Γ∗(u) ϕ(v) times to the sum cut in the reversed layout. As a consequence,
Profile and SumCut are equivalent problems!

Observation 1.3. It is important to stress that the graph layout problems we
have formulated explicitly ask for an optimal layout rather than the cost of an
optimal layout:

“Given a graph G,
::::
find a layout ϕ∗ ∈ Φ(G) such that F (ϕ∗, G) =

minF (G).”

All the problems can however be restated as decisional problems, where the task
is to decide whether or not a graph admits a layout with cost not greater than
an integer given as part of the input:

“Given a graph G
::::
and an integer K,

::
is

:::::
there some layout ϕ ∈ Φ(G)

such that F (ϕ,G) 6 K?”

In the following, we will not insist too much if we are considering the opti-
mization or the decisional version of some problem, because they will be clearly
differentiated by the context.

The following lemma gives simple but useful relations between some layout
costs. It is a basic consequence of the previous definitions.

1.4 Motivations and applications 13

Lemma 1.1. Let G be any graph with n vertices and m edges, and let ϕ be
any layout of G. Then,

la(ϕ,G) 6 n · cw(ϕ,G), minla(G) 6 n ·mincw(G),
la(ϕ,G) 6 m · bw(ϕ,G), minla(G) 6 m ·minbw(G),
mc(ϕ,G) 6 la(ϕ,G), minmc(G) 6 minla(G),
sc(ϕ,G) 6 n · vs(ϕ,G), minsc(G) 6 n ·minvs(G),
vs(ϕ,G) 6 bw(ϕ,G), minvs(G) 6 minbw(G),
eb(ϕ,G) 6 cw(ϕ,G), mineb(G) 6 mincw(G),
vb(ϕ,G) 6 vs(ϕ,G), minvb(G) 6 minvs(G),
cw(ϕ,G) 6 ∆(G) · bw(ϕ,G), mincw(G) 6 ∆(G) ·minbw(G).

The next lemma relates some layout costs of a graph in terms of its con-
nected components.

Lemma 1.2. Let G be a graph and G1, . . . , Gk its connected components.
Then,

minbw(G) = max
i∈[k]

minbw(Gi), minmc(G) =
∑

i∈[k]

minmc(Gi),

mincw(G) = max
i∈[k]

mincw(Gi), minla(G) =
∑

i∈[k]

minla(Gi),

minvs(G) = max
i∈[k]

minvs(Gi), minsc(G) =
∑

i∈[k]

minsc(Gi).

A useful consequence of the previous lemma is that, for any layout cost
F ∈ {bw,cw,vs, la,mc, sc}, it is possible to obtain an optimal layout for F
of a graph just by computing the optimal layouts of its connected components.
Observe, however, that the bisection costs (eb and vb) do not share this prop-
erty.

The following lemma shows that the cost of the layout problems can only
decrease after the deletion of an edge or a vertex from a graph. We shall refer
to this property as monotonicity.

Lemma 1.3. Let H be a subgraph of a graph G. Then, for any layout cost
F ∈ {bw,cw,vs, la,mc, sc}, it holds that minF (H) 6 minF (G). Moreover, if
V (G) = V (H), then mineb(H) 6 mineb(G) and minvb(H) 6 minvb(G).

1.4 Motivations and applications

In this section we present some information that motivates research on layout
problems, as well as some of their applications. We start with a historical
overview.

14 A Survey on Layout Problems

Historical perspective. The Minimum Linear Arrangement problem
(MinLA) was stated in  by Harper [119]. Harper’s aim was to design
error-correcting codes with minimal average absolute errors on certain classes
of graphs [119, 120]. More recently, this problem was also considered by Mitchi-
son and Durbin as an over-simplified model of some nervous activity in the cor-
tex [182]. MinLA also has applications in single machine job scheduling [2, 214]
and in graph drawing [223]. The Minimum Linear Arrangement problem has
received some alternative names, as the Optimal Linear Ordering, the Edge Sum
problem or the Minimum-1-sum.

The Bandwidth had received much attention during the fifties in order
to speed up several computations on sparse matrices , but the introduction of
the Bandwidth problem for graphs (Bandwidth) was first stated in  by
Harary [117].

The Cutwidth problem (Cutwidth) was first used in the seventies as a
theoretical model for the number of channels in an optimal layout of a circuit [3,
177]. In general, the cutwidth of a graph times the order of the graph gives
a measure of the area needed to represent the graph in a VLSI layout when
vertices are laid out in a row [172]. More recent applications of this problem
include network reliability [144], automatic graph drawing [190] and information
retrieval [39].

The Sum Cut and Profile problems (SumCut and Profile) were inde-
pendently defined by Dı́az et al. [62] and Kuo and Chang [163]. The Sum Cut
problem was originally proposed as a simplified version of the δ-operator prob-
lem [59]. The Profile problem was proposed as a way to reduce the amount of
storage of sparse matrices. Both problems turn to be equivalent to the Interval
Graph Completion problem [214], which has applications in archaeology [151]
and clone fingerprinting [147].

The Vertex Separation problem (VertSep) was originally motivated by
the general problem of finding good separators for graphs [173], and has appli-
cations in algorithms for VLSI design [169]. As we shall see, this problem is
also equivalent to some other well known problems.

The Edge Bisection problem (EdgeBis) has a wide range of applications,
notably in the area of parallel computing and VLSI [26, 73, 129, 167, 226].
The Vertex Bisection problem (VertBis) only seems to have been considered
in [157], where it is related with the complexity of sending messages to processors
in interconnection networks via vertex-disjoint paths.

In the remaining of this section, we present several further applications
related to layout problems.

Layout problems in numerical analysis. In the area of numerical analysis,
it is desirable for many engineering applications to reorder the rows and columns

1.4 Motivations and applications 15

of very large sparse symmetric matrices in such a way that their non-zero entries
lie as much close as possible to the diagonal. Recall that a matrix is sparse when
it has very few non-zero entries. Specifically, the bandwidth of a symmetric
matrix M is the largest integer b for which there is a non-zero entry at M [i, i+b]
and the profile of M is

∑
i∈[n](i− pi) where pi is the index of the first non-zero

entry of row i. Reducing the bandwidth and/or the profile of a matrix leads
to a reduction of the amount of space needed for some storage schemes and
to an improvement of the performance of several common operations such as
Choleski factorization of non-singular systems of equations [219]. The problem
of reducing the bandwidth or the profile of a matrix M consists in finding
a permutation matrix P (an identity matrix with the same size of M whose
columns have been permuted) such that the bandwidth or the profile of M ′ =
P ·M · P T is minimal.

Observe that if we identify the non-zero entries of a symmetric matrix
with the edges of a graph and the permutations of rows and columns with flips
of the vertex labels, then the bandwidth of the graph equals the bandwidth of
the matrix, and the profile of the graph equals the profile of the matrix.

The problem of reducing the bandwidth or the profile of an sparse symmet-
ric matrix has a long history since it originated in the fifties (see e.g. references
in [101]). Nowadays, there exist general sparse methods that are more efficient
than these “envelope schemes.” However, many commercial packages still offer
functions to reduce the bandwidth or the profile of sparse matrices as a pre-
processing step. Thus, improvements in these methods can be ported to this
software without a complete reorganization of their architecture [19]. Efficient
algorithms to perform several operations on matrices with small bandwidth
can be found, for instance, in [219]. Information retrieval to browse hyper-
text is a recent area where bandwidth and profile reduction techniques are also
used [39, 227].

Layout problems in VLSI. Many layout problems are originally motivated
as simplified mathematical models of VLSI layout. Given a set of modules,
the VLSI layout problem consists in placing the modules on a board in a non-
overlapping manner and wiring together the terminals on the different modules
according to a given wiring specification and in such a way that the wires do
not interfere among them. There are two stages in VLSI layout: placement and
routing. The placement problem consists in placing the modules on a board; the
routing problem consists in wiring together the terminals on different modules
that should be connected. A VLSI circuit can be modeled by the means of a
graph, where the edges represent the wires and the vertices represent modules.
Of course, this graph is an over-simplified model of the circuit, but understand-
ing and solving problems in this simple model can help to obtain better solutions

16 A Survey on Layout Problems

for the real-world model. For a nice survey about the algorithms and techniques
used for VLSI layout in practice, see [220]. For a more theoretic point of view,
see e.g. [26, 226].

A possible approach to solve the placement problem consists in finding
recursively minimal cuts with minimal capacity among all cuts that separates
the graph into two components of equal size. The Edge Bisection problem we
have presented aims at this approach [227]. Another approach to solve the
placement phase is to use the Minimum Linear Arrangement problem in order
to minimize the total wire length [3, 121].

It must be noticed that current integrated circuit technology has changed
substantially.

Layout problems in graph drawing. Perhaps the most important goal in
graph drawing is to produce aestethic representations of graphs. Reducing the
number of crossing edges is a way to improve the readability and comprehension
of a graph. A bipartite drawing (or 2-layer drawing) is a graph representation
where the vertices of a bipartite graph are placed in two parallel lines and
the edges are drawn with straight lines between them. The bipartite crossing
number of a bipartite graph is the minimal number of edge crossings over all
bipartite drawings. Shahrokhi et al. [196, 223] prove that for a large class
of bipartite graphs, reducing the bipartite crossing number is equivalent to
reducing the total edge length, that is, to the Minimum Linear Arrangement
problem. Moreover, an approximate solution of MinLA can be used to generate
an approximate solution to the Bipartite Crossing Number problem.

Layout problems as embedding problems. Linear arrangements are a
particular case of embedding graphs in d-dimensional grids or other graphs. In
its most general form, the embedding of a graph G into a host graph H consists
in defining an injective function mapping the vertices of G to the vertices of
H and associating a path in H for each edge of G. Three parameters are
fundamental to assess the quality of an embedding: the dilation, the congestion
and the load. The dilation of an embedding is the length of the largest associated
path. The congestion of an embedding is the maximal number of paths that
share an edge of H. The load of an embedding is the maximum number of
vertices of G that are mapped to a vertex of H. Making use of good embeddings
is essential in certain contexts, as in parallel computing where embeddings can
be used to simulate an algorithm designed for one type of network on a parallel
machine with a different type of network; see [186] for a nice survey.

The case in which a graph with n vertices must be embedded into a path
graph Pn of n vertices with load 1 is perhaps the simplest nontrivial embedding
problem and has intensively been studied in the literature [2, 3, 39, 122, 147,

1.4 Motivations and applications 17

151, 167, 177, 214, 216, 219]. In this particular case, some layout problems
and embedding problems are closely related. Specifically, the bandwidth of a
graph corresponds to the minimal dilation and the cutwidth to the minimal
congestion.

Layout problems in parallel processing. Many parallel computers in use
today are made up of a set of processors with their own private memory that
exchange messages by the way of a communication network. In order to get
good speedups when using such a system, it is important to distribute the total
amount of work between the processors as evenly as possible to minimize idle
times. It is also important to reduce the amount of communication between
the processors, because communicating through the network is generally much
slower than the speed of the processors. Several mapping and load balancing
techniques have been developed to address these situations. For certain cases,
these techniques lead to graph partitioning problems. See [73, 129, 167].

The Graph Partitioning problem consists in partitioning the vertices of
a given graph in k sets of nearly same size in such a way that the number of
cutting edges between the k sets is as minimal as possible. The Edge Bisection
problem is a particular case of Graph Partitioning where k = 2. Recursive
bisection is a popular technique to obtain partitions when k is a power of 2.
See [227] for an analysis of recursive bisection.

Edge Bisection can be of use when solving partial differential equations
and finite elements methods in parallel systems. Simplifying, in these problems
a particular iterative computational task has to be carried out in every vertex
of a grid (or general graph) and its computation involves data from this vertex
and in its neighbors. A way to distribute the total amount of computation
between two processors is to assign to each one half of the vertices in the grid.
But as border vertices need to communicate in order to get their operands, it
is necessary to reduce the cut of the bisection.

Some equivalent problems of Vertex Separation. The Vertex Separa-
tion problem is strongly connected with several other important NP-complete
problems: Gate Matrix Layout, Pathwidth and vertex Search Number. The
Gate Matrix Layout is a well studied problem with application in CMOS cir-
cuit design [58]. The Pathwidth problem has received an enormous interest in
recent years because of its relation with the Robertson–Seymour theory [216],
and the vertex Search Number problem is related to strategy and search in
graphs. Let us recall the definitions of these problems.

An instance of the Gate Matrix Layout problem consists of a collection
of nets (rows) {N1, . . . , Nn} and their respective connection to a set of gates
(columns) {G1, . . . , Gm} . The goal of the problem is to seek a permutation of

18 A Survey on Layout Problems

the columns that minimizes the number of tracks required to lay out the chip,
which is equivalent to minimize its area. Figure 1.2 shows an example of gate
matrix layout. We denote by mingml(G) the minimal number of tracks needed
by a graph G.

A path-decomposition of a graph G = (V,E) is a sequence of subsets of
vertices (X1, . . . , Xr) such that

• ⋃r
i=1Xi = V ;

• for all edges e ∈ E, some Xi contains both endpoints of e; and
• for all i 6 j 6 k, it is the case that Xi ∩Xk ⊆ Xj .

The pathwidth of a path decomposition (X1, . . . , Xn) is

minpw(G, (X1, . . . , Xn)) = max
i∈[r]
|Xi| − 1.

The pathwidth of G, denoted minpw(G), is the minimal pathwidth over all pos-
sible path decompositions of G. The Pathwidth problem (Pathwidth) consists
in determining a path decomposition with minimal pathwidth. Figure 1.3 shows
a graph and one of its path decompositions. See [30, 78] for more information
on the Pathwidth and Treewidth problems.

Kirousis and Papadimitriou introduced the Vertex Search Number prob-
lem [156]. Briefly stated, this problem asks how many searchers are needed to
capture an unlimited number of intruders moving around the edges of a given
graph. We denote by sn(G) the vertex search number of graph G.

The equivalence between the Gate Matrix Layout, Search Number Path-
width, Vertex Separation problems is a consequence of the results by Fellows
and Langston [92], Kirousis and Papadimitriou [156] and Kinnersley [154]:

Theorem 1.1. For any graph G, minvs(G) = minpw(G) = minsn(G) − 1 =
mingml(G) + 1.

Layout problems in computational biology. Physical mapping is a cen-
tral issue in molecular biology and the human genome project. It consists in
determining the relative position of several fragments of DNA, which can be
used by biologists to characterize individual genes. As the DNA fragments are
obtained “out of order,” it is necessary to re-assemble them in order to get a
map of the original sequence, based on the information of their pairwise over-
laps [148]. The research in [47] has shown that the physical mapping problem
is isomorphic to the MinLA problem.

1.4 Motivations and applications 19

G1 G2 G3 G4 G5 G6 G7 G8

N1 1 1 0 0 0 1 1 0
N2 0 0 0 1 1 0 0 0
N3 0 0 1 0 0 0 1 0
N4 0 1 0 1 0 0 0 1
N5 0 0 1 0 1 1 0 0

1 8 4 2 6 5 3 7

Figure 1.2: Example of a gate matrix layout with three tracks
(figure after [30]).

a

b

c d

e f

g

h i

j

k

a, b, c c, d, e d, e, f

d, f, g

d, f, hh, ii, j, k

Figure 1.3: Example of a graph and one of its path decompositions
with pathwidth 2 (figure after [30]).

20 A Survey on Layout Problems

1.5 Complexity results

In this section, we survey complexity results related to layout problems. We
first consider NP-completeness results, then fixed parameter complexity results,
and, finally, positive results for particular classes of graphs.

1.5.1 NP-completeness results

It is widely believed that showing that a problem in NP-complete is equivalent
to prove its computational intractability [98]. The following theorem indicates
the difficulty of the considered layout problems on arbitrary graphs.

Theorem 1.2. The decisional versions of the following layout problems are
NP-complete: Bandwidth, MinLA, Cutwidth, ModCut, VertSep, Sum-
Cut, EdgeBis.

The reductions are due to Papadimitriou for Bandwidth [197], to Garey,
Johnson and Stockmeyer for MinLA and EdgeBis [99], to Gavril for Cut-
width [100], to Monien for ModCut [187], to Lengauer for VertSep [171],
and to Dı́az et al. for SumCut [62].

Many layout problems remain NP-complete even for certain restricted
classes of graphs. Garey et al. showed that Bandwidth is NP-complete even
when restricting its inputs to trees with maximum degree three [97]. Monien
improved this result proving that Bandwidth remains NP-complete for cater-
pillars with hairs of length at most three, and for caterpillars with at most one
unbounded hair attached to the backbone [185]. Recall that a caterpillar is a
particular class of tree made of a set of paths, called the hairs, attached by
one of their leaves to the vertices of another path, called the backbone. On the
other hand, Makedon, Papadimitriou and Sudborough proved that Cutwidth
is NP-complete even for graphs with maximum degree three [176]. Latter,
Monien and Sudborough strengthened this result proving that Cutwidth and
VertSep and ModCut are NP-complete even for planar graphs with maxi-
mum degree three [187]. Bui et al. proved that EdgeBis is NP-complete even
when it is restricted to d-regular graphs [43]. Finally, it is also known that
MinLA is NP-complete when restricted for bipartite graphs [84], and Sum-
Cut is NP-complete when restricted to cobipartite graphs [242]. Notice that
it is unknown if MinLA or SumCut are NP-complete for sparse graphs.

Table 1.3 draws a synthetic overview on these results. Remark that the
complexity of VertBis is unknown.

1.5 Complexity results 21

Problem NP-complete Ref.

Bandwidth in general [197]
for trees with maximum degree 3 [97]
for caterpillars with hair-length 6 3 [185]
for caterpillars with 6 1 hair per backbone vertex [185]

MinLA in general [99]
for bipartite graphs [84]

Cutwidth in general [100]
for graphs with maximum degree 3 [176]
for planar graphs with maximum degree 3 [187]

ModCut for planar graphs with maximum degree 3 [187]

VertSep in general [171]
for planar graphs with maximum degree 3 [187]
for chordal graphs [113]
for bipartite graphs [105]

SumCut in general [62, 163]
for cobipartite graphs [242]

EdgeBis in general [99]
for d-regular graphs [43]

Table 1.3: Review of NP-completeness results for decisional graph
layout problems.

22 A Survey on Layout Problems

1.5.2 Fixed parameter results

In many applications, practical problems are often characterized by fixed-par-
ameter instances. The parameter may represent, for example, the number of
processing elements to be employed, the maximum allowed wire length in a
placement problem, or the number of crossings in a planar drawing of a graph.
Parameterized complexity has been primarily motivated by concrete computa-
tional problems and can be used to get more insight on layout problems; see
e.g. Chapter 1 of [78].

Specifically, a parameterized problem is fixed-parameter tractable if there
is a constant α and an algorithm that decides whether an instance x with pa-
rameter k has a solution in time f(k)|x|α, where f is an arbitrary function and
|x| is the size of x. The class of fixed parameter tractable problems is denoted
FPT. Downey and Fellows introduced a framework from complexity theory and
derived the so-called W hierarchy of complexity classes W[t], whose definition
is based on logical circuit families and fixed-parameter reducibility; see [78].
The class W[1] is the parameterized analog of NP: W[1] hardness is the ba-
sic evidence that a parameterized problem is not likely to be fixed-parameter
tractable. In the following, we denote by Π(k) the fixed parameterized version
of a problem Π, where k is the parameter.

Several parameterized complexity results are known for some layout prob-
lems. The earlier result of Garey et al. proved that it is possible to decide
Bandwidth(2) and Cutwidth(2) in linear time [97].

In the case of Cutwidth, Gurari and Sudborough presented a O(nk)
algorithm to decide Cutwidth(k) for any input graph with n vertices and any
constant k [112]. This result was improved by Makedon and Sudborough, with
a O(nk−1) algorithm [177]. Latter, Fellows and Langston obtained a O(n2)
algorithm [90]. The result for Cutwidth(k) has recently been improved by
Thilikos, Serna and Bodlaender, who present a linear time algorithm [235].
These authors also present an algorithm to compute the cutwidth of bounded
degree graphs with small treewidth in polynomial time [236]. Recall that the
treewidth notion is similar to the pathwidth notion, but for a tree decomposition
rather than a path decomposition.

In the case of Bandwidth, Saxe presented a O(nk+1) algorithm to decide
Bandwidth(k) for any constant k [221]. This result was improved by Gurari
and Sudborough, who presented a O(nk) algorithm [112]. This is essentially the
best that can be done, as Bodlaender proved that Bandwidth (k) is hard for
the class W[k] for any k [29].

On the other hand, Fellows and Langston have proved that VertSep
and ModCut are fixed-parameter tractable [90]. In particular, Bodlaender has
proved that VertSep(k) can be decided in linear time [31].

Table 1.4 summarizes these results. When considering their utility, it

1.5 Complexity results 23

Problem Complexity Ref.

Bandwidth(2) O(n) [97]
Bandwidth(k) O(nk+1) [221]
Bandwidth(k) O(nk) [112]
Bandwidth(k) W[k] [29]

Cutwidth(2) O(n) [97]
Cutwidth(k) O(nk) [112]
Cutwidth(k) O(nk−1) [177]
Cutwidth(k) O(n2) [91]
Cutwidth(k) O(n) [235]

ModCut(k) O(n2) [91]

VertSep(k) O(n2) [90]
VertSep(k) O(n) [31]

Table 1.4: Fixed parameterized complexity results for layout prob-
lems (n denotes the size of the graph and k the parameter).

must be noticed that the multiplicative factor in the big-oh notation is often
exponential in k. The fixed parameter complexity of the layout problems not
included in the table remains open.

1.5.3 Positive results

Recall that NP-completeness results do not rule out the existence of efficient
algorithms to get optimal solutions on particular classes of graphs. We review
now this type of results for layout problems.

In the case of the Minimum Linear Arrangement problem, Harper com-
puted the optimal value of minla for the de Bruijn graph of order four [121]
and for hypercubes [119]. The motivation for the former case was to minimize
the total edge length of the wires needed to connect a Viterbi decoder and the
motivation for the latter case was to design error-correcting codes with minimal
errors. In the case of a d-dimensional hypercube Qd,

minla(Qd) = 2d−1(2d − 1).

According to Chung [48], Goldberg and Klipker where the first to give
an O(n3) algorithm to solve the Minimum Linear Arrangement problem for
trees [104]. Adolphson and Hu gave an O(n logn) algorithm for computing
the MinLA of a rooted tree with n vertices [3]. Shiloach improved the result
by presenting an algorithm to solve the MinLA on unrooted trees of n ver-
tices in O(n2.2) time [225]. This was further improved by Chung, who gave a

24 A Survey on Layout Problems

O(nlog 3/ log 2) algorithm (see [48]). The optimal value for the MinLA problem
on a complete binary tree with k levels T2,k has an explicit expression discovered
by Chung [48]:

minla(T2,k) = 2k(1
3k + 5

18) + 2
9(−1)k − 2, ∀k > 2.

A recursive expression was also presented by Chung for the case of complete
ternary trees. With respect to parallel algorithms, Dı́az et al. proved that
MinLA for trees is in NC, as it can be solved in O(log2 n) time using a CREW
PRAM with O(n3.6) processors [61]; see [71, 198] for concepts on parallel com-
plexity.

The MinLA problem on square or rectangular grids has a peculiar history:
The problem was first solved in a Russian paper by Muradyan and Piliposjan
for the general case of rectangular grids in  [189]. Latter, in , Mitchi-
son and Durbin published the solution only for square grids [182]. In ,
Niepel et al. incorrectly conjecture that the lexicographic layout is optimal for
minla(Lm) [192]. In a paper published in , Nakano [191] references again
this conjecture. The author of this thesis was personally aware of all that history
back in , after observing that the conjecture was false thanks to computa-
tional experiments. In , Fishburn, Tetali and Winkler [93] have published
another paper on the solution of minla(Lm,m′), without being aware of the pre-
vious results. We delay to Section 4.3 the presentation of the optimal solution
of MinLA on square grids.

A d-dimensional c-ary clique is a graph with vertices labeled by integers
from 0 to cd− 1 and edges connecting vertices whose c-ary representation differ
in one and only one digit. The MinLA problem on this kind of graphs was
analyzed by Nakano [191].

More exact MinLA results for several other particular classes of graphs
have been identified; see [24] and references therein.

The Cutwidth problem has a very similar trajectory. Harper seems to be
the one who first solved it for the case of hypercubes [120]. Chung et al. pre-
sented a O(n logd−2 n) time algorithm for the cutwidth of trees with n vertices
and with maximum degree d [50]. Yannakakis improved that result by giving
an algorithm to determine the cutwidth of a tree of n vertices in O(n log n)
time [241]. In the case of a k-level t-ary tree Tt,k, it holds that

mincw(Tt,k) =
⌈

1
2(k − 1)(t− 1)

⌉
, ∀k > 3.

With respect to parallel algorithms, Dı́az et al. proved that an optimal layout
for the cutwidth of a tree with n vertices and degree ∆ can be computed in
O(∆ log2 n) time using a CREW PRAM with O(n3.6) processors [61]. It is an
open problem whether Cutwidth is in NC for trees with unbounded degree.

1.5 Complexity results 25

In the case of the Sum Cut or Profile problems, optimal layouts of unrooted
trees can be computed in linear time with an algorithm of Dı́az et al. [62].
These authors also gave a parallel algorithm for computing the optimal Sum
Cut of an unrooted tree with n vertices in O(logn) time using a CREW PRAM
with O(n2 log n) processors. It is important to remark that these results were
published prior to the ones of Kuo and Chang [163], which, moreover, only
apply in the sequential case.

In the case of the Vertex Separation problem, Ellis et al. gave a linear
algorithm to compute the optimal vertex separation of a tree, and a O(n log n)
algorithm to find the optimal layout [80]. Recently, Skodonis has presented a
linear time algorithm to find the optimal layout [229]. Bodlaender et al. have
presented polynomial time algorithms to compute the vertex separation of per-
mutation graphs [32] and cographs [33].

In the case of the Edge Bisection problem, Leighton showed how to mini-
mize the bisection width of Cartesian products of paths of the same length, pro-
vided the length is even [167]. Nakano closed the problem for odd lengths [191].
The case of the hypercube bisection seems to have been solved by many people
concurrently (see [191]).

As opposed to the rest of the layout problems, the Bandwidth problem is
NP-complete when restricted to trees. However, in the case of a k-level t-ary
tree Tt,k, it holds that

minbw(Tt,k) =
⌈

t(tk−1 − 1)
2(k − 1)(t− 1)

⌉
.

The embedding of complete binary trees with optimal bandwidth was presented
in [123]. There also exists a O(n logn) algorithm to determine the bandwidth
of caterpillars with hairs of length at most two [13]. Other classes of graphs
whose bandwidth can be computed efficiently are interval graphs [106] and
chain graphs [160]. Recall that interval graphs are intersection graphs of a
set of intervals over the real line, and that chain graphs are bipartite graphs
G = (X,Y,E) where there is an ordering x1, x2, . . . , x|X| of X such that Γ(x1) ⊆
Γ(x2) ⊆ · · · ⊆ Γ(x|X|).

There appears to be few exact results for the EdgeBis problem, albeit
its importance. Bui and Peck have shown that the EdgeBis can be solved in
polynomial time for planar graphs such that mineb(Gn) = O(log n) [44].

Table 1.5 summarizes which classes of graphs are known to be solvable to
optimality in polynomial time for graph layout problems.

26 A Survey on Layout Problems

Problem Class of graph Complexity Ref.

Bandwidth Caterpillars with hair-length 6 2 O(n logn) [13]
Interval graphs O(n+m) [106]
Chain graphs O(n logn) [160]
Complete k-level t-ary tree O(n) [48]

MinLA Trees O(n3) [104]
Rooted trees O(n logn) [3]
Trees O(n2.2) [225]
Trees O(nlog 3/ log 2) [48]
Rectangular meshes O(n) [189]
Square meshes O(n) [182]
Hypercubes O(n) [119]
de Bruijn graph of order 4 O(n) [121]
d-dimensional c-ary cliques O(n) [191]

Cutwidth Trees O(n log∆−2 n) [50]
Trees O(n logn) [241]
Hypercubes O(n) [119]
d-dimensional c-ary cliques O(n) [191]

VertSep Trees O(n logn) [80]
Trees O(n) [229]
Cographs O(n) [33]
Permutation graphs O(n2) [32]

SumCut Trees O(n1.722) [163]
Trees O(n) [62]

EdgeBis Hypercubes O(n) [191]
d-dimensional c-ary arrays O(n) [191]
d-dimensional c-ary cliques O(n) [191]

Table 1.5: Review of classes of graphs optimally solvable in poly-
nomial time (n denotes the number of vertices in the graph, m its

number of edges and ∆ its maximal degree).

1.6 Lower bounds 27

1.6 Lower bounds

As all the layout problems presented so far are hard to solve for general graphs,
good lower bounds become important. Formally, given a layout cost F we say
that an algorithm L computes a lower bound of the cost of a graph G for F if
F (ϕ,G) > L(G) for all ϕ ∈ Φ(G). This section presents several approaches to
get lower bounds for some layout problems under consideration. Other lower
bounds for specifics graphs can be found in other surveys, and we shall present
new lower bounds for MinLA in Section 2.2.1.

1.6.1 The Path method

The Path method was introduced by Juvan and Mohar in [142] to compute
a lower bound for the MinLA and Bandwidth problems. Let P kn = (Vn, Ekn)
denote the k-th power graph of the path Pn, where Vn = [n] and Ekn = {ij : 0 <
|i− j| 6 k}. It can be seen that

minla(P kn) = 1
6k(k + 1)(3n− 2k − 1).

Let c(n,m) be the largest k for which |E(P kn)| 6 m. Then, we have,

c(n,m) = n− 1
2

√
(2n− 1)2 − 8m− 1

2 .

The use of these expressions to get a lower bound to minla and minbw is given
by the following theorem:

Theorem 1.3 ([142]). Let G a graph with n nodes and m edges and let k =
bc(n,m)c. Then, minla(G) > minla(P kn) and minbw(G) > k.

1.6.2 Bounds based on spectral properties

Let G = ([n], E) be a graph and let LG be its Laplacian matrix, defined by

LG[u, v] =





−1 if uv ∈ E,
0 if uv 6∈ E,
deg(u) if u = v.

By construction, LG is positive semidefinite. Therefore it has n nonnegative
real eigenvalues 0 6 λ1 6 λ2 6 . . . 6 λn. The sequence λ1, λ2, . . . , λn is known
as the spectrum of the graph G. It is know that the multiplicity of the value 0
as an eigenvalue of LG is equal to the number of connected components of G;
in particular, if G is connected 0 = λ1 < λ2 [183].

The following theorem states lower bounds involving the second smallest
eigenvalue of the Laplacian of a graph:

28 A Survey on Layout Problems

Theorem 1.4 ([142, 183]). Let G be a connected graph with n vertices and
let λ2 be the second smallest eigenvalue of the Laplacian matrix of G. Then,

minla(G) > λ2(n2 − 1)/6,
mincw(G) > λ2

⌊
1
2n
⌋ ⌈

1
2n
⌉
/n,

mineb(G) >
{
λ2n/4 if n is even,
λ2(n2 − 1)/4n if n is odd.

Newer bounds for the EdgeBis related to the level structure of a graph
can be found in [25].

The following result, due to Helmberg et al., bounds the bandwidth of a
graph using the ratio between the two extremal eigenvalues of its spectrum:

Theorem 1.5 ([124]). Let G be a graph with n vertices and at least one edge.
Let λ2 and λn denote the second smallest and the largest eigenvalue of the
Laplacian of G, respectively. Let α be the largest integer smaller than nλ2/λn.
Then,

minbw(G) >





n− 1 if α > n− 2,
α+ 1 if α 6 n− 2 and n is even,
α otherwise.

Another lower bound for MinLA also appears in [124].

1.6.3 Bounds based on fundamental cuts

Let G = (V,E) be a graph with n vertices and let s and t be two distinguished
vertices of G, which we call the source and the sink, respectively. The well-
known max-flow min-cut theorem states that the maximal flow value from s
to t is equal to the minimal edge cut separating s and t [94]. As there exists
an efficient algorithm to compute such a minimal cut, and there are 1

2n(n− 1)
possible choices for s and t, it is possible to build a symmetric n× n matrix f
where f [i, j] stores the maximal flow value between two distinct vertices i and j.
Gomory and Hu showed that matrix f can simply be represented by a weighted
spanning tree of G where each edge represents a fundamental cut of G and has
weight equal to the corresponding minimal cut [107]. The maximum flow f [i, j]
between any pair of vertices i and j can be obtained by finding the unique path
between i and j in the weighted spanning tree and finding the minimal weight
over all the edges in this path. Figure 1.4 shows a graph, its corresponding
Gomory–Hu tree and its corresponding matrix f . The algorithm to construct
the Gomory–Hu tree can be found in [107].

1.6 Lower bounds 29

1

2 3

4

5

6 7

8

1

2 3

4

5

6 7

8

3 3

3

1

3 3

3
f 1 2 3 4 5 6 7 8

1 3 3 3 1 1 1 1
2 3 3 3 1 1 1 1
3 3 3 3 1 1 1 1
4 3 3 3 1 1 1 1
5 1 1 1 1 3 3 3
6 1 1 1 1 3 3 3
7 1 1 1 1 3 3 3
8 1 1 1 1 3 3 3

Figure 1.4: A graph G, its Gomory–Hu tree and its matrix f
of max-flows min-cuts. Applying Theorem 1.6, minla(G) > 19,
mincw(G) > 3 and minbw(G) > 3. In fact, minla(G) = 21,

mincw(G) = 3 and minbw(G) = 3.

By construction, it is easy to see that the maximal fundamental cut of
a graph is a lower bound of the Cutwidth problem. Moreover, Adolphson and
Hu proved that the total cut capacity of the n− 1 fundamental cuts is a lower
bound on the cost of the Minimum Linear Arrangement problem [3]. Using
Lemma 1.1 we have that minbw(G) > dminla(G)/ne. Therefore, we have the
following lower bounds:

Theorem 1.6. Let G = (V,E) be a graph and T = (V,E′, w) its weighted
Gomory–Hu tree. Then,

mincw(G) > max
e∈E′

w(e),

minla(G) >
∑

e∈E′
w(e),

minbw(G) >
⌈

1
|V |

∑

e∈E′
w(e)

⌉
.

In [3] it is also proved that if the Gomory–Hu tree is a line graph, then
this is the solution to the MinLA problem.

30 A Survey on Layout Problems

1.7 Approximation algorithms

One of the approaches to deal with intractable problems is to design an approx-
imation algorithm that in polynomial time will give a feasible solution “close”
to the optimal one [15, 98]. In this section we precise this idea and present
approximability results for layout problems.

Recall that a problem Π = (I, S, f) is an optimization problem when:

• I represents the set of instances of Π. If x ∈ I we say that x is an instance
(or an input) of Π. I must be recognizable in polynomial time with respect
to |x|.

• Given an instance x ∈ I, S(x) denotes the set of feasible solutions of x.
These solutions must have polynomial length with respect to |x| and S(x)
must be recognizable in polynomial time.

• For any instance x ∈ I and any feasible solution σ ∈ S(x), f(σ, x) repre-
sents the cost of σ with respect to Π. The function f must be computable
in polynomial time and is called the objective function.

• The goal of Π is to find a feasible solution that minimizes1 f : given an
input x ∈ I, determine an optimal solution σ∗ ∈ S(x) such that f∗(x) =
f(σ∗, x) 6 f(σ, x) for all σ ∈ S(x).

Given a minimization problem Π, an r(n)-approximation algorithm is an
algorithm that, for any input x of size n, finds a solution to Π whose cost is
at most r(n) times the cost of an optimal solution to the problem’s instance.
When a problem Π has some r(n)-approximation algorithm, it is said to be r(n)-
approximable. When it has an algorithm such that, for all ε < 1, Aε returns
a feasible solution σ such that the ration between the obtained value and the
optimal value is less than 1 + ε and runs in polynomial time with respect to
|x|, Aε is said to be a polynomial time approximation scheme. Moreover, when
Aε runs in polynomial time with respect to |x| and 1/ε, Aε is said to be a fully
polynomial time approximation scheme. A combinatorial optimization problem
belongs to the class APX if it is ε-approximable for some constant ε > 1, to the
class PTAS if it admits an approximation scheme and to the class FPTAS if
it admits a fully approximation scheme. It is known that FPTAS ⊆ PTAS ⊆
APX, where the inclusions are strict if and only if P 6= NP. There are also
other parallel analogues to sequential approximation classes; see [71].

In the case of the considered graph layout problems, the set of instances I
corresponds to the set of all undirected graphs, an instance x ∈ I corresponds to
a particular undirected graph G, the set of feasible solutions S(G) corresponds

1Maximization problems are analogous.

1.7 Approximation algorithms 31

to Φ(G), and the objective function is a layout cost f ∈ {la,bw, sc,vs,cw,mc,
eb,vb}.

With regard to the Bandwidth problem, some particular kinds of graphs
have approximations algorithms. For γ-dense graphs, there exists a polynomial
time 3-approximation, due to Karpinski et al. [149]. Recall that a graph with
n vertices is γ-dense if its minimum degree is at least γn. There are also poly-
nomial time O(log n)-approximation algorithms for caterpillars [116], and for
a more large class of trees, denoted as GHB-trees, which are characterized as
trees such that for any node v, the depth difference of any two non-empty sub-
trees rooted at v is bounded by a constant [115]. In the case that the input
graph is chain-free, there exists a polynomial time O(log n)-approximation al-
gorithm [160]. For general graphs, there exist polylogarithmic approximation
algorithms running in polynomial time due to Blum et al. [28] and to Feige [85].
On the negative side, Blache et al. have shown that it is NP-complete to find a
3
2 -approximation in general, and a 4

3 -approximation for trees [27]. As a conse-
quence Bandwidth does not belong to PTAS. In fact, Unger has proved that
it is NP-complete to find any k-approximation even for cartepillars, where k is
any constant [238]. Therefore, Bandwidth does not belong to APX. The ap-
proximability of Bandwidth between a constant and a polylogarithmic factor
remains open.

For the EdgeBis, MinLA and Cutwidth problems there exist fully poly-
nomial time approximation schemes for dense graphs [11, 12, 95].

In the case of MinLA, Cutwidth and SumCut problems, several ap-
proximation algorithms have been proposed. The first nontrivial approximation
algorithm for MinLA and Cutwidth on general graphs had aO(log2 n) approx-
imation ratio and was due to Leighton and Rao [168]. Hansen also proposed
a O(log2 n)-approximation algorithm for MinLA [114]. This result was im-
proved for MinLA and SumCut by Even et al., who proposed O(log n log log n)-
approximation algorithms based on spreading metrics [83]. A spreading metric
on a graph is an assignment of lengths to its edges or its vertices, so that non-
trivial subgraphs are spread apart in the associated metric space. The volume
of a spreading metric, defined as the sum of the lengths if all edges or vertices,
provides a lower bound of solving the problem that guides a divide and con-
quer strategy. Up to date, the best polynomial time approximation algorithms
for MinLA and SumCut are O(log n)-approximations for general graphs and
O(log logn)-approximations for planar graphs. Both results are due to Rao and
Richa and also use the spreading metric technique [213]. Their technique works
for the general case of graphs with weighted edges. The drawback of the algo-
rithms based on spreading metrics is that they require solving a linear program
with an exponential number of constraints using the Ellipsoid method.

In the case of the VertSep problem, Bodlaender et al. have presented

32 A Survey on Layout Problems

Problem Approximability Ref.

Bandwidth 3-approximable for dense graphs [149]
O(log n)-approximable for caterpillars [116]
O(log n)-approximable for GHB-trees [115]
O(log n)-approximable for chain free graphs [160]
O(log11/2 n)-approximable [85]
no PTAS [27]
no APX [238]

VertSep O(log2 n)-approximable [159]
O(log n)-approximable for planar graph [159]

MinLA PTAS for dense graphs [11]
O(log2 n)-approximable [114, 168]
O(log n log log n)-approximable [83]
O(log n)-approximable [213]
O(log log n)-approximable for planar graphs [213]

Cutwidth PTAS for dense graphs [11]
O(log2 n)-approximable [168]

SumCut O(log n log log n)-approximable [83]
O(log n)-approximable [213]
O(log log n)-approximable for planar graphs [213]

EdgeBis PTAS for dense graphs [95]
O(
√
n log n)-approximable [87]

Table 1.6: Review of approximability results for layout problems;
n is the size of the input graph.

1.8 Heuristics 33

a polynomial time O(log2 n)-approximation algorithm for general graphs, and
show how to use results from Robertson and Seymour to get a O(log n)-approx-
imation algorithm for planar graphs [159].

The only known approximation algorithm for the EdgeBis problem on
general graphs is due to Feige, Krathgamer and Nissim, who obtain aO(

√
n logn)

approximation ratio [87].
Table 1.6 summarizes these approximability results.

1.8 Heuristics

Resorting to heuristics is an alternative method to obtain solutions for opti-
mization problems. In general, an heuristic is a rule of thumb, simplification or
guess that reduces or limits the search for solutions in domains that are difficult
and poorly understood. In the context of layout problems, an heuristic is a
procedure that, given an input graph G, returns a feasible layout G. Unlike
approximation algorithms, heuristics do not provide a theoretical guarantee on
their cost of the returned layout nor on their running time. In spite of that,
heuristics are often used in practice, but the assessment of their effectiveness
and efficiency is inherently empirical: “It works well with my inputs.” In this
section, we review several heuristics for layout problems and works that analyze
them.

Due to their importance in engineering applications, many heuristics have
been developed to reduce the bandwidth and/or profile of sparse matrices.
Chinn [46] references a paper citing 49 different heuristics! The most well-known
heuristics for bandwidth/profile reduction are King’s algorithm, the CutHill–
McKee algorithm [55] and the Gibbs–Poole–Stockmeyer algorithms [101]. Most
of them belong to a family of heuristics called level algorithms. Level algorithm
are based on a level structure of the graph, which partitions its vertex set into
levels L0, . . . , Ls such that the endpoints of every edge in the graph are either in
the same level Li or in two consecutive levels Li and Li+1. The assessment of the
goodness of level algorithms for Bandwidth has been considered by Turner,
who has analyzed their behavior on a particular distribution of random graphs
with bandwidth no larger than an integer B [237]. Specifically, he considers
graphs Gn,p,B, resulting from the following experiment: The vertex set is [n],
and the edge set is made by connecting, with probability p ∈ (0, 1), any pair of
vertices u, v ∈ [n] such that |u− v| 6 B. Turner first proved that for all ε > 0,
almost all G ∈ Gn,p,B satisfy 1 6 B/minbw(G) 6 1+ε, and then proved that for
any level algorithm A, it holds that A(G)/minbw(G) 6 (1+ε)(3−p) for almost
all G ∈ Gn,p,k, provided that B = ω(log n) and p is fixed. Feige and Krathgamer
improve on Turner’s results, allowing smaller edges probabilities p [86].

On the other hand, the areas of VLSI and of parallel computing have given

34 A Survey on Layout Problems

rise to many heuristics for the Edge Bisection problem; see [81] for a nice survey.
One of the first proposed heuristics to bisect a graph was the Kernighan–Lin
heuristic [152] (not to be confused with the Lin–Kernighan heuristic for the
TSP). This heuristic, originally developed to minimize the number of connec-
tions in electronic circuits, belongs to a more general family of local search
heuristics [1]. Helpful Sets is a more recent local search heuristic developed
by Diekmann, Monien and Preis [76]. The basic idea of this heuristic appears
in the proof of a result we have already mentioned to get upper bounds on
the bisection of 4-regular graphs [129]; see also [72]. Moreover, the Helpful Sets
heuristic can be combined with simulated annealing to obtain better results [74].
Spectral bisection is another popular heuristic for EdgeBis based on spectral
properties (see Section 1.6.2). Its basic principle is to compute the Fiedler vec-
tor of the Laplacian matrix of an input graph G = (V,E), compute the median
M of its eigenvalues and return a bisection (A, V \A) where A is made of ver-
tices v ∈ V satisfying x

(2)
v 6 M . A related algorithm based on eigenvalues

is presented and probabilistically analyzed by Boppana [38]. Also, Spielman
and Teng show that spectral bisection methods work well on bounded-degree
planar graphs and finite element meshes [231]. Other heuristics for EdgeBis
include simulated annealing, multilevel algorithms [20], tabu search or genetic
algorithms [143].

There exist several papers that compare the effectiveness of several heuris-
tics for EdgeBis from an experimental point of view; see [21, 76, 137, 170].
Unfortunately, these studies do not seem to give an indication on the reason
why these heuristics work.

Simpler local search heuristics for the Edge Bisection problem have been
theoretically analyzed on particular random graphs: Jerrum and Sorkin ana-
lyzed the Metropolis algorithm for the Edge Bisection problem on graphs with a
planted bisection [134]. Their results involve an algorithm that, starting from a
random bisection, iteratively takes a pair of vertices in different sides of the cur-
rent bisection and interchanges them with probability 1/(1 + exp(δ/t)), where
δ is the increase of the cut size and t is a parameter called temperature. Their
analysis considers G4n,p,r random graphs, generated as follows: A G4n,p,r graph
has 4n vertices, half of them black and half of them white; edges between vertices
of the same color are included independently with probability p, whereas edges
between vertices of different colors are included independently with probability
r < p. They first prove that the planted bisection, defined by the original col-
oring, is, with high probability, the unique optimal bisection on G4n,p,r random
graphs. Then, they prove that, with overwhelming probability, for a certain
choice of t, the Metropolis algorithm can find the planted bisection of G4n,p,r

random graphs in time O(n2), provided p − r = Ω(n−1/6). In his thesis [141],
Juels improves these results to cope with the simpler Hillclimbing algorithm:

1.9 Conclusion 35

interchanges are accepted only if they decrement the size of the bisection. His
results state that Hillclimbing can find the planted bisection of G4n,p,r random
graphs in expected time O(n2) with probability c > 0, provided p − r is con-
stant. Repeated executions can boost the probability of success. Juels also
reports experimental results that show that Hillclimbing may be much more
effective than what his theoretical results indicate on the random graphs he
considers. Condon and Karp also present similar results for a generalized ver-
sion of G4n,p,r graphs, but with a successive augmentation heuristic rather than
local search [52]. Their heuristic is based on a greedy algorithm that repeatedly
selects a new pair of vertices and adds one to each side the bisection. They
show that their linear time heuristic hits the planted bisection with overwhelm-
ing probability, provided p− r > n−1/2.

In Chapter 2 we will present several proposed heuristics for the MinLA
problem.

There exist several software libraries that implement many of the above
mentioned heuristics. The Party library [212] and the Chaco library [126] are
packages that include a variety of different methods to partition or bisect graphs.
They will be used in subsequent chapters. Also, Metis is a library of programs
for partitioning graphs and computing profile reducing orderings of sparse ma-
trices [150].

1.9 Conclusion

In this chapter we have presented a current view on the main known results
about graph layout problems. Surely the reader has observed that plenty of
problems remain open: In general, everything that in this chapter is not re-
ferred as done might turn into an interesting research problem. In particular,
we remark that for most problems, there exist PTAS for dense instances, but not
much results exist to approximate sparse graphs. Also, we observe that devel-
oping practical approximation algorithms or efective heuristics is a challenging
issue. In the latter case, ways to assert their behavior are strongly needed.

2
Experiments on the MinLA

Problem

2.1 Introduction

In the field of combinatorial optimization, there exists a big gap between the
observations obtained empirically and the theoretical knowledge available. The
practical need to obtain good approximated solutions in reasonable time for
hard problems has lead to the development of many approximation heuristics.
A substantial part of these methods are routinely used, and their users obtain
quite satisfactory results. However, the theoretical knowledge that we have on
the benefits of these heuristic techniques is still vague.

This chapter presents, from an experimental perspective, a case study to
evaluate several techniques to deal with layout problems. We undertake this
study with the particular case of the Minimum Linear Arragement problem
(MinLA). The goal is to obtain a first evaluation on the behavior of different
families of heuristics and of lower bounding techniques that could serve as a
guide for subsequent work.

In the light of the preceding survey, starting to tackle a layout problem
with an experimental approach could seem a waste of energy. After all, the
approximation algorithm of Rao and Richa for the MinLA problem delivers
solution whose cost is guaranteed to be not more than a O(logn) factor far
from the optimal [213]. However, to my knowledge this algorithm has never

38 Experiments on the MinLA Problem

been implemented, maybe because it needs to solve a linear program with an
exponential number of constraints using the Ellipsoid method. Moreover, the
O(logn) approximation factor is asymptotic and without a clue in the constant
hidden in the big-oh notation nor on its running time. Therefore, it seems rea-
sonable to design heuristic methods that return good solutions in a moderated
amount of time, and to investigate their behavior for distinct classes of graphs.

In this context, it is important to remark that experimental study in
the algorithmics field is gaining increasing importance. For instance, several
workshops and journals have recently appeared to address issues related to
experimental algorithmics. However, there is some concern on the significance
of the obtained results: For instance, Hooker claims that experimental studies
of heuristics are of competitive nature rather than of scientific nature [127,
128]. Trying to address this issue, some authors as Johnson, McGeoch or Moret
attempt to establish experimental algorithms as a scientific discipline [136, 178,
188].

This chapter is organized in two well separated parts. The goal of the
first part is to present a fair evaluation of different upper and lower bound-
ing techniques for the MinLA problem. This is done running computational
experiments on a test suite of graphs. The result is a benchmarking of the eval-
uated techniques. Section 2.2 presents the lower and upper bounding methods,
Section 2.3 presents the test suite, and Section 2.4 presents the experimen-
tal evaluation. The second goal of this chapter is to take profit of the results
obtained in the first part in order to design a new heuristic for the MinLA
problem. The challenge is to obtain faster better solutions. The result is a new
parallelizable hybrid heuristic, which we also evaluate on our test suite. The
chapter is concluded with a precise summary of our observations. Some of these
observations lead to the development of Chapters 3, 4 and 5.

2.2 Lower and upper bounding methods

In this section, we first present new methods to find lower bounds for the MinLA
problem that complement some techniques already presented in Chapter 1. Af-
terwards, we present several methods to get feasible solutions that provide upper
bounds for the MinLA problem. These methods are heuristics based on general
techniques that include Successive Augmentation, Local Search, and Spectral
Sequencing. Finally, we describe the implementation of these upper and lower
bounding techniques in the so-called llsh toolkit.

2.2 Lower and upper bounding methods 39

2.2.1 Lower bounds

Previously known methods have already been described in Section 1.6, as part
of the review on layout problems. These include the Path method, the Gomory–
Hu tree method and the Juvan–Mohar method. In the following, we present
some new methods to get lower bounds.

The Edges method. The Edges method is a way to compute lower bounds
for the MinLA problem that improves the Path method described in Section 1.6.
Due to the floor operation taken in Theorem 1.3, the Path method ignores the
length of some edges in the graph. A way to take these edges into account is
to make use of the following observation: Consider any layout ϕ. Notice that
no more than n− 1 edges can have cost 1 in ϕ. Moreover, no more than n− 2
edges can have cost 2. In general, no more than n − c edges can have cost
c in any layout ϕ. This observation gives us a simple algorithm to compute
a lower bound for the MinLA problem: while uncounted edges remain, count
their minimal contribution:

function EdgesMethod(G) : integer is
n := |V (G)|; m := |E(G)|; i := 1; f := 0; lb := 0
while f + n− i 6 m do

f := f + n− i
lb := lb + i(n− i)
i := i+ 1

end while
return lb + i(m− f)

end

The Degree method. The Degree method is another way to compute lower
bounds for MinLA. Rather than considering edges as in the Edges method,
in the Degree method we consider the degree of the vertices: Let ϕ be any
layout of a graph G = (V,E) and define the contribution of a vertex u as∑

uv∈E |ϕ(u) − ϕ(v)|. In the best case, a vertex must have two incident edges
that contribute 1, two incident edges that contribute 2, two incident edges
that contribute 3, etc. (see Figure 2.1). Therefore, a vertex u with degree d
cannot have a contribution greater than

∑d/2
i=1 2i = d2/4 + d/2 if d is even or

(d + 1)/2 +
∑(d−1)/2

i=1 2i = (d2 + 2d + 1)/4 if d is odd. Therefore, to compute
a lower bound to minla(G) we must add the minimal contributions of each
vertex and divide the sum by two (as edges have been counted twice). Here is
the algorithm:

40 Experiments on the MinLA Problem

u 1

1
223

3

4

4
5 . . .

Figure 2.1: Illustration for the Degree method.

function DegreeMethod(G) : integer is
lb := 0
for all u ∈ V (G) do

d := deg(u)
if d mod 2 = 0 then

lb := lb + d2/4 + d/2
else

lb := lb + (d2 + 2d+ 1)/4
end if

end for
return lb/2

end

The Mesh method. Let Lm be a m×m square grid. In Section 4.3, we will
see that

minla(Lm) = 1
3(4−

√
2)m3 +O(m2).

By Lemma 1.2, the minla of a graph is greater than the minla of its parts.
Therefore, an alternative way to obtain a lower bound for MinLA is to decom-
pose an input graph G in k disjoint square grids M1, . . . ,Mk, compute a lower
bound to minla(Mi) for all i ∈ [k], so that minla(G) >

∑k
i=1 minla(Mi).

We propose a greedy algorithm to compute a lower bound for MinLA. The
algorithm works by iteratively finding maximal square grids in a given graph:

function MeshMethod(G) : integer is
lb := 0;
Let M be the largest square grid contained in G; let s be its side
while s > 2 do

lb := lb + (4−√2)s3

G := G \M
Let M be the largest square grid contained in G; let s be its side

end while
return lb + EdgesMethod(G)

end

2.2 Lower and upper bounding methods 41

In order to find the largest square grid contained in G, it is necessary to
resort to backtracking. This causes this method to be quite inefficient, although
a careful implementation can prune much of the search space.

Discussion. In the case of sparse graphs where |E| = O(|V |), the lower
bounds obtained by the Path method, the Edges method and the Degree method
are linear in |V |. This fact shows that these methods might not be very accu-
rate. In contrast, the lower bounds obtained by the Juvan–Mohar method can
grow faster than linearly, depending on the expansion properties of the input
graphs. On the other hand, it can be expected that the bounds obtained by
the Mesh method will only be effective in graphs containing many grids. This
may be the case in the kind of graphs arising from applications in finite element
methods.

2.2.2 Approximation heuristics

We now present several heuristics to get approximate solutions for the MinLA
problem. All the heuristics described in the following are algorithms that, given
a graph G, stop and return a layout ϕ of G. Most of them are randomized
algorithms. These heuristics are expected to provide layouts whose costs are
close to the optimal, but no performance guarantee is given. In what follows,
we assume that the vertices of G = (V,E) are V = [n].

Random and Normal layouts. A simple way to generate approximated
solutions consists in returning a random feasible solution. We denote such a
solution a random layout. A similar idea consists in not permuting at all the
input. This is what we call the normal layout :

ϕ[i] = i, ∀i ∈ [n].

In general, these methods will yield bad results, but at least their running time
will be negligible.

Successive Augmentation heuristics. We present now a family of Suc-
cessive Augmentation heuristics. These types of heuristics have been applied
to a great variety of optimization problems, such as the Graph Coloring prob-
lem [138] or the Traveling Salesman problem (TSP) [135, 138]. Under this
approach, a partial layout is extended, vertex by vertex, until all vertices have
been enumerated, at which point the layout is output without any further at-
tempt to improve it. At each step, the best possible free label is assigned to the
current vertex.

Our generic heuristic is given by the following algorithm:

42 Experiments on the MinLA Problem

function Increment(G,ϕ, i, vi, x) : integer is
ϕ[vi] := x; c := 0
for j := 1 to i do if vivj ∈ E then c := c+ |ϕ[vi]− ϕ[vj]|
return c

end

function SuccessiveAugmentation(G) : ϕ is
n := |V (G)|
Select an initial ordering of vertices v1, v2, . . . , vn
ϕ[v1] := 0; l := −1; r := 1
for i := 2 to n do

if Increment(G,ϕ, i, vi, l) < Increment(G,ϕ, i, vi, r) then
ϕ[vi] := l; l := l − 1 (∗ Put at left ∗)

else
ϕ[vi] := r; r := r + 1 (∗ Put at right ∗)

end if
end for
(∗ Re-map ϕ to [n] ∗)
for i := 1 to n do ϕ[i] := ϕ[i]− l
return ϕ

end

To start, label 0 is assigned to a first vertex. Then, at each iteration, a
new vertex is added to the layout, to its left or to its right, in the way that
minimizes the partial cost. The layout will be from l + 1 to r − 1 and not
from 1 to i as usual, but this has no importance, because MinLA works with
differences between labels and not with the labels them-selves. In order to
decide in which extreme of the current layout the new vertex must be placed,
the function Increment(G,ϕ, i, vi, x) returns the increment of the cost of the
partial layout ϕ restricted to the vertices v1, . . . , vi−1 when label x is assigned
to vertex vi. Finally, a second loop maps ϕ to [n].

It remains to select an initial ordering of the vertices. We propose four
different strategies:

Normal ordering: The vertices are ordered in the same way as they are la-
belled in the graph.

Random ordering: The vertices are randomly ordered. This scheme has the
disadvantage of ignoring the connectivity and density of the graph.

Random breadth search: Choose an initial vertex v1 and set S := {v1} and
i := 2. While S 6= V , choose randomly and edge uvi ∈ E with u ∈ S and
vi /∈ S; add vi to S setting S := S ∪ {vi} and increment i. This initial
ordering has the advantage of making use of the connectivity of the graph
but lacks locality.

2.2 Lower and upper bounding methods 43

Breadth-first search: To create an initial ordering, perform a breadth-first
search from a random vertex of the graph. In this way, the greedy heuristic
would take profit of the possible locality and connectivity of the graph.

Depth-first search: An alternative to the previous strategies would be to per-
form a depth-first search from a random vertex of the graph.

Observe that, with the exception of the normal ordering, all the above
variations result in randomized algorithms.

Spectral Sequencing. The spectral sequencing heuristic to find layouts for
MinLA is due to Juvan and Mohar [142]. Given a graph G, the algorithm first
computes the Fiedler vector of G; that is, the eigenvector x(2) corresponding
to the second smallest eigenvalue λ2 of the Laplacian matrix LG of G. Then,
each position of x(2) is ranked. Thus, the spectral sequencing heuristic returns
a layout ϕ satisfying

ϕ(u) 6 ϕ(v) whenever x(2)
u 6 x(2)

v .

The rationale behind this heuristic is that the ordering of the vertices
produced by their values in the Fiedler vector has some nice properties. In
particular, vertices connected by an edge will tend to be assigned numbers
that are close to each other. This property has been used already in other
problems such as graph partitioning [14], chromosome mapping and matrix
reordering [125].

Local Search heuristics. Local Search has been described by Papadimitriou
and Steiglitz as “an area where intuition and empirical tests play a crucial role
and where the design of effective Local Search is much an art” [199]. In spite of
this, because of its performance and simplicity, Local Search is one of the most
used techniques to approximate many optimization problems (see e.g. [1] and
references therein). The basic principle of this heuristic is to iteratively improve
an initial solution by performing local changes on its combinatorial structure.
Usually, the initial solution is generated at random, and changes that improve
the solution are accepted, whereas that changes that worse the solution are
rejected.

In order to apply Local Search to an optimization problem, the following
items should be recognized: the set of feasible solutions (S = {σi}i), a cost
function that assigns a numerical value to any feasible solution (f : S → R+)
and a neighborhood, which is a relation between feasible solutions that are
“close” in some sense. The generic algorithm is as follows:

44 Experiments on the MinLA Problem

function LocalSearch is
σ := Select initial random feasible solution
while ¬Termination() do

σ′ := Select a neighbor of σ
δ := f(σ)− f(σ′)
if Acceptable(δ) then σ := σ′

end while
return 〈σ, f(ϕ)〉

end

For the MinLA problem, the set of all feasible solutions is Φ(G), and the
objective function is la(G,ϕ). However many different neighborhoods can be
taken into account. In this research we have considered the following neighbor-
hoods:

Flip2: Two layouts are neighbors if one can go from one to the other by flipping
the labels of any pair of vertices in the graph.

Flip3: Two layouts are neighbors if one can go from one to the other by rotating
the labels of any trio of vertices in the graph.

FlipE: Two layouts are neighbors if one can go from one to the other by flipping
the labels of two adjacent vertices in the graph.

Besides the appealing simplicity of these neighborhoods, the reasons to
choose them among all the other potential candidates are the easiness to perform
movements and the low effort necessary to compute incrementally the cost of
the new layout.

Figure 2.2 shows a graphical representation of the landscape defined by
the Flip2 neighborhood. For a random graph with 20 vertices, this figure shows
the magnitude of the gain of swapping any pair of vertices. It can be remarked
that the landscape is very irregular.

Below, we present some concrete methods derived from the general Local
Search heuristic. These variations depend on the way the neighborhood is ex-
plored to search favorable moves or which is the criterion to accept moves that
do not directly improve the solution. These algorithms are usually called black-
box heuristics [141] because they work only with the objective function and the
neighborhood structure, but they do not use problem-dependent strategies.

Hillclimbing. The Hillclimbing heuristic on the Flip2 neighborhood is imple-
mented as follows: A first initial layout is generated at random. Then, proposed
moves are generated at random and are accepted when their gain (δ) is pos-
itive or zero. Accepting moves with null gain allows the search to go across
plateaus. The heuristic terminates after max consecutive proposed moves have

2.2 Lower and upper bounding methods 45

Figure 2.2: Landscape of Flip2 on a random graph.

not strictly decremented the cost of the layout. The algorithm for Hillclimbing
is given below.

function Hillclimbing2(G,max) is
ϕ := Generate an initial random layout
z := 0
while z < max do

z := z + 1
u := Generate a random integer in [n]
v := Generate a random integer in [n]
δ := GainWhenFlip2(G,ϕ, u, v)
if δ > 0 then

Flip2(ϕ, u, v)
if δ > 0 then z := 0

end if
end while
return 〈ϕ,CG,ϕ〉

end

The function GainWhenFlip(G,ϕ, u, v) returns the gain (possibly nega-
tive) in the cost function when flipping the labels of u and v in ϕ. The procedure
Flip2(ϕ, u, v) performs this flipping.

The Hillclimbing heuristic with the Flip3 neighborhood proceeds in the
same way, except that three vertices are randomly chosen. For the FlipE neigh-
borhood, a vertex u is first randomly chosen in V ; then, another vertex is

46 Experiments on the MinLA Problem

randomly chosen among all vertices adjacent to u. On the Flip2 and Flip3
neighborhoods, we take max = n log n; on FlipE, max = log2 n.

Full search. In the full search heuristic, at each step the gain of each possible
transition is computed in order to choose the move with maximum gain in the
current neighborhood. The algorithm on the Flip2 neighborhood is conceptually
as follows:

function FullSearch(G,max) is
ϕ := Generate an initial random layout
repeat
〈u, v, δ〉 := SelectBestMove(G,ϕ)
if δ > 0 then

Flip2(ϕ, u, v)
end if

until δ <6 0
return 〈ϕ,CG,ϕ〉

end

According to this implementation, it seems necessary to compute at each steep
the gain of the n(n−1)/2 possible moves. However, large savings can be done if
the graph is sparse, because it is not necessary to compute again all the moves
of the vertices that are not neighbors of the previously interchanged vertices.
In this way, the number of iteration to perform in SelectBestMove is reduced
from O(n2) to O(∆n), where ∆ is the maximum degree of the input graph.

Metropolis. The problem with the Local Search heuristics seen so far is that
once a local optimum is found the heuristic stops, but this local optimum can
be far away from the global optimum. In order to enable the heuristic to accept
downhill moves, the Metropolis heuristic [181] is parametrized by a “tempera-
ture” t and proceeds as follows in the Flip2 neighborhood:

function Metropolis(G, r, t) is
ϕ := Generate an initial random layout
for i := 1 to r do

u := Generate a random integer in [n]
v := Generate a random integer in [n]
δ := GainWhenFlip2(G,ϕ, u, v)
with probability min

(
1, e−δ/t

)
do Flip2(ϕ, u, v)

end for
return 〈ϕ,CG,ϕ〉

end

Notice that improving movements will be automatically accepted, whereas
worsening movements are accepted randomly in function of the “height” δ of

2.2 Lower and upper bounding methods 47

the movement and the temperature t. With a high temperature the probability
of accepting is high; with a small temperature, it is low. In the limit, as t→∞,
Metropolis performs a random walk on the neighborhood structure, and as t→ 0
Metropolis proceeds as the Hillclimbing heuristic.

Simulated Annealing. The Simulated Annealing heuristic [155] is closely
related to the Metropolis process. Briefly, Simulated Annealing consists in a
sequence of runs of Metropolis with a progressive decrement of the tempera-
ture. For MinLA, the basic Simulated Annealing heuristic follows the following
algorithm:

function SimulatedAnnealing(G) is
ϕ := Generate an initial random layout
t := InitialTemperature()
while ¬Frozen() do

while ¬Equilibrium() do
u := Generate a random integer in [n]
v := Generate a random integer in [n]
δ := GainWhenFlip2(G,ϕ, u, v)
with probability min

(
1, e−δ/t

)
do Flip2(ϕ, u, v)

end while
t := α · t (∗ 0 < α < 1 ∗)

end while
return 〈ϕ,CG,ϕ〉

end

The main point in Simulated Annealing algorithms is the selection of
their parameters: initial temperature, frozing and equilibrium detection, cooling
ratio α, These depend not only on the optimization problem, but also on
the instance of the problem. An excellent treatment of different Simulated
Annealing schemes can be found in [135, 137, 138]. Rather than investigating
different selections for these parameters, we have used an adaptative technique
due to Aarts (see [240]).

2.2.3 The llsh toolkit for the MinLA problem

To enable the evaluation of the techniques described in the two previous sub-
sections, we have implemented them. The result is the “llsh toolkit,” a library
of methods for the Minimum Linear Arrangement problem, which we briefly
describe. The name llsh comes after “Linear Layout Shell.”

The architecture of this toolkit is made of two layers: a core layer and an
interface layer. The implementation of the different upper and lower bounding
methods reside in the core layer, together with utilities to manipulate layouts
and graphs. This core is implemented in C++. The toolkit is completed with an

48 Experiments on the MinLA Problem

interface layer which enables using the core from within a Tcl interpreter, which
is a scripting language for controlling and extending applications [195]. This
architecture proves to be very convenient: on one side, the fact that the core
is implemented in C++ enables both a high level and efficient implementation
of the different methods; on the other side, offering an interpreter to the users
of the toolkit enables an easy coding of the driver programs that perform the
experiments and process the results.

The development of the core of the toolkit has devoted much attention
to provide efficient implementations. To achieve this goal without much cost in
programming effort, several preexisting libraries have been used:

• In order to quickly compute the Fiedler vector of a large sparse matrix
with precision and without taking too many resources, llsh uses an im-
plementation of the Lanczos algorithm [202] offered in the Chaco library
developed by Hendrickson and Leland [126].

• In order to compute the Gomory–Hu tree of a graph, a public domain
implementation by G. Skorobohatyj has been ported to C++ [230].

• The Simulated Annealing heuristic has been implemented using the parSA
library developed at the University of Paderborn [158]. This library offers
the Aarts adaptative scheduler.

• Several parts of the implementation use classes from the LEDA library
developed at MPI [179]. However, arrays and graphs had to be recoded
in order to obtain a better efficiency than the one obtained with LEDA.
There are two reasons for this: First, LEDA classes are often too general
for our purposes, and this generality affects their performance; this is the
case of the graph class.1 Second, LEDA methods can not be inlined by
the compiler, because their implementation is not available until linking
time; this is the case of the array and array2.

In order to illustrate how the interpreter of the toolkit works, Figure 2.3
shows a sample session.

2.3 Test suite

We consider now the creation of a test suite of graphs to benchmark the previous
upper and lower bounding techniques for the MinLA problem.

There exist several test suites for various combinatorial optimization prob-
lems. For instance, TSPLIB is a library of sample instances for the TSP from

1 This problem should be soon overcomed in LEDA by the introduction of a new sgraph

class, for static graphs.

2.3 Test suite 49

> llsh Starts the llsh toolkit
% Graph G "randomA1.gra" Creates a graph G loading randomA1

% puts "[G vertices] [G edges]" Writes the number of vertices and edges of G

1000 4974 result computed by llsh

% Layout L [@ G] Creates a layout L for the graph G

% UB spectral [@ G] [@ L] Applies the spectral method to G and
sets the result in L

% puts [L la] Writes the cost of the layout L

1202165 result computed by llsh

% puts [LB juvan mohar [@ G] Writes the Juvan–Mohar lower bound for G

140634 result computed by llsh

% exit Leaves llsh

Figure 2.3: Sample session with llsh.

various sources and of various types [215]. Also, QAPLIB provides a unified
test bed for the Quadratic Assignment problem [45]. Both libraries are reg-
ularly used by practitioners to test new algorithms, and owe their utility to
be accessible to the scientific community through the World Wide Web. In
contrast, no test suite has already been proposed for MinLA.

Creating a test suite of graphs for the MinLA problem is a difficult task.
Ideally, this test suite should contain graphs arising from real life applications,
graphs with known optima, graphs that can support general conclusions, and
generators of instances. Unfortunately, these kinds of graphs do not abound.
Therefore, in order to select the graphs in the test suite, some pragmatical
decisions must be taken:

• The first decision we take is to limit the scope of the test suite to sparse
graphs. It has already been said that for the case of dense graphs, fully ap-
proximation schemes exist, so this family of graphs has not much interest
for us.

• The second decision we take is to only include large graphs in the test
suite. Here, “large” should stand for graphs that cannot be optimally
solved by a brute force algorithm as Branch and Bound in a “reasonable”
time. This is a vague definition, but has the advantage of being useful and
dynamical. It can also encourage the study of brute force algorithms to
show that, after all, these graphs were not so large. Currently, according
to this definition, a 5× 5 square grid graph is large. However, during this
research we have felt the need to go further, and so we have decided that
the graphs to be included in the test suite should have more than one
thousand vertices.

50 Experiments on the MinLA Problem

• The third decision we take is that the test suite must contain several
graphs for which their optimal solution is known. At the current time,
the only families of graphs that satisfy this condition are the ones shown
in Table 1.5. From these graphs, we select a binary tree, a hypercube and
a square grid. These are natural families of graphs and represent quite
different topologies. In order to have graphs with around one thousand
vertices, we take a 10-hypercube (hc10), a 33×33 grid graph (mesh33x33)
and a complete binary tree with 10 levels (bintree10).

• The fourth decision we take is that random graphs should be included
in the test suite. The reason is that such graphs may be amenable to
a probabilistic analysis, and thus general conclusions can be drawn from
their study.

Binomial random graphs Gn,p are obvious candidates to be included in the
test suite.2 Recall that a Gn,p graph is a graph with n vertices where each
of the n(n − 1)/2 edges appears with probability p. We include two Gn,p
binomial random graphs in the test suite, taking n = 1000 and p = 0.01
and p = 0.05. The random graphs generated are randomA1 and randomA2.

Besides Gn,p graphs, it would be interesting to include some other class of
random graphs. Random regular graphs do not seem an option, as they
share many properties with binomial random graphs, which already have
been included. Random graphs proposed to model the Internet would be
a nice option, but no model has yet gained enough popularity.

On the other hand, random geometric graphs seem a good option.3 Ran-
dom geometric graphs are graphs whose vertices correspond to points
uniformly distributed at random in the unit square, and whose edges join
vertices that are closer than some specified bound. Random geometric
graphs have also often been used as instances to benchmark heuristics,
see for example [23, 137, 165]. So, the test suite includes a random geo-
metric graph, randomG4, with 1000 vertices and radius 0.075. Finally, the
inclusion of a random geometric graph calls for the inclusion of a binomial
random graph with a similar number of vertices and edges. The graph
randomA4 was therefore generated in order to discover differences with
randomG4.

• The fifth and last decision we take is to include “real life graphs” in the
test suite. As we could not obtain real life instances specific for MinLA,
we have taken three families of graphs that arise in the same kinds of
applications that layout problems: VLSI design (VLSI family), graphs

2 Binomial random graphs will be treated in more detail in Chapter 3.
3 Random geometric graphs will be treated in more detail in Chapter 5.

2.4 Experimental evaluation 51

from finite element discretizations (FE family) and graphs from graph-
drawing competitions (GD family).

The VLSI graphs c1y, c2y, c3y, c4y and c5y are graphs derived from
circuit layouts. These graphs were provided by M. Peinado, who received
them from M. Jünger.

The FE graphs where provided by R. Diekmann, who used them as part
of his test suite for partitioning and load balancing algorithms. They
arise from applications in computational fluid dynamics (airfoil1 and
3elt), earthquake wave propagation (whitaker3) and structural mechan-
ics (crack).

Finally, the GD graphs have been obtained from several graph-drawing
competitions posted in the World Wide Web. In this class, gd95c is a
mysterious graph, gd96a represents a finite automaton used in a natural-
language processing system, gd96b represents the calls made between a
set of telephone numbers, gd96c is an artificial nice graph, and gd96d
represents the structure of a fragment of a web site.

The main characteristics of the graphs in our test suite are shown in
Table 2.1. Some of them are shown in Figure 2.4.

2.4 Experimental evaluation

In this section we present, compare and analyze some experimental results aim-
ing to evaluate the performance of the considered methods on the test suite
proposed in the previous section. We start presenting the experimental envi-
ronment in which the measurements took place and the representation of the
results that we report later on.

2.4.1 Experimental environment and representation of results

The experiments have been run on a cluster of nine identical personal com-
puters with AMD K6 processors at 450 MHz and 256 Mb of memory with a
Linux operating system delivering 897.84 BogoMips each one. These computers
have enough main memory to run our programs without delays due to paging.
Moreover, all the experiments have been executed in dedicated mode (expect
for system daemons) and measure the total elapsed (wall-clock) time. Pre- and
post-processing times are included in our measures, with the exception of the
time needed to read the input graph.

As described in Section 2.2.3, the core of the programs has been written in
the C++ programming language, and the drivers that perform the experiments

52 Experiments on the MinLA Problem

Name Nodes Edges Degree Diam Family

randomA1 1000 4974 1/9.95/21 6 Gn=1000,p=0.01

randomA2 1000 24738 28/49.47/72 3 Gn=1000,p=0.05

randomA4 1000 8177 4/16.35/29 4 Gn=1000,p=0.0164

randomG4 1000 8173 5/16.34/31 23 Gn=1000(r = 0.075)

hc10 1024 5120 10/10/10 10 10-hypercube
mesh33x33 1089 2112 2/3.88/4 64 33×33-mesh
bintree10 1023 1022 1/1.99/3 18 10-bintree

3elt 4720 13722 3/5.81/9 65
airfoil1 4253 12289 3/5.78/10 65 FE
crack 10240 30380 3/5.93/9.00 121
whitaker3 9800 28989 3/5.91/8 161

c1y 828 1749 2/4.22/304 10
c2y 980 2102 1/4.29/327 11
c3y 1327 2844 1/4.29/364 13 VLSI
c4y 1366 2915 1/4.26/309 14
c5y 1202 2557 1/4.25/323 13

gd95c 62 144 2/4.65/15 11
gd96a 1076 1676 1/3.06/111 20
gd96b 111 193 2/3.47/47 18 GD
gd96c 65 125 2/3.84/6 10
gd96d 180 228 1/2.53/27 8

Table 2.1: Test suite. For each graph, its name, num-
ber of vertices, number of edges, degree information (mini-

mum/average/maximum), diameter and family.

2.4 Experimental evaluation 53

(a) 3elt (b) airfoil1

(c) gd95c (d) gd96c

Figure 2.4: Some graphs from the test suite.

54 Experiments on the MinLA Problem

34s

M
in

1s
t
qu

ar
til
e

M
ed

ia
n

3r
d
qu

ar
til
e

M
ax

A
ve

ra
ge

tim
e

Figure 2.5: Interpretation of the boxplots.

have been written in Tcl. The programs have been compiled using the GCC
2.95.2 compiler with the -O3 option.

The code has been tested using two different random number generators:
the standard rand() function in <stdlib.h> and the random number generator
available in LEDA. We did not notice any anomaly due to the use of either.

All the elemental experiments have been executed independently 200 times,
except for Simulated Annealing, for which from 5 to 25 independent runs have
been performed, depending on the graph size. Most results will be summarized
using boxplots. A boxplot is a graphical way of summarizing the distribution of
the values of a group of samples. By portraying the values for more than one
group next to each other, one can see the major trends in the dataset. The box
in a boxplot shows the median value as a line and the first (25th percentile)
and third quartile (75th percentile) of the value distribution as the lower and
upper parts of the box. The bars shown at the sides of the boxes represent the
largest and smallest observed values. The average time elapsed to compute an
individual of the sample is displayed at the right of the corresponding boxplot,
using the International System of Units (SI). Figure 2.5 illustrates the meaning
of the boxplots. Table 2.4 on page 77 resumes the abbreviations shown in other
figures and tables.

2.4.2 Comparison of the lower bounding methods

In order to compare the different lower bounding methods presented in Sec-
tion 2.2.1, we have applied each method to get a lower bound for each graph
included in our test suite. Table 2.2 shows the obtained results. In the last
column of this table we also include the best known upper bounds, which were
found in this research or in the one developed in [17].

The first fact to be observed in Table 2.2 is that the highest obtained lower
bounds are far away from the best known upper bounds; the only exception is
the case of the mesh33x33 graph, for which the optimal lower bound is obviously
reached by the Mesh method.

The comparison between the different lower bounds makes clear that all

2.4 Experimental evaluation 55

Graph Edges Degree Path J–M G–H Mesh best

randomA1 14890 16176 9970 140634 9926 † 884261
randomA2 321113 323568 319475 4429294 49404 † 6528780
randomA4 37713 39531 35796 601130 16325 † 1721670
randomG4 37677 39972 35796 14667 16315 † 146996

bintree10 1022 1277 1022 173 1022 1 *3696
hc10 15395 15360 15305 349525 10230 32768 *523776
mesh33x33 3136 3135 1088 1789 4220 *31680 *31680

3elt 27010 27135 14155 8476 27435 44785 363204
airfoil1 24112 24220 12754 5571 24569 40221 277412
crack 60424 64938 30715 25826 60751 95347 1491126
whitaker3 57571 57824 29395 11611 57970 144854 1151064

c1y 2767 14101 2479 13437 3192 2819 62233
c2y 3370 16473 2935 17842 3877 3762 79429
c3y 4555 20874 3976 23417 5320 5548 123548
c4y 4651 16404 4093 21140 5518 5778 115222
c5y 4069 16935 3601 19217 4790 4626 96965

gd95c 250 292 181 36 255 174 506
gd96a 2257 4552 1095 5155 3233 377 96342
gd96b 276 702 110 43 305 113 1422
gd96c 186 191 64 38 241 130 519
gd96d 277 595 179 415 331 113 2409

† The Mesh method could not be applied
* Optimal

Table 2.2: Comparison of the lower bounding methods.

the methods have different behaviors depending on the class of graph they are
applied to: 1) for the binomial random graphs, the Juvan–Mohar bound gives
much better results than any other method; 2) in the case of FE graphs, the
Mesh method always delivers the best lower bounds; 3) on the VLSI graphs,
the Juvan-Mohar method and the Degree method clearly outperform the other
methods; 4) on the random geometric graph, the Degree method obtains the
best lower bound; 5) on the GD graphs, no method clearly outperforms the rest.

As expected, the Edges method always dominates the Path method. Fur-
thermore, we can observe that the Gomory–Hu tree method and the Edges
method provide bounds of similar quality, which are always dominated by the
Degree method. An interpretation of the poor performance of the Gomory–Hu
tree method is that, for all the graphs in our test suite, their Gomory–Hu tree
is a star whose central vertex is a vertex with maximal degree.

56 Experiments on the MinLA Problem

Regarding the running times, the Edges, Degree and Path methods have
a negligible running time; computing the Juvan–Mohar bound takes less than
five seconds and computing the Gomory–Hu tree takes about 10 minutes on our
bigger graphs. Case apart is the Mesh method, for which we had to limit its
exploration to grids up to 23× 23 vertices in order to get the results on the FE
graphs. In spite of this limit, the Mesh method can last up to 14 hours on the
whitaker3 graph and did not finish on the random graphs, even allowing one
week of computation time.

From these results, our advice to obtain the best lower bounds for the
MinLA problem on large sparse graphs would be to use the Juvan–Mohar bound
and the Degree method, which usually provide the best bounds. Moreover, they
are quite fast, and always dominate the Path, Edges and Gomory–Hu methods.
On the other hand, applying the Mesh method is only worth in the case of
graphs with large sub-meshes, provided one can afford the long running time
needed to compute it. Globally, the experiments evidence that none of the
presented lower bounding techniques might be very tight in general.

2.4.3 Graphs with known minima

In the case of graphs where the optimal minla value is known, we can use those
optimal values to measure the quality of the results obtained by the heuristics
we have described. The results of applying each heuristic to these graphs are
reflected in Figure 2.14 on Page 78, which shows the performance of the heuris-
tics both in approximation quality and running time. For the sake of clarity,
absolute values have been normalized by the optimal values, given in Table 2.2.
The absolute non normalized values are given in Table 2.6 on Page 85.

All the graphs share in common that the best average results are found by
Simulated Annealing. In the case of the hypercube (hc10), Simulated Annealing
hits the optimum in a 25% of the tries; for the mesh (mesh33x33), Simulated
Annealing finds solutions not exceeding a 3% of the optimum; for the binary
tree (bintree10) the solutions obtained by Simulated Annealing almost double
the optimal value.

Depending on the graph, some methods work better than others. In any
case, Simulated Annealing always dominates them, albeit it has a longer running
time. It must be noticed that on the hypercube, the Normal and Successive
Augmentation heuristics with normal ordering reach the optimal values simply
because the minla of a hypercube is reached on its normal numbering, and
hc10 follows this numbering.

2.4 Experimental evaluation 57

p

R
a
ti
o

o
f
co

st
s

(m
ea

n
)

0.060.0550.050.0450.040.0350.030.0250.020.0150.01

1.02

1.01

1

0.99

0.98

0.97

0.96

Figure 2.6: Comparison between the Flip2 and Flip3 neighbor-
hoods with the Hillclimbing algorithm on Gn=1000,p graphs. The
curve shows the ratio between the average results obtained using

Flip2 and Flip3 on 100 independent runs.

2.4.4 Comparing the Flip2 and Flip3 neighborhoods

Notice that when using full search, the Flip3 neighborhood will get stuck at
less local minima than the Flip2 neighborhood. However, in the case of the
Hillclimbing algorithm things are not so evident. Moreover, in Flip3 it is more
difficult to find good moves than in Flip2. For very sparse graphs, preliminary
tests seemed to indicate that the Flip2 neighborhood was working better than
the Flip3 neighborhood. To validate this impression, we analyzed the perfor-
mance of Hillclimbing using the two neighborhoods on binomial random graphs
Gn,p with n = 1000 vertices and 0.01 6 p 6 0.06. The average result of per-
forming this experiment 100 times is shown in Figure 2.6, which plots the costs
of the solutions found in the Flip2 neighborhood divided by the costs of the
solutions found in the Flip3 neighborhood.

As the Figure 2.6 reveals, there is a relation between the ratio of the results
of the two algorithms and the edge probability p: in the case that p 6 0.03, the
Flip2 neighborhood yields slightly better results because the ratio is below 1; in
the case that p > 0.035, the Flip3 neighborhood turns out to be better because
the ratio is above 1.

2.4.5 Binomial random graphs versus geometric random graphs

Binomial random graphs Gn,p and geometric random graphs Gn(r) have very
different characteristics. For instance, the graphs randomA4 and randomG4 have

58 Experiments on the MinLA Problem

the same numbers of vertices and almost the same number of edges, but a very
different diameter (see Table 2.1). How do these inherent properties of different
classes of random graphs affect the behavior of the heuristics we have presented?
In order to answer this question, each analyzed heuristic has been applied to
the randomA4 and randomG4 graphs.

The results are shown in Figure 2.15 on page 79 and Table 2.5 on page 84.
Notice that in this case, the values obtained cannot be normalized dividing them
by the optimum, because it is unknown. In these cases, we normalize them by
the solution obtained by Spectral Sequencing. This decision will be justified
latter on.

In the binomial random graph, the best solutions are obtained with the Lo-
cal Search heuristics. Simulated Annealing obtains the best costs, but the costs
obtained with Hillclimbing are very close. The solutions obtained with Spectral
Sequencing and the Successive Augmentation heuristics are worse. On the other
hand, in the random geometric graph, the best solutions are, in the average,
obtained with Spectral Sequencing. However, independent runs of Simulated
Annealing, hit a better solution. In both graphs, the running time of Simulated
Annealing is much greater than the running time of Spectral Sequencing.

Comparing the differences between the percentage above the best layout
ever seen, and assuming that the best layout ever seen is close to the optimum,
it can be remarked that approximating geometric random graphs is harder than
approximating binomial random graphs. In this sense, it looks like that almost
any layout will not be very far from the optimum in Gn,p graphs.

2.4.6 Other graphs

Summarized results to evaluate the performance of the different heuristic on the
rest of graphs are given in Figures 2.16, 2.17, 2.18 and 2.19, at the end of the
chapter. There are some observations that are worth to discuss.

Surprisingly, for some “real life” graphs the normal heuristic provides quite
good results! This can be due to the fact that data locality is often implicit
in the vertex numbering or that the layout of these graphs has previously been
optimized to reduce their profile in order to improve the efficiency of some
storage schemes.

Our observations also establish different trends existing between the ap-
proximation of the different families of graphs. From our measures, the Hill-
climbing heuristic works well on binomial random graphs (even better than
Spectral Sequencing), whereas it performs worse in graphs with an implicit
geometric structure, such as random geometric graphs or finite elements com-
putations graphs. In our set of FE graphs, Hillclimbing performs worst than
successive augmentation, whereas the contrary happens for our set of VLSI
instances.

2.5 The SS+SA heuristic 59

It can also be observed that Spectral Sequencing is a method that, in
general, produces good results in short time. Due to this fact, and because
this is not a randomized algorithm, it seems a natural “standard” algorithm to
compare against. This is the reason we have decided to normalize our results
with Spectral Sequencing when the optimal cost is unknown.

2.4.7 Viewing layouts

In order to get a feeling of the characteristics of the layouts computed by each
heuristic, we have devised a way to “view” them on the FE graphs, for which we
have graphical information. For each heuristic, we have conveyed to the edges of
this graph a color according to their cost |ϕ(u)−ϕ(v)|. Here, “cold colors” rep-
resent low costs and “hot colors” represent high costs. For the airfoil1 graph,
Figure 2.7(a) reproduces the Spectral solution, and Figure 2.7(b) reproduces a
Simulated Annealing solution. A shadowing process has also been applied to
this figure.

It is interesting to see in this way the quality and the geometry of the
different heuristics considered. For instance, for the airfoil1 graph, in Fig-
ure 2.7 one can appreciate that the solution obtained by Spectral Sequencing
is quite uniform over all the edges, whereas the solution obtained by Simulated
Annealing is made of different zones of lower cost separated by grooves with a
higher cost.

2.5 The SS+SA heuristic

In the previous sections, we have presented a number of heuristics to approxi-
mate the MinLA problem, and we have measured their behavior on a test suite
of graphs. For the bigger graphs, our results are twofold: On one hand, the best
results are obtained with Simulated Annealing, which consumes an inordinate
amount of time. On the other hand, results obtained with Spectral Sequencing
are not much larger than the ones obtained by Simulated Annealing and are
computed much more faster. For instance, in the considered machines, for the
airfoil1 graph, Simulated Annealing lasts almost two hours to generate a lay-
out of cost 338,120, whereas Spectral Sequencing lasts less than two seconds to
generate a layout of cost 353,399.

In this section we address the design and evaluation of a new heuristic for
the MinLA problem. Our goal is to improve better solutions in a faster time.
In this case, we are targeting our larger graphs. To do so, we will present an
hybridization between the Simulated Annealing and the Spectral Sequencing
heuristics. The resulting heuristic will be called SS+SA, for obvious reasons.
Afterwards, we will present two strategies to parallelize the SS+SA heuristic on

60 Experiments on the MinLA Problem

(a)
Spectral

Sequencing
(b

)
Sim

ulated
A

nnealing

M
in

M
a
x

(c)
Scale

F
igu

re
2.7:

G
raphical

view
of

tw
o

layouts
on

the
a
i
r
f
o
i
l
1

graph.

2.5 The SS+SA heuristic 61

a cluster of personal computers. Finally, we will evaluate the performance and
efficiency of the sequential and parallel SS+SA heuristics.

2.5.1 The sequential SS+SA heuristic

Notice that Spectral Sequencing is a constructive heuristic that builds a lay-
out from scratch, while Simulated Annealing is a Local Search heuristic that
improves a given layout. Therefore, it makes sense to try to hybridize both
methods in order to obtain a new heuristic to find better approximations in a
faster time. For others problems, it has previously been pointed that spectral
methods offer solutions that have a good global quality but combined with a lo-
cal weakness, and that the global strength of Spectral Sequencing combined with
Local Search can lead to heuristics significantly better than either alone [125].
Figure 2.7 suggests that this can also be the case for the MinLA problem.

So, the basic idea of the SS+SA heuristic consists in building first a “glob-
ally good layout” by the means of Spectral Sequencing, and then improving it
locally through the use of Simulated Annealing. This has several consequences.

First of all, notice that when using Simulated Annealing with random
solutions, cooling schedules start with high temperatures that accept, say, one
half of the generated movements. Of course, this behavior is not suitable for our
SS+SA heuristic, as this would completely destroy the solution generated by
Spectral Sequencing. As a consequence, it will be necessary to start Simulated
Annealing at a low temperature.

Since the Simulated Annealing process will be started with a quite good
solution at a low temperature, it could be expected to have a high number of
rejected moves in the Flip2 neighborhood. As a consequence, finding acceptable
moves will be a difficult and long task that we wish to speed up. In order to
reduce the time of this search, we can make use of the following idea: On a good
solution, changes that are worth to be tried must be close in the current layout.
It does not make sense to try to flip vertices that are far away! Figure 2.8
supports this heuristic affirmation: for each one of the n(n − 1)/2 possible
moves in the Flip2 neighborhood, we have computed their gain δ and have
accepted or rejected the move according to the Simulated Annealing criteria for
different temperatures. The figure shows how many moves have been accepted in
function of the distance between the vertices in the layout obtained by Spectral
Sequencing. Here, the distance between two vertices u and v in a layout ϕ is
defined as |ϕ(u)−ϕ(v)|. The distributions clearly follow a half Gauss bell, and
show that moves involving close vertices in the layout will have more probability
of being accepted.

This gives rise to the use of a new neighborhood relation, or more specif-
ically, a new distribution for the Flip2 neighborhood. Just after obtaining the
solution found by Spectral Sequencing, we perform a scanning of the Flip2

62 Experiments on the MinLA Problem

t < 0
t = 0
t = 2

t = 10

airfoil1

Distance in the layout

N
u
m

b
er

o
f
a
cc

ep
te

d
m

ov
es

35302520151050

4500

4000

3500

3000

2500

2000

1500

1000

500

0

Figure 2.8: Number of accepted moves in function of their dis-
tance and the temperature (t) on the solution found by Spectral
Sequencing for the airfoil1 graph. (t < 0 means that only strictly

descendent moves are accepted.)

neighborhood and compute the mean µ and standard deviation σ of the dis-
tances between acceptable moves. Then, during the Simulated Annealing pro-
cess, moves will be generated producing pairs of vertices whose distance follow
a normal distribution N (µ, σ). We call this new neighborhood FlipN.

Generating moves in the FlipN neighborhood can be done very fast with
adequate data structures: storing and updating the inverse layout ϕ−1 of ϕ
suffices. Moreover, computing the gain of one move can also be done very
efficiently on sparse graphs without having to recompute the resulting cost from
scratch.

Selecting a cooling schedule and tuning it has always been a key problem
when using Simulated Annealing [137, 138]. The design of our cooling schedule
is very pragmatical, close to the classical ones and in a big extend influenced by
our experience and the requirements on the running time and quality solution of
SS+SA. Specifically, we use a geometric cooling schedule that starts at an initial
temperature t0 and, at each round, decrements it by a factor of α. For each
temperature, a Metropolis round of r moves will be generated. The Simulated
Annealing process ends when the temperature drops below tf .

The pseudo-code of the sequential SS+SA heuristic is as follows:

2.5 The SS+SA heuristic 63

function SS+SA(G) is
Generate an initial layout ϕ using Spectral Sequencing
Scan the neighborhood at t0 to obtain µ and σ
t := t0; n := |V (G)|; r := βn3/2

while t > tf do
repeat r times

Select u and v with |ϕ(u)− ϕ(v)| drawn from N (µ, σ)
δ := GainWhenFlip2(G,ϕ, u, v)
with probability min

(
1, e−δ/t

)
do

Flip2(ϕ, u, v)
end with

end repeat
t := α · t

end while
return ϕ

end

The concrete values of the parameters we have used are t0 = 10 to set up
the initial temperature, tf = 0.2 to set the final temperature and α = 0.95 to
decrement the temperature after each round. Moreover, the number of moves
to apply in each Metropolis round has been set to r = βn

√
n with β = 20.

2.5.2 The parallel SS+SA heuristics

We now present two strategies to parallelize the Metropolis loop of the SS+SA
heuristic on a cluster made of P machines. All the terms relative to parallel
computing can be found in any standard reference, such as [162].

A problem independent parallel Simulated Annealing is implemented in
the Paderborn Simulated Annealing Library [158] that we have used in Sec-
tion 2.2. That implementation is based on a general framework to parallelize
Simulated Annealing on distributed memory machines presented by Diekmann,
Lüling and Simon in [75]. The basic idea consists in generating and evaluating
moves independently in different processors. Rather than pursuing that idea, in
this chapter we tailor parallelization techniques for Simulated Annealing used
in shared memory computers (see e.g. [56]). The difference here is that we will
have several processors updating concurrently a unique solution.

Before presenting the parallel algorithm, we need some definitions. Given
an integer P , a layout ϕ on a graph G = (V,E) with n vertices, and an increasing
sequence of indices j0, j1, . . . , jP with j0 = 0 and jP = n, let us define a P -
partition (V1, V2, . . . , VP) of V by

Vi = {u ∈ V | ji−1 < ϕ(u) 6 ji} , ∀i ∈ [n].

Moreover, let V0 be the P -partition induced by

ji = i · n/P, ∀i ∈ [n− 1],

64 Experiments on the MinLA Problem

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

Figure 2.9: Examples of partitions for three processors: V+1 at the
top, V0 at the middle and V−1 at the bottom.

let V+1 be the P -partition induced by

ji = i · n/P + n/2P, ∀i ∈ [n− 1],

and let V−1 be the P -partition induced by

ji = i · n/2− n/2P, ∀i ∈ [n− 1].

Given a P -partition, edges whose vertices are in different partitions are
said to be in the cut. Vertices that have an adjacent edge in the cut are said to
be in the frontier ; the remaining vertices are said to be free. As an example,
Figure 2.9 shows a layout of a graph and its three P -partitions defined as before
with the cut edges and the frontier vertices marked. Notice that these three
partitions group vertices that are consecutive in the layout ϕ.

The exact strategy for the parallel SS+SA heuristic on P processors starts
computing the initial solution by Spectral Sequencing. This step is done se-
quentially, because it can be done very fast (by Amdahl’s Law its parallelization
would not be worth). After this step, a first layout ϕ is obtained. Then, the
Flip2 neighborhood is scanned in parallel by the P processors, to obtain the
values of µ and σ. At this moment, the Simulated Annealing algorithm begins.
The cooling schedule is the same as in the sequential algorithm, but now the
Metropolis process is different. The main part of the parallel SS+SA for P
processors is as follows:

2.5 The SS+SA heuristic 65

function ExactParallel SS+SA(G) is
Sequentially, generate an initial layout ϕ using Spectral Sequencing
In parallel, sample the neighborhood at t0 to obtain µ and σ
t := t0; n := |V (G)|; r := βn3/2/4P
while t > tl do

repeatr times
Metropolis(0)
Metropolis(+1)
Metropolis(0)
Metropolis(−1)
t := αt

end repeat
end while
return ϕ

end

The Metropolis function is the one that contains parallelism. Given a
graph G = (V,E), the basic idea here is to compute P -partitions of V using
the current layout ϕ, assigning one partition to each processor. Then, the pro-
cessors concurrently generate moves in the FlipN neighborhood on their own
partitions. If these moves are not forbidden (i.e., none of the vertices that it flips
are in the frontier), they are accepted according to the Metropolis criterium;
otherwise they are directly rejected. This is necessary in order to ensure that,
during all this phase, the information owned by each processor is maintained
coherent with respect to the information stored in the other processors. Notice
that allowed moves do not need to be communicated to the remaining of pro-
cessors, since they will never use this information. As a consequence, forbidding
moves removes the need of an expensive communication while not affecting the
correctness of the algorithm. After performing r iterations, a synchronization
phase between all the processors is performed. During this synchronization, a
global layout is easily rebuilt through the combination of the layouts in each
processor and the P -partition.

The high level algorithm follows this pseudo-code:

function Metropolis(x) is
for each processor i ∈ [P] do in parallel

Get a private copy of layout ϕ
From Vx compute Vi and compute the frontier vertices
(∗ Perform Metropolis in Vx ∗)
repeat r times

Select u, v in Vi with |ϕ(u)− ϕ(v)| drawn from N (µ, σ)
if u, v are free w.r.t. Vi then
δ := GainWhenFlip2(G,ϕ, u, v)
with probability min

(
1, e−δ/t

)
do

Flip2(ϕ, u, v)

66 Experiments on the MinLA Problem

end with
end if

end repeat
end for
(∗ Gather data ∗)
Rebuild a global layout ϕ from the ones distributed

among processsors, according to Vx
end

On sparse graphs, partitions induced by a good layout are them-selves ex-
pected to have a few cutting edges. As a consequence, only a few moves inside
a partition will be forbidden. So, in each call to the Metropolis process there
will be many opportunities to optimize the individual partitions. The trick of
using three different partitions intercalated in four phases is used in order to not
always forbid the same moves. Otherwise we would obtain layouts which would
be well arranged inside each partition, but locally bad arranged near the fron-
tiers. With respect to the efficiency of the previous algorithm, it is clear that if
r is large enough, the time spent in the syncronization, broadcasting and gath-
ering phases will be low in comparison with the time spent in the computation
phases. Thus, large speedups and high processor use can be expected.

It is clear that forbidding moves enables the processors to allways have an
up-to-date information. Unfortuntely, these forbidden moves restrict the possi-
bilities of optimizing, as they are directly rejected. If we admit that processors
freely move frontierer vertices, we get the chaotic strategy for the SS+SA heuris-
tic. In this case, as moves are applied into a concrete partition but cannot cross
the partitions, the global state of the system will still be coherent, since it repre-
sents a valid layout. However, after moving a fronterier vertex, other processors
would compute the gains of their moves with an out-of-date information, thus
commiting an error. Intuitively, this error should not be very large, and it would
descrease as the temperature is lowered. A way to reduce the error would be to
perform more frequent syncronizations in which all the processors perform an
all-to-all communication in order to recover the more recent up-to-date layout.
In this case, a trade-off between this additional communication time and error
precision should then be done.

2.5.3 Experimental evaluation

We now present, compare and analyze some empirical results aiming to evaluate
the performance of our new heuristic. In particular, we are interested in the
relative performance and efficiency of SS+SA compared to Spectral Sequencing
and Simulated Annealing, and in the scalability in time and in quality between
the different parallel SS+SA strategies. To do so, we use the larger graphs
included in the test suite designed in Section 2.3. In the following, some experi-

2.5 The SS+SA heuristic 67

mental results are only shown for the particular case of the airfoil1 graph but,
if not otherwise stated, similar behaviours were observed on the other graphs.

Experimental conditions. The sequential SS+SA heuristic has been coded
in the C++ programming language and forms part of to the llsh toolkit de-
scribed in Section 2.2.3. The parallel heuristics use C++ augmented by the MPI
message passing library [111]. All the programs have been run on a Linux clus-
ter made of 9 personal computers described in Section 2.4.1. It is important
to remark that the Linux cluster is interconnected with an inexpensive Fast
Ethernet network shared with other machines. As we did in Section 2.4, we
always measure the total ellapsed (wallclock) time, starting at the moment that
the input graph is read. The programs have been compiled using maximum
optimization compiler options and linked against LAM, an implementation of
MPI.

Comparing FlipN with Flip2. The following experiments were designed to
evaluate the effect of using the FlipN neighorhood instead of the more traditional
Flip2 neighorhood, i.e. to favor moves among close vertices in the current layout
with respect to try to move arbitray pairs of vertices.

For the particular case of the airfoil1 graph, Figure 2.10(a) shows a
trace of the cost as function of the time when using Flip2 and FlipN. From
the curves, the benefits of stretching the neighborhood in order to reduce the
runtime and to increase the quality of the solution are evident.

Evaluation of the sequential SS+SA heuristic. In order to compare
SS+SA against Spectral Sequencing and Simulated Annealing alone, we have
tried to apply SS+SA to the graphs in our test suite with more than 1000
vertices.

The first event that we observed is that the heuristic argument that lead us
to select the FlipN neighborhood is not valid for the binomial random graphs
and the hypercube in our test-suite. In these graphs, the average distance
between accepted moves (µ) was greater than one third the number of vertices.
For the remaining graphs, µ was much smaller (arround 20). This shows that
the strengths of SS+SA will only apply to clustered and structured graphs, as
the ones in the FE and VLSI families.

Table 2.3 compares the solution quality and running time of SS+SA with
the ones of Spectral Sequencing and the better ones of Simulated Annealing.
For the FE graphs, it can be observed that SS+SA improves the Spectral Se-
quencing and Simulated Annealing solutions by more than 20%, while reducing
the running time to a 25% of Simulated Annealing. For the remaining graphs,
SS+SA allways improves the Spectral Sequencing solutions and only for the c5y

68 Experiments on the MinLA Problem

FlipN
Flip2

airfoil1

Time (seconds)

l
a

25002000150010005000

360000

350000

340000

330000

320000

310000

300000

290000

280000

Figure 2.10: SS+SA on airfoil1 using the Flip2 or FlipN neigh-
borhoods.

Cost Time

Graph SS SA SS+SA SS SA SS+SA

3elt 429164 428907 363686 2 9200 2564
airfoil1 353399 338120 285597 1 7427 2065
crack 1641119 1576500 1496671 4 46178 9310
whitaker3 1251709 1214090 1169642 3 41144 8127

c1y 104316 66894 63675 0 108 133
c2y 97218 84337 79429 0 183 174
c3y 181124 131022 123548 0 436 289
c4y 137701 123266 116140 1 514 293
c5y 144625 101498 103958 0 325 247

randomG4 197298 159370 151074 1 266 319
mesh33x33 36468 32605 31929 0 536 198
gd96a 170903 96366 108804 1 250 201

Table 2.3: Comparison between cost and time (in seconds)
for Spectral Sequencing (SS), Simulated Annealing and sequential

SS+SA.

2.5 The SS+SA heuristic 69

and gd96a graphs is it unable to improve the Simulated Annealing solution. The
running times are usually lower for SS+SA than for Simulated Annealing.

Overall, these results show that the SS+SA heuristic is a valuable improve-
ment over the Spectral Sequencing and Simulated Annealing alone, with some
exceptions. In the case of the larger graph (the FE family) the improvements
are substantial, both in quality and time.

Evaluation of the parallel SS+SA heuristics. In order to compare the
behavior of the exact and chaotic strategies for parallel SS+SA, we have mea-
sured the running time and solution quality of these heuristics on our graphs.
The assesment of their goodness is done by comparison with the sequential
heuristic: Let T the time needed to execute the sequential SS+SA heuristic and
C the cost obtained, let TP be the time of the parallel SS+SA heuristic ran
on P processors and let CP the cost obtained. Recall that the speedup on P
processors is T/TP , and that the efficiency factor is T/TPP . In order to com-
pare the quality of the heuristics, we define the quality factor as C/CP . Good
parallelitzations ought to have the efficiency and quality factors close to one. In
principle, the efficiency factor of any algorithm can never be larger than one,
but due to the random nature of our heuristics, this is possible in our case.

The measured efficiency factor and quality factor for exact SS+SA are
shown in Table 2.10 on page 89. The results for chaotic SS+SA are shown
in Table 2.11 in page 90. Both tables are shown graphically in Figures 2.11
and 2.12. Traces of the parallel annealings curves for the airfoil1 graph are
shown in Figure 2.13.

From these measures, the following facts can be observed for the exact
SS+SA strategy:

• For the VLSI graphs, exact parallel SS+SA does not work at all. The
reason is that the number of forbidden moves is to high. A closer inspec-
tion (see the maximal degree information in Table 2.1) reveals that in all
these graphs, there is a vertex connected with more than 300 neighbors
that forbids too many moves as soon as P > 3.

• The quality factor of exact parallel SS+SA decreases as the number of
processors increases. The trend shows that the quality factor depends on
the size of the graph: For a fixed number of processors, larger graphs have
a better quality factor.

• For the medium sized graphs, the efficiency factor of exact parallel SS+SA
decreases as the number of processors increases. This does not seem to be
the case for the larger graphs, for which the efficiency factor is close to 1.

70 Experiments on the MinLA Problem

randomG4
mesh33x33
whitaker3

crack
airfoil1

3elt

Exact SS+SA

Processors

S
p
ee

d
u
p

987654321

10

9

8

7

6

5

4

3

2

1

0

randomG4
mesh33x33
whitaker3

crack
airfoil1

3elt

Chaotic SS+SA

Processors

S
p
ee

d
u
p

987654321

11

10

9

8

7

6

5

4

3

2

1

c5y
c4y
c3y
c2y
c1y

Chaotic SS+SA

Processors

S
p
ee

d
u
p

987654321

8

7

6

5

4

3

2

1

Figure 2.11: Speedup in function of the number of processors for
the exact and chaotic SS+SA heuristics.

2.5 The SS+SA heuristic 71

randomG4
mesh33x33
whitaker3

crack
airfoil1

3elt

Exact SS+SA

Processors

Q
u
a
li
ty

fa
ct

o
r

987654321

1

0.95

0.9

0.85

0.8

0.75

randomG4
mesh33x33
whitaker3

crack
airfoil1

3elt

Chaotic SS+SA

Processors

Q
u
a
li
ty

fa
ct

o
r

987654321

1.04

1.03

1.02

1.01

1

0.99

0.98

0.97

0.96

c5y
c4y
c3y
c2y
c1y

Chaotic SS+SA

Processors

Q
u
a
li
ty

fa
ct

o
r

987654321

1.04

1.03

1.02

1.01

1

0.99

0.98

0.97

0.96

Figure 2.12: Quality factor in function of the number of processors
for the exact and chaotic SS+SA heuristics.

72 Experiments on the MinLA Problem

9 processors
8 processors
7 processors
6 processors
5 processors
4 processors
3 processors
2 processors

Sequential

airfoil1

Time (seconds)

l
a

25002000150010005000

360000

350000

340000

330000

320000

310000

300000

290000

280000

(a) Exact parallel SS+SA

9 processors
8 processors
7 processors
6 processors
5 processors
4 processors
3 processors
2 processors

Sequential

airfoil1

Time (seconds)

l
a

25002000150010005000

360000

350000

340000

330000

320000

310000

300000

290000

280000

(b) Chaotic parallel SS+SA

Figure 2.13: Exact and chaotic parallel SS+SA on airfoil1: Cost
in function of time depending on the number of processors.

2.6 Conclusions 73

Glabally, these observation show that the exact strategy for SS+SA is not
very scalable and heavily depends on the number of forbidden moves.

In the case of the chaotic strategy for parallel SS+SA, the following ob-
servations can be made:

• Chaotic SS+SA can process all the inputs, because no movements are
forbidden.

• The quality factor of chaotic parallel SS+SA is always close to 1 for the FE
graphs. Specifically, its range is between 0.99 and 1.01. As a consequence,
the cost of the solutions obtained by chaotic parallel SS+SA and the cost
of the solutions obtained by sequential SS+SA differ at most by 2%. This
variability is the same than the found for independent runs of sequential
SS+SA.

• The efficiency factor of exact parallel SS+SA for medium sized graphs
slightly decreases as the number of processors increases. The worst speedup
is achieved with the mesh33x33 graph with 9 processors: its efficiency fac-
tor is 0.779, which on a network of personal computer looks good. For the
larger graphs, the efficiency factor is usually grater than 95%.

From the previous observations the following facts can be infered: With
regards to solution quality, chaotic parallel SS+SA returns solutions of the same
quality than sequential SS+SA. This is not true for exact SS+SA, for which
the solution quality degrades as the number of processors increase. This shows,
maybe surprisingly, that it is usefull to let the processors act without a complete
knowledge of the state of the whole layout. No additional syncronization phases
seem necessary to gossip the current layout. With regards to the time efficiency,
the results of chaotic SS+SA on 9 processors present an excelent speedup for
the larger graphs and a quite reasonable speedup for the medium sized graphs.
In definitive, our mesurements show that the chaotic parallel SS+SA heuristic
maintains solution quality, decreases the running time and offers an excellent
speedup when ran in parallel, on a commodity network of personal computers.

2.6 Conclusions

This chapter has considered the Minimum Linear Arrabgement problem from
an experimental point of view. In Sections 2.2 to 2.4 we have presented different
heuristics to approximate the MinLA problem and to obtain lower bounds. We
have also built a test suite made of regular graphs, random graphs and graphs
arising in real life applications. These upper and lower bounding methods have
been applied to this test suite, empirically obtaining the first comparative results
on the MinLA problem.

74 Experiments on the MinLA Problem

With respect to the methods to find lower bounds, we have presented
several new techniques, and we have observed that for certain classes of graphs,
these deliver better bounds than previous existing ones.

With respect to the methods to find upper bounds, we have presented
heuristics based on well known general techniques: Successive Augmentation,
Spectral Sequencing and Local Search. Adapting these general techniques to
the particular problem of MinLA is easy, but many decisions that have a great
effect on their behavior have to be taken; for instance, the initial ordering of
vertices in the Successive Augmentation heuristics, the neighborhood structure
in Local Search, and the parameter tuning for Simulated Annealing. Due to the
lack of theoretical results in the literature, the only way to characterize these
decisions seems to be empirical testing. In contrast, Spectral Sequencing has
the benefit to be an algorithm without parameters.

The extensive experimentation and the benchmarking presented suggest
that, when measuring the quality of the solutions, Simulated Annealing is the
best heuristic to approximate the MinLA problem on sparse graphs. However,
this heuristic is extremely slow whereas Spectral Sequencing gives results not
too far from those obtained by Simulated Annealing, but in much less time. In
the case that a good approximation suffices, Spectral Sequencing would clearly
be the method of choice.

Facing this dichotomy, in Section 2.5 we have focused on the design and
the evaluation of the SS+SA heuristic. This new heuristic hybridizes Spectral
Sequencing with Simulated Annealing. The aim was to accelerate the Simulated
Annealing heuristic and to obtain better solutions. Doing so, we have addressed
three main points in the improvement of Simulated Annealing techniques: the
use of better-than-random initial solutions, the use of an adequate neighborhood
specially adapted to improve good solutions, and the use of parallelism.

The use of initial solutions computed by Spectral Sequencing has proved
to be very valuable, as it provides a simple way to enable Simulated Annealing
to reach good solutions in shorter time, specially in large graphs. Moreover, we
have seen that Simulated Annealing is capable to further improve these solutions
by factors around 20%.

The use of better-than-random solutions to start Simulated Annealing
directly implies the use of a lower starting temperature; but more subtely, it
also gives rise to the use of more refined neighborhood relations that have a
great influence on the runtime and the quality of the obtained solution. In
the particular case of the MinLA problem, we have shown how to dynamically
choose a neighborhood distribution depending on the input. This has been
possible due to the implicit geometry in some of our graph instances and the
good behaviour of the Spectral Sequencing heuristic.

Regarding the parallelization of Simulated Annealing, we have proposed a

2.6 Conclusions 75

tailored parallelization that enables different processors to perform Metropolis
concurrently on different partitions of the graph. In the exact strategy, the
global state is always coherent, in the sense that it represents a feasible solution,
and the processors have the entire knowledge of it. This is ensured by forbiding
the moves that would render the knowledge incomplete or uncertain. Some
syncronization phases and different partitioning schemes are used so as not
allways forbid the same moves. In the chaotic strategy, the global state is still
maintained coherent, but processors are allowed to perform moves having only
an approximation of the global state. Therefore, in this case, computing the
gain of a move is subject to an error. Infrequent syncronization phases where
the global state is broadcasted to all the processors are used in order to not
allow large errors.

The experiments and the benchmarkings we have presented on large sparse
graphs show the viability and practibility of our approaches based on SS+SA.
On one hand, using sequential SS+SA, we have found better approximations in
radically less time. On the other hand, we have seen that the chaotic strategy
for the parallel SS+SA has an excellent behaviour in terms of running time
and solution quality compared to the sequential heuristic when running on a
network of personal computers. The drawback of this heuristic is that there is
no improvement for the graphs with small diameter.4

Globally, our experiments evidence that there exists a large gap between
the best known upper bounds the best known lower bounds. The conclusion
we draw is that, from the empirical point of view, it is not only hard to get
good upper bounds the MinLA problem, but also it is difficult to get good
estimates for the lower bounds. Therefore, one question remains: How good are
our solutions?

There exist a number of other heuristics that can probably be adapted to
the Minimum Linear Arrangement but have not been considered in this study;
Genetic Algorithms [57], Tabu Search [102], and linear relaxations [213] are only
a few examples of these. Investigating them and applying them to the proposed
test suite is left as work to be done.

In order to help to reproduce our experiments, the code for llsh and the
test suite are available through the World Wide Web and are attached in the
accompaining CD-ROM.

A preliminary version of this chapter, without the SS+SA heuristic and
the Mesh method, was presented at the workshop Algorithms and Experim-
ents—alex ’98 (Trento, ) [208]. A journal version of this paper is currently
under revision [210]. The Mesh method and considerations on the difficulty to
get good lower bounds for the MinLA problem were presented at the Exper-

4 In the following chapter we will see that this is not really a problem, as any layout of
these graphs is quite good.

76 Experiments on the MinLA Problem

imental Algorithms seminar (Dagstuhl, ) [209]. The study on the SS+SA
heuristic has been also submited for publication [207].

Very recently, Bar-Yehuda, Even, Feldman and Naor have used the test
suite of graphs presented in Section 2.3, a seminal version of the llsh toolkit de-
scribed in Section 2.2.3, and the experimental results on heuristics given in Sec-
tion 2.4 in order to experiment heuristics based on the computation of optimal
orientations of balanced decomposition trees for MinLA and Cutwidth [17].
These authors report experimental results on their own heuristics and compare
them to the ones presented in this chapter. Their results are of roughly the
same quality than the ones obtained by Simulated Annealing but at a fraction
of its running time. Our results with SS+SA offer a better quality and are
obtained faster, particularly in the FE graphs; see Table 2.12.

On the other hand, our comparative study also establishes the big differ-
ences existing between the approximation of randomly generated graphs and the
approximation graphs arising from real life applications. These will be analysed
in Chapters 3 and 5.

2.6 Conclusions 77

Legend Meaning

spectral Spectral Sequencing
sa Simulated Annealing

random Random method
hillc E Hillclimbing using the FlipE neighborhood
hillc 3 Hillclimbing using the Flip3 neighborhood
hillc 2 Hillclimbing using the Flip2 neighborhood

greedy rnd Successive Augmentation method with random initial ordering
greedy rbs Successive Augmentation method with random breadth search
greedy nor Successive Augmentation method with normal ordering
greedy dfs Successive Augmentation method with depth-first search
greedy bfs Successive Augmentation method with breadth-first search

normal Normal method
best Best known upper bound

Edges Edges method
Degree Degree method

Path Path method
J–M Juvan–Mohar method
G–H Gomory–Hu Tree method
Mesh Mesh method

s Second
min Minute

h Hour

Table 2.4: Abbreviations used in figures and tables.

78 Experiments on the MinLA Problem

0.00sspectral

2.51minsa

0.00srandom

1.88shillc E

1.92shillc 3

1.52shillc 2

0.12sgreedy rnd

0.17sgreedy rbs

0.12sgreedy nor

0.12sgreedy dfs

0.12sgreedy bfs

0.00scanonical

bintree10

1009080706050403020100

0.00sspectral

2.54minsa

0.00srandom

4.40shillc E

6.92shillc 3

3.48shillc 2

0.24sgreedy rnd

0.25sgreedy rbs

0.25sgreedy nor

0.27sgreedy dfs

0.26sgreedy bfs

0.00scanonical

hc10

3.532.521.510.50

0.00sspectral

8.95minsa

0.00srandom

2.92shillc E

6.72shillc 3

6.16shillc 2

0.17sgreedy rnd

0.19sgreedy rbs

0.19sgreedy nor

0.17sgreedy dfs

0.17sgreedy bfs

0.00scanonical

mesh33x33

302520151050

Figure 2.14: Comparison of heuristics, boxplots (Part 1). The
absolute costs have been normalized dividing them by the respective

optimal costs.

2.6 Conclusions 79

0.00sspectral

6.67minsa

0.00srandom

6.28shillc E

9.48shillc 3

9.04shillc 2

0.32sgreedy rnd

0.31sgreedy rbs

0.32sgreedy nor

0.32sgreedy dfs

0.31sgreedy bfs

0.00scanonical

randomA4

1.41.210.80.60.40.20

1.00sspectral

4.45minsa

0.00srandom

6.16shillc E

9.84shillc 3

7.68shillc 2

0.32sgreedy rnd

0.33sgreedy rbs

0.31sgreedy nor

0.32sgreedy dfs

0.30sgreedy bfs

0.00scanonical

randomG4

1614121086420

Figure 2.15: Comparison of heuristics, boxplots (Part 2). The
absolute costs have been normalized dividing them by the the cost

found by Spectral Sequencing.

80 Experiments on the MinLA Problem

0.00sspectral

0.40ssa

0.00srandom

0.04shillc E

0.00shillc 3

0.00shillc 2

0.00sgreedy rnd

0.00sgreedy rbs

0.00sgreedy nor

0.00sgreedy dfs

0.00sgreedy bfs

0.00scanonical

gd95c

6543210

1.00sspectral

4.18minsa

0.00srandom

4.32shillc E

4.52shillc 3

4.48shillc 2

0.17sgreedy rnd

0.18sgreedy rbs

0.14sgreedy nor

0.17sgreedy dfs

0.15sgreedy bfs

0.00scanonical

gd96a

43.532.521.510.50

1.00sspectral

0.76ssa

0.00srandom

0.08shillc E

0.04shillc 3

0.00shillc 2

0.00sgreedy rnd

0.00sgreedy rbs

0.00sgreedy nor

0.00sgreedy dfs

0.01sgreedy bfs

0.00scanonical

gd96b

6543210

Figure 2.16: Comparison of heuristics, boxplots (Part 3).

2.6 Conclusions 81

0.00sspectral

0.40ssa

0.00srandom

0.00shillc E

0.04shillc 3

0.00shillc 2

0.01sgreedy rnd

0.00sgreedy rbs

0.00sgreedy nor

0.00sgreedy dfs

0.00sgreedy bfs

0.00scanonical

gd96c

4.543.532.521.510.50

0.00sspectral

2.64ssa

0.00srandom

0.08shillc E

0.08shillc 3

0.04shillc 2

0.01sgreedy rnd

0.01sgreedy rbs

0.01sgreedy nor

0.01sgreedy dfs

0.00sgreedy bfs

0.00scanonical

gd96d

4.543.532.521.510.50

2.00sspectral

2.56hsa

0.00srandom

1.28minhillc E

4.35minhillc 3

5.42minhillc 2

4.34sgreedy rnd

4.39sgreedy rbs

4.21sgreedy nor

4.30sgreedy dfs

4.22sgreedy bfs

0.00scanonical

3elt

6050403020100

Figure 2.17: Comparison of heuristics, boxplots (Part 4).

82 Experiments on the MinLA Problem

1.00sspectral

2.06hsa

0.00srandom

58.72shillc E

3.31minhillc 3

4.00minhillc 2

3.50sgreedy rnd

3.56sgreedy rbs

3.42sgreedy nor

3.48sgreedy dfs

3.40sgreedy bfs

0.00scanonical

airfoil1

6050403020100

4.00sspectral

12.83hsa

0.01srandom

7.15minhillc E

26.30minhillc 3

36.76minhillc 2

18.84sgreedy rnd

18.77sgreedy rbs

17.93sgreedy nor

18.62sgreedy dfs

19.11sgreedy bfs

0.00scanonical

crack

706050403020100

3.00sspectral

11.43hsa

0.01srandom

7.11minhillc E

23.23minhillc 3

30.83minhillc 2

19.02sgreedy rnd

19.19sgreedy rbs

18.93sgreedy nor

19.15sgreedy dfs

18.88sgreedy bfs

0.00scanonical

whitaker3

80706050403020100

Figure 2.18: Comparison of heuristics, boxplots (Part 5).

2.6 Conclusions 83

0.00sspectral

4.59minsa

0.00srandom

4.36shillc E

6.56shillc 3

6.00shillc 2

0.24sgreedy rnd

0.24sgreedy rbs

0.23sgreedy nor

0.24sgreedy dfs

0.23sgreedy bfs

0.00scanonical

randomA1

1.61.41.210.80.60.40.20

0.00sspectral

9.63minsa

0.01srandom

20.48shillc E

25.96shillc 3

25.84shillc 2

0.71sgreedy rnd

0.71sgreedy rbs

0.71sgreedy nor

0.70sgreedy dfs

0.70sgreedy bfs

0.00scanonical

randomA2

1.210.80.60.40.20

Figure 2.19: Comparison of heuristics, boxplots (Part 6).

84 Experiments on the MinLA Problem

Graph Method Min 1st quart. Average 3rd quart. Max Time Reps

randomA1 normal 1688528 1688528 1688528 1688528 1688528 0 1
random 1608960 1650709 1660809 1672807 1700162 0 200
spectral 1202165 1202165 1202165 1202165 1202165 0 1
greedy nor 1385226 1385226 1385226 1385226 1385226 0 200
greedy rnd 1341696 1368795 1376738 1384369 1406151 0 200
greedy rbs 1200746 1222818 1229829 1237855 1260444 0 200
greedy bfs 1286602 1298921 1302894 1307361 1322309 0 200
greedy dfs 1356687 1375501 1381587 1387065 1415392 0 200
hillc E 1130087 1138174 1147399 1152772 1166051 4 25
hillc 2 920542 930760 934802 937625 947777 6 25
hillc 3 920781 937596 942849 949223 953914 6 25
sa 869648 872872 875343 878222 885592 275 25

randomA2 normal 8278100 8278100 8278100 8278100 8278100 0 1
random 8153381 8228183 8254256 8284345 8331340 0 200
spectral 7361167 7361167 7361167 7361167 7361167 0 1
greedy nor 7619276 7619276 7619276 7619276 7619276 0 200
greedy rnd 7546703 7609219 7623879 7642058 7687473 0 200
greedy rbs 7436358 7488739 7505766 7522002 7580046 0 200
greedy bfs 7556635 7588784 7600226 7612381 7645291 0 200
greedy dfs 7586741 7620507 7631157 7642426 7680278 0 200
hillc E 6735877 6771871 6786815 6802899 6825760 20 25
hillc 2 6630749 6661508 6673037 6684140 6708047 25 25
hillc 3 6632039 6653199 6672108 6686529 6706585 25 25
sa 6536540 6542800 6553901 6559770 6580910 577 25

randomA4 normal 2710738 2710738 2710738 2710738 2710738 0 1
random 2658957 2711939 2727987 2742260 2779787 0 200
spectral 2174723 2174723 2174723 2174723 2174723 0 1
greedy nor 2353193 2353193 2353193 2353193 2353193 0 200
greedy rnd 2320797 2352277 2361570 2370935 2397905 0 200
greedy rbs 2190885 2217589 2227031 2237612 2261270 0 200
greedy bfs 2267018 2285808 2290380 2295783 2311333 0 200
greedy dfs 2325356 2348372 2355859 2363149 2383846 0 200
hillc E 1958524 1978164 1986684 1996556 2011961 6 25
hillc 2 1782901 1789549 1798613 1805831 1818999 9 25
hillc 3 1796599 1802109 1812306 1820063 1832943 9 25
sa 1721490 1728000 1731627 1735620 1741510 400 25

randomG4 normal 2743658 2743658 2743658 2743658 2743658 0 1
random 2665512 2709910 2727396 2744030 2780200 0 200
spectral 197298 197298 197298 197298 197298 1 1
greedy nor 1715980 1715980 1715980 1715980 1715980 0 200
greedy rnd 1580249 1666365 1698157 1727682 1813529 0 200
greedy rbs 603158 785879 852453 921799 1086533 0 200
greedy bfs 939972 1017738 1022454 1031605 1076151 0 200
greedy dfs 1558053 1674085 1705817 1737451 1827220 0 200
hillc E 1387889 1441892 1473687 1513016 1550085 6 25
hillc 2 328416 369537 388533 416378 461041 7 25
hillc 3 313305 364673 395211 428128 449448 9 25
sa 159370 195836 206479 222573 248380 266 25

Table 2.5: Comparison of heuristics, absolute values (Part 1).

2.6 Conclusions 85

Graph Method Min 1st quart. Average 3rd quart. Max Time Reps

bintree10 normal 262143 262143 262143 262143 262143 0 1
random 328361 344826 349243 353976 366980 0 200
spectral 131072 131072 131072 131072 131072 0 1
greedy nor 131072 131072 131072 131072 131072 0 200
greedy rnd 208796 220803 223554 226827 241135 0 200
greedy rbs 18867 23407 26149 28272 36989 0 200
greedy bfs 131072 162117 162315 163728 163964 0 200
greedy dfs 166386 167725 205525 238459 261856 0 200
hillc E 246574 252969 256202 260171 265146 1 25
hillc 2 43168 47331 48526 50491 53256 1 25
hillc 3 49514 52528 53408 54787 56948 1 25
sa 6205 6614 6984 7282 8429 150 25

hc10 normal 523776 523776 523776 523776 523776 0 1
random 1696668 1735922 1747370 1758914 1791510 0 200
spectral 680388 680388 680388 680388 680388 0 1
greedy nor 523776 523776 523776 523776 523776 0 200
greedy rnd 1301454 1344530 1360348 1377480 1417932 0 200
greedy rbs 1084962 1189402 1205017 1228546 1280982 0 200
greedy bfs 659612 704674 705005 706636 728822 0 200
greedy dfs 598470 676690 719642 754326 869378 0 200
hillc E 1149752 1167642 1185332 1200668 1240598 4 25
hillc 2 538816 574462 603577 630544 691156 3 25
hillc 3 546120 577720 605090 625782 683324 6 25
sa 523776 523776 527715 523808 556544 152 25

mesh33x33 normal 35904 35904 35904 35904 35904 0 1
random 746880 762134 768999 776288 795451 0 200
spectral 36468 36468 36468 36468 36468 0 1
greedy nor 52272 52272 52272 52272 52272 0 200
greedy rnd 497988 518055 523990 530845 549791 0 200
greedy rbs 94176 132453 144575 157984 186545 0 200
greedy bfs 35559 36945 39506 39381 69145 0 200
greedy dfs 35842 44164 58887 67939 128458 0 200
hillc E 534072 542915 546800 549711 559098 2 25
hillc 2 89582 109518 116233 124143 136937 6 25
hillc 3 103298 116533 125731 132911 152482 6 25
sa 32605 33171 34666 35212 42136 536 25

Table 2.6: Comparison of heuristics, absolute values (Part 2).

86 Experiments on the MinLA Problem

Graph Method Min 1st quart. Average 3rd quart. Max Time Reps

3elt normal 1060932 1060932 1060932 1060932 1060932 0 1
random 21320524 21519449 21607450 21691862 21915401 0 200
spectral 429164 429164 429164 429164 429164 2 1
greedy nor 1684916 1684916 1684916 1684916 1684916 4 200
greedy rnd 14181869 14430016 14530357 14626358 14893864 4 200
greedy rbs 2338237 2927279 3222942 3472921 4476144 4 200
greedy bfs 1083604 1583242 1588782 1591995 1764712 4 200
greedy dfs 2145119 2489899 2798318 3039555 3639601 4 200
hillc E 13376292 13531060 13623110 13741548 13875429 76 25
hillc 2 1813778 1964188 2100562 2205995 2700645 325 25
hillc 3 2044785 2399181 2569562 2798290 2981052 261 25
sa 428907 527159 512629 530245 546590 9200 5

airfoil1 normal 407921 407921 407921 407921 407921 0 1
random 17149384 17341726 17423203 17504076 17676431 0 200
spectral 353399 353399 353399 353399 353399 1 1
greedy nor 718566 718566 718566 718566 718566 3 200
greedy rnd 11439872 11642293 11719155 11799037 12008340 3 200
greedy rbs 1650302 2092549 2329099 2576867 3406870 3 200
greedy bfs 734283 767776 772806 775012 922526 3 200
greedy dfs 1204510 1496655 1791999 2027001 3261700 3 200
hillc E 10849400 10920463 10999010 11064460 11314710 58 25
hillc 2 1439406 1565493 1717401 1856146 1989228 240 25
hillc 3 1911201 2111029 2159552 2253527 2326138 198 25
sa 338120 359002 368420 374381 399534 7427 5

crack normal 111329381 111329381 111329381 111329381 111329381 0 1
random 102505474 103357469 103651106 103956543 104534672 0 200
spectral 1641119 1641119 1641119 1641119 1641119 4 1
greedy nor 70753206 70753206 70753206 70753206 70753206 17 200
greedy rnd 68730362 69663447 69971935 70270782 71443429 18 200
greedy rbs 11406337 15921816 17243012 18710735 21764543 18 200
greedy bfs 74483018 74582007 74604066 74624097 74893737 19 200
greedy dfs 66488754 67610879 68028543 68455398 69562912 18 200
hillc E 68252742 68746410 69048432 69258494 69825470 428 25
hillc 2 9059517 10661548 10993289 11462027 12490825 2205 25
hillc 3 10891691 11638994 12138627 12584082 13615953 1577 25
sa 1576500 1610520 1647800 1756380 1756380 46178 3

whitaker3 normal 9029276 9029276 9029276 9029276 9029276 0 1
random 93842080 94489158 94720883 94957871 95634550 0 200
spectral 1251709 1251709 1251709 1251709 1251709 3 1
greedy nor 7415719 7415719 7415719 7415719 7415719 18 200
greedy rnd 63092055 63720780 64013600 64307195 65039074 19 200
greedy rbs 9553062 12342349 13568382 14717919 18210032 19 200
greedy bfs 6399474 6408126 6424074 6420849 7246221 18 200
greedy dfs 26342064 28526623 29164281 29925884 31301560 19 200
hillc E 58847006 59446135 59780810 60027241 60898668 426 25
hillc 2 7901602 8655390 9112885 9472800 10268095 1849 25
hillc 3 9598131 10600303 10980574 11373250 11977102 1393 25
sa 1214090 1214090 1214090 1214090 1214090 41144 1

Table 2.7: Comparison of heuristics, absolute values (Part 3).

2.6 Conclusions 87

Graph Method Min 1st quart. Average 3rd quart. Max Time Reps

c1y normal 369905 369905 369905 369905 369905 0 1
random 445563 467333 482476 497232 536365 0 200
spectral 104316 104316 104316 104316 104316 0 1
greedy nor 278524 278524 278524 278524 278524 0 200
greedy rnd 312882 329352 341383 349023 396368 0 200
greedy rbs 173796 195016 200477 206899 219548 0 200
greedy bfs 170620 173901 174576 174760 179760 0 200
greedy dfs 272827 316520 321447 332508 349924 0 200
hillc E 326967 339991 343249 348524 351931 3 25
hillc 2 99807 109656 114891 121314 127929 2 25
hillc 3 99809 112143 118124 125487 132521 2 25
sa 63145 66894 68580 70845 74556 108 25

c2y normal 517737 517737 517737 517737 517737 0 1
random 642478 667499 687478 705238 752918 0 200
spectral 97218 97218 97218 97218 97218 0 1
greedy nor 376023 376023 376023 376023 376023 0 200
greedy rnd 448882 466052 482289 494042 553589 0 200
greedy rbs 247507 269417 276950 284847 305920 0 200
greedy bfs 243932 251583 252117 252744 258705 0 200
greedy dfs 359982 427100 441885 460761 481673 0 200
hillc E 479575 484418 488861 492908 501914 4 25
hillc 2 135081 144423 150906 155503 170584 3 25
hillc 3 146080 153561 160706 167957 170004 4 25
sa 79673 84337 88336 91560 95438 183 25

c3y normal 787049 787049 787049 787049 787049 0 1
random 1170820 1227185 1259207 1286481 1352826 0 200
spectral 181124 181124 181124 181124 181124 0 1
greedy nor 610049 610049 610049 610049 610049 0 200
greedy rnd 823692 853338 880323 902213 982089 0 200
greedy rbs 418346 460157 474888 489417 528791 0 200
greedy bfs 376559 383416 385251 385120 407359 0 200
greedy dfs 686079 756057 779166 806142 847669 0 200
hillc E 867123 881192 894030 904758 932313 9 25
hillc 2 234019 238949 251907 258872 305307 9 25
hillc 3 234911 257910 269887 281528 299966 9 25
sa 126470 131022 136826 143322 149318 436 25

c4y normal 919089 919089 919089 919089 919089 0 1
random 1267909 1302717 1330982 1355140 1422005 0 200
spectral 137701 137701 137701 137701 137701 1 1
greedy nor 612069 612069 612069 612069 612069 0 200
greedy rnd 867197 895358 921694 942188 1020830 0 200
greedy rbs 411138 462853 477248 493945 534373 0 200
greedy bfs 355683 360597 361786 362020 382696 0 200
greedy dfs 693293 790328 801906 823722 862950 0 200
hillc E 914375 924058 937773 945934 965645 7 25
hillc 2 211434 239098 252345 261431 288450 9 25
hillc 3 247831 262053 272256 282782 293202 9 25
sa 116724 123266 128926 134566 141220 514 25

c5y normal 743485 743485 743485 743485 743485 0 1
random 959876 1002534 1028436 1056645 1115226 0 200
spectral 144625 144625 144625 144625 144625 0 1
greedy nor 517030 517030 517030 517030 517030 0 200
greedy rnd 662412 693253 716073 735884 796897 0 200
greedy rbs 342150 374915 386193 397432 437088 0 200
greedy bfs 273303 298867 299549 300045 338821 0 200
greedy dfs 525419 616015 626278 639429 680050 0 200
hillc E 703472 717221 725449 732311 745970 6 25
hillc 2 176621 196409 207727 218067 231266 7 25
hillc 3 203184 210635 221375 229091 252912 7 25
sa 97791 101498 105586 109362 116188 325 25

Table 2.8: Comparison of heuristics, absolute values (Part 4).

88 Experiments on the MinLA Problem

Graph Method Min 1st quart. Average 3rd quart. Max Time Reps

gd95c normal 990 990 990 990 990 0 1
random 2386 2920 3021 3141 3385 0 200
spectral 599 599 599 599 599 0 1
greedy nor 754 754 754 754 754 0 200
greedy rnd 1567 1881 2024 2157 2493 0 200
greedy rbs 706 878 993 1096 1453 0 200
greedy bfs 929 965 1041 1089 1255 0 200
greedy dfs 803 1147 1232 1336 1488 0 200
hillc E 1855 2114 2144 2209 2376 0 25
hillc 2 590 710 790 863 1042 0 25
hillc 3 755 807 871 900 1107 0 25
sa 511 564 607 667 733 0 25

gd96a normal 579874 579874 579874 579874 579874 0 1
random 572245 602068 613546 623242 656677 0 200
spectral 170903 170903 170903 170903 170903 1 1
greedy nor 380975 380975 380975 380975 380975 0 200
greedy rnd 402485 424062 432576 440655 473195 0 200
greedy rbs 203431 218678 222189 225786 236996 0 200
greedy bfs 315205 318912 319299 320069 324777 0 200
greedy dfs 398422 413305 421313 428463 462458 0 200
hillc E 409109 417324 424430 430329 435360 4 25
hillc 2 133158 139907 141600 144318 148777 4 25
hillc 3 143558 146829 149072 150807 154680 4 25
sa 96366 97077 98658 99083 103321 250 25

gd96b normal 10887 10887 10887 10887 10887 0 1
random 6024 6776 7200 7558 8533 0 200
spectral 1836 1836 1836 1836 1836 1 1
greedy nor 5608 5608 5608 5608 5608 0 200
greedy rnd 3668 4333 4735 5105 6633 0 200
greedy rbs 1797 2392 2717 3002 3944 0 200
greedy bfs 4362 4950 5060 5163 5878 0 200
greedy dfs 3971 4455 4683 4935 5732 0 200
hillc E 5024 5417 5467 5615 5697 0 25
hillc 2 1551 1779 1889 2018 2240 0 25
hillc 3 1638 1754 1863 1964 2067 0 25
sa 1484 1514 1537 1559 1678 0 25

gd96c normal 2665 2665 2665 2665 2665 0 1
random 2294 2658 2751 2843 3131 0 200
spectral 701 701 701 701 701 0 1
greedy nor 1909 1909 1909 1909 1909 0 200
greedy rnd 1500 1830 1922 2026 2208 0 200
greedy rbs 693 839 924 987 1431 0 200
greedy bfs 1567 1799 1826 1872 1947 0 200
greedy dfs 1544 1820 1938 2036 2224 0 200
hillc E 1763 1855 1928 1984 2156 0 25
hillc 2 565 683 810 874 1216 0 25
hillc 3 728 805 933 1053 1361 0 25
sa 520 532 563 564 781 0 25

gd96d normal 11537 11537 11537 11537 11537 0 1
random 11704 13310 13807 14286 15664 0 200
spectral 3701 3701 3701 3701 3701 0 1
greedy nor 6891 6891 6891 6891 6891 0 200
greedy rnd 8069 9155 9631 10055 12018 0 200
greedy rbs 4575 5270 5525 5796 6278 0 200
greedy bfs 6169 6334 6416 6492 6643 0 200
greedy dfs 6915 7450 7715 7947 8647 0 200
hillc E 9603 9890 10120 10280 10736 0 25
hillc 2 3061 3645 3978 4240 4591 0 25
hillc 3 3206 3904 4326 4707 5128 0 25
sa 2414 2493 2537 2583 2714 2 25

Table 2.9: Comparison of heuristics, absolute values (Part 5).

2.6 Conclusions 89

Processors 1 2 3 4 5 6 7 8 9

3elt 1.000 0.991 0.975 0.977 0.955 0.936 0.932 0.920 0.913
1.000 0.950 0.974 0.967 1.016 1.011 1.013 1.034 0.996

airfoil1 1.000 0.960 0.981 0.935 0.930 0.900 0.907 0.894 0.888
1.000 0.901 0.908 0.910 0.974 0.973 0.957 0.931 0.931

crack 1.000 0.996 0.989 0.987 0.981 0.981 0.977 0.969 0.969
1.000 0.859 0.907 0.887 0.913 0.934 0.980 0.992 0.991

whitaker3 1.000 0.998 0.997 0.996 0.996 0.995 0.995 0.994 0.998
1.000 0.872 0.934 0.975 1.010 1.038 1.040 1.058 1.079

mesh33x33 1.000 0.988 0.971 0.951 0.930 0.918 0.916 0.910 0.897
1.000 0.984 0.968 0.926 0.906 0.857 0.778 0.720 0.698

randomG4 1.000 0.979 0.903 0.874 0.817 0.800 0.788 0.786 0.780
1.000 0.968 0.870 0.835 0.694 0.559 0.266 0.261 0.073

Table 2.10: Quality and efficiency factors for exact parallel SS+SA
relative to sequential SS+SA. For each graph, the top number is the
solution quality factor and the bottom number is the time efficency

factor.

90 Experiments on the MinLA Problem

Processors 1 2 3 4 5 6 7 8 9

3elt 1.000 1.007 1.006 1.006 1.007 1.007 1.004 1.007 1.007
1.000 0.900 0.926 0.969 1.031 1.009 1.032 1.015 0.965

airfoil1 1.000 1.004 1.004 1.002 1.005 1.004 1.005 1.002 1.007
1.000 1.008 1.047 1.077 1.105 1.120 1.079 1.134 1.127

crack 1.000 1.000 0.999 1.000 1.000 1.000 0.999 1.000 0.999
1.000 0.880 0.914 0.922 0.921 0.988 0.974 0.982 0.981

whitaker3 1.000 1.000 1.001 1.000 1.001 1.000 1.001 1.000 1.000
1.000 0.885 0.967 0.970 1.000 1.038 1.055 1.042 1.054

mesh33x33 1.000 1.004 1.004 1.005 1.005 1.003 1.003 1.003 1.004
1.000 0.991 1.013 0.998 1.000 0.994 0.945 0.825 0.779

randomG4 1.000 1.007 1.008 1.006 1.005 1.007 1.010 1.006 1.011
1.000 0.906 0.978 0.984 0.967 0.968 0.940 0.938 0.866

c1y 1.000 0.998 1.004 1.002 1.004 1.005 1.004 1.004 1.004
1.000 0.984 0.952 0.925 0.901 0.895 0.863 0.765 0.716

c2y 1.000 1.003 1.001 1.002 1.002 1.003 1.003 1.003 1.003
1.000 0.984 0.964 0.955 0.927 0.914 0.870 0.820 0.772

c3y 1.000 1.004 0.994 0.997 0.987 1.003 1.003 1.003 1.003
1.000 1.026 0.991 0.957 0.970 0.972 0.925 0.866 0.832

c4y 1.000 1.006 1.008 1.008 1.007 1.006 1.008 1.008 1.006
1.000 0.988 0.989 0.967 0.949 0.959 0.921 0.869 0.810

c5y 1.000 1.013 1.012 1.014 1.010 1.013 1.012 1.011 1.012
1.000 0.911 0.973 0.945 0.953 0.930 0.898 0.842 0.808

Table 2.11: Quality and efficiency factors for chaotic parallel
SS+SA relative to sequential SS+SA. For each graph, the top num-
ber is the solution quality factor and the bottom number is the time

efficency factor.

2.6 Conclusions 91

Graph Cost Time

randomA1 884261 2328
randomA2 6576912 191645
randomA4 14289214 10869
randomG4 146996 8376

hc10 523776 2545
mesh33x33 33531 278
bintree10 3762 60

3elt 363204 5757
airfoil1 289217 4552
crack — —
whitaker3 1200374 29937

c1y 62333 205
c2y 79571 299
c3y 127065 553
c4y 115222 580
c5y 96956 446

gd95c 506 2
gd96a 99944 268
gd96b 1422 3
gd96c 519 1
gd96d 2409 4

Table 2.12: Results of [17]. Times are given in seconds for an Intel
P-III 600 MHz machine (about 1200 BogoMips).

3
Layout Problems and

Binomial Random Graphs

3.1 Introduction

Random graphs are an active area of research that begun in  in a paper by
Erdős and Rényi [82]. In that paper, random graphs were defined by the uniform
model, denoted Gn,m, that consists in taking uniformly one graph among all
possible graphs with n vertices and m undirected edges. In this chapter, we
deal with a closely related model, the binomial model, denoted Gn,p, which
consists of graphs with n vertices where each possible undirected edge is present
with probability p. The terms “uniform random graph” and “binomial random
graph” are taken from [133]. More formally:

Definition 3.1 (Binomial random graphs). Let n be a natural and p a
probability. The class of binomial random graphs, denoted by Gn,p, is a prob-
ability space over the set of undirected graphs G = (V,E) on the vertex set
V = [n] determined by

Pr [uv ∈ E] = p

with these events mutually independent.

94 Layout Problems and Binomial Random Graphs

(a) n=20, p=.075 (b) n=20, p=.15 (c) n=20, p=.45

Figure 3.1: Binomial random graphs Gn,p.

Binomial random graphs can be generated by the outcome of the following
experiment (which is a Bernoulli process): Take V = [n] and then, for each
u ∈ V and each v ∈ V \ {u}, include the edge uv in E with probability p.
Different binomial random graphs generated in this way are shown in Figure 3.1.

In order to establish asymptotic results, it is often necessary to consider
random graphs whose edge probability pn or number of edges mn are functions
of n. It is well know that the Gn,pn and Gn,mn models of random graphs have
similar properties when pn ∼ mn/

(
n
2

)
[34, 133]. Also, it is known that binomial

random graphs exhibit a phase transition at pn = 1/n: when pn = c/n with
c < 1, binomial random graphs consist of many small connected components
whose largest size is Θ(logn); when pn = c/n with c > 1, binomial random
graphs turn to have a giant component, that is, a connected component with
Θ(n) vertices [5, 34, 82, 133].

There exist a number of interesting results on the approximability of sev-
eral optimization problems on binomial random graphs; see [96] for a nice
survey on random graphs and algorithmics. In the case of layout problems,
Turner [237] has shown that for all ε > 0, with high probability, it is the case
that n/minbw(Gn,pn) 6 1 + ε when pn > c logn/n with c > 0. On the other
hand, Bollobás [35] proved that for almost all random regular graphs, the op-
timal edge bisection grows linearly with the number of vertices. The same
happens for binomial random graphs, as remarked in [38] and [43]. These re-
sults show that the order of growth of the minimal bandwidth and the minimal
edge bisection match the trivial upper bounds. So the previous authors con-
clude that binomial random graphs may not serve well to distinguish really good
heuristics from bad ones; for instance, the ones that try to maximize instead
of minimizing. From the previous results, a natural question arises: Is this the
case for all layout problems defined in Section 1.2?

The goal of this chapter is to answer this question in the positive. Our

3.2 Approximation results 95

main result (Theorem 3.1) states that, under certain conditions for pn, with
overwhelming probability, all the layout problems defined in Section 1.2 are ap-
proximable within a constant on binomial random graphs by any approximation
algorithm.

The organization of this chapter is as follows. In Section 3.2 we first
introduce the concept of gap between the maximal and the minimal costs of a
layout problem for a graph. This is relevant, because any bound on this gap
implies a bound to the approximation factor of any approximation algorithm.
Then, we define the deterministic class of mixing graphs, for which we are able
to give approximation results. This class of mixing graphs is useful since we can
prove that, with overwhelming probability, binomial random graphs are mixing
graphs. The chapter ends in Section 3.3 with a discussion on the present results
and their implication in experimental testing.

3.2 Approximation results

A natural question is to ask whether there is any relation between the approx-
imability of the maximization and minimization versions of our layouts prob-
lems. A second question is the possibility of inferring some consequences for the
minimization versions from our understanding of the maximization versions. In
order to answer these questions, it makes sense to introduce and estimate the
gap between the maximal and the minimal costs of a problem for some instance:

Definition 3.2 (Gap). For a layout cost F ∈ {bw, la,cw,mc, sc,vs,eb,vb}
and a graph G, we define the gap of F on G as the ratio between its minimal
and maximal values, that is,

gapF (G) =
maxF (G)
minF (G)

= 1 +
maxF (G)−minF (G)

minF (G)
.

Observe that any bound on the gap of a function F gives a bound on the
approximation ratio for any approximation algorithm that computes a layout
for a graph G.

We introduce now a class of graphs that captures the properties we need
to bound the gaps for our layout problems on binomial random graphs.

Definition 3.3 (Mixing graphs). Let ε ∈ (0, 1
2), γ ∈ (0, 1) and set Cε,γ =

3(1 + ln 3)(εγ)−2. Consider a sequence (cn)n∈N such that Cε,γ 6 cn 6 n for all
n > n0 for some natural n0. A graph G = (V,E) with |V | = n and |E| = m is
said to be (ε, γ, cn)-mixing if

m 6 (1 + γ)1
2ncn, (3.1)

96 Layout Problems and Binomial Random Graphs

and if, for any two disjoint subsets A,B ⊂ V such that |A| > εn and |B| > εn,
it is the case that

∣∣∣θ(A,B)− cn
n
|A||B|

∣∣∣ 6 γ cn
n
|A||B|, (3.2)

where θ(A,B) denotes the number of edges in E having one endpoint in A and
another in B.

Observe that condition (3.2) is equivalent to

1− γ 6 θ(A,B)
|A||B|

/
cn
n
6 1 + γ,

which establishes the maximal variation between the density of the cutting edges
and the sizes of the subsets of vertices.

Mixing graphs are strongly related to expander graphs. From the many
variations of the definition of expander graphs, let us reproduce the one given
in [5]: A graph G = (V,E) is an (n, d, c)-expander if it has n vertices, its
degree is d, and for every set W ⊂ V of cardinality |W | 6 1

2 |V |, the inequality
|θ(W,V \W)| > c|W | holds. The main differences in the two definitions are
that expanders are required to be bounded-degree graphs and the expansion
condition has to be satisfied for all not too large subsets W of vertices, while
the mixing condition only involves sets of vertices with size Θ(n).

Expander graphs have the property that the largest and second largest
eigenvalue of their adjacency matrix are well-separated. This is a sufficient
condition for a graph to have good mixing properties, as the following lemma
asserts:

Lemma 3.1. Let G = (V,E) be a regular graph of degree d, let λ be the second
largest eigenvalue of the adjacency matrix of G. Then for every ε, γ such that
εγ > λ/d, G is (ε, γ, d)-mixing.

Proof. The Expander Mixing Lemma (see Chapter 1 of [5]) states that if G is a
d-regular graph and λ is the second largest eigenvalue of the adjacency matrix
of G, then for every two subsets of vertices A and B,

∣∣∣∣θ(A,B)− d

n
|A||B|

∣∣∣∣ 6 λ
√
|A||B|.

If we have |A| > εn, |B| > εn, and εγ > λ/d, then we get
∣∣∣∣θ(A,B)− d

n
|A||B|

∣∣∣∣ 6 λ
|A||B|
εn

6 γ d
n
|A||B|.

Moreover, as G is d-regular, |E| = 1
2dn. It follows that, under the hypothesis

of the lemma, G is (ε, γ, d)-mixing.

3.2 Approximation results 97

The best known explicit construction of expander graphs with strong sepa-
ration between degree and second largest eigenvalue is due to Lubotzky, Phillips
and Sarnak [174]. Their construction yields regular graphs of degree d where
the second largest eigenvalue is less than 2

√
d. So, taking d = O(ε−2γ−2), the

construction of [174] gives (ε, γ, d)-mixing graphs for every ε and γ. See also
[54] for additional discussions on mixing graphs, explicit constructions and other
applications.

In this chapter, our interest in mixing graphs is motivated by the fact
that, for an appropriate choice of the sequence (cn)n∈N, with overwhelming
probability, a binomial random graph in the Gn,cn/n model is mixing, as will
be proved below in Lemma 3.2, and the fact that the layout problems defined
in Chapter 1 are easy to approximate on mixing graphs, as will be proved in
Lemma 3.4. Together, these two results imply that layout problems are easy to
approximate on binomial random graphs.

Lemma 3.2. Let ε ∈ (0, 1
2), γ ∈ (0, 1) and set Cε,γ = 3(1 + ln 3)(εγ)−2. Con-

sider a sequence (cn)n∈N such that Cε,γ 6 cn 6 n for all n > n0 for some
natural n0. Then, for all n > n0, binomial random graphs drawn from Gn,pn
with pn = cn/n are (ε, γ, cn)-mixing with probability at least 1− 2−Ω(n).

Proof. Let n > n0 and consider a binomial random graph G = (V,E) drawn
from Gn,pn . Let M be a random variable counting its number of edges. We
estimate first the probability that condition (3.1) fails. The expected number of
edges of G is E [M] = 1

2(n− 1)cn. Applying Chernoff’s bounds (Theorem A.9)
we get,

Pr
[
M > (1 + γ)1

2ncn
]
6 Pr [M > (1 + γ)E [M]]

6 exp
(−1

3γ
2E [M]

)

6 exp
(−1

6γ
2(n− 1)cn

)
6 2−Ω(n), (3.3)

by the hypothesis cn > Cε,γ > 1.
We estimate now the probability that condition (3.2) does not hold. Con-

sider any two disjoint sets A,B ⊂ V such that |A|, |B| > εn. There are
k = |A||B| possible edges having an endpoint in A and an endpoint in B. Order
these k possible edges. Let X1, . . . , Xk be the Bernoulli random variables such
that Xi = 1 if the i-th of such edges is in the graph and Xi = 0 otherwise. The
probability of existence of the i-th edge is cn/n. Let µn be the expectation of∑k

i=1Xi. By linearity of the expectation,

µn = E

[
k∑

i=1

Xi

]
=

k∑

i=1

E [Xi] = |A||B|cn/n.

98 Layout Problems and Binomial Random Graphs

Applying again Chernoff’s bounds we have that,

Pr

[
(1− γ)µn <

k∑

i=1

Xi < (1 + γ)µn

]
> 1− 2 exp

(−1
3γ

2µn
)
.

Any vertex can either be in A, in B, or not in A and not in B. Therefore, there
are at most 3n choices for the setsA andB. By Boole’s inequality (Theorem A.1)
it follows that the probability that condition (3.2) is not satisfied is at most

3n · 2 exp
(−1

3γ
2µn
)
6 exp

(
ln 2 + n ln 3− 1

3γ
2ε2ncn

)
6 2−Ω(n) (3.4)

by the hypothesis cn > Cε,γ = 3(1 + ln 3)(εγ)−2.
Overall, by Boole’s inequality, the failure probability of the mixing condi-

tions can be estimated by the sum of their individual failure probabilities, given
by Equations (3.3) and (3.4), which is 2−Ω(n).

To prove our next result, we need the following technical lemma.

Lemma 3.3. Let G be an arbitrary graph with n vertices and m edges. Then,

avgla(G) = 1
3m(n2 − 1)/n and avgmc(G) = 1

3m(n2 − 3n+ 2)/n.

Proof. By definition,

avgla(G) = 2
n−1∑

i=1

∑

uv∈E
Pr [ϕ(u) 6 i] ·Pr [ϕ(v) > i]

= 2m
n−1∑

i=1

(
i

n
· n− i

n

)
= 1

3m(n2 − 1)/n

and

avgmc(G) = 2
n−1∑

i=1

∑

uv∈E
Pr [ϕ(u) < i] ·Pr [ϕ(v) > i]

= 2m
n−1∑

i=1

(
i− 1
n
· n− i

n

)
= 1

3m(n2 − 3n+ 2)/n,

which prove the lemma.

The following result states that, for the considered layout problems, the
gap is bounded on mixing graphs.

3.2 Approximation results 99

Lemma 3.4. Let ε ∈ (0, 1
6), γ ∈ (0, 1) and set Cε,γ = 3(1 + ln 3)(εγ)−2. Con-

sider a sequence (cn)n∈N such that Cε,γ 6 cn 6 n for all n > n0 for some natural
n0. Let n > n0 and let G = (V,E) be any (ε, γ, cn)-mixing graph with |V | = n.
Then,

gapcw(G) 6 2(γ + 1)/(1− γ) +O (1/n) , (3.5)
gapeb(G) 6 2(γ + 1)/(1− γ) +O (1/n) , (3.6)
gapla(G) 6 (γ + 1)/(1− 6ε)(1− γ), (3.7)
gapmc(G) 6 (γ + 1)/(1− 12ε)(1− γ), (3.8)
gapvs(G) 6 1/(1

2 − ε) +O (1/n) , (3.9)
gapvb(G) 6 1/(1

2 − ε) +O (1/n) , (3.10)
gapsc(G) 6 1/(1− 4ε), (3.11)

gapbw(G) 6 1/(1− 2ε) +O (1/n) . (3.12)

Proof. Let m = |E|. To prove (3.5), consider any layout ϕ of G. Take A ={
u ∈ V : ϕ(u) 6

⌊
1
2n
⌋}

and B = V \A. Then |A|, |B| > 1
2n− 1 > εn. So,

cw(ϕ,G) > θ
(⌊

1
2n
⌋
ϕ,G

)
> θ(A,B)

> (1− γ)
cn
n
|A||B| > (1− γ)

cn
n

(
1
2n− 1

)2
.

Therefore, mincw(G) > (1− γ)cn(1
2n− 1)2/n. The number of edges of G is an

upper bound on maxcw(G). As G is a (ε, γ, cn)-mixing graph, maxcw(G) 6
|E| 6 (1 + γ)1

2(n− 1)cn. So, the computation of the gap yields gapcw(ϕ,G) 6
2γ+1

1−γ +O
(
n−1

)
. The proof of (3.6) is identical.

To prove (3.7), let ϕ be any layout of G. We have

la(ϕ,G) =
n∑

i=1

θ(i, ϕ,G) >
(1−ε)n∑

i=εn

θ(i, ϕ,G) > (1− γ)
cn
n

(1−ε)n∑

i=εn

i(n− i).

On the other hand, the sum of the cuts at the first εn and of the last (1− ε)n
positions is, for each one, not larger than εnm. So,

la(ϕ,G) =
n∑

i=1

θ(i, ϕ,G) 6 2εnm+
(1−ε)n∑

i=εn

θ(i, ϕ,G)

6 2εnm+ (1 + γ)
cn
n

(1−ε)n∑

i=εn

i(n− i).

Therefore, making S = cnn
−1
∑(1−ε)n

i=εn i(n− i), we have

minla(G) > (1− γ)S,

100 Layout Problems and Binomial Random Graphs

maxla(G) 6 2εnm+ (1 + γ)S.

By Lemma 3.3 we have avgla(G) > m(n + 1)/3, and therefore, there is some
layout ϕ satisfying la(ϕ,G) > m(n+1)/3. So, 2εnm+(1+γ)S > m(n+1)/3 >
mn/3 and thus 2εnm 6 6ε

(1−6ε)(1 + γ)S. Hence,

gapla(G) 6 1 +
6ε

(1−6ε)(1 + γ)S + 2γS

(1− γ)S
6 γ + 1

(6ε− 1)(γ − 1)
.

The proof of (3.8) is similar; let ϕ be any layout of G. We have

mc(ϕ,G) =
n−1∑

i=1

ζ(i, ϕ,G) >
(1−ε)n−1∑

i=εn+1

ζ(i, ϕ,G)

> (1− γ)
cn
n

(1−ε)n−1∑

i=εn+1

(i− 1)(n− i).

For the lower bound, we have

mc(ϕ,G) 6
n−1∑

i=1

ζ(i, ϕ,G) 6 2(εn+ 1)m+
(1−ε)n−1∑

i=εn+1

ζ(i, ϕ,G)

6 2εnm+ (1 + γ)
cn
n

(1−ε)n−1∑

i=εn+1

(i− 1)(n− i),

where the last inequality holds because ζ(1, ϕ,G) = ζ(n, ϕ,G) = 0 for any
layout ϕ. Therefore, making T = cnn

−1
∑(1−ε)n−1

i=εn+1 (i− 1)(n− i), we have

minmc(G) > (1− γ)T,
maxmc(G) 6 2εnm+ (1 + γ)T.

As avgmc(G) = m(n− 5)/3, there is a layout that gives at least this value. So,
2εnm+ (1 + γ)T > m(n− 5)/3 > mn/6 and thus 2εnm 6 12ε

(1−12ε)(1 + γ)T . As
a consequence,

gapmc(G) 6 1 +
12ε

(1−12ε)(1 + γ)T + (1 + γ)T)

(1− γ)T
6 γ + 1

(12ε− 1)(γ − 1)
.

To prove (3.9), consider any layout ϕ of G. Notice that in a (ε, γ, cn)-
mixing graph there cannot be εn vertices on the left of i and εn vertices on the

3.3 Conclusion 101

right of i without any connection. Thus, it holds that δ(i, ϕ,G) > i − εn for
every εn < i < (1− ε)n. As a consequence,

vs(ϕ,G) > δ(
⌊

1
2n
⌋
, ϕ,G) >

⌊
1
2n
⌋− εn > (1

2 − ε
)
n− 1

and therefore minvs(G) >
(

1
2 − ε

)
n−1. Obviously maxvs(G) 6 n, so gapvs 6(

1
2 − ε

)−1 +O
(
n−1

)
. The proof of (3.10) is similar.

To prove (3.11), consider again any layout ϕ of G. We have,

sc(ϕ,G) =
n−1∑

i=1

δ(i, ϕ,G) >
(1−ε)n∑

i=εn

δ(i, ϕ,G) >
(1−ε)n∑

i=εn

(i− εn)

> 1
2n

2 − 2εn2 + 1
2n(1− ε) + 3ε2n2 > 1

2n
2 − 2εn2.

Therefore, minsc(G) > 1
2n

2 − 2εn2. Moreover,

sc(ϕ,G) =
n−1∑

i=1

δ(i, ϕ,G) 6
n−1∑

i=1

i 6 (n− 1)1
2n 6

1
2n

2.

Therefore, maxsc(G) 6 1
2n

2. Thus, gapsc 6 (1− 4ε)−1.

Finally, let us prove (3.12). Notice that maxbw(G) < n. Consider any
layout ϕ of G. As G is a (ε, γ, cn)-mixing graph, there must be some edge
between the dεne first vertices of ϕ and the b(1− ε)nc last vertices of ϕ. The
length of this edge must be at least (1−2ε)n−4, and so minbw(G) > (1−2ε)n−4.
Thus gapbw(G) 6 (1− 2ε)−1 +O

(
n−1

)
.

The combination of Lemmas 3.2 and 3.4 implies our main result:

Theorem 3.1. Let ε ∈ (0, 1
6), γ ∈ (0, 1) and set Cε,γ = 3(1 + ln 3)(εγ)−2.

Consider a sequence (cn)n∈N such that Cε,γ 6 cn 6 n for all n > n0 for some
natural n0. Then, with overwhelming probability, the problems Bandwidth,
MinLA, Cutwidth, ModCut, SumCut, VertSep, EdgeBis and VertBis
can be approximated within a constant on binomial random graphs Gn,pn , where
pn = cn/n.

3.3 Conclusion

This chapter has considered the approximation of several layout problems on
binomial random graphs. Theorem 3.1 states that, with overwhelming prob-
ability, all the layout problems defined in Section 1.2 are easily approximable
within a constant on binomial random graphs Gn,pn such that pn = cn/n and
cn > Cε,γ > 1. The reason is that the ratio between the maximal value and

102 Layout Problems and Binomial Random Graphs

the minimal value of a layout cost on such a graph is bounded by a constant.
As said, similar results already existed for the Bandwidth and EdgeBis prob-
lems [38, 43, 237]. An important contribution of this chapter is to have extended
this kind of result to several other layout problems using a unique framework
involving “mixing graphs.”

The approximation ratios obtained are very tight: they can be arbitrarily
close to 1 in the case of the Bandwidth, MinLA, SumCut and ModCut
problems, and arbitrarily close to 2 in the case of the remaining problems. It
is also remarkable that our method is valid both for sparse and dense binomial
random graphs, though in the case of sparse graphs, we must ensure the exis-
tence of a giant component. However, as mentioned in Section 1.7, there exist
better approximation results for dense graphs.

One of our motivations to study binomial random graphs for layout prob-
lems was to enable us to analyze heuristics. Unfortunately, our results show that
any algorithm computing a layout, no matter how good or bad, will perform
rather well on binomial random graphs, pointing out that such an evaluation
may be unworthy for layout problems.

An overview of the results in this chapter in the weaker case pn = c/n was
presented at the Fifth Czech-Slovak International Symposium on Combinatorics,
Graph Theory, Algorithms and Applications (Prague, ); all the results on
this chapter will appear in Discrete Mathematics [70].

A recent result due to Luczak and McDiarmid [175] improves our result
for EdgeBis: They show that if c > ln 4, then mineb(Gn,c/n) = Θ(n) with high
probability; while if c < ln 4, then mineb(Gn,c/n) = 0 with high probability.
Their techniques could possibly be applied to strengthen the results given in
this chapter.

4
Layout Problems and Unit

Disk Graphs

4.1 Introduction

An important characteristic of layout applications is the specificity of their
instances. As seen in Chapter 1, most layout problems are used in specific
domains. Therefore, it makes sense to try to take advantage on the kind of
inputs appearing in these domains. In particular, in routing and circuit design
applications, input graphs tend to have some geometrical structure and are likely
to be very sparse. In this chapter, we are concerned with unit disk graphs and
grid graphs, which have been proposed to model such situations. For these
classes of graphs, not much is known, particularly on layout problems.

Let us introduce unit disk graphs and some of their basic properties. Unit
disk graphs are defined as follows:

Definition 4.1 (Unit disk graphs). Given a norm ‖ · ‖, a unit disk with
center x is the set of points y such that ‖x − y‖ 6 1. A graph is said to be
a unit disk graph if each vertex can be mapped to a unit disk in the plane
such that two distinct vertices are adjacent in the graph if and only if their
corresponding disks intersect.

Unit disk graphs arise as a simplified model for several applications. These
include VLSI circuit design, cluster analysis, random test case (benchmarking),

104 Layout Problems and Unit Disk Graphs

molecular graphics, decoding of noisy data, radio frequency assignment, broad-
cast networks, mobile phones and ship to ship communications [41, 42, 51, 131].
A good source of information on unit disk graphs is Chapter 3 of Breu’s PhD the-
sis [41].

According to the terminology of Clark, Colbourn and Johnson [51], Defi-
nition 4.1 corresponds to the intersection model for unit disk graphs. Another
model for unit disk graphs is the following: for n equal-sized circles in the plane,
form a graph with n vertices corresponding to the n circles and add an edge
between two vertices if one of the circles contains the other’s center. This is
the containment model for unit disk graphs. Yet another model is formed by
n points in the plane, which correspond to n vertices, and there is an edge
between two different vertices if and only if the distance between their corre-
sponding points is at most some specified bound d. This is the proximity model
of unit disk graphs. All these models are equivalent [51]. Figure 4.1 illustrates
the equivalence and Figure 4.2 summarizes how to transform a model to another.

A realization of a unit disk graph is a mapping between its vertices and
the structures of any of the previous three models. The recognition problem
for unit disk graphs (i.e., given a graph, determine if it has a realization) is
NP-hard [42]. As a consequence, it is customary in practice to assume that a
realization of the graph is given [131, 137, 165]. The following reasons lead to
justify this assumption:

• As said, the recognition problem is NP-hard.

• For most applications, the graph is implicitly specified using one of the
three models.

• In the design and analysis of VLSI circuits, unit disk graphs are specified
hierarchically: Huge circuits often share hierarchical regular structures
that make possible to succinctly describe their designs [131].

Some NP-complete problems for general graphs remain NP-complete
even when restricted to unit disk graphs. These include chromatic number,
independent set, vertex cover, connected dominating set, Hamil-
tonian circuit and steiner tree [51]. However, for the problems where
approximation algorithms exist, the approximation ratios on unit disk graphs
are better than on general graphs [41, 131]. On the other hand, the max clique
problem on unit disk graphs can be solved in polynomial time, provided that
a realization is given as input [51]. A remarkable fact is that the complexities
of all these problems on unit disk graphs and planar graphs with maximum
degree 4 seem to agree. In fact, Breu conjectures in his thesis:

Conjecture 4.1 ([41]). If a problem Π is NP-complete for planar graphs with
maximum degree 4, then Π is NP-complete for unit disk graphs, too.

4.1 Introduction 105

d

Unit disk graph Proximity model Intersection model Containment model

Figure 4.1: Unit disk graphs: Models in l2.

Proximity
model

Intersection
model

Containment
model

Identify:
• circle with points
• diameter with d

Halve
diameter

Double
diameter

Figure 4.2: Unit disk graphs: Converting from one model to an-
other.

106 Layout Problems and Unit Disk Graphs

Embedding of
first m− 1

vertices

m-th vertex

Figure 4.3: Embedding the m-th vertex in Valiant’s algorithm
(figure reproduced from [239]).

This conjecture is based on the existence of a “plan of attack” for reducing
a problem restricted to planar graphs with maximum degree 4 to the same
problem restricted to unit disk graphs, based on embedding the planar graph
on a grid and simulating its edges by “clever” strings of disks. In order to embed
any planar graph with maximum degree 4 on a grid without crossovers of edges,
the plan of attack uses Valiant’s algorithm [239]:

1. Start with any embedding of the graph in the plane.

2. Strip off one vertex at a time from the perimeter of the embedding.

3. Embed these vertices in reverse order into the grid. The m-th vertex is
typically embedded as shown in Figure 4.3.

Let us now present grid graphs. Grid graphs are defined as follows:

Definition 4.2 (Grid graphs). A graph is said to be a grid graph if it is a
finite vertex-induced subgraph of the infinite lattice, that is, its vertex set is a
subset of Z2 and two vertices are connected whenever their Euclidean distance
is 1.

Notice that any grid graph is a unit disk graph in any lp norm (p ∈
N ∪ {∞}); Figure 4.4 illustrates it.

A result relating grid graphs and layout problems is an exact polynomial
time algorithm for EdgeBis on grid graphs without holes by Papadimitriou and
Sideri [201]. In the case of rectangular or square grid graphs, more results exist.

4.2 Complexity results 107

(a) Grid graph (b) l1 (c) l2 (d) l∞

Figure 4.4: Any grid graph is a unit disk graph in any lp norm,
p ∈ N ∪ {∞}.

Definition 4.3 (Rectangular and square grids). Given two naturalsm and
m′, the m ×m′ rectangular grid is the grid graph with vertex set {0, . . . ,m −
1} × {0, . . . ,m′ − 1}. Given a natural m, the m × m square grid is the grid
graph with vertex set {0, . . . ,m − 1}2. Throughout this thesis, Lm,m′ denotes
an m×m′ rectangular grid and Lm = Lm,m denotes an m×m square grid.

In this chapter we consider layout problems on unit disk graphs, grid
graphs and rectangular or square grid graphs. At the light of Conjecture 4.1,
it seems natural to investigate whether Breu’s plan of attack can be of use to
tackle the complexity of some layout problems restricted to unit disk graphs.
This issue will be explored in Section 4.2. On the other hand, square grid
graphs are a so regular structure, that it makes sense to think out which is their
optimal solution for the different layout problems presented in Section 1.2. The
optimal values for the EdgeBis and Cutwidth problems on square grids are
well known, but the result for MinLA is not so widely known and deserves some
attention. This is why in Section 4.3 we will study the optimal solutions for
several layout problems on square grids, including new results for the VertSep,
SumCut, Bandwidth and VertBis problems. Afterwards, in Section 4.4,
we will present tight upper bounds to several layout problems on general grid
graphs. Beyond their intrinsic interest, these bounds will be useful in Chapter 5.
Finally, this chapter will be closed with an overview of the results, conclusions
and open problems.

4.2 Complexity results

In this section, we show that some layout problems remain hard to solve, even
when restricted to geometric instances. To do so, we use the unit disk graph
model, which also includes grid graphs as a particular case. We shall primarily
use Breu’s “plan of attack” described in the previous section.

To prove complexity results of layout problems on spatial graphs, all

108 Layout Problems and Unit Disk Graphs

through this section we shall consider their decisional counterparts (see Ob-
servation 1.3). In the standard way, we shall use K as the constant parameter
in the definition of the decisional versions [98]. All the proofs in this section
are valid for any lp norm (p ∈ N ∪ {∞}), but for readability purposes, the
explanation and the figures use the Euclidean norm.

Definition 4.4 (Subdivision and homeomorphism). A graph H is a sub-
division of a graph G if H can be constructed from G by subdividing some of
its edges, that is, replacing an edge by a path of vertices with degree 2. Two
graphs are homeomorphic if they are subdivisions of the same graph.

Lemma 4.1. Let H be a subdivision of a graph G. Then,

mincw(G) = mincw(H).

Proof. We prove the statement of the lemma for the insertion of a new vertex
w between an edge uv of G. Let ϕ be an optimal layout of G, without lost of
generality assume that ϕ(u) < ϕ(v). Let φ be a layout of H that corresponds
to insert w just after u. Then, cw(G,ϕ) = cw(H,φ). To show that φ is
optimal for H, suppose the contrary, then there exists a layout φ′ of H such
that cw(H,φ′) < cw(H,φ). Let ϕ′ be the layout obtained by removing w
from φ′. Then cw(G,ϕ′) 6 cw(H,φ′) < cw(H,φ) 6 cw(G,ϕ), which is a
contradiction to the optimality of ϕ.

The following known complexity results are the base for our reductions:

Theorem 4.1 ([185]). Bandwidth remains NP-complete even when restric-
ted to caterpillars with at most one hair attached to each vertex of the body.

Theorem 4.2 ([187]). Cutwidth and VertSep remain NP-complete even
when restricted to planar graphs with maximum vertex degree 3.

Using the above results, we can prove now the following result:

Theorem 4.3. Bandwidth, Cutwidth and VertSep remain NP-complete
even when restricted to grid graphs (and therefore, even when restricted to unit
disk graphs).

Proof. Bandwidth remains NP-complete even when restricted to grid graphs
because caterpillars with at most one hair attached to each vertex of the body
are grid graphs. See Figure 4.5.

We present a reduction from the Cutwidth problem restricted to planar
graphs with maximum vertex degree 3 to the Cutwidth problem restricted to

4.2 Complexity results 109

Figure 4.5: Any caterpillar with at most one hair attached to each
vertex of the body is a unit disk graph and a grid graph.

grid graphs. Let 〈G,K〉 be an instance of Cutwidth restricted to planar graphs
with maximum vertex degree 3. Using Valiant’s algorithm (see Section 4.1), we
can draw G in such a way that its vertices are located at positions (6x, 6y) for
some x, y ∈ N and the edges only follow horizontal and vertical paths without
crossing. This embedding uses an area polynomial in the size of G. Then,
replace each edge by a string of unit disks to produce a grid graph H (see
Figure 4.6). By construction, H is a subdivision of G. Therefore we have that
mincw(G) 6 K if and only if mincw(H) 6 K, which proves the result.

Observe that the previous reduction creates graphs with maximum de-
gree 3. Recall that for graphs with maximum degree 3, the SearchNb problem
is identical to the Cutwidth problem [177]. Therefore, as a corollary, we get
that SearchNb remains NP-complete even when restricted to grid graphs. In
what follows, we denote by sn the cost for SearchNb.

For any graph G, the vertex separation of a homeomorphic image of G is
identical to the search number of G [80]. Let us reduce SearchNb restricted
to planar graphs with maximum vertex degree 3 to VertSep restricted to
grid graphs using the same transformation that we used for Cutwidth. The
resulting graph H is a grid graph homeomorphic to the input graph G, so we
get minvs(H) 6 K if and only if minsn(G) 6 K.

We could not obtain similar results for SumCut, ModCut, MinLA,
EdgeBis or VertBis. However, for the bisection problems, we are able to
produce a weaker result, which gives an indication of their hardness, based
on Papadimitriou and Sideri’s conjecture on the NP-completeness of the edge
bisection problem on planar graphs [201].

Theorem 4.4. If EdgeBis (resp. VertBis) is NP-complete even when re-
stricted to planar graphs with maximum vertex degree 4, then EdgeBis (resp.
VertBis) is NP-complete even when restricted to unit disk graphs.

Proof. Assume that the input graph G is of even order (otherwise, add a dis-
connected vertex to G). We only give the proof for EdgeBis, as the proof for

110 Layout Problems and Unit Disk Graphs

〈G, K〉

6 units

〈H,K〉

Figure 4.6: Reduction from Cutwidth restricted to planar graphs
with maximum vertex degree 3 to Cutwidth restricted to grid
graphs. At left, the input graph; at center, the input graph em-
bedded with Valiant’s algorithm; at right, substitution of the edges

with paths of disks.

〈G, K〉

6 units

Figure 4.7: Reduction from EdgeBis restricted to planar graphs
with maximum vertex degree 4 to EdgeBis restricted to unit disk
graphs (1). At left, the input graph with n = 6 vertices; at cen-
ter, the input graph embedded with Valiant’s algorithm; at right,

substitution of the edges with paths of disks with even length.

4.2 Complexity results 111

n2 n2 n2 n2 n2 n2

n2 n2 n2 n2 n2 n2 n2 n2
11

n2 n2 n2 n2
11

n2

n2 n2 n2 n2 n2 n2
11

n2 n2 n2 n2

n2

n2

n2

n2

n2

n2
1

1
n2

n2

n2

n2

n2

n2

n2

1

1

n2

n2

n2

n2

1

1

n2

n2

n2

n2

1

1

n2

n2

n2

n2

Gadget

Outer disks

〈H,K〉

Figure 4.8: Reduction from EdgeBis restricted to planar graphs
with maximum vertex degree 4 to EdgeBis restricted to unit disk
graphs (2). Non outer disks receive multiplicity n, outer disks get
multiplicity 1 and original vertices receive the required multiplicity
in order to ensure that all the gadgets contain the same number of

disks.

VertBis is identical.
Let 〈G,K〉 be an instance of EdgeBis where G is a planar graph with n

vertices and maximum vertex degree 4. We will reduce it to an instance 〈H,K〉
of EdgeBis where H is a unit disk graph such that mineb(G) = mineb(H).

As in the proof of Theorem 4.3, using Valiant’s algorithm, we embed G
on the plane in such a way that its vertices are located at positions (6x, 6y) for
some x, y ∈ N and that the edges follow horizontal and vertical paths without
crossing. We identify each “original” vertex of the embedding with a unit disk
and replace each half edge of length l with a string of disks of length

⌊
1
2 l
⌋
. As

edges had an odd length, we must join the strings using two additional “outer”
disks as shown in Figure 4.7. Therefore, each edge has been replaced by an even
number of disks. For each original vertex u in V (G), define its “gadget” as the
set of disks that represent its adjacent half edges. Notice that a gadget includes
the outer disks, where it ends. We give to each non-outer disk multiplicity n2,
while outer disks retain multiplicity 1. Also, we add multiplicity to the original
vertices in such a way that every gadget receives the same amount of disks. The

112 Layout Problems and Unit Disk Graphs

second part of this reduction is depicted in Figure 4.8. Let H be the resulting
graph of this reduction, where disks with multiplicity m consist of m different
disks on the same position and form a clique. The reduction can be computed
in polynomial time.

We need to prove that 〈G,K〉 is a positive instance of EdgeBis if and
only if 〈H,K〉 is also a positive instance of EdgeBis. We do so by showing
that gadgets in H behave as the original vertices in G.

If 〈G,K〉 is a positive instance of EdgeBis then there exists a bisection
B of G such that eb(G,B) 6 K. Coloring each gadget of H according to B,
the bisection of H coincides with the bisection B and is a legal bisection, in the
sense that each gadget has the same number of vertices). Therefore 〈H,K〉 is a
positive instance of EdgeBis.

On the other hand, if 〈H,K〉 is a positive instance of EdgeBis, we have
two cases: When K > 2n, as G has maximum degree 4, the bisection width of
G cannot exceed 2n, thus 〈G,K〉 surely is a positive instance of EdgeBis. For
the case K 6 2n, let us consider any gadget. Each of the vertices of this gadget
must be on the same side of the bisection (otherwise, the bisection width would
be larger than 2n because of the cliques of size n2 introduced in H). Taking
a bisection of G that coincides with the one given to the gadgets of H, we get
that 〈G,K〉 is a positive instance of EdgeBis.

4.3 Optimal layouts for square grids

In this section we consider the optimal solutions of several layout problems
on square grids. We start reviewing the results for the EdgeBis, Cutwidth
and MinLA problems; afterwards we present new results for the VertSep,
SumCut, Bandwidth and VertBis problems.

Recall that Lm denotes the m × m square grid. In the following, we
will encounter two different natural ways to order the vertices of square grids:
Let u and u′ be two distinct vertices of a square grid and let (x, y) be the
coordinates of u and (x′, y′) the coordinates of u′. In the lexicographic layout,
denoted by ϕL, u precedes u′ whenever y < y′ or y = y′ and x < x′. In the
diagonal layout, denoted by ϕD, u precedes u′ whenever x + y < x′ + y′ or
whenever x + y = x′ + y′ and x < x′. The lexicographic and diagonal layouts
are illustrated in Figure 4.9(a) and Figure 4.9(b) respectively.

EdgeBis and Cutwidth on square grids. The optimal values for the Edge
Bisection and Cutwidth problems on Lm are well known:

mineb(Lm) = mincw(Lm) = m+ (odd m).

4.3 Optimal layouts for square grids 113

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

(a) Lexicographic layout

1 3 6 10 15

2 5 9 14 19

4 8 13 18 22

7 12 17 21 24

11 16 20 23 25

(b) Diagonal layout

1 2 5 7 8

3 4 6 9 10

11 12 13 14 15

16 17 20 22 23

18 19 21 24 25

(c) Muradyan–Piliposjan
layout

Figure 4.9: Optimal layouts for 5 × 5 square grids. The lexico-
graphic layout is optimal for VertSep, Bandwidth, EdgeBis and
Cutwidth; the Muradyan–Piliposjan layout is optimal for MinLA;
the diagonal layout is optimal for VertSep, VertBis, SumCut and

Bandwidth.

114 Layout Problems and Unit Disk Graphs

A1

A2

A3

A5

A6

A7

A4

a
a

a
′

a
′

a a′

(a)

. . .

(b)

Figure 4.10: Schematic representation of the optimal layout of
minla(Lm,m′) for rectangular m × m′ grids (figure reproduced

from [189]).

The optimal values can be achieved by the lexicographic layout ϕL. These values
play an important role in the analysis of the efficiency of parallel algorithms on
meshes of processors [123, 167].

MinLA on rectangular grids. Recall from Section 1.5.3 that there exists
some disconcert with respect to the solution of MinLA for square grids. Indeed,
the optimal layout for minla(Lm,m′) on m×m′ rectangular grids has an inter-
esting solution, well described in [24]. The optimal numbering is schematically
shown in Figure 4.10. The numbering starts with the left lower corner of the
grid and then fills the areas A1, A2, . . . , A7, where A1, A3 are a× a squares and
A5, A7 are a′ × a′ squares (see Figure 4.10(a)). The values of a and a′ must
satisfy

a, a′ ∈
{⌈

m− 1
2 −

√
1
2m

2 − 1
2m+ 1

4

⌉
,

⌊
m+ 1

2 −
√

1
2m

2 − 1
2m+ 1

4

⌋}
.

The way to number the areas is shown in Figure 4.10(b). Each square must be
numbered sequentially. A1 must be filled row after column. A2 must be filled
by consecutive rows, from bottom to top and from left to right. A3 must be
enumerated with the reverse order with respect to A1. A4 must be numbered
by columns from bottom to top and from left to right. Finally A5, A6 and A7

are filled in the same way. Using this solution,

minla(Lm,m′) = −2
3a

3 + 2ma2 − (m2 +m− 2
3

)
a+m′(m2 +m− 1)−m

and

minla(Lm) = 4−√2
3 m3 +O(m2).

An example for the 5× 5 square grid is shown in Figure 4.9(b).

4.3 Optimal layouts for square grids 115

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

1

2

3

4

...

m−1

m

2

3

4

m

m−1

m

m

3

4

. . .

m−1

m

m

m−1

4

m

m−1

m

m

m−1

· · ·

· · ·

m−1

m

m

m−1

. . .

4

m−1

m

m

m−1

m

4

3

m

m−1

m−2

...

3

2

0

m
i=1

m
j=i j

m−1
i=2 i

m
i=3 i(i − 2)

Figure 4.11: Vertex cuts of the diagonal layout ϕD on Lm.

Vertex problems on square grids. The next results concern the optimality
of the diagonal ordering on Lm for the VertSep, SumCut, Bandwidth and
VertBis problems. Notice that, for all k, δ(k, ϕD, Lm) 6 m (see Figure 4.11).

We begin by presenting a vertex isoperimetric inequality that will help us
to characterize the optimal layouts for some problems on square grid graphs Lm.
The next Lemma is a special case of Corollary 9 in [37], who in fact prove the
d-dimensional version for arbitrary d. Nevertheless, the proof for this particular
case will be of interest by itself, as we shall consider its continuous analog latter
on in Section 5.3.

Lemma 4.2 (Vertex isoperimetric inequality). Let m ∈ N. For any lay-
out ϕ on Lm and any k ∈ [m2], it is the case that δ(k, ϕ, Lm) > δ(k, ϕD, Lm).

Proof. Given ϕ and k, let A be the set L(k, ϕ, Lm), and let ∂ inA be the number
of boundary elements of A, i.e. elements of A having neighbors in Lm\A. Thus
∂ inA = δ(k, ϕ, Lm).

Let A′ be the set in Lm obtained by “pushing each vertical section of A
down as far as possible towards the x-axis”; more precisely, setting Si(A) =
{j : (i, j) ∈ A} for i ∈ {0, . . . ,m− 1}, let

A′ =
⋃

i∈{0,...,m−1}
Si(A)6=∅

{i} × {0, . . . , |Si(A)| − 1}.

116 Layout Problems and Unit Disk Graphs

Notice that |A′| = |A|. Moreover, we claim that ∂ inA
′ 6 ∂ inA: Consider first

the vertical contribution of the vertices of a column i ∈ {0, . . . ,m − 1}. If all
vertices in column i are in A, then this contribution is zero both in A and A′.
Otherwise, at least one vertex participates in the contribution in A, and exactly
one vertex participates in the contribution in A′. Consider now the contribution
to the right at a column i ∈ {0, . . . ,m − 2}. Assume that there are r vertices
of A in column i and that there are s vertices of A in column i + 1. If r 6 s,
there will not be any vertex at column i that contributes to the right in A′.
Otherwise, there are at least r − s vertices at column i that contribute to the
right, but there will be exactly r− s vertices at column i that will contribute to
the right in A′. A symmetrical argument holds for the contributions to the left
of a column i ∈ {1, . . . ,m− 1}. So, joining the three contributions together, we
have ∂ inA

′ 6 ∂ inA.
Let A′′ be the set in Lm, obtained by “pushing each horizontal section ofA′

sideways as far as possible towards the y-axis”: setting Sj(A) = {i : (i, j) ∈ A′}
for j ∈ {0, . . . ,m− 1}, let

A′′ =
⋃

j∈{0,...,m−1}
Sj(A

′)6=∅

{j} × {0, . . . , |Sj(A′)| − 1}.

Then |A′′| = |A′| = |A|. Moreover, using the same argument as in the previous
paragraph, ∂ inA

′′ 6 ∂ inA
′ 6 ∂ inA. Furthermore, A′′ is a down-set, that is, it

has the property that for any x ∈ A′′, all vertices of Lm lying directly below or
directly to the left of x are in A′′. From now on we assume that A is a down-set.
If this was not the case, one could convert it to a down-set A′′ with smaller or
equal boundary. We consider three cases:

Case 1: (0,m− 1) /∈ A and (m− 1, 0) /∈ A. Choose the positive integer r
so that r(r− 1)/2 < k 6 r(r+ 1)/2. Then there must be a point x = (x, y) ∈ A
with x+ y > r+ 1. Choose such a point x, having neighbors in Lm \A both to
its right and above it. Then there is a path of y or more boundary points of A
from the bottom of the square to x, and another path of x or more boundary
points of A from the left of the square to x, and these paths do not intersect
each other except at x. Therefore,

δ(k, ϕ, Lm) = ∂ inA = y + x− 1 > r.

If r 6 m then we have δ(k, ϕD, Lm) = r 6 δ(k, ϕ, Lm), while if r > m then we
have δ(k, ϕD, Lm) 6 m 6 δ(k, ϕ, Lm). So, δ(k, ϕ, Lm) > δ(k, ϕD, Lm).

Case 2: (0,m − 1) ∈ A and (m − 1, 0) ∈ A. Choose the positive integer
r so that r(r − 1)/2 < m2 − k 6 r(r + 1)/2. Then there must be a point
x = (x, y) ∈ Lm\A with (m+1−x)+(m+1−y) > r+1, that is, x+y 6 2m+1−r.

4.3 Optimal layouts for square grids 117

Choose such a point x, having neighbors in A both to its left and above it. Then
there is a path of at least m− y + 1 boundary points of A from the top of the
square to the point just to the left of x, and another path of at least n− x+ 1
boundary points of A from the right of the square to just below x, and these
paths do not intersect. Therefore,

δ(k, ϕ, Lm) = ∂ inA > 2m− x− y + 2 > r + 1.

If r < m then δ(k, ϕD, Lm) = r + 1 6 δ(k, ϕ, Lm), while if r > m then
δ(k, ϕD, Lm) 6 m 6 δ(k, ϕ, Lm). So, δ(k, ϕ, Lm) > δ(k, ϕD, Lm).

Case 3: Only one of the the corners (m−1, 0) or (0,m−1) is in A. In this
case we have ∂ inA = m > δ(k, ϕD, Lm). Again, δ(k, ϕ, Lm) > δ(k, ϕD, Lm).

Using the above isoperimetric inequality, we can assert the optimality of
the diagonal ordering for vertex layout problems:

Theorem 4.5. For any natural m, the diagonal ordering is optimal for the
VertSep, VertBis, Bandwidth and SumCut problems on a m ×m square
grid Lm. Moreover,

minvs(Lm) = m,

minvb(Lm) = m,

minbw(Lm) = m,

minsc(Lm) = 2
3m

3 + 1
2m

2 − 7
6m.

Proof. From Lemma 4.2, it follows that ϕD is optimal for the minvs, minvb
and minsc costs on Lm. Moreover, minvs(Lm) = minvb(Lm) = m.

On the other hand, using Lemma 1.1, we have m = bw(ϕD, Lm) >
minbw(Lm) > minvs(Lm) = m.

Finally, decomposing sc(ϕD, Lm) as shown in Figure 4.11, we have

sc(ϕD, Lm) =
m∑

i=1

m∑

j=1

j +
m∑

i=3

i(i− 2) +
m−1∑

i=2

i = 2
3m

3 + 1
2m

2 − 7
6m,

which concludes the proof.

As minbw(Lm) = minvb(Lm) = minvs(Lm) = m, the lexicographic lay-
out is also an optimal layout for the Bandwidth, Vertex Bisection and Vertex
Separation problems on square grids:

Corollary 4.1. The lexicographic layout is optimal for the Bandwidth, Vert-
Bis and VertSep problems on square grids.

118 Layout Problems and Unit Disk Graphs

4.4 Upper bounds for grid graphs

In this section we present upper bounds for layout problems on general grid
graphs with n vertices. The following lemma is the base to achieve algorithmi-
cally these upper bounds.

Lemma 4.3. Let n ∈ N. For any grid graph L with n vertices, and any k ∈ [n],
there is a layout ϕ on L such that θ(k, ϕ, L) 6 2

√
2n+ 1.

Proof. We are looking for a subset S of L consisting of k vertices, such that
there are at most 2

√
2n+1 edges between S and L\S. Figure 4.12 sketches this

proof.
Let α > 0 be a constant, to be chosen later. For x ∈ Z let Sx = {y ∈

Z : (x, y) ∈ L} and let V = {x ∈ Z : |Sx| > α
√
n}. For i ∈ Z, let Hi denote

the half-space (−∞, i]× Z. Set

i0 = min{i ∈ Z : |L ∩Hi| > k}.
Consider the case i0 /∈ V . Then define S to be a set of the form

S = L ∩ (Hi0−1 ∪ ({i0} × (−∞, j]))
with j chosen so that S has precisely k elements.

With this definition of S for i0 /∈ V , the number of horizontal edges
between S and L\S is at most |Si0 |, and hence is at most α

√
n. On the other

hand, there is at most one vertical edge between S and L\S, so the total number
of edges from S to L\S is at most 1 + α

√
n when i0 /∈ V .

Now consider the other case i0 ∈ V . Let I = [i1, i2] be the largest integer
interval which includes i0 and is contained in V . Then i1−1 /∈ V , and i2+1 /∈ V .
Also, as |V | 6 √n/α, we have i2 − i1 + 1 6 √n/α. Thus,

|L ∩Hi1−1| < k 6 |L ∩Hi2 |.
For j ∈ Z let Tj = [i1, i2]× (−∞, j]. Choose j0 so that

|L ∩ (Hi1−1 ∪ Tj0−1)| < k 6 |L ∩ (Hi1−1 ∪ Tj0)|,
and let S be L ∩ (Hi1−1 ∪ Tj0−1 ∪ ([i1, i3] × {j0})), with i3 ∈ [i1, i2] chosen so
that S has precisely k elements.

We estimate the number of edges between S and L\S for the case i0 ∈ V .
Since i1 − 1 /∈ V and i2 + 1 /∈ V , the number of horizontal edges between S
and L \ S is at most 2α

√
n + 1 (the 1 comes from the cut in i3). Moreover,

since i2 − i1 + 1 6 √n/α, the number of vertical edges between S and L\S
is at most

√
n/α. Combining these estimates we find that there are at most

(2α+ 1/α)
√
n+ 1 edges between S and L\S, whether or not i0 ∈ V .

The minimum value of 2α+ 1/α is 2
√

2 and is achieved at α = 1/
√

2. So,
setting α = 1/

√
2, we have the required partition.

4.4 Upper bounds for grid graphs 119

k nodes

< k nodes

i0

j

6∈
V

(a) Case where i0 6∈ V

i1 i0 i3 i2

j0

all columns ∈ V

√
n/α columns

6∈
V

6∈
V

(b) Case where i0 ∈ V

Figure 4.12: Sketch of the proof of Theorem 4.3. The thick line
marks the vertices in the cut.

120 Layout Problems and Unit Disk Graphs

The previous lemma gives the key to prove the following upper bounds:

Theorem 4.6. Let n ∈ N. For any grid graph L with n vertices,

mineb(L) 6 2
√

2n+ 1,
mincw(L) 6 14

√
n,

minvb(L) 6 2
√

2n+ 1,
minvs(L) 6 14

√
n,

minla(L) 6 14n
√
n,

minmc(L) 6 14n
√
n,

minsc(L) 6 14n
√
n.

Proof. Taking k =
⌊

1
2n
⌋

in Lemma 4.3 we get the upper bound on the cost of
the minimal edge bisection.

In order to prove the cw result, suppose first that n = 2k for a natural
k. The proof is based on recursive bisection, with the cut size guaranteed by
Lemma 4.3. The following recurrence gives an upper bound to the cost of
mincw(L), where f(k) is the mincw cost of a grid with 2k vertices,

f(k) 6
{

0 if k = 0,
23/22k/2 + 1 + f(k − 1) otherwise.

Its resolution yields

f(k) 6
k∑

j=1

(23/22j/2 + 1) 6 4(21/2 + 1)(2k/2 − 1) + k.

We can drop the assumption that n = 2m, by taking k so that n 6 2k < 2n,
and adding extra points until one has a set of size 2k. By monotonicity (see
Lemma 1.3), this process does not reduce the mincw cost, so

mincw(L) 6 25/2(
√

2 + 1)
√
n+ (logn+ 1)− 4(

√
2 + 1)

6 13.657
√
n+ logn− 8.

Since for any x > 0 we have (log x− 8)/
√
x < 0.067, the above bound for

mincw(L) is at most 14
√
n for all n.

The remaining bounds are obtained using Lemma 1.1.

It is important to observe that in the case of Lm (where n = m2), the above
bounds are within a constant of their optimal costs (see Theorem 4.5 and [167,
182, 189]). This shows that these bounds are best possible, disregarding a
constant factor.

4.5 Conclusion 121

4.5 Conclusion

In this chapter we have considered layout problems on unit disk graphs and grid
graphs. First of all we have shown that the decisional versions of the Band-
width, Cutwidth and VertSep problems remain NP-complete even when
restricting their inputs to unit disk graphs. Our results reaffirm the close rela-
tion between disk graphs and planar graphs as it was already noticed by Clark,
Colbourn and Johnson [51]. We have also presented a weaker result, which as-
serts that EdgeBis and VertBis are NP-complete on unit disk graphs if they
are NP-complete on planar graphs with maximum degree 4. Papadimitriou
and Sideri conjecture that bisection of planar graphs is NP-complete [201]. We
suppose that SumCut, MinLA and ModCut have the same behavior, but in
this case, the link with planar graphs with restricted degree is not clear. These
complexity results will appear in Journal of Algorithms [66].

Afterwards, we have considered layout problems on square grid graphs.
The optimal solutions for EdgeBis, Cutwidth and MinLA were already
known. Our new results prove the optimality of the diagonal layout for the
Bandwidth, VertSep, SumCut, and VertBis problems on square grids. An
overview of optimal values for layout problems on square grids is shown in Ta-
ble 4.1. These results were presented in Computing and Combinatorics — 5th
Annual International Conference cocoon99 (Tokyo ) [64]. The optimal
layout for the ModCut problem on square grids remains an open problem: Is
the Muradyan–Piliposjan layout optimal for ModCut?

Finally, we have presented several worst case upper bounds for arbitrary
grid graphs. Our bounds only involve the number of vertices in the graph
and can be achieved algorithmically. They are best possible disregarding a
constant factor. An overview of these results is shown in Table 4.2. Part of
these upper bounds were presented in [64]. A non-trivial upper bound on the
Bandwidth of an arbitrary grid graph remains to be found; we suspect that
minbw(L) = O(

√
n) for any grid graph L with n vertices.

This chapter has dealt with layout problems and unit disk graphs and grid
graphs in the worst case. These results will be of use in the following chapter,
which treats random models of unit disk graphs and grid graphs.

122 Layout Problems and Unit Disk Graphs

Optimal costs

minbw(Lm) = m

mincw(Lm) = m+ (odd m) [167]

mineb(Lm) = m+ (odd m) [167]

minla(Lm) = 1
3 (4−√2)m3 +O(m2) [182, 189]

minsc(Lm) = 2
3m

3 + 1
2m

2 − 7
6m

minvb(Lm) = m

minvs(Lm) = m

Table 4.1: Overview of the optimal costs of several layout problems
on a m×m square grid graph Lm.

Upper bounds

mincw(L) 6 14
√
n

mineb(L) 6 2
√

2n+ 1

minla(L) 6 14n
√
n

minmc(L) 6 14n
√
n

minsc(L) 6 14n
√
n

minvb(L) 6 2
√

2n+ 1

minvs(L) 6 14
√
n

Table 4.2: Overview of upper bounds for the cost of several layout
problems on a grid graph L with n vertices.

5
Layout Problems and Random

Unit Disk Graphs

5.1 Introduction

As we have seen in Chapter 3, with overwhelming probability, the ratios between
the maximal and minimal costs of many layout problems on binomial random
graphs are bounded by a constant. Therefore, binomial random graphs do not
provide an informative framework to analyze heuristics for layout problems.
Besides, it is doubtful that binomial random graphs are representative of real
life inputs. This situation calls for the study of alternative models of random
graphs. In this chapter we consider geometrical alternatives.

In the previous chapter we have seen that layout problems on unit disk
graphs can have a certain relevance and are not simpler. Thus, it seems appro-
priate to study the approximability properties of layout problems on unit disk
graphs generated at random.

We shall consider two random models of unit disk graphs: random grid
graphs and random geometric graphs. Informally, a random grid graph with
parameters m ∈ N and p ∈ (0, 1) is obtained through the random selection of
each vertex from a m×m square grid chosen independently with probability p,
together with the addition of all edges between vertices at distance 1. Figure 5.1
shows a random grid graph. On the other hand, a random geometric graph
with parameters n ∈ N and r ∈ R is a graph with n vertices that correspond

124 Layout Problems and Random Unit Disk Graphs

to n points scattered at random in the unit square, together with all the edges
between any pair of distinct vertices whose distance is smaller than r. Figure 5.2
shows a random geometric graph. Notice that both random grid graphs and
random geometric graphs are unit disk graphs.

Very little work has been done on random grid graphs. In the best of our
knowledge, this is the first systematic study of the behavior of some type of
algorithm on this type of random graphs.

On the other hand, random geometric graphs have been proposed as a
plausible and relevant model to take into account the structural characteristics
of instances that appear in most of the practical applications for partitioning
problems, such as finite element graphs and VLSI circuits. As a consequence,
many empirical studies have used random geometric graphs for partitioning
problems [23, 137, 165]. We have also done so, in Chapter 2, in our experimen-
tal study on the Minimum Linear Arrangement problem. However, up to now,
the previous theoretical study of random geometric graphs has been mainly fo-
cused on parameters as their clique or chromatic number and their connectivity
properties (more details will be given latter on), but these results have never
been related to algorithmic issues. Therefore, the analysis of layout problems
in random geometric graphs certainly seems worthwhile to study.

The first goal of this chapter is to present a probabilistic analysis on the
behavior of several layout problems on random grid graphs and random geo-
metric graphs. We shall see that the results we obtain are strongly related to
classical results on probabilistic analysis of Euclidean optimization problems,
which we will soon introduce. The second goal of this chapter is to make use
of the obtained results on random geometric graphs to give empirical evidence
of the goodness of several well-known heuristics for layout and partitioning
problems. These heuristics include several global methods (Spectral, Multi-
level and Greedy methods), some Local Search methods (Simulated Annealing,
Kernighan–Lin and Helpful Sets), and two algorithms presented in this chapter.

In the remaining of this section we give the background for the concepts
we study. This includes more formal definitions of random grid graphs and
random geometric graphs, as well as their basic properties. We also introduce
the two frameworks on which this chapter is sustained: percolation theory and
the probabilistic theory of Euclidean optimization problems. Afterwards, in
Section 5.2 we will present our results on layout problems and subcritical random
grid graphs. Then, in Section 5.3 we will study a particular family of random
geometric graphs. Finally, in Section 5.4, we will deal with subcritical random
geometric graphs. This chapter will be concluded in Section 5.5 with a summary
of results, conclusions and open problems.

5.1 Introduction 125

Figure 5.1: A random grid graph Lm,p with m = 30 and p = 3
4 .

Figure 5.2: A random geometric graph with n = 125 vertices and
radius r = 0.155.

126 Layout Problems and Random Unit Disk Graphs

Figure 5.3: Partial view of two realizations of site percolation on
a square grid for p = 0.35 (left) and p = 0.65 (right).

5.1.1 Random grid graphs and site percolation

Percolation is a discipline with applications to many diverse Natural Sciences,
such as physics, mechanics or chemistry [180]. In this chapter, percolation
theory provides a framework to study random grid graphs and random geometric
graphs. We start describing some fundamental results for one of the simplest
forms of percolation theory: site percolation in Z2. These will lead us to random
grid graphs. More details on percolation theory can be found in Grimmett’s
book [109].

Definition 5.1 (Site percolation). Let p ∈ (0, 1). Site percolation is a prob-
ability space over the set of infinite grid graphs G = (V,E) on the vertex set
V ⊆ Z2 determined by

Pr [u ∈ V] = p,

with these events mutually independent and E = {uv : u, v ∈ V ∧‖u−v‖2 = 1}.
Figure 5.3 shows a partial view of two infinite graphs produced by site

percolation.
A related model to site percolation is bond percolation, where edges are

selected at random rather than vertices. Most properties hold both on site
and bond percolation; see [109] for the differences. We shall concentrate in site
percolation, because its study will help us latter on, when considering random
geometric graphs.

A cluster of a site percolation process is a connected component in the
resulting infinite graph. Let Cx denote the cluster that includes the point x ∈ Z2

5.1 Introduction 127

and C the cluster that includes the origin (0, 0). In the following, |Cx| denotes
the number of vertices in Cx. A basic question in percolation theory is whether
or not a node of this graph belongs to an infinite cluster. Because of translation
invariance, it is customary to study |C|. Let ϑ(p) denote the probability that
the size of this cluster is unbounded:

ϑ(p) = Pr [|C| =∞] .

A fundamental result is that there exists a critical value of p defined by

pc = inf{p : ϑ(p) > 0},
such that

ϑ(p)

{
= 0 if p < pc,

> 0 if p > pc.

The case p ∈ (0, pc) is called the subcritical phase and the case p ∈ (pc, 1) is
called the supercritical phase. The case p = pc is called the critical point. In the
subcritical phase all components are finite almost surely: when p ∈ (0, pc), the
probability that there exists an infinite cluster is 0. On the other hand, in the
supercritical phase there exists infinite clusters almost surely: when p ∈ (pc, 1),
the probability that there exists an infinite cluster is 1. For bond percolation,
it is known that pc = 1

2 . However, for site percolation, it is only known that
pc ∈ (1

2 , 1), although computational experiments suggest a value close to 0.59
(see Section 1.6 in [109]).

The next results show that the size and the radius of a component decay
exponentially fast in the subcritical phase. In [109], these theorems are proved
for bond percolation, but they also hold for site percolation.

Theorem 5.1 ([109]). Let p ∈ (0, pc). Then, there exists a constant α =
α(p) > 0 such that Pr [|C| = k] 6 exp (−αk) for all k ∈ N. Moreover, there
exists a constant ρ = ρ(p) > 0 such that Pr [|C| > k] 6 exp (−ρk) for all k ∈ N.

Theorem 5.2 ([109]). Let p ∈ (0, pc) and let R = min{j : C ⊂ [−j, j]2}.
Then, there exists a constant γ = γ(p) > 0 such that Pr [R = k] 6 exp (−γk)
for all k ∈ N.

In the following, a random grid graph with parameters m and p will be
obtained by restricting a site percolation process with parameter p to the vertices
{0, . . . ,m− 1}2 of Lm:

Definition 5.2 (Random grid graph). Consider a site percolation process
on Z2 with parameter p. For all m ∈ N, we write Vm = {0, . . . ,m− 1}2 and call
Lm,p the random grid graph obtained by taking the open vertices in Vm and the
edges joining them.

128 Layout Problems and Random Unit Disk Graphs

0

0

m

m

Figure 5.4: A random grid graph Lm,p in the subcritical phase
with m = 9 and p = 0.45. There are 7 connected components.

Figure 5.4 illustrates this definition.
It must be observed that random grid graphs are defined by an incremental

model : A sequence of random grid graphs (Lm,p)m∈N is obtained on a unique
site percolation process generated on the infinite grid. We shall be interested in
knowing the properties of the random variables F (Lm,p) as m goes to infinity. In
most cases, F will be the optimal cost of a layout problem. On the other hand,
it must be stressed that p is fixed; therefore, values depending only on p will
be considered constants. This includes expressions as E [·], which is a constant
depending on p, and minla(C), which is a random variable also depending on p.

Let us introduce some more notation: In the following, Cmx denotes the
cluster in Lm,p that includes the point x ∈ Vm, and Cm denotes the cluster
in Lm,p that includes (0, 0). Also, |Cmx | denotes the number of vertices in Cmx .
Notice that Cmx = Cx ∩ Vm and thus Cmx ⊆ Cx and |Cmx | 6 |Cx|.

While studying together subcritical random grid graphs, Penrose analyzed
the behavior of several layout problems on supercritical random grid graphs.
The following theorem describes the order of magnitude of their respective costs:

Theorem 5.3 ([205]). Let p ∈ (pc, 1). Then, there exist a constant c > 0 such
that, with overwhelming probability,

cm2 6 minsc(Lm,p) 6 m2,

cm2 6 minla(Lm,p) 6 4m2,

cm 6 minbw(Lm,p) 6 m,
cm 6 minvs(Lm,p) 6 m,

5.1 Introduction 129

cm 6 mincw(Lm,p) 6 4m.

Moreover, for all p such that ϑ(p) > 1
2 , with overwhelming probability,

cm 6 mineb(Lm,p) 6 4m.

5.1.2 Random geometric graphs

After having presented random grid graphs, we now introduce random geometric
graphs. Let us first define a geometric graph:

Definition 5.3 (Geometric graphs). Consider any norm ‖ · ‖. Let V be a
set of points in [0, 1]2 and let r be a positive real. The geometric graph G(V ; r)
is the graph (V,E) where E = {uv : u, v ∈ V ∧ 0 < ‖u− v‖ 6 r}.

Notice that by the proximity model introduced in Section 4.1, geometric
graphs are unit disk graphs. We can now define the class of random geometric
graphs:

Definition 5.4 (Random geometric graphs). Consider any norm ‖ ·‖. Let
(rn)n∈N be a sequence of positive numbers and let X = (Xn)n∈N be a sequence
of independently and uniformly distributed random points in [0, 1]2. For any
n ∈ N, we write Xn = {X1, . . . , Xn} and call G(Xn; rn) the random geometric
graph of n vertices on X with radius rn.

As with random grid graphs, random geometric graphs are defined by an
incremental model : A sequence of random geometric graphs (G(Xn; rn))n∈N is
obtained by a unique infinite sequence of independent and uniformly distributed
random points in [0, 1]2 and a unique infinite sequence of radius. We shall be
interested in knowing the properties of the random variables F (G(Xn; rn)) as n
goes to infinity.

Several properties of random geometric graphs have been studied by Apple
and Russo. These include characterizations of their minimum and maximum
vertex degree, clique number, chromatic number or independence number [8,
9, 10]. Connectivity is also an important issue on random geometric graphs:
Depending on the specific values of n and rn, random geometric graphs can be
dense or sparse, connected or disconnected, etc. The following lemma, given
in [10] without proof, states a basic result for random geometric graphs on l∞:

Lemma 5.1 ([10]). Let G be a random geometric graph with n vertices and
radius r ∈ [0, 1] measured on the l∞ norm. Then,

Pr [uv ∈ E(G)] = (2r − r2)2.

130 Layout Problems and Random Unit Disk Graphs

r

r

r r

(0, 0)

(1, 1)

Z1Z2

Z3

Figure 5.5: Illustration for the proof of Lemma 5.1.

Proof. Decompose the unit square in the nine zones shown in Figure 5.5. Be-
cause of symmetry, we have

Pr [uv ∈ E(G)] = Pr [u ∈ Z1] ·Pr [‖u− v‖∞ 6 r : u ∈ Z1] +
+ 4 ·Pr [u ∈ Z2] ·Pr [‖u− v‖∞ 6 r : u ∈ Z2] +
+ 4 ·Pr [u ∈ Z3] ·Pr [‖u− v‖∞ 6 r : u ∈ Z3]

=
∫ 1−r

xu=r

∫ 1−r

yu=r

∫ xu+r

xv=xu−r

∫ yv+r

yv=yu−r
dyv dxv dyu dxu +

+ 4
∫ r

xu=0

∫ 1−r

yu=r

∫ xu+r

xv=0

∫ yv+r

yv=yu−r
dyv dxv dyu dxu +

+ 4
∫ r

xu=0

∫ r

yu=0

∫ xu+r

xv=0

∫ yv+r

yv=0
dyv dxv dyu dxu

= (2r − r2)2,

which proves the lemma.

When interpreting this lemma, it must be remarked that the edges in
random geometric graphs are not independent.

According to the above result, the expectation of the random variable
Mn that counts the number of edges in a random geometric graph Gn with n
vertices and radius r is E [M] =

(
n
2

)
(2r − r2)2. In fact, Mn converges almost

surely to
(
n
2

)
(2r − r2)2. This means that in the case that r is independent of

5.1 Introduction 131

n, then Mn = Θ(n2) and thus a sequence of dense graphs is obtained. As
our focus is on sparse graphs, we must select sequences of radius satisfying
rn → 0. The following theorem establishes another connectivity property of
random geometric graphs.

Theorem 5.4 ([8]). Let X = (Xn)n∈N be a sequence of independent and uni-
formly distributed random points in [0, 1]2 and let Xn = {Xi}ni=1. Define the
connectivity distance ρn of a random geometric graph by

ρn = inf{r : G(Xn; r) is connected}.
Then,

ρn√
log n/n

as−→ 1
2 .

Penrose [206] generalized the previous result to any metric lp with p ∈
N ∪ {∞}, proving that, with high probability, if one starts with single vertices
and adds the corresponding edges as r increases, the resulting graph becomes
k+ 1 connected at the moment it achieves a minimum degree of k+ 1. Penrose
has also shown that, similarly to site percolation, random geometric graphs
exhibit a phase transition [203]: Suppose nr2

n → λ; then there exists a critical
parameter λc such that when λ < λc, graphs G(Xn; rn) are likely to have at
most O(log n) vertices in each connected component, while when λ > λc, there
is likely to be a component with Θ(n) vertices. When λ < λc, we will speak
about subcritical random geometric graphs; when λ > λc, we will speak about
supercritical random geometric graphs. We shall give more details latter on.

In [205], Penrose also analyzes the behavior of several layout problems on
supercritical random geometric graphs. He obtained the order of magnitude of
their respective minimal costs:

Theorem 5.5 ([205]). Suppose nr2
n → λ ∈ (λc,∞). Then, with high proba-

bility,

minvs(G(Xn; rn)) = Θ(nrn),
minbw(G(Xn; rn)) = Θ(nrn),

minsc(G(Xn; rn)) = Θ(n2rn),

mineb(G(Xn; rn)) = Θ(n2r3
n),

mincw(G(Xn; rn)) = Θ(n2r3
n),

minla(G(Xn; rn)) = Θ(n3r3
n).

In this chapter we will obtain a better characterization of the previous
results, at the expenses of increasing rn to the point where G(Xn; rn) graphs
become connected almost surely. We will also find algorithms that reach these
bounds.

132 Layout Problems and Random Unit Disk Graphs

5.1.3 The Euclidean model

As shall be clear in the development of this chapter, our study on layout prob-
lems for random unit disk graphs fits in the framework of the probabilistic
theory of Euclidean optimization problems in the plane. The monographs of
Yukich [243] and Steele [234] are the basic references for this field. In the fol-
lowing, we introduce the Euclidean model and its most important properties
related to optimization problems.

The Euclidean model considers weighted complete graphs whose edge
weights correspond to the Euclidean distance between a set of independent
and identically distributed points in the d-dimensional unit square, [0, 1]d.

Let us consider the traveling salesman problem (TSP). The Euclidean
TSP is an NP-hard problem, but it can be approximated within a 3

2 factor [98].
In one of the seminal papers in the area of probabilistic analysis of combina-
torial optimization problems on the Euclidean model, Beardwood, Halton and
Hammersley proved the following result, often referred as he BHH theorem.

Theorem 5.6 (BHH [22]). Let X = {Xn}n∈N be a sequence of independent
and uniformly distributed points in [0, 1]d. Let mintsp(n) denote the length of
the optimal solution of the TSP among the n first points of X. Then, there
exists a constant βtsp(d) ∈ (0,∞) such that

mintsp(n)
n(d−1)/d

as−→ βtsp(d).

The result of the BHH theorem for the TSP has been extended to other
combinatorial problems for the Euclidean model on [0, 1]d: the Minimum Match-
ing [200], the Steiner Minimal Tree [232], and the Minimum Spanning Tree [233,
16, 204]. In fact, Steele [234] generalized the BHH theorem for a class of combi-
natorial problems that can be formulated as a subadditive Euclidean functional
from finite subsets of [0, 1]d to the nonnegative real numbers that measure the
cost that the problems optimize as, for instance, the length of a tour or the
weight of a spanning tree. Specifically, F is said to be a subadditive functional
if it has the following properties: for all xi ∈ [0, 1]d:

1. F (∅) = 0.
2. F (cx1, . . . , cxn) = cF (x1, . . . , xn), ∀c > 0.
3. F (x1 + y1, . . . , xn + yn) = F (x1, . . . , xn), ∀yi ∈ [0, 1]d.
4. F (x1, . . . , xn) 6 F (x1, . . . , xn, xn+1).
5. If Qi is the i-th square of size 1/m×1/m, then the geometric subadditivity

condition holds: ∃c > 0 : ∀m,n > 1 :

F (x1, . . . , xn) 6
m2∑

i=1

F ({x1, . . . , xn} ∩Qi) + cm.

5.2 Subcritical random grid graphs 133

Steele proved that for each problem in this class, there exists a constant βF (d)
such that

minF (n)
n(d−1)/d

Pr−→ βF (d)

where minF (n) denotes the cost of an optimal solution to F among the first n
points in a set of independent and identically distributed points in [0, 1]d.

It is an open problem to determine the values of βF (d) for most functionals,
even for the case d = 2. Up to date, the best estimation for the TSP was
empirically obtained by Johnson et al. who claim that βtsp(2) = 0.7124 ±
0.0002 [140].

To finish our presentation of the Euclidean model, we present an impor-
tant algorithmic result: Karp’s dissection technique [146]. Given a uniform in-
dependent and identically distributed set of points X in the unit square, Karp’s
algorithm consists in dissecting [0, 1]2 into n/mn squares {Qi}, each one of size√

(mn/n) ×
√

(mn/n). With high probability, every square will contain not
much more than mn points. Then, use dynamic programming to construct an
optimal tour in each square in polynomial time; this is possible provided thatmn

is of logarithmic size (see e.g. Section 5.6 in [40]). In order to join the individ-
ual tours, consider each tour in each square Qi as a single point pi, and for any
i, j ∈ [n/mn], define the distance between pi and pj as the shortest Euclidean
distance between any point in Qi and any point in Qj . Construct in O (n log n)
steps the minimal-length spanning tree joining all the {pi}i points [224]. The
algorithm returns the closed walk that traverses each subtour once and each
tree edge twice.

Karp proves that, for any ε > 0, with high probability, his algorithm runs
in O(n2 logn) steps and produces a tour of length within 1 + ε of the optimal
one.

5.2 Subcritical random grid graphs

In this section we consider layout problems on random grid graphs Lm,p gener-
ated by subcritical limiting phases; that is, with p ∈ (0, pc). First, we give tight
bounds for the Cutwidth and Vertex Separation problems on Lm,p. Afterwards,
we will present convergence results for the Minimum Linear Arragement, Mod-
ified Cut and Sum Cut problems. These convergence results can be regarded
as discrete analogues of the BHH theorem for layout problems. In the case
of Minimum Linear Arragement, we report on a computational experiment to
determine the limiting constant in the BHH-like theorem.

134 Layout Problems and Random Unit Disk Graphs

5.2.1 Order of growth of minvs and mincw

The following theorem shows that, with probability 1, the minimal costs of the
VertSep and Cutwidth problems on subcritical random grid graphs Lm,p are
Θ(
√

logm).

Theorem 5.7. Let p ∈ (0, pc). Then, there exists two constants 0 < c1 < c2

such that, with probability 1, for all m large enough,

c1 6
minvs(Lm,p)√

lnm
6 mincw(Lm,p)√

lnm
6 c2.

Proof. First, we will obtain an upper bound for mincw(Lm,p)/
√

lnm, holding
with high probability. Recall that, by Lemma 1.2, the mincw cost of a discon-
nected graph is the maximum of the mincw costs of its connected components.
Hence, for any positive constant c2,

Pr
[
mincw(Lm,p) > c2

√
lnm

]
=

= Pr
[
∨x∈Vmmincw(Cmx) > c2

√
lnm

]
.

By the exponential decay property presented in Theorem 5.1, there exists a
constant α > 0 such that Pr [|C| > k] 6 e−αk. So, using Theorem 4.6, we
obtain

Pr
[
mincw(Lm,p) > c2

√
lnm

]
6 Pr

[
∨x∈Vm |Cmx | >

(
1
14c2

)2 lnm
]

6 m2 exp(−α (1
14c2)2 lnm

)
.

Choosing c2 = 18
√

2/α, we get

Pr
[
mincw(Lm,p)/

√
lnm 6 c2

]
> 1−m−64/49, (5.1)

which implies that mincw(Lm,p)/
√

lnm 6 c2 occurs with high probability.
Next, we will get a lower bound for minvs(Lm,p)/

√
lnm holding with

overwhelming probability. Let δ > 0 and let T1, . . . , Tj(m) be disjoint grid
subsquares of Lm, each of side b

√
δ lnmc, where j(m) = bm/b

√
δ lnmcc2. Set

γ = ln(1/p) so that p = e−γ .
We claim that, at least, one of these subsquares is completely filled: For

all i ∈ [j(m)], let Ai be the event that all sites in Ti are open. Then,

Pr [Ai] = pb
√
δ lnmc2 = exp(−γb

√
δ lnmc2) > m−γδ.

As a consequence, assuming m sufficiently large and noticing that
j(m) > m2/mδγ ,

Pr
[
∧j(m)
i=1 A

c
i

]
6
(

1−m−γδ
)j(m)

6 e−m−γδj(m) 6 e−m2−γδ/δmδγ 6 e−m.

5.2 Subcritical random grid graphs 135

So, by de Morgan’s law,

Pr
[
∨j(m)
i=1 Ai

]
> 1− e−m,

which proves the claim.
Assume that all sites in a subsquare Ti are open. By Theorem 4.5 and

and Theorem 1.3,

minvs(Lm,p) > minvs(Lb
√
δ lnmc) =

⌊√
δ lnm

⌋
> 1

2

√
δ lnm.

So, by the previous claim, choosing c1 = 1
2

√
δ, we get

Pr
[
c1 6 minvs(Lm,p)/

√
lnm

]
> 1− e−m, (5.2)

which implies that minvs(Lm,p)/
√

lnm > c1 occurs with overwhelming proba-
bility.

Using Boole’s inequality on equations (5.1) and (5.2) we get

Pr
[
c1 <

minvs(Lm,p)√
lnm

∨ mincw(Lm,p)√
lnm

> c2

]
6 e−m +m−64/49

6 2m−64/49.

As
∑

m∈N 2m−64/49 is bounded, using the Borel–Cantelli Lemma (see Theo-
rem A.5), we get

Pr
[(
c1 6

minvs(Lm,p)√
lnm

∧ mincw(Lm,p)√
lnm

6 c2

)
a.a.

]
= 1,

where a.a. stands for almost always (see Appendix A.2.1). By Lemma 1.1, we
have minvs(G) 6 mincw(G), which implies the theorem.

5.2.2 Convergence results for minla, minmc and minsc

We now seek a stronger result for the MinLA, ModCut and SumCut prob-
lems, namely that minla(Lm,p)/m2, minmc(Lm,p)/m2 and minsc(Lm,p)/m2

converge in probability to a constant when p ∈ (0, pc).
In the next lemma we prove that for subcritical site percolation with

parameter p, the expected ratio between minla(C) and |C| is finite. The same
property holds for the ModCut and the SumCut problems. Throughout the
remainder of the section, we use the convention 0/0 = 0 to cover the case C = ∅.
Lemma 5.2. Let p ∈ (0, pc) and M ∈ {la,mc, sc}. Then,

E
[
minM(C)
|C|

]
∈ (0,∞).

136 Layout Problems and Random Unit Disk Graphs

Proof. Let R = min{k : C ⊂ [−k, k]2}. By considering the lexicographic layout,
minla(Lm) 6 m3, which together with monotonicity (see Lemma 1.3) gives us
that minla(C) 6 (2R+ 1)3. By Theorem 5.2, R decays exponentially in k. So,

0 < E
[
minla(C)
|C|

]
6
∑

k>0

Pr
[
C ⊂ [−k, k]2

] (2k + 1)3

(2k + 1)2

6
∑

k>0

e−αk(2k + 1) <∞.

The proofs for ModCut and SumCut are similar.

We use the previous lemma to prove a convergence result on random grid
graphs. It is important to remark that the next theorem can be viewed as
an analogue of the BHH Theorem for the MinLA, ModCut and SumCut
problems on subcritical random grid graphs.

Theorem 5.8. Let p ∈ (0, pc); then, there exist three constants βla(p) > 0,
βsc(p) > 0 and βsc(p) > 0 such that, as m→∞,

minla(Lm,p)/m2 Pr−→ βla(p),

minmc(Lm,p)/m2 Pr−→ βmc(p),

minsc(Lm,p)/m2 Pr−→ βsc(p).

Proof. Let M ∈ {minla,minmc,minsc}. Then,

M(Lm,p)
m2

=
1
m2

∑

x∈Vm

M(Cmx)
|Cmx |

=
1
m2

∑

x∈Vm

(
M(Cmx)
|Cmx |

− M(Cx)
|Cx|

)
+

1
m2

∑

x∈Vm

M(Cx)
|Cx| . (5.3)

Call t1(m) and t2(m) the first and second terms respectively of the previous
equation.

Let us work with t1(m). By monotonicity, we have M(Cmx) 6M(Cx). So,

t1(m) 6 1
m2

∑

x∈Vm

(
M(Cx)
|Cmx |

− M(Cx)
|Cx|

)

6 1
m2

∑

x∈Vm

∣∣∣∣
M(Cx)
|Cmx |

− M(Cx)
|Cx|

∣∣∣∣

=
1
m2

∑

x∈Vm
Cx 6=Cmx

∣∣∣∣
M(Cx)
|Cmx |

− M(Cx)
|Cx|

∣∣∣∣ .

5.2 Subcritical random grid graphs 137

But Cx 6= Cmx implies |Cx| > |Cmx | > 0, and a > b > 0 implies |a − b| 6 2a, so
we have

t1(m) 6 1
m2

∑

x∈Vm
Cx 6=Cmx

2M(Cx)
|Cmx |

6 2
m2

∑

y∈∂Vm
M(Cy),

where ∂Vm stands for the set of vertices x ∈ Vm with grid neighbors in Z2 \Vm.
Let ε > 0. Call π(m) the probability that t1(m) > ε. We have:

π(m) 6 Pr


 ∑

y∈∂Vm
M(Cy) > 1

2εm
2


 6 Pr


 ∨

y∈∂Vm
M(Cy) > 1

2εm
2


 ,

which by Boole’s inequality gives

π(m) 6
∑

y∈∂Vm
Pr
[
M(Cy) > 1

2εm
2
]
.

Because of translation invariance, Pr
[
M(Cy) > 1

2εm
2
]

is independent on y.
Therefore, we have

π(m) 6 |∂Vm| ·Pr
[
M(C)) > 1

2εm
2
]
,

and using the upper bounds on grid graphs given in Theorem 4.6, we get

π(m) 6 4m ·Pr
[
|C| > (εm2/28)2/3

]
.

By Theorem 5.1, the tail of a cluster size decays exponentially. So we have

π(m) 6 4m · exp
(
−ρ(εm2/28)2/3

)
6 4 exp

(
−ρ (ε28

)2/3
m1/3 + lnm

)
,

which implies that π(m) tends to 0 as m tends to infinity. As ε is an arbitrary
small positive real, we have

t1(m) Pr−→ 0. (5.4)

Let us now consider t2(m). We have that (M(Cx)/|Cx|)x∈Z2 is a collec-
tion of bounded functions of independent vertex-states, and is stationary under
translations of the infinite grid Z2. It follows from the Ergodic theorem (see
Theorem vii.6.9 in [79] and the proof of Theorem 4.2 in [109]) that

t2(m) =
1
m2

∑

x∈Vm

M(Cx)
|Cx|

Pr−→ E
[
M(C)
|C|

]
. (5.5)

138 Layout Problems and Random Unit Disk Graphs

As M(Lm,p)/m2 = t1(m) + t2(m), from (5.4) and (5.5) we have that

M(Lm,p)
m2

Pr−→ E
[
M(C)
|C|

]
.

Taking βla(p) = E [minla(C)/|C|], βmc(p) = E [minmc(C)/|C|] and βsc(p) =
E [minsc(C)/|C|] the theorem is proved.

5.2.3 Experimental determination of βLA(p)

In the proof of Theorem 5.8, we characterized βla(p), βmc(p) and βsc(p), but
we did not give their exact value. The purpose of this subsection is to estimate
empirically the value of βla(p) for some values of p with p < pc. The motivation
behind is that Theorem 5.8 shows that for Lm,p graphs with p ∈ (0, pc), there ex-
ists a nonzero finite constant βla(p) that, as m goes to infinity, minla(Lm,p)/m2

converges in probability to βla(p), where βla(p) = E[minla(C)/|C|]. This re-
sult might be of importance in order to predict the expected value of a random
grid graph Lm,p, as for large values of m, we will have that minla(Lm,p) behaves
similarly to βla(p) ·m2. The same holds for minmc(Lm,p) and minsc(Lm,p).

In order to estimate βla(p), we must approximate the expectation of
minla(C)/|C|, where C is a cluster obtained with site percolation with pa-
rameter p. For a given value p ∈ (0, pc), the setting of the basic experiment is
obtained through the following procedure:

Generate at random a connected component C centered at the origin
where the probability of a node to be open is p.

if |C| is “sufficiently small” then
Compute exactly minla(C)

else
Compute a lower bound of minla(C)
Compute an upper bound of minla(C)

end if

To generate C, we have applied the following algorithm: We first draw a
random number r in (0, 1). If r 6 1−p, we take C as the null graph. Otherwise,
we start by including node (0, 0) in C, marking it as “alive” and marking the
rest of nodes as “waiting.” Then, for each “alive” node, we process each of its
“waiting” neighbors. Using a random number generator, with probability p,
a “waiting” node is included in C and its mark changes to “alive;” and with
probability 1−p its mark changes to “dead.” This procedure is iterated until no
“alive” nodes exist. Notice that this procedure correctly generates connected
random grid graphs. The fact that we are dealing with the subcritical phase
ensures termination.

5.3 Connected random geometric graphs 139

When |C| 6 15, we are able to compute the exact value of minla(C) with
a reasonable running time. Here, “reasonable time” means that the running
time in order to perform the whole experiment on our machine was about two
days. Otherwise, we use the Degree method to obtain a lower bound, and
Randomized Successive Augmentation algorithms to compute an upper bound
(see Sections 2.2.1 and 2.2.2). We have selected these techniques as they were
the ones that obtained the best results and best running times in preliminary
tuning tests.

This basic experiment of generation, lower bound and upper bound com-
putation has been repeated 10,000 times, for several data points p ∈ [0.1, 0.45].
In this way, for each value of p, we have obtained an average lower bound and
an average upper bound of E[minla(C)/|C|].

The results are shown in Figure 5.6. As it can be seen, the accuracy on the
estimation of βla(p) degrades as p increases, but for p = 0.45, the factor is less
than 3. Unfortunately, the measured standard deviation, shown in Table 5.1, is
quite big, so the results obtained may not be close to the mean value.

We conjecture that, for high values of p, the actual value of βla(p) is
closer to the upper bound than to the lower bound. There are two reasons
for this conjecture: on one hand, the upper bounds obtained using the SS+SA
heuristic presented in Section 2.5 are only slightly lower than the ones obtained
by multiple runs of Successive Augmentation algorithms; on the other hand, our
experience in Chapter 2 suggests that even if the Degree method is the method
that delivers the higher lower bounds, these are usually far from the optimal
values.

In any case, the bad results obtained with this approach do not encourage
us to extend it for βsc(p) and βmc(p).

5.3 Connected random geometric graphs

In this section we study layout problems on random geometric graphs. Specif-
ically, all through this section, we restrict our attention to the particular case
where the radius of the random geometric graphs is of the form

rn =
√
an
n

where rn → 0 and an/ log n→∞.

It is important to recall that, almost surely, this choice results in the construc-
tion of connected graphs.

The problems considered here are Minimum Linear Arragement, Cut-
width, Edge Bisection, Vertex Bisection, Vertex Separation, Bandwidth and
Sum Cut. Recall that geometric graphs are unit disk graphs and that Theo-
rem 4.3 states that the Cutwidth, Vertex Separation and Bandwidth problems
remain NP-hard, even for unit disk graphs.

140 Layout Problems and Random Unit Disk Graphs

Lower bounds (average)
Upper bounds (average)

p

β
l
a
(p

)

0.450.40.350.30.250.20.150.1

7

6

5

4

3

2

1

0

Figure 5.6: Experimental upper and lower bounds for the average
value of βla(p).

p β−la(p) β+
la(p)

0.10 0.093 0.106 Variance
0.211 0.218 Average

0.15 0.145 0.185 Variance
0.319 0.340 Average

0.20 0.204 0.299 Variance
0.457 0.507 Average

0.25 0.272 0.467 Variance
0.615 0.718 Average

0.30 0.343 0.817 Variance
0.801 1.019 Average

0.35 0.421 0.666 Variance
1.027 1.512 Average

0.40 0.493 0.185 Variance
1.310 2.578 Average

0.45 0.583 26.330 Variance
1.617 5.696 Average

Table 5.1: Experimental upper and lower bounds for the variance
and average of βla(p).

5.3 Connected random geometric graphs 141

The first goal is to get lower bounds for the layout problems on random
geometric graphs. Leading up to these, we will find some isoperimetric inequal-
ities, which have some interest in their own right. The second goal is to derive
asymptotics for the upper bounds obtained with two simple heuristics that we
introduce. Combined with the lower bounds, we show that both heuristics are
constant approximation algorithms for our layout problems, on the considered
family of random geometric graphs. In the case of the Bandwidth and Ver-
tex Separation problems, the solutions returned by either of our algorithms are
asymptotically optimal. In these cases, our result is another analog of the BHH
theorem. For the remaining problems, the approximation factor of the values
provided by the two algorithms are tight. We emphasize that all our approx-
imability results hold for random geometric graphs in the sense of convergence
with probability 1.

We use our new results on random geometric graphs to give empirical
evidence of the goodness of several well-known heuristics for layout and par-
titioning problems. These heuristics include global methods, such as Spectral,
Multilevel and Greedy methods, and local methods, such as Simulated Anneal-
ing, Helpful Sets or Kernighan–Lin, as well as the approximation algorithms
presented in this section.

5.3.1 Isoperimetric inequalities

To start, we will prove some isoperimetric inequalities that will be used latter
on in this section. An isoperimetric inequality relates the size of a subgraph
with the size of its boundary.

We start presenting an isoperimetric inequality on square grids with addi-
tional diagonal connections. Let (A,B) be a partition of [m]2 for some integerm.
Let ∂A,B be the number of elements of A×B that are neighbor pairs, including
diagonal neighbors, that is, ∂A,B = |{(x, y) : x ∈ A ∧ y ∈ B ∧ ‖x− y‖∞ = 1}|.

Proposition 5.1. For any integer m > 3 and any partition (A,B) of [m]2, it
holds that ∂A,B > 3 min

{√
|A|,

√
|B|
}

.

Proof. If A includes an entire row of elements, and B includes an entire row
of elements, then each column includes a neighbor pair of elements, one from
A and the other from B, which contributes at least 3 to ∂A,B except for the
pair in the right-most column which contributes 1, so that ∂A,B > 3m− 2 (see
Figure 5.7). If B contains no entire row or column, and at least as many rows as
columns have non-empty intersection with B, then there are at least

√
|B| such

rows, and each contains a neighbor pair from different sets which contributes
at least 3 to ∂A,B, so that ∂A,B > 3

√
|B|. Applying similar arguments to the

142 Layout Problems and Random Unit Disk Graphs

A

A A

B B

A A

B A

A B

B B

A B

B

Figure 5.7: Illustration for the proof of Proposition 5.1.

other possible cases, we have

∂A,B > min
{

3
√
|A|, 3

√
|B|, 3m− 2

}
,

and if m > 3 this minimum is always achieved at 3
√
|A| or at 3

√
|B|.

Let us present now an isoperimetric inequality for sets in R2. In the
following, | · | denotes Lebesgue measure, A+B denotes {x+y : x,y ∈ A×B},
and Br denotes the l∞ ball of radius r: Br = {x ∈ R2 : ‖x‖∞ 6 r}. For
A ⊂ R2, let ∂rA denote the set (A + Br) \ A, and let ∂−rA denote the set
∂r(R2 \ A). Recall that a set A is compact if every open covering of A has a
finite sub-covering.

Proposition 5.2. Suppose A is a compact subset of R2, and r > 0. Then,

|∂rA| > 4r
√
|A| and |∂−rA| > 4r

√
|A| − 16r2.

Proof. By the Brunn–Minkowski inequality (see e.g. Section 1 in [166]),

|A+Br| > (
√
|A|+

√
|Br|)2 = (

√
|A|+ 2r)2 > |A|+ 4r

√
|A|,

so the first inequality follows.
Set Ao = A \ ∂−rA. Then, ∂r(Ao) ⊂ ∂−rA and hence

|∂−rA| > |∂rAo| > 4
√
|Ao|r = 4r

√
|A| − |∂−rA|.

If |∂−rA| > 4r
√
|A|, we have the second inequality at once. Otherwise, we have

|∂−rA| > 4r
√
|A| − 4

√
|A|r = 4r

√
|A|
√

1− 4r/
√
|A|

> 4r
√
|A|
(

1− 4r/
√
|A|
)

= 4r
√
|A| − 16r2,

so the second inequality follows.

We are interested here in subsets of the unit square [0, 1]2. For A ⊂ [0, 1]2,
let Ar denote the set (A+Br) ∩ [0, 1]2 and let Ac denote the set [0, 1]2 \A.

5.3 Connected random geometric graphs 143

Proposition 5.3. Suppose A is a compact subset of [0, 1]2, and r ∈ (0, 1).
Then,

|Ar \A| > min
{

2r
√
|A|, 2r

√
|Ac| − 4r2, r

}
.

Proof. This proof has lots in common with the proof of Lemma 4.2, which can
be regarded as its discrete analog.

Let A′ be the set in [0, 1]2 obtained by “pushing each vertical section of
A down as far as possible towards the x-axis;” formally, setting

Sx(A) = {y : (x, y) ∈ A}, ∀x ∈ [0, 1],

let

A′ =
⋃

x∈[0,1]
Sx(A)6=∅

{{x} × [0, |Sx(A)|]}.

We claim that |A′| = |A|: Let f(x, y) = ((x, y) ∈ A) and g(x, y) = ((x, y) ∈ A′).
For all x ∈ [0, 1], let fx(y) = f(x, y) and gx(y) = g(x, y). By Fubini’s theorem
(see e.g. Chap. 12 of [217]),

|A| =
∫

[0,1]2
f(x, y) dΩ =

∫ 1

0

∫ 1

0
fx(y) dy dx =

∫ 1

0
|Sx(A)| dx

=
∫ 1

0

∫ 1

0
gx(y) dy dx =

∫

[0,1]2
g(x, y) dΩ = |A′|.

Moreover, we claim that |A′r| 6 |Ar|. Indeed, consider a 1-dimensional
setup. For any W ⊂ [0, 1], let Wr be the r-neighborhood of W in [0, 1] and
let |W | be the 1-dimensional measure of W . Then, if W 6= ∅, we have |Wr| >
min {|W |+ r, 1}, because if [0, 1] \W includes an interval of length at least r
then |Wr| > |W |+ r, and otherwise Wr = [0, 1] and so |Wr| = 1. Extending the
argument to A ⊂ [0, 1]2, for x ∈ [0, 1],

Sx(Ar) =
⋃

u∈[0,1]
|u−x|6r

(Su(A))r.

Assume x ∈ [0, 1] is such that Su(A) 6= ∅ for some u ∈ [0, 1] with |u − x| 6 r.
Then,

|Sx(Ar)| > sup
u∈[0,1]
|u−x|6r

|(Su(A))r| > sup
u∈[0,1]
|u−x|6r

min {|(Su(A))|+ r, 1} .

144 Layout Problems and Random Unit Disk Graphs

With x ∈ [0, 1],

Sx(A′r) = ∪u∈[0,1], |u−x|6r[0,min {|Su(A)|+ r, 1}].

Hence,

|Sx(A′r)| 6 sup
u∈[0,1]
|u−x|6r

min {|(Su(A))|+ r, 1} 6 |Sx(Ar)|.

If x ∈ [0, 1] and Su(A) = ∅ for all u ∈ [0, 1] with |u− x| 6 r, then |Sx(Ar)| = 0.
Therefore, for all x ∈ [0, 1], |Sx(A′r)| 6 |Sx(Ar)|. using again Fubini’s theorem,
we have

|Ar| =
∫ 1

0
|Sx(Ar)|dx and |A′r| =

∫ 1

0
|Sx(A′r)| dx,

and so, we get |A′r| 6 |A|.
Let A′′ be the set in [0, 1]2, obtained by “pushing each horizontal section

of A′ sideways as far as possible towards the y-axis,” in an analogous manner to
the construction of A′ from A. Then |A′′| = |A′| = |A|, and |A′′r | 6 |A′r| 6 |Ar|.
Moreover, A′′ is a down-set, that is, it has the property that for any x ∈ A′′, all
points of [0, 1]2 lying directly below or directly to the left of x are in A′.

From now on we assume that A is a down-set. Otherwise, it could be
converted to a down-set A′′. We consider four different cases:

Case 1: (1 − r, 0) ∈ A and (0, 1 − r) /∈ A. Then Sx(Ar \ A) contains an
interval of length at least r, for each x ∈ [0, 1], so that by Fubini’s theorem,
|Ar \A| > r.

Case 2: (1− r, 0) /∈ A and (0, 1− r) ∈ A. Clearly in this case, |Ar \A| > r
by an analogous argument to the one in Case 1.

Case 3: (1− r, 0) /∈ A and (0, 1− r) /∈ A. In this case, set A1 = A; let A2

be the reflection of A in the x-axis. Let A3 (respectively A4) be the reflection of
A1 (respectively A2) in the y-axis, and let A5 = ∪4

i=1Ai. Then, by Lemma 5.2,

|Ar \A| = (1/4)|∂rA5| >
√
|A5|r = 2r

√
|A|.

Case 4: (1 − r, 0) ∈ A and (0, 1 − r) ∈ A. In this case, set A1 = Ac; let
A2 be the reflection of A1 in the line y = 1. Let A3 (respectively A4) be the
reflection of A1 (respectively A2) in the line x = 1, and let A5 = ∪4

i=1Ai. Then,
by Lemma 5.2,

|Ar \A| = (1/4)|∂−rA5| >
√
|A5| − 4r2 = 2

√
|Ac|r − 4r2.

Since one of the four cases considered above must occur, we get the lemma.

5.3 Connected random geometric graphs 145

5.3.2 Lower bounds for mineb, mincw and minla

We seek now lower bounds for the optimal costs of the Edge Bisection, Cutwidth
and Minimum Linear Arrangement problems on random geometric graphs whose
radius is of the form rn =

√
an/n, where rn → 0 and an/ log n = bn →∞.

The following definition captures the property that vertices of a geometric
graph are “nicely spread” on the unit square. The subsequent lemma is the only
probabilistic result of this subsection.

Definition 5.5 (Nice graphs). Consider any set Vn of n points in [0, 1]2,
which together with a radius rn, induce a geometric graph G = G(Vn; rn). Dis-
sect the unit square into 4 d1/rne2 boxes of size 1/2 d1/rne × 1/2 d1/rne placed
packed in [0, 1]2 starting at (0, 0). Given ε ∈ (0, 1), let us say that G is ε-nice
if every box of this dissection contains at least (1 − ε)1

4an points and at most
(1 + ε)1

4an points.1

Notice that in the above construction, all the boxes exactly fit in the unit
square, and that any two points of Vn in neighboring boxes, including diagonals,
will be connected by an edge in G because 1/2 d1/rne 6 1

2rn.

Lemma 5.3. Let ε ∈ (0, 1
5). Then, with probability 1, for all large enough n,

random geometric graphs G(Xn; rn) are ε-nice.

Proof. Choose a box in the dissection and let Y be the random variable counting
the number of points of Xn in this box. As the points in Xn are independently
and uniformly distributed,

E [Y] =
n

4 d1/rne2
∼ nr2

n

4
= 1

4an.

Using Chernoff’s bounds we obtain

Pr
[
Y > (1 + ε)1

4an
]
6 Pr

[
Y > (1 + 1

2ε)E [Y]
]
6 exp

(
− (1

2ε
)2 E [Y] /3

)

6 exp
(− 1

13ε
2 1

4an
)

= n−ε
2bn/52

and

Pr
[
Y 6 (1− ε)1

4an
]
6 Pr

[
Y 6 (1− 1

2ε)E [Y]
]
6 exp

(
− (1

2ε
)2 E [Y] /2

)

6 exp
(−1

9ε
2 1

4an
)

= n−ε
2bn/36 6 n−ε2bn/52.

1 To be completely rigorous, this definition should also state that no vertex of Vn falls in
the boundary of a box. As in our study Vn will be a set of random points in the unit square,
the probability that some vertex of Vn falls in the boundary of two or more boxes is zero. In
the following, we will always make use of this assumption.

146 Layout Problems and Random Unit Disk Graphs

The number of boxes is certainly smaller than n, so by Boole’s inequality,
the probability that for some box the number of points in the box is less than
(1− ε)1

4an or bigger than (1 + ε)1
4an, is bounded by 2n1−bnε2/52. As bn →∞,

∑

n∈N
2n1−bnε2/52 <∞.

The result follows by the Borel–Cantelli lemma.

The following lemma is the basis of our lower bounds for nice graphs.

Lemma 5.4. Let ε ∈ (0, 1
5) and n large enough. Let G be any ε-nice geometric

graph with n vertices and radius rn and let ϕ be any layout of G. Then, for
any integer i such that α = i/n ∈ (2ε, 1− 2ε), it is the case that

θ(i, ϕ,G) > 3(1−5ε)
8 min

{√
α− 2ε,

√
1− α− 2ε

}
n2r3

n.

Proof. We assign colors to vertices and boxes: color the first i vertices in the
ordering “red” and the other vertices “green;” color the boxes containing at
most 1

5εan green vertices “red,” the boxes containing at most 1
5εan red vertices

“green,” and the other boxes “yellow.” Let Yn be the number of yellow boxes.
Observe that θ(i, ϕ,G) is the total number of edges between opposite-color

vertices. Let us refer to such edges as “within-box” if the vertices in question
lie in the same box, or “between-box” otherwise. We consider two cases:

Case 1: Yn > 25ε−2√n/√an. For each yellow box, the cost of within-box
edges is at least ε2a2

n/25. Hence,

θ(i, ϕ,G) > (1
5εan)2 · Yn > n1/2a3/2

n = n2r3
n.

Case 2: Yn < 25ε−2√n/√an. In this case, we consider only between-box
edges, i.e. between opposite colored vertices, which are between neighboring
boxes, including diagonal neighbors. Consider a particular box containing a
total of t vertices, r of them red. Suppose that the total number of red vertices
in neighboring boxes is r′ and the total number of green vertices in neighboring
boxes is g′. Then, the total number of between-box edges of the type we are
considering, involving vertices in that particular box, is

rg′ + (t− r)r′ = r(g′ − r′) + tr′.

Given t, r′ and g′, the equation above is a linear function of r and so it attains
its minimum over the range [0, t] either at r = 0, at r = t or at both. Hence,
it is possible to change the vertices in that box to either all red or all green
without increasing the total number of between-box edges of the type we are
considering.

5.3 Connected random geometric graphs 147

Let us modify the coloring of vertices by going through the yellow boxes
in turn, successively changing the color of vertices in each box either to all red
or to all green, whichever does not increase the total number of between-box
edges of the type we are considering. When done, there will no longer be any
yellow boxes! Let Rn be the number of red boxes and Gn the number of green
boxes based on this modified coloring.

By niceness, the number of vertices whose color has been changed is at
most

Yn · (1 + ε)1
4an 6 25ε−2√n√an = 25ε−2nrn.

Thus, for n so large that 25ε−2rn 6 ε, the number of red vertices in the modified
coloring is at least (α− ε)n.

By definition of “green box,” the number of red vertices in green boxes is
at most 1

5εan4 d1/rne2 6 εn. Thus, in the modified coloring, the total number
of red vertices in red boxes is at least (α−2ε)n for n large enough. By a similar
argument, the number of green vertices in green boxes in the modified coloring
is at least (1− α− 2ε)n for n large enough.

As, by ε-niceness, no box can contain more than 1
4(1 + ε)an vertices and

there are at least (α − 2ε)n red vertices in red boxes and (1 − α − 2ε)n green
vertices in green boxes, we have

Rn >
(α− 2ε)n
1
4(1 + ε)an

=
4(α− 2ε)
(1 + ε)r2

n

and

Gn >
(1− α− 2ε)n

1
4(1 + ε)an

=
4(1− α− 2ε)

(1 + ε)r2
n

.

Let ∂G denote the number of pairs of neighbor boxes of opposite colors
in G with the modified coloring. By Proposition 5.1,

∂G > 3 min
{√

Rn,
√
Gn

}
> 6
rn

min

{√
α− 2ε
1 + ε

,

√
1− α− 2ε

1 + ε

}
.

By niceness and the definition of box coloring, each red box contains at
least (1− 2ε)1

4an red vertices, and each green box contains at least (1− 2ε)1
4an

green vertices. As a consequence,

θ(i, ϕ,G) > ∂G (1−2ε)2

16 a2
n >

3(1−2ε)2

8
√

1+ε
a3/2
n

√
nmin

{√
α− 2ε,

√
1− α− 2ε

}

> 3(1−5ε)
8 n2r3

n min
{√

α− 2ε,
√

1− α− 2ε
}
.

This lower bound is smaller than the one for Case 1 and thus it holds for both
cases.

148 Layout Problems and Random Unit Disk Graphs

The following result presents our lower bounds for the Edge Bisection,
Cutwidth and Minimum Linear Arrangement problems on nice graphs. Latter
on, we will show these lower bounds are sharp, since their order of magnitude
match the upper bounds that we will obtain with two heuristics.

Theorem 5.9. Let ε ∈ (0, 1
5) and n large enough. Let G be an ε-nice geometric

graph with n vertices and radius rn. Then, the following lower bounds hold:

mineb(G) > 3(1−8ε)

8
√

2
· n2r3

n, (5.6)

mincw(G) > 3(1−8ε)

8
√

2
· n2r3

n, (5.7)

minla(G) > (1−42
√
ε)

4
√

2
· n3r3

n. (5.8)

Proof. The proofs of (5.6) and (5.7) are obtained from Lemma 5.4 by setting
i = bn/2c. To prove (5.8), take any layout ϕ of G. Then, by Lemma 5.4,

la(ϕ,G) =
n∑

i=1

θ(i, ϕ,G)

>
∑

2εn<i<(1−2ε)n

θ(i, ϕ,G)

> 3
4(1− 5ε)n2r3

n

∑

2εn<i<n/2

√
i/n− 2ε.

Using the facts that a > b implies
√
a− b > √a −

√
b and that

∑m
k=1

√
k >

2
3m

3/2 +O (
√
m) we obtain (5.8) by successive minorizations.

5.3.3 Lower bounds for minvs, minsc, minvb and minbw

Lower bounds for the optimal costs of the Vertex Separation, Sum Cut and
Bandwidth problems could also be obtained for nice graphs. However, we shall
obtain tighter lower bounds taking a finer dissection:

Definition 5.6 (Good graphs). Again, we consider any set Vn of n points
in [0, 1]2, which together with a radius rn induce a random geometric graph
G = G(Vn; rn). Given a constant ε ∈ (0, 1), G is said to be ε-good if setting

γ =
(⌊

2
εrn

⌋
rn

)−1

and dissecting the unit square into (γrn)−2 boxes, each of size γrn× γrn, every
box contains at most p+ = (1 + γ)γ2an points and at least p− = (1 − γ)γ2an
points.

5.3 Connected random geometric graphs 149

Observe that 1/(γrn) is an integer and that γ → ε/2 so that ε/4 6 γ 6 ε
for n large enough.

Lemma 5.5. Let ε ∈ (0, 1). Then, with probability 1, for all large enough n,
random geometric graphs G(Xn; rn) are ε-good.

Proof. Choose a box in the dissection and let Y be the random variable counting
the number of points of Xn in this box. As the points in Xn are independent
and uniformly distributed, we have E [Y] = γ2an where γ = 1/

(⌊
2
εrn

⌋
rn

)
. By

Chernoff’s bounds and Boole’s inequality, used as in the proof of Lemma 5.3,
the probability that some box has more than p+ points or fewer than p− points
is bounded by

2
(

1
γrn

)2

exp
(−γ2(γ2an)/3

)
=

2n
γ2an

n−γ
4bn/3 6 2

γ2
n1−γ4bn/3,

which is summable in n because bn →∞ as n→∞. The result follows by the
Borel–Cantelli lemma.

The following lemma is the basis of our lower bounds for good graphs.

Lemma 5.6. Let ε ∈ (0, 1) and n large enough. Let G be an ε-good geometric
graph with n vertices and radius rn. Let i ∈ [n] and consider any ordering ϕ on
G. Then,

δ(i, ϕ,G) > (1− 3ε)
(
h(i/n)− 2

√
ε− 4rn

) · nrn, (5.9)

where for x ∈ [0, 1] we set h(x) = min
{

2
√
x, 2

√
(1− x), 1

}
.

Proof. With [0, 1)2 divided into boxes of side γrn where γ = 1/
(⌊

2
εrn

⌋
rn

)
, we

say that two boxes are adjacent if the l∞ distance between their centers is at
most (1−γ)rn. Note that under the l∞ norm, any two points in adjacent boxes
are at distance at most rn from each other.

Given a layout ϕ, let the first i points be denoted “red” and the others
“green.” Then δ(i, ϕ,G) is the number of red points of Xn having one or more
green points within a distance rn. Let δ′(i, ϕ,G) be number of red points X
such that there is at least one green point lying either in the box containing X
or in a box adjacent to the box containing X. Then δ′(i, ϕ,G) 6 δ(i, ϕ,G). We
shall show that the right side of (5.9) is a lower bound for δ′(i, ϕ,G).

Given ϕ, let boxes containing only red points be denoted “red,” let boxes
containing only green points be denoted “green,” and let the other boxes be
denoted “yellow.” Note that δ′(i, ϕ,G) is the number of red points X for which
the box containing X is either itself yellow, or has some non-red box adjacent
to it.

150 Layout Problems and Random Unit Disk Graphs

We claim that there is an ordering ϕ on Xn minimizing δ′(i, ·, G) such that
ϕ induces at most one yellow box. Indeed, given an ordering ϕ inducing more
than one yellow box, choose an ordering on yellow boxes. It is then possible
to modify ϕ to an ordering ϕ′ which respects the chosen ordering on yellow
boxes of ϕ, and which satisfies δ′(i, ϕ′, G) 6 δ′(i, ϕ,G). This can be done by
successively swapping red and green points, with each swap not increasing δ′.

Thus, without loss of generality, we can assume that ϕ induces at most
one yellow box. Set α = i/n and let NR be the number of red boxes. Then, by
goodness and the fact that there are αn red points,

α

(1 + γ)(γrn)2
− 1 6 NR 6

α

(1− γ)(γrn)2
. (5.10)

Let AR be the union of the red boxes and let AG = [0, 1]2 \AR, be the union of
green and yellow boxes. Since each box has area (γrn)2, by (5.10) we have

|AR| > α

1 + γ
− (γrn)2 and |AG| > 1− α

1− γ .

Let B be the union of red boxes that are adjacent to green or yellow boxes.
Then B = (AG)(1−γ)rn \AG, and therefore, by Proposition 5.3,

|B| > rn min
{

2(1− γ)
√
|AG|, 2(1− γ)

√
|AR| − 4((1− γ)rn)2, (1− γ)

}

> (1− γ)rn min
{

2
√

1− α

1− γ , 2
√

α

1 + γ
− (γrn)2 − 4rn, 1

}

> (1− γ)rn

(
min

{
2
√

1− α

1− γ , 2
√

α

1 + γ
− (γrn)2, 1

}
− 4rn

)
.

Using the fact that a > b implies
√
a− b > √a−

√
b, we have

√
1− α

1− γ >
√

1− α−√γ√
1− γ >

√
1− α−√γ > (1− γ)

(√
1− α−√γ) .

As rn → 0, for n large enough, rn 6 /
√
γ. Since 1/

√
(1 + γ) > 1− γ, we have

√
α

1 + γ
− (γrn)2 >

√
α− γ2r2

n(1 + γ)√
1 + γ

> (1− γ)
√
α− γ2r2

n(1 + γ)

> (1− γ)
(√

α− γrn
√

1 + γ
)
> (1− γ)

(√
α−√γ) .

Therefore,

|B| > (1− γ)rn
(
min

{
2(1− γ)

(√
1− α−√γ) ,

2(1− γ)
(√
α−√γ) , 1} − 4rn

)

5.3 Connected random geometric graphs 151

> (1− γ)2rn
(
min

{
2
√

1− α− 2
√
γ, 2
√
α− 2

√
γ, 1− 2

√
γ
}− 4rn

)

> (1− γ)2rn
(
min

{
2
√

1− α, 2
√
α, 1

}− 2
√
γ − 4rn

)
. (5.11)

Since B is a union of disjoint boxes, each one with area γ2r2
n, the number

of such boxes is their total area divided by γ2r2
n. By goodness, the number of

points lying in the region B is bounded below by (1−γ)n times its area. Hence
by (5.11) we obtain

δ′(i, ϕ,G) > (1− 3γ)nrn(h(α)− 2
√
γ − 4rn)

> (1− 3ε)nrn(h(α)− 2
√
ε− 4rn),

which proves the lemma.

The following result presents our lower bounds for the Vertex Separation,
Sum Cut, Vertex Bisection and Bandwidth problems on good graphs.

Theorem 5.10. Let ε ∈ (0, 1) and n large enough. Let G be an ε-good geo-
metric graph with n vertices and radius rn. Then, the following lower bounds
hold:

minvb(G) > (1− 6
√
ε) · nrn (5.12)

minvs(G) > (1− 6
√
ε) · nrn (5.13)

minbw(G) > (1− 6
√
ε) · nrn (5.14)

minsc(G) >
(

5
6 − 6

√
ε
) · n2rn (5.15)

Proof. The proof of (5.12) is obtained directly from Lemma 5.6 by taking i =
dn/2e and the proof of (5.13) is obtained directly from Lemma 5.6 by taking i
with 1

4 6 i/n 6
3
4 , so that h(i/n) = 1.

The proof (5.14) follows from Lemma 1.1.
To prove (5.15), consider any layout ϕ of G. Then, using again Lemma 5.6,

we have that for large enough n,

sc(ϕ,G) =
n∑

i=1

δ(i, ϕ,G) > (1− 3ε)nrn
n∑

i=1

(
h(i/n)− 2

√
ε− 4rn

)
.

As
n∑

i=1

(
h(i/n)− 2

√
ε− 4rn

)
>

>


4

∑

16i6n/4

√
i
n


+


 ∑

n/4<i<3n/4

1


−

(
n∑

i=1

2
√
ε+ 4rn

)
,

152 Layout Problems and Random Unit Disk Graphs

39

23

15

19

31

4

13

37

10

32

1

35

12

14

5

36

2

34
3

38

16

17

6

29

33

9

22

24

26

28

30

25

7

21

2711

8

40

18

20

Figure 5.8: Illustration of the projection algorithm.

and
∑m

k=1

√
k > 2

3m
3/2 +O (

√
m), we obtain

sc(ϕ,G) >
(

5
6 − 6

√
ε
) · n2rn,

which proves the theorem.

5.3.4 Approximation algorithms

We now present two heuristics, denoted Projection and Dissection, that compute
feasible layouts of random geometric graphs. Using again the notion of ε-good
graphs introduced in Definition 5.6, we show that the costs of these layouts are
within a constant of the previous lower bounds. In the following, the coordinates
of a point u ∈ [0, 1]2 are denoted by x(u) and y(u).

Algorithm 5.1 (Projection). The Projection algorithm creates a layout by
ordering the vertices according to their projection onto the x-axis. Another way
to see this algorithm is to sweep a vertical line starting from x = 0 to x = 1,
numbering vertices in the order the line touches them.

Figure 5.8 illustrates this algorithm.
The expected running time of the Projection algorithm to compute the

projected layout of a random geometric graph is linear, as it requires only the
ranking of n numbers distributed uniformly.

5.3 Connected random geometric graphs 153

Theorem 5.11. Let ε ∈ (0, 1) and n large enough. Let G be an ε-good geo-
metric graph with n vertices and radius rn. Then, the following upper bounds
on the cost of the projected layout π of G hold:

cw(π,G) 6 (1 + 3ε)5 · n2r3
n, (5.16)

eb(π,G) 6 (1 + 3ε)5 · n2r3
n, (5.17)

bw(π,G) 6 (1 + 3ε)2 · nrn, (5.18)

vb(π,G) 6 (1 + 3ε)2 · nrn, (5.19)

la(π,G) 6 (1 + 3ε)5 · n3r3
n, (5.20)

vs(π,G) 6 (1 + 3ε)2 · nrn, (5.21)

sc(π,G) 6 (1 + 3ε)2 · n2rn. (5.22)

Proof. Given a vertex u of G, let θ(u) denote the cut induced by the projected
layout π on u, that is, the number of edges vw such that x(v) 6 x(u) and
x(u) < x(w). Given an edge uv from G, let λ(uv) denote the length induced
by π on uv, that is, the number of vertices w such that x(u) < x(w) and
x(w) < x(v). Set γ = 1/

(⌊
2
εrn

⌋
rn

)
and k = d1/γe 6 1/γ + 1. Recall that

1
4ε 6 γ 6 ε. Every possible edge is between boxes of side γrn, with centers at
distance at most rn. Thus,

θ(u) 6
∑

06i6k
(k + 1− i) (2k + 1)

1
γrn

p2
+ 6 (1 + 3ε)5n2r3

n. (5.23)

On the other hand, observe that λ(uv) is bounded above by the number of
possible vertices in the columns of boxes between the column of u and the
column of v. Thus,

λ(uv) 6 p+ (k + 2)
1
γrn
6 (1 + 3ε)2nrn. (5.24)

Bounds (5.16), (5.17) and (5.18) follow directly from Equations (5.23) and (5.24).
Bounds (5.20), (5.21), (5.19) and (5.22) hold because for any layout ϕ, it is
the case that la(ϕ,G) 6 ncw(ϕ,G), vb(ϕ,G) 6 vs(ϕ,G) 6 bw(ϕ,G) and
sc(ϕ,G) 6 nvs(ϕ,G), as seen in Lemma 1.1.

Next we give lower bounds on the costs of the layouts delivered by the
Projection algorithm on good graphs:

Lemma 5.7. Let ε ∈ (0, 1) and n large enough. Let G be an ε-good geometric
graph with n vertices and radius rn. Then, the following lower bounds on the
cost of the projected layout π of G hold:

vs(π,G) > (1− 3ε) · nrn, (5.25)

154 Layout Problems and Random Unit Disk Graphs

vb(π,G) > (1− 3ε) · nrn, (5.26)
bw(π,G) > (1− 3ε) · nrn, (5.27)

sc(π,G) > (1− 5ε) · n2rn, (5.28)

cw(π,G) > (1− 8ε) · n2r3
n, (5.29)

eb(π,G) > (1− 8ε) · n2r3
n, (5.30)

la(π,G) > (1− 10ε) · n3r3
n. (5.31)

Proof. Set γ = 1/
(⌊

2
εrn

⌋
rn

)
and k = d1/γe. Let us prove (5.25). Consider any

vertex u far enough from the square boundaries. All the vertices in the k − 2
columns preceding the column of u must be connected to some vertex in the
next column after the column of u. Therefore,

vs(π,G) > p−(k − 2)
1
γrn
> (1− 3ε)nrn.

Bound (5.26) follows by the same argument, and bound (5.27) follows because
of Lemma 1.1.

Next, let us prove (5.28). We can extend the previous proof to all the
points which are away from the left and the right borders of the unit square:

sc(π,G) > p−
1
γrn

(
1
γrn
− 2k

)(
p−(k − 2)

1
γrn

)

> (a2
n/r

3
n)(1− γ)3(1− 2γ) > n2rn(1− 5ε).

We prove now (5.29) and (5.30). Take any vertex u away from the left
and right borders of [0, 1]2. We have,

cw(π,G) >
k−2∑

i=1

p2
−(k − i− 1)

(
1
γrn
− 2k

)
(2k − 3)

> (1− 2γ)2(1− γ)4a2
n/rn > (1− 8ε)n2r3

n.

As the
⌊

1
2n
⌋
-th vertex of the projected layout must be away from the left and

right borders of [0, 1]2, we have the same result for eb(π,G).
Finally, let us prove (5.31). By the same argument we used for the cut-

width,

la(π,G) > p−
1
γrn

(
1
γrn
− 2k

) k−2∑

i=1

p2
−(k − i− 1)

(
1
γrn
− 2k

)
(2k − 3)

> (1/r2
n)(1− 2γ)2(1− 6ε)a2

n/rn > (1− 10ε)n3r3
n.

This concludes the proof.

5.3 Connected random geometric graphs 155

The behavior of the Projection algorithm on good graphs is characterized
by the following consequence of Theorem 5.11 and Lemma 5.7:

Theorem 5.12. Let ε ∈ (0, 1) and n large enough. Let G be an ε-good ge-
ometric graph with n vertices and radius rn. Then, for any layout measure
f ∈ {bw,vs,vb, sc,cw,eb, la}, we have

(1− 10ε) 6 f(π,G)
Af

6 (1 + 3ε)5,

where

Abw = nrn, Avs = nrn, Avb = nrn, Asc = n2rn,

Acw = n2r3
n, Aeb = n2r3

n, Ala = n3r3
n.

As a consequence of Lemmas 5.3 and 5.5, Theorems 5.9, 5.10 and 5.12,
we obtain the following approximability result:

Theorem 5.13. Let (ri)i>1 be a sequence of positive numbers with rn → 0
and nr2

n/ log n → ∞; let (Xi)i>1 be a sequence of independent and uniformly
distributed random points in [0, 1]2. For all n ∈ N, let Gn = G(Xn; rn); then,
with probability 1:

lim
n→∞

minbw(Gn)
nrn

= 1,

lim
n→∞

minvs(Gn)
nrn

= 1,

lim
n→∞

minvb(Gn)
nrn

= 1,

1 > lim sup
n→∞

minsc(Gn)
n2rn

> lim inf
n→∞

minsc(Gn)
n2rn

> 5
6 ,

1 > lim sup
n→∞

mincw(Gn)
n2r3

n

> lim inf
n→∞

mincw(Gn)
n2r3

n

> 3
8
√

2
,

1 > lim sup
n→∞

mineb(Gn)
n2r3

n

> lim inf
n→∞

mineb(Gn)
n2r3

n

> 3
8
√

2
,

1 > lim sup
n→∞

minla(Gn)
n3r3

n

> lim inf
n→∞

minla(Gn)
n3r3

n

> 1
4
√

2
.

From the previous theorem we obtain the following approximation result.

156 Layout Problems and Random Unit Disk Graphs

Theorem 5.14. Let (ri)i>1 be a sequence of positive numbers with rn → 0
and nr2

n/ logn → ∞; let (Xi)i>1 be a sequence of independent and uniformly
distributed random points in [0, 1]2. Then, with probability 1, and for all large
enough n, the Projection algorithm is a constant approximation algorithm for
the Bandwidth, Minimum Linear Arrangement, Minimum Cut, Minimum Sum
Cut, Vertex Separation, Edge Bisection and Vertex Bisection problems on ran-
dom geometric graphs G(Xn; rn). Moreover, for the Bandwidth, Vertex Bisec-
tion and Vertex Separation problems, the Projection algorithm is asymptotically
optimal.

As seen in Section 5.1.3, Karp’s analysis on the dissection algorithm for
the TSP problem was an important idea in combinatorial optimization on the
plane [146]. Let us adapt his algorithm to layout problems and random geo-
metric graphs.

Algorithm 5.2 (Dissection). For a geometric graph with n vertices and ra-
dius rn, our Dissection algorithm, parameterized by a constant κ > 0, is given
by the following steps:

1. Dissect [0, 1]2 into boxes of size rn/κ× rn/κ.

2. Enumerate the points, following the order of the boxes in lexicographic
order: from bottom to top and from left to right. Enumerate arbitrarily
the points in the same box.

Figure 5.9 shows an example of the application of this algorithm.
Using the same kind of arguments used for the Projection algorithm, we

can prove the following result:

Theorem 5.15. Let (ri)i>1 be a sequence of positive numbers with rn → 0
and nr2

n/ logn → ∞; let (Xi)i>1 be a sequence of independent and uniformly
distributed random points in [0, 1]2. Then, with probability 1, for all large
enough n, the Dissection algorithm is a constant approximation algorithm for
the Bandwidth, Minimum Linear Arrangement, Minimum Cut, Minimum Sum
Cut, Vertex Separation, Edge Bisection and Vertex Bisection problems random
geometric graphs G(Xn; rn). Moreover, for the Bandwidth, Vertex Separation
and Vertex Bisection problems, the Dissection algorithm is asymptotically op-
timal.

5.3.5 Experimental considerations

At this point, we have much more information of layout problems on random
geometric graphs than in Chapter 2. It thus makes sense to think how the new
results can be used in practice. In this subsection, we present several computa-
tional experiments we have performed in order to obtain a better knowledge of

5.3 Connected random geometric graphs 157

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
38

24

19

40

9

1

20

39

2

10

28

11

3

4

29

12

21

36
30

27

32

33

31

25

13

22

34

14

37

15

26

16

23

35

175

6

18

7

8

Figure 5.9: Illustration of the dissection algorithm.

layout problems on several random geometric graphs. The goal was to comple-
ment and expand the theoretical results presented in this section.

Behavior of the Projection and Dissection algorithms. According to
Theorem 5.12, the Projection and Dissection algorithms exhibit a behavior such
that for any measure F ∈ {bw,vs, sc,cw,eb, la}, we have that F (π,G)/AF
and F (ψ,G)/AF are as close to 1 as we wish. However, this result is asymptotic
in nature. The following computational experiment was designed in order to
compare the behavior of these two algorithms for the different measures. The
aim was to compare between the algorithms, and to compare the experimental
results with the predicted ones.

To conduct the experiment, we have generated random geometric graphs
with rn =

√
(logn)(log logn)/n with up to 200,000 vertices. For each each

value of n, we computed the average of all the considered measures F using
the Projection algorithm and the Dissection algorithm (with κ ∈ {1, 2, 4, 8, 16})
and normalized by their respective orders of magnitude, AF , as given by Theo-
rem 5.12.

Figures 5.10 and 5.11 show the obtained results. Note that the plots have
neither the same scaling nor the same origin. The standard deviation was very
low in all cases.

With regard to the competitive analysis, from the results of this exper-

158 Layout Problems and Random Unit Disk Graphs

gai far spl ine spm mul pro

— 2.36 3.51 164.51 0.48 23.01 18.44 0.44
kl 11.58 10.28 170.71 8.26 29.12 21.97 6.49
hs 6.36 6.78 167.47 3.42 26.18 21.73 3.60

Table 5.2: Running times (in seconds) for bisecting a random ge-
ometric graph with 10000 vertices and 5, 534, 888 edges.

iment, we can observe that, for all the measures except eb, the Projection
algorithm is the one that obtains better approximations within the considered
range of values of n. We also observe that the approximations of the Dissection
algorithm improve as κ increases. In fact, Dissection with κ = 16, performs
only slightly worse than Projection. For eb, both algorithms seem to perform
similarly. However, we have observed that the execution time increases when κ
increases. On the other hand, with regard to the predicted asymptotic behavior,
we can observe that eb is the only measure that achieves it for n < 200, 000.
For the remaining measures, la seems to tend to 1 quickly, whereas sc and vs
remain far from 1 (about 5%), and bw and cw remain quite far from 1 (10%
and 15% respectively).

The conclusions induced from this experiment are twofold: On one hand,
the Projection algorithm has a better behavior than the Dissection algorithm,
both in quality and time. On the other hand, for the sc, cw, vs and bw
measures, the predicted convergence to 1 is far from being observed. This may
be due to the fact that bn = log logn goes to infinity very slowly, but experiments
with denser graph exhibit the same phenomenon, albeit reduced.

Bisection of random geometric graphs. As described in the Introduction,
the problem of partitioning a graph into two pieces with the same number
of vertices is fundamental in computer science. Many heuristics have been
proposed for the Edge Bisection problem and many libraries implement them.
Two outstanding libraries are Chaco [126], already introduced in Section 2.2.3,
and Party, developed by Preis [212]. These libraries offer several global and
local heuristics which can be combined between them. On the other hand, the
bisection of geometric random graphs has already been considered in several
experimental papers [23, 137, 165], but without the theoretical framework we
have developed. In the following, we analyze the behavior of the Projection
algorithm and of the heuristics included in the Chaco and Party libraries for
the EdgeBis problem on random geometric graphs.

We have compared the following global heuristics. pro: the Projection
algorithm we have presented in Section 5.1; mul: the Multilevel method of

5.3 Connected random geometric graphs 159

Dissection k = 8
Dissection k = 4
Dissection k = 2
Dissection k = 1

Projection

cw

n

c
w

/
(n

1
/
2
a
3
/
2

n
)

200000150000100000500000

1.2

1.18

1.16

1.14

1.12

1.1

1.08

la

n

l
a
/
(n

3
/
2
a
3
/
2

n
)

200000150000100000500000

0.99

0.985

0.98

0.975

0.97

0.965

0.96

0.955

0.95

vs

n

v
s/

(n
1
/
2
a
1
/
2

n
)

200000150000100000500000

1.14

1.13

1.12

1.11

1.1

1.09

1.08

1.07

1.06

1.05

1.04

Figure 5.10: Normalized cost of each problem for the Projection
and Dissection algorithms (Part 1).

160 Layout Problems and Random Unit Disk Graphs

Dissection k = 8
Dissection k = 4
Dissection k = 2
Dissection k = 1

Projection

bw

n

b
w

/
(n

1
/
2
a
1
/
2

n
)

200000150000100000500000

1.18

1.16

1.14

1.12

1.1

1.08

1.06

eb

n

e
b
/
(n

1
/
2
a
3
/
2

n
)

200000150000100000500000

1.01

1.005

1

0.995

0.99

0.985

0.98

0.975

sc

n

sc
/
(n

3
/
2
a
1
/
2

n
)

200000150000100000500000

0.99

0.985

0.98

0.975

0.97

0.965

0.96

0.955

0.95

Figure 5.11: Normalized cost of each problem for the Projection
and Dissection algorithms (Part 2).

5.3 Connected random geometric graphs 161

mul

spm
pro
ine
spl
far
gai

eb — Without local search

n

e
b
/
(n

1
/
2
a
3
/
2

n
)

250000200000150000100000500000

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1

0.9

mul+kl
spm+kl
pro+kl
ine+kl
spl+kl
far+kl
gai+kl

eb — With local search (Kernighan–Lin)

n

e
b
/
(n

1
/
2
a
3
/
2

n
)

250000200000150000100000500000

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1

0.9

mul+hs
spm+hs
pro+hs
ine+hs
spl+hs
far+hs
gai+hs

eb — With local search (Helpfull Sets)

n

e
b
/
(n

1
/
2
a
3
/
2

n
)

250000200000150000100000500000

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1

0.9

Figure 5.12: Bisection of random geometric graphs with different
combinations of global and local heuristics (averages over 25 runs).

162 Layout Problems and Random Unit Disk Graphs

Hendrickson and Leland, which uses edge contraction schemes; ine: the Inertial
method requires geometric information of the vertices in order to assimilate mass
values to vertices; gai: the Gain method is based on a greedy strategy; far: the
Farhat method is based on another greedy strategy; spl: an Spectral bisection
algorithm using Lanczos eigen solver, spm: a combination of Multilevel and
Spectral methods. More details on all these heuristics are available in [126, 212].
The solutions obtained with these methods have been refined with local search
based on the Kernighan–Lin heuristic (kl) [152] or the Helpful Sets heuristic
(hs) [76].

The measurement results are summarized in Figure 5.12 for graphs with up
to 210,000 vertices and rn =

√
(logn)(log logn)/n. These results were produced

by generating 25 different random geometric graphs for each data point and
taking the average of their bisection normalized by n1/2((logn)(log logn))3/2.
Again, the standard deviation was very low. Table 5.2 shows the run time
measurements needed by the different combinations of local and global heuristics
to bisect a random geometric graph with 100, 000 vertices on a DEC Alpha
Server 8400 machine.

From these experimental results and from the knowledge we have on the
projection algorithm for EdgeBis on random geometric graphs, we can classify
the global heuristics in two groups, according on weather they offer better or
worse approximations than the Projection algorithm on the considered range
of vertices. The global heuristics that perform worse than Projection are spl,
far, gai and spm. The ones that perform better than pro are mul and spm. It
is noteworthy that spl performs better than pro for n 6 100, 000 but abruptly
gets worse afterwards.

If we consider the application of local search after the global heuristics,
we can observe that all the methods except mul can be substantially improved
by a factor around 20%. However, the quality of the improved solution depends
directly on the quality of the global solution. Moreover, when fixing the global
heuristic, we can observe that kl always returns slightly better solutions than hs.
It is worth to remark that global solutions obtained by mul cannot be improved
more than a 0.25%. On the other hand, Kernighan–Lin is the local search
heuristic that better improves a given partition. The solutions delivered by the
Helpful Sets heuristic are only slightly worse. However, the better solutions are
always delivered by the Multilevel method, and these are difficult to improve
even when using Kernighan–Lin.

In definitive, according to our experimental results, we infer that the Mul-
tilevel method is the best method to bisect the considered classes of random geo-
metric graphs. Moreover, this method has the advantage of not using geometric
information.

5.3 Connected random geometric graphs 163

lb
ss+sa

ss
pro

la

n

l
a
/
(n

3
/
2
a
3
/
2

n
)

20000180001600014000120001000080006000400020000

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 5.13: Comparison of upper and lower bounding techniques
for the MinLA problem.

Minimum Linear Arrangement. In Section 2.5, we have presented and
analyzed the SS+SA heuristic. This heuristic was delivering the best upper
bounds for the MinLA problem for graphs with a geometric structure. In that
chapter, we have also presented a lower bounding technique for MinLA based
on the degree of the vertices (lb-degree). We consider now the evaluation of
these techniques on random geometric graphs.

Figure 5.13 compares the Projection algorithm (pro) with the Spectral Se-
quencing (ss) and SS+SA (ss+sa) heuristics for the MinLA problem. The lower
bounds computed by the Degree methods (lb-degree) are also shown. These re-
sults were again obtained by taking the average of 100 geometric random graphs
for each n and normalizing by n3/2a

3/2
n . In this case, we had to content ourselves

with graphs up to 20,000 vertices, because Simulated Annealing consumes lots
of time.

The obtained results show that SS+SA performs better than Spectral
Sequencing alone. Also, both heuristics perform better than the Projection
algorithm. This shows that the approximations obtained are within a factor of
the optimal. On the other hand, we can also observe that the 0.176n3r3

n lower
bound presented in Theorem 5.9 is better than the values obtained with the
lb-degree lower bounding technique.

164 Layout Problems and Random Unit Disk Graphs

5.4 Subcritical random geometric graphs

In the previous section we have dealt with random geometric graphs whose
radius was of the form rn =

√
an/n with rn → 0 and n/ logn → ∞. These

graphs were a particular case of supercritical random geometric graphs. The
goal of the present section is to study subcritical random geometric graphs.

Recall that in the subcritical phase, random geometric graphs are highly
disconnected, with at most O(log n) vertices in each connected component. In
this case, using an exhaustive algorithm to find an optimal layout for each
component would still need O((logn)!n/ log n) steps, which is not polynomial
in n.

In what follows, we consider an infinite-volume analogue for random geo-
metric graphs. Let Pλ denote an homogeneous Poisson process on R2 of intensity
λ, and set Pλ,0 = Pλ ∪ {(0, 0)}. For n large, after appropriate scaling and cen-
tering at a randomly chosen point of Xn, the graph G(Xn; rn) looks locally like
G(Pλ,0; 1). The continuum percolation probability ϑ̃(λ) is the probability that
the added point at the origin lies in an infinite component of G(Pλ,0; 1). Then
ϑ̃(λ) is nondecreasing in λ. Set λc = inf{λ > 0 : ϑ̃(λ) > 0}. We deal with ran-
dom geometric graphs satisfying the condition nr2

n → λ, for λ in the subcritical
phase. Under the probability measure Pr[·], with corresponding expectation
E[·], let C be the component of G(Pλ,0; 1) which includes the origin.

All through this section we consider random geometric graphs generated
by subcritical limiting phases; that is, with λ < λc. First, we present conver-
gence results for the EdgeBis and VertBis problems. Then, we give tight
bounds for the Cutwidth and VertSep problems. Finally, we present a con-
vergence result for the MinLA, ModCut and SumCut problems. This last
result can be regarded as another analog of the BHH theorem for those prob-
lems.

5.4.1 Convergence results for mineb and minvb

Let us consider the behavior of the EdgeBis and VertBis problems. The
subcritical phase for these problem is given by λ < λ′c, where λ′c is defined by
λ′c = inf{λ > 0 : ϑ̃(λ) > 1

2}.
For k ∈ N, set πk = Pr[|C| = k]. It holds that πk > 0. For n ∈ N, let

Nn(k) denote the number of points of G(Xn; rn) lying in clusters of size k. The
following result will be of help.

Lemma 5.8. Suppose nr2
n → λ ∈ (0, λ′c). Then, Nn(k)/n Pr−→ πk.

Proof. Let pk(x) denote the probability that when adding a point x to a set of
n− 1 uniformly distributed points, the new point will be in a cluster of size k.

5.4 Subcritical random geometric graphs 165

Then,

E [Nn(k)] = n

∫

[0,1]2
pk(x)dx. (5.32)

For x not on the boundary of [0, 1]2, we claim that

pk(x)→ πk. (5.33)

This is because the question of whether x lies in a cluster of size k is determined
by the configuration of points within a distance krn of x, and for any bounded
set B ⊂ R2, as a consequence of the standard Poisson approximation to the
binomial distribution, the restriction to B of the point process {(Xi−x)/rn}n−1

i=1

converges in distribution to the restriction to B of Pλ.
By the dominated convergence theorem (see Theorem 1.34 in [218]), from

equations (5.32) and (5.33) we get E [Nn(k)/n]→ πk. To look at the variance,
notice that since Nn(k)(Nn(k)− 1) is twice the number of pairs of points both
in clusters of size k, if we denote by pk(x,y) the probability that when inserting
points x and y into a set of n− 2 uniform points they will both be in a cluster
of size k, then

E [Nn(k)(Nn(k)− 1)] = n(n− 1)
∫

[0,1]2

∫

[0,1]2
pk(x,y)dxdy.

For points x and y not on the boundary with x 6= y, by a similar ar-
gument to the proof of (5.33), we have that pk(x,y) → π2

k. Therefore, using
again the dominated convergence theorem, we get E

[
(Nn(k)/n)2

]→ π2
k. Using

Chebyschev’s inequality, for any constant ε > 0, we have

Pr [|Nn(k)/n−E [Nn(k)/n] | > ε] 6 1
εVar [Nn(k)/n]

= 1
ε

(
E
[
(Nn(k)/n)2

]−E [Nn(k)/n)]2
)

→ 0,

so that Nn(k)/n Pr−→ πk, which proves the lemma.

The following theorem states that, with high probability, it is possible to
bisect subcritical random geometric graphs with an empty cut.

Theorem 5.16. Suppose nr2
n → λ ∈ (0, λ′c). Then,

lim
n→∞Pr [mineb(G(Xn; rn)) = 0] = lim

n→∞Pr [minvb(G(Xn; rn)) = 0] = 1.

166 Layout Problems and Random Unit Disk Graphs

Proof. As 1 −∑k πk = ϑ̃(λ) < 1
2 , we can choose k1 such that

∑
k6k1

πk >
1
2 .

This inequality, together with Lemma 5.8 implies that, with high probability,
∑

k>k1

Nn(k) <
⌊

1
2n
⌋
,

and Nn(k) are non-zero for k ∈ [k1].
We generate a bisection (W,Xn) as follows: First, take the union of all

clusters of size greater than k1. Then, add clusters of size k1 until there are
none left. Then add clusters of size k1 − 1 until there are none left. Continue
in this way. At some point, having just added a set of size i, there will be a set
of size

⌊
n
2

⌋−m with 0 6 m < i. If m = 0, stop. Otherwise add a cluster of size
m and stop. This gives a set W ⊂ Xn, of size bn2 c, with no edges connecting W
to Xn\W , as desired.

We can transfer the previous high probability result to a convergence
result:

Corollary 5.1. Suppose nr2
n → λ ∈ (0, λ′c). Then,

mineb(G(Xn; rn)) Pr−→ 0 and minvb(G(Xn; rn)) Pr−→ 0.

Proof. From the definitions,

mineb(G(Xn; rn)) Pr−→ 0
⇐⇒ ∀ε > 0, Pr [|mineb(G(Xn; rn))− 0| > ε]→ 0
⇐⇒ ∀ε > 0, Pr [mineb(G(Xn; rn)) > ε]→ 0
⇐⇒ Pr [mineb(G(Xn; rn)) 6= 0]→ 0
⇐⇒ Pr [mineb(G(Xn; rn)) = 0]→ 1
⇐⇒ mineb(G(Xn; rn)) = 0 whp,

and the same applies to minvb(G(Xn; rn)).

5.4.2 Order of growth of mincw and minvs

In the case of the Cutwidth and VertSep problems, we do not have conver-
gence results, but are able to characterize their order of growth.

The next lemma establishes lower bounds for mincw and minvs on ran-
dom geometric graphs given by a Poisson process in the subcritical phase. In
the following, Bm denotes the box [0,m)2.

Lemma 5.9. Suppose nr2
n → λ ∈ (0, λc) and that there exists a constant c > 0

such that mn = c/rn for all n. Then,

lim
n→∞Pr [minvs(G(Pλ ∩Bmn ; 1)) > log n/ log log n] = 1

5.4 Subcritical random geometric graphs 167

and

lim
n→∞Pr

[
mincw(G(Pλ ∩Bmn)) > 1

5(logn/ log log n)2
]

= 1.

Proof. Let us dissect Bmn into boxes of size ν × ν where ν is chosen as big as
possible so that all pairs of points in the same box are connected by an edge
in G = G(Pλ ∩ Bmn ; 1). There are bn = bmn/νc2 boxes that completely fall
in Bmn . For all i ∈ [bn], let Ni be the number of points of the process that
fall in box i. By construction, we have that Ni follows a Poisson distribution
with mean µ = λν2, and that Ni is independent of Nj , for all i 6= j. Let
Mn = maxbni=1Ni. As G contains at least a clique with Mn points, we have
minvs(G) >Mn − 1 and mincw(G) > 1

2Mn(1
2Mn − 1) > 1

5M
2
n.

In the following, we show that, with high probability, some box contains
at least f(n) = log n/ log log n points. Fix a box i. Then,

Pr [Ni > f(n)] =
∑

k>f(n)

µke−µ

k!
> e−µ µf(n)+1

(f(n) + 1)!
.

Consider now all the boxes. As {Ni}i∈[bn] are independent, we have

Pr

[
bn⋂

i=1

Ni 6 f(n)

]
=

bn∏

i=1

Pr [Ni 6 f(n)]

6
(

1− e−µ µf(n)+1

(f(n) + 1)!

)bn

6
(

1− e−µ µf(n)+1

(f(n) + 1)!

)4c2n/µ

,

which goes to zero as n goes to infinity.

In order to determine upper bounds with the same order of magnitude
than the previous lower bounds, we will need two auxiliary results, not related
with random graphs, which may be useful in other situations.

Definition 5.7. Given a graph G = (V,E) and a natural s, the s-explosion of
G is the graph G′ = (V ′, E′) where V ′ = {(u, i) : u ∈ V, 1 6 i 6 s} and E′ ={

(u, i)(u, j) : u ∈ V, 1 6 i < j 6 s
} ∪ {(u, i)(v, j) : uv ∈ E, 1 6 i 6 j 6 s

}
.

Figure 5.14 illustrates this definition.

Lemma 5.10. Let G′ be the s-explosion of a graph G. Then, mincw(G′) 6
s2(mincw(G) + 1).

168 Layout Problems and Random Unit Disk Graphs

w

u v

t

u,1u,2

u,3

v,1 v,2

v,3

w,1w,2

w,3

t,1 t,2

t,3

Figure 5.14: A graph and its 3-explosion.

Proof. Let G = (V,E) and G′ = (V ′, E′). Let ϕ be a layout of G with minimal
cutwidth. Let ϕ′ be a layout of G′ defined by

ϕ′((u, i)) = (ϕ(u)− 1)s+ i, ∀u ∈ V, ∀i ∈ [s].

In plain words, the exploded nodes are placed in ϕ′ in the same relative order
that their “parents” are in ϕ.

Let i ∈ [|V |]. As each original edge from E corresponds to s2 edges in
E′, we have θ(si, ϕ′, G′) = s2θ(i, ϕ,G). Moreover, for all j ∈ [s − 1], we have
θ(si + j, ϕ′, G′) 6 θ(i + 1, ϕ,G) · s2 + s2, because we have to count s2 edges in
E′ for each edge in E plus the edges inside a clique of size s. As a consequence,

mincw(G′) 6 cw(G′, ϕ′) 6 s2(cw(G,ϕ) + 1) = s2(mincw(G) + 1),

which proves the stated result.

Definition 5.8. Given two naturals m and l, a (m, l)-mesh is the graph G =
(V,E) with vertex set Vm = {0, . . . ,m − 1}2 and edge set E = {uv : u, v ∈
V, ‖u− v‖∞ 6 l}.

Lemma 5.11. Given an integer l > 0, there exists a constant κl > 0 such that
for any node induced subgraph L of an (m, l)-mesh with n nodes, minvs(L) 6
mincw(L) 6 κl

√
n.

Proof. First assume that l = 1. An argument similar to the proof of the third
bound in Theorem 4.3 shows that mincw(L) 6 κ1

√
n for some constant κ1 > 0.

Notice that in this case, diagonal edges must be taken into account. Recall
from Lemma 1.1 that the minimal vertex separation of a graph can never be

5.4 Subcritical random geometric graphs 169

greater than its minimal cutwidth. Therefore, the statement is proved for the
case l = 1.

Assume now that l > 1. Let m′ = dm/le and let H be a node induced
subgraph of the (m′, 1)-mesh where a potential node u with coordinates xu and
yu belongs to H if and only if some node v from L with coordinates xv and yv
satisfies bxv/lc = xu and byv/lc = yu. As H is a (m′, 1)-mesh and |H| 6 |L| = n,
we have mincw(H) 6 κ1

√
n. Construct a graph G by s-exploding H with

s = l2. By Lemma 5.10, mincw(G) 6 l4(κ1
√
n + 1). Now observe that, by

construction, L is a subgraph of G. Then, by Lemmas 1.1 and 1.2,

minvs(L) 6 mincw(L) 6 mincw(G) 6 κl
√
n,

where κl = l4(κ1 + 1).

The next lemma establishes upper bounds for mincw and minvs on ran-
dom geometric graphs generated by a Poisson process in the subcritical phase.

Lemma 5.12. Suppose nr2
n → λ ∈ (0, λc) and that there exists a constant

c > 0 such that mn = c/rn for all n ∈ N. Then, there exist constants γ1 > 0
and γ2 > 0 such that

lim
n→∞Pr [minvs(G(Pλ ∩Bmn ; 1)) 6 γ1 log n/ log logn] = 1

and

lim
n→∞Pr

[
mincw(G(Pλ ∩Bmn ; 1)) 6 γ2(log n/ log log n)2

]
= 1.

Proof. We only give the proof for the vertex separation, as the proof for the
cutwidth result is similar. Let us denote G(Pλ ∩Bmn ; 1) by G.

Let us dissect Bmn in boxes of size ν × ν, where ν is a constant that will
be determined latter. We consider bn = dmn/νe2 boxes. Let H = H(Pλ) be the
node induced subgraph of the (dmn/νe), 1/ν)-mesh whose nodes are present if
and only if their corresponding box contains at least one point in Pλ.

Our proof consists in three steps; let us first outline them. In Step 1, we
prove that, with high probability, H does not contain “too large” connected
components. Assuming that H does not contain any large connected compo-
nent, in Step 2 we give an upper bound to minvs(H) with a certain function
f(n), and show that if ψ is a layout such that vs(ψ,H) 6 f(n), then minvs(G)
is bounded by Mn, a magnitude related to the number of points of Pλ in f(n)
boxes and to the layout ψ. Finally, in Step 3 we prove that, with high proba-
bility, Mn 6 ν logn/ log log n. The combination of these steps shall imply the
proposed result.

Step 1. For all i ∈ [bn], let Ni be the number of points of Pλ that fall
in box i. By construction, if box i completely falls in Bmn , we have that Ni

170 Layout Problems and Random Unit Disk Graphs

follows a Poisson distribution with mean µ = λν2; otherwise Ni is bounded by
a Poisson distribution with mean µ. Moreover, for all i 6= j, the variables Ni

and Nj are independent.
We identify each box with a node of an infinite lattice with connections

between boxes whose centers lie at distance not greater than 1/ν. We define on
this lattice a percolation process where each node is open if its corresponding
box contains at least one point from Pλ. Observe that our lattice is a “general
lattice” in the sense of Kesten [153, pp. 10–12] and Grimmett [109, p. 349].
Therefore, a percolation process on it must exhibit a phase transition at some
critical probability, and a sufficiently small value of ν places the process in
the subcritical phase (see Lemma 2 in [203]). As a consequence, there is an
exponential decay in the size of a connected component C: for some constant
α and all integer m,

Pr [|C| > m] 6 exp (−αm) .

Let c1 = 3/α. The probability that some connected component of H has size
bigger than c1 log n is

Pr


 ⋃

x∈V (H)

{|Cx| > c1 log n}

 6 bn · exp (−αc1 logn) 6 4/n2µ,

which tends to zero as n tends to infinity.

Step 2. We now suppose that no component of H has more than c1 logn
points. By Lemmas 1.2 and 5.11, this implies that for some constant κ > 0,
minvs(H) 6 κ

√
log n.

Set f(n) = κ
√

logn and let ψ be a layout of H with vs(ψ,G) 6 f(n).
We use the layout ψ as the basis to build a layout ϕ for the points in Pλ ∩ B,
taking the ordering of points within multiply occupied boxes in an arbitrary
way. As f(n) boxes separate any two connected boxes of H in ψ, we have that
vs(G,ϕ) 6 Mn, where Mn is defined as the maximum number of points in Pλ
that belong to the union of any f(n) consecutive boxes according to layout ψ.

Step 3. In the following we show that, with high probability, f(n) consec-
utive boxes contain at most g(n) = ν log n/ log log n points.

Recall that a random variable X is stochastically dominated by a random
variable Y if Pr [X 6 t] > Pr [Y 6 t] for all t ∈ R.

The number of points in an open box follows a Poisson distribution with
parameter µ, conditioned to be at least one. Using the previous definition
and induction, it is easy to check that this is stochastically dominated by an
unconditioned Poisson distribution with parameter µ plus one unit. Also, the
number of points in f(n) boxes follows the sum of f(n) independent Poisson

5.4 Subcritical random geometric graphs 171

distributions each one with parameter µ and conditioned to be at least one.
This is stochastically dominated by f(n) plus the sum of f(n) unconditioned
Poisson distributions with parameter µ, which is the same as the variable

S = f(n) + P(f(n)µ) = κ
√

logn+ P
(
µκ
√

log n
)
.

Since each connected component of H contains at most c1 logn boxes,
and H contains at most bn connected components, the probability that any
f(n) consecutive boxes contain more than g(n) points is at most

c1 logn · bn ·Pr [S > g(n)] .

In order to prove that the previous probability goes to zero as n goes to
infinity, let Y be some random variable following a Poisson distribution with
mean µn to be defined latter and let αn be a sequence to be given latter such
that µn = ω(αn) and that µn = ω(1). Then, we claim that

Pr [Y > αn] 6 e−µnµαnn eαnα−αnn ,

and so

log Pr [Y > αn] 6 −µn + αn logµn + αn − αn logαn. (5.34)

Take Y as a Poisson distribution with mean µn = µκ
√

logn and take αn =
γ1 logn/ log log n− κ√logn for some constant γ1. Let γ′1 = 3

4γ1 so that

γ′1 log n/ log log n < αn < γ1 log n/ log log n.

Substituting in the right hand side of (5.34) and taking exponentials, we find

Pr [Y > αn] > n−γ1/4,

and thus

c1 logn · bn ·Pr [Y > αn]→ 0,

provided that γ1 is chosen big enough.

Lemmas 5.9 and 5.12 together enable us to get the order of growth of
minvs and minsc on subcritical random geometric graphs, holding with high
probability. In order to relate the random geometric graphs in [0, 1]2 with the
random geometric graphs in Pλ,0, we use a coupling argument.

172 Layout Problems and Random Unit Disk Graphs

Theorem 5.17. Suppose nr2
n → λ ∈ (0, λc). Then, there exist constants 0 <

c3 < c4 and 0 < c5 < c6 such that

lim
n→∞Pr

[
c3 6

minvs(G(Xn; rn))
log n/ log log n

6 c4

]
= 1

and

lim
n→∞Pr

[
c5 6

mincw(G(Xn; rn))
(logn/ log log n)2

6 c6

]
= 1.

Proof. We first couple Xn to a Poisson processes with a slightly lower density
of points, as follows: Take λ1 ∈ (0, λ) and set mn = d1/rne. Let Mn be
a Poisson variable with mean λ1m

2
n. Then, Pr [Mn > n] → 0. Let us set

mnXn = {mnXi : i ∈ [n]} and P = {mnXi : i ∈ [Mn]}. Notice that P is
a Poisson process on Bmn with intensity λ1. If Mn 6 n then G(P; 1) is a sub-
graph of G(mnXn;mnrn), which by a suitable scaling is isomorphic to G(Xn; rn).
By monotonicity,

Pr [vs(G(Xn; rn)) > vs(G(P; 1))]→ 1.

As a consequence, by Lemma 5.9, we have

Pr [vs(G(Xn; rn)) > logn/ log log n]→ 1. (5.35)

We now couple Xn to a Poisson processes with a slightly higher density of
points: Take λ2 ∈ (λ, λc) and set m′n = b1/rnc. Let M ′n be a Poisson variable
with mean λ2(m′n)2. Then, Pr [M ′n < n] → 0. Let P ′ = {m′nXi : i ∈ [M ′n]}.
Notice that P ′ is a Poisson processes on Bm′n with intensity λ2. If M ′n 6 n
then G(P; 1) is a super-graph of G(mnXn;mnrn), which by a suitable scaling is
isomorphic to G(Xn; rn). By monotonicity,

Pr
[
vs(G(Xn; rn)) 6 vs(G(P ′; 1))

]→ 1.

As a consequence, by Lemma 5.12, we have

Pr [vs(G(Xn; rn)) 6 γ1 log n/ log log n]→ 1. (5.36)

Combining equations (5.35) and (5.36) with Boole’s inequality, and setting
c3 = 1 and c4 = γ1, we obtain

Pr
[
c3 6

minvs(G(Xn; rn))
logn/ log log n

6 c4

]
→ 1.

The proof for the cutwidth is similar.

5.4 Subcritical random geometric graphs 173

5.4.3 Convergence results for minla, minmc and minsc

We present now convergence results for the MinLA, ModCut and SumCut
problems. We shall first prove that in the subcritical case, the expected values
of minla, minmc and minsc on C are finite.

Lemma 5.13. Let λ ∈ (0, λc) and M ∈ {la,mc, sc}. Then,

E[minM(C)] ∈ (0,∞).

Proof. For any graph G with n nodes, minM(G) 6 n3. So, to prove the state-
ment it is enough to show that E[|C|3] ∈ (0,∞). To show this, let B(ρ) be the
ball of radius ρ centered at the origin and let

Pλ,0(B(ρ)) = |{x ∈ Pλ,0 : x ∈ B(ρ)}|.

Then, for any m > 0, the event {|C| > m1/3} is contained in the union of
the events {Pλ,0(B(m1/12) > m1/3} and {diam(C) > m1/12}. Therefore using
Boole’s inequality we get

Pr
[
|C| > m1/3

]
6 Pr

[
Pλ,0(B(m1/12)) > m1/3

]
+

+ Pr
[
diam(C) > m1/12

]
.

The first term in the right hand side is summable in m by standard esti-
mates of the Poisson distribution (see e.g. Prop. A.2.3 in [18]) and the second
term is summable in m by Lemma 2 in [203]. Therefore the left hand side is
summable and the statement follows.

Next we prove a technical lemma that will be needed later. To explicitly
indicate that C depends on λ, we will use the notations C(λ) and Eλ[·].

Lemma 5.14. For all M ∈ {la,mc, sc}, the function

λ 7→ Eλ

[
minM(C)
|C|

]

is continuous in λ on (0, λc).

Proof. We only give the proof for the case of minla, as the remaining cases are
similar. Define coupled versions of the Poisson process Pλ in the following way:
Let P be a Poisson process on R2 × [0,∞) of rate 1, and let Pλ consist of the
projections onto the 2 coordinates of the points of P ∩ (R2 × [0, λ]). Using this
coupling, write C(λ) for the component including the origin of G(Pλ,0; 1).

174 Layout Problems and Random Unit Disk Graphs

Suppose (λn) is a sequence with λn → λ ∈ (0, λc). With this coupling,
with probability 1, for all large enough n the component C(λn) tends to C(λ).
Hence by the dominated convergence theorem (see p. 160 in [110]),

Enλ

[
minla(C(λn))
|C(λn)|

]
→ Eλ

[
minla(C(λ))
|C(λ)|

]
,

which proves the lemma

We give now asymptotics for the minla, minmc and minsc costs of graphs
G(Pλ ∩Bm; 1).

Lemma 5.15. Suppose λ ∈ (0, λc), and let M ∈ {la,mc, sc}. Then, as m →
∞,

minM(G(Pλ ∩Bm; 1))
m2

Pr−→ λE
[
minM(C)
|C|

]
.

Proof. We only sketch a proof for minla, as the arguments are similar to the
proof of Theorem 5.8.

For each point x of Pλ∩Bm, let Cmx denote the component of G(Pλ∩Bm; 1)
that includes the point x, and let Cx denote the component of G(Pλ; 1) that
includes the point x. According to equation (5.3), it suffices to prove that

E


 1
m2

∑

x∈Pλ∩Bm

∣∣∣∣
minla(Cx)
|Cx| − minla(Cmx)

|Cmx |

∣∣∣∣


→ 0. (5.37)

For l > 0, let ∂lBm be the set of points z ∈ Bm with ‖z−y‖∞ 6 l for some
y /∈ Bm. The quantity inside the sum in (5.37) is at most minla(Cx)(Cmx 6= Cx).
Hence the random variable inside the expectation in (5.37) is at most

1
m2

∑

x∈Pλ∩∂lBm
minla(Cx) +

1
m2

∑

x∈Bm\∂lBm
minla(Cx)(diam(Cx) > l).

The expectation of the first term tends to zero, while the expectation of the
second term equals λE[minla(C)(|C| > l)], which can be made arbitrarily
small by the choice of l. Then equation (5.37) follows.

We can now finally obtain a convergence result for the cost of the MinLA,
ModCut and SumCut problems on subcritical random geometric graphs.

Theorem 5.18. Suppose nr2
n → λ ∈ (0, λc). Then, there exist two constants

β̃la(λ) > 0 and β̃sc(λ) > 0 such that, as n→∞,

minla(G(Xn; rn))/n Pr−→ β̃la(λ),

5.5 Conclusion 175

minmc(G(Xn; rn))/n Pr−→ β̃mc(λ),

minsc(G(Xn; rn))/n Pr−→ β̃sc(λ).

Proof. The same coupling that in the proof of Theorem 5.17 shows that

Pr
[
minla(G(Pn; 1)) 6 minla(G(Xn; rn)) 6 minla(G(P ′n; 1))

]→ 1.

By Lemma 5.15,

minla(G(Pn; 1))
m2
n

Pr−→ λ1Eλ1

[
minla(C)
|C|

]
,

so that

minla(G(Pn; 1))
n

Pr−→
(
λ1

λ

)
Eλ1

[
minla(C)
|C|

]
.

Similarly,

minla(G(P ′n; 1))
n

Pr−→
(
λ2

λ

)
Eλ2

[
minla(C)
|C|

]
.

Taking λ1 ↑ λ and λ2 ↓ λ and using Lemma 5.14,

minla(G(Xn; rn))
n

Pr−→ Eλ

[
minla(C)
|C|

]
.

The proof for the convergence of minsc and minmc is analogous.

5.5 Conclusion

In this chapter we have pursued a probabilistic analysis of several layout prob-
lems on two random models of unit disk graphs: random grid graphs and ran-
dom geometric graphs. Both models exhibit a differentiated behavior according
their subcritical and supercritical phases, which are characterized by percola-
tion theory. These models seem to be a relevant abstraction to model instances
that occur in practice and, unlike binomial random graphs, having a knowledge
on their optimal layouts is of interest for the evaluation of heuristics. In the
following, we summarize our results and point out some conclusions.

First we have considered subcritical random grid graphs, generated by
randomly selecting vertices of an m ×m square grid with probability p < pc.
For the VertSep and Cutwidth problems, we have determined that, with
probability 1, the order of magnitude of their minimal costs is Θ(

√
logm). For

the MinLA, ModCut and SumCut problems, we have even been able to prove

176 Layout Problems and Random Unit Disk Graphs

that their optimal cost divided by m2 converges in probability to a particular
constant. In this sense, these results are analogous to the well-known Beard-
wood, Halton and Hammersley theorem for the TSP and to other convergence
results for random geometric problems on [0, 1]2. Table 5.3 summarizes our
results for the subcritical phase, and Table 5.4 summarizes Penrose’s results for
the supercritical phase. These tables make clear that the optimal costs for all
problems are different in the supercritical and subcritical phases. This means
that the optimal costs of the considered layout problems exhibit a transition
phase on random grid graphs.

Afterwards, we have studied random geometric graphs, generated by scat-
tering n vertices at random in the unit square, and joining them with an
edge when their distance is small than rn. Selecting rn =

√
an/n → 0 and

an/ logn → ∞ ensures connectivity while preserving sparsity. In this case, we
have provided lower bounds on the cost of several layout problems: Band-
width, MinLA, Cutwidth, SumCut, VertSep and EdgeBis. Much effort
has been invested in order to obtain tight lower bounds. Owing to the prob-
abilistic nature of random geometric graphs, these lower bounds hold, almost
surely, for large enough graphs. Two simple and fast heuristics have been pro-
posed to approximate layout problems. We have proved that these heuristics,
while naive, are in fact constant approximation algorithms. Moreover, for the
Bandwidth and the VertSep problems, the algorithms are asymptotically op-
timal. In this sense, our results are analogous to Karp’s dissection technique to
approximate the Euclidean TSP on [0, 1]2. Table 5.5 summarizes the obtained
results on supercritical random geometric graphs.

It must be remarked that, in order to build a layout, our algorithms use the
coordinates of the vertices. This simplification is an accepted common practice
in the literature (see page 104). In any case, this is not a nuisance for our
results: On one hand, the characterization of the algorithms in Corollary 5.12
is so tight, that we already know which solution they will deliver with high
probability. On the other hand, now that we have analytical information on
these algorithms, we do not view them as a practical way to find approximate
solutions, but rather as a valuable tool with which to compare other heuristics.

Indeed, while several heuristic methods have been acclaimed as an effec-
tive way to find good approximate solutions, the assessment of their quality
has only been shown empirically. We claim that our new analytical results on
supercritical random geometric graphs offer more insight and give more infor-
mative ways to analyze and compare heuristics in an experimental setting. The
reason is that for this class of graphs, we provide upper and lower bounds with
a “guarantee of quality.” For instance, many heuristics to approximate the
Bisection problem are Local Search methods that accept an initial partition-
ing of the input graph and then attempt to improve it (i.e. the Kernighan–Lin

5.5 Conclusion 177

heuristic [152], Simulated Annealing [137], Path Optimization [23] or Helpful
Sets [76]). It is shown in [137] and [165] that initial partitioning created by a
certain Line heuristic dramatically improve the performance of the Kernighan–
Lin and Simulated Annealing heuristics on random geometric graphs. The Line
heuristic uses geometric information to split the vertex set of a geometric graph
into two equal sized halves with a line of randomly chosen slope. Thanks to our
results on the Projection algorithm, which is close to the Line heuristic, we can
now affirm that all these heuristics which perform so well in practice are, with
high probability, constant approximation algorithms when applied to random
geometric graphs.

Our experimental results on supercritical random geometric graphs show
that there still remains a gap between theory and practice: for several layout
problems, the asymptotic behavior of Corollary 5.12 is far from being achieved
even with huge graphs with 200,000 vertices. On the positive side, our exper-
imental comparison of several well-known heuristics for the Bisection problem
with our constant approximation algorithms gives an informative benchmarking
for all these heuristics.

Finally, we have also considered random geometric graphs in the subcrit-
ical phase. This phase is characterized by nr2

n → λ ∈ (0, λc). In this case,
we have proved that the optimal costs of the MinLA, ModCut and SumCut
problems, divided by the number of nodes of the graph converge in probability
to another particular constant. For the VertBis, VertSep and Cutwidth
problems, we have identified their probabilistic asymptotic order of magnitude.
We also have shown how one can obtain, with high probability, an empty bisec-
tion. Table 5.6 summarizes the obtained results on subcritical random geometric
graphs.

Some considerations on random geometric problems on [0, 1]2 that had
an influence in the research presented in this chapter were exposed at the
2nd. International Workshop on Randomization and Approximation Techniques
in Computer Science—random ’98 (Barcelona, ) [67]. A preliminary ver-
sion of the results on supercritical random geometric graphs, with much weaker
results, was presented at the 25th International Workshop on Graph-Theoretic
Concepts in Computer Science—wg99 (Ascona, ) [63]. Results related to
supercritical random geometric graphs will appear in Journal of Algorithms [66],
and results related to subcritical random geometric graphs and subcritical ran-
dom grid graphs have been published in Combinatorics, Probability and Com-
puting [65].

Our results can be extended in several ways. First of all, notice that, for
the sake of simplicity, we have concentrated only on the l∞ norm. However,
using Penrose’s techniques [206], all the bounds also should hold, with different

178 Layout Problems and Random Unit Disk Graphs

values of the constants, for any norm lp, p ∈ N. The reason is that all these
norms only differ by a constant factor. Moreover, all through the chapter, we
have only considered two-dimensional unit disk graphs, but we expect that sim-
ilar results would also hold on higher dimensional spaces. These extensions are
left as open problems. We also leave as an open problem to determine whether
or not the Projection and Dissection algorithms are, in some probabilistic and
asymptotic sense, optimal for layout problems other than Bandwidth, Vert-
Bis and VertSep. This would call for better lower bounds.

Two more challenging research problems also arise. The first of them
is to investigate the value of the limiting constants in our BHH-like results.
As with many other optimization problems in the plane that exhibit conver-
gence phenomena, finding good methods to evaluate numerically the constants
in Theorems 5.8 and 5.18 seems a difficult task. Our experimental tentative to
characterize βla(p) is not tight enough for p > 0.25. New empirical or analyt-
ical methods to estimate these constants seem necessary. The second problem
consists in evaluating the performance of widely acclaimed heuristic on super-
critical random geometric graphs. Kernighan–Lin, Spectral methods, Simulated
Annealing or Helpful Sets are important candidates for this analysis. The results
and techniques developed in this chapter are a first step towards this direction.

5.5 Conclusion 179

Subcritical random grid graphs

mincw(Lm,p) = Θ(
√

logm), whp

minvs(Lm,p) = Θ(
√

logm), whp

minla(Lm,p)/m2 Pr−→ βla(p)

minmc(Lm,p)/m2 Pr−→ βmc(p)

minsc(Lm,p)/m2 Pr−→ βsc(p)

Table 5.3: Overview of results for subcritical random grid graphs.
We require p < pc.

Supercritical random grid graphs

minsc(Lm,p) = Θ(m2)

minla(Lm,p) = Θ(m2)

minbw(Lm,p) = Θ(m)

minvs(Lm,p) = Θ(m)

mincw(Lm,p) = Θ(m)

mineb(Lm,p) = Θ(m)

Table 5.4: Overview of results for supercritical random grid graphs.
We require p > pc for all rows, except the last one, where p > p′c.

All results hold with overwhelming probability.

180 Layout Problems and Random Unit Disk Graphs

Supercritical random geometric graphs

minvs(G(Xn; rn)) = Θ(nrn)

minbw(G(Xn; rn)) = Θ(nrn)

minsc(G(Xn; rn)) = Θ(n2rn)

mineb(G(Xn; rn)) = Θ(n2r3
n)

mincw(G(Xn; rn)) = Θ(n2r3
n)

minla(G(Xn; rn)) = Θ(n3r3
n)

Table 5.5: Overview of results for supercritical random geometric
graphs. The radius must satisfy rn =

√
an/n → 0 and an/ log n →

∞. All results hold with probability 1 for all n large enough.

Subcritical random geometric graphs

mincw(G(Xn; rn)) = Θ((log n/ log log n)2), whp

minvs(G(Xn; rn)) = Θ(log n/ log log n), whp

minla(G(Xn; rn))/n Pr−→ β̃la(λ)

minmc(G(Xn; rn))/n Pr−→ β̃mc(λ)

minsc(G(Xn; rn))/n Pr−→ β̃sc(λ)

mineb(G(Xn; rn)) Pr−→ 0

minvb(G(Xn; rn)) Pr−→ 0

Table 5.6: Overview of results for subcritical random geometric
graphs. The radius must satisfy nr2

n → λ, and we require λ < λc for
all rows, except the last two, where λ < λ′c.

6
Faulty Random Geometric

Networks

6.1 Introduction

The use of distributed computing in wireless networks is a computational model
that is gaining increasing importance in computer science and telecommunica-
tions. In this setting, the processors, scattered geographically, communicate
through transmitters, effectively forming a wireless broadcast network. The fol-
lowing setting arises in applications of wireless broadcast networks: A set of
stations are located in some geographical area. These stations can compute,
send and receive messages in synchronous steps. All the transmitters have the
same power, but their effective broadcast range is limited to some specified dis-
tance r, that is, two stations can only communicate if their distance is at most
r. Unit disk graphs provide a convenient way to model this setting: Recall from
Definition 4.1 that a graph is a unit disk graph if each vertex can be mapped
to a point in the plane in such a way that two points are adjacent if and only if
their distance is at most some specified bound r. Several researchers have shown
that some important problems on broadcast networks are, in fact, classic prob-
lems restricted to unit disk graphs (see [41]). However, as pointed by Clark,
Colbourn and Johnson in [51], unit disk graphs assume that no interference
from weather, mountains or other obstacles affects the communication between
two stations. Also, this model does not take into account the possibility that

182 Faulty Random Geometric Networks

individual stations go down because of problems with power supply, mechanical
damages, sabotage, or other reasons.

The advent of mobile computing and of cellular phones introduces an
uncertainty with respect to the positions of the stations. Assuming that the
stations are homogeneously distributed in the plane is a simplified way to cope
with that changing environment. Random geometric graphs (RGGs) come at
hand to model such a situation: Recall from Definition 5.4 that a random geo-
metric graph is a unit disk graph whose vertices are points uniformly distributed
in the unit square.

In this chapter, we analyze some computational properties and parameters
of a random geometric network in the presence of random faults. Both edge
failures and vertex failures are taken into account, keeping in mind that edge
failures can be interpreted as the inability to communicate between two stations
because of the presence of some unexpected obstacle, and vertex failures can be
interpreted as the inability to perform computation in inoperative stations. The
three network properties and parameters we study are: Hamiltonicity, emulation
and layout costs.

A Hamiltonian cycle is a cycle that visits once each vertex of a graph.
If a graph has a Hamiltonian cycle, it is said to be Hamiltonian. This is an
important issue, because if a graph has this property it is possible to build a
path to perform distributed computations based on end-to-end communication
protocols, which allow distributed algorithms to treat an unreliable network as a
reliable channel [194]. Deciding whether or not a given graph is Hamiltonian is
a well-known NP-complete problem [145]. The question whether a uniform or
binomial random graph is Hamiltonian is well solved; see Chapter viii of [34] for
an extensive account. However, the Hamiltonian problem is NP-complete even
when restricted to grid graphs, and thus it is NP-complete on unit disk graphs,
too [132]. These considerations call for a probabilistic analysis of the Hamil-
tonicity properties on random geometric graphs. Intuitively, it seems likely
that random geometric graphs with a sufficiently large radius have Hamilto-
nian cycles, but the question is what happens when dealing with faulty random
geometric graphs.

In order to cope with vertex or edge faults, a reliable network should be
able to emulate the non faulty network in the faulty network, with a minimal
slowdown. In the case of binomial random graphs in the Gn,p model, a random
network can be emulated with constant slowdown [103, 193]. Similarly, it would
be quite desirable to know how reliable random geometric networks are; that
is, how slowly they can be emulated when vertices or edges fail at random.

In the previous chapter we have analyzed several layout problems on ran-
dom geometric graphs. As said in the Introduction, some relevant network
measures can be stated as layout problems. Therefore, it would be interesting

6.2 Preliminaries 183

to know how edge and vertex faults produced randomly affect the optimal cost of
these layout problems. In this chapter we will also consider this issue, restrict-
ing our study to the Bisection, Minimum Linear Arrangement and Cutwidth
problems.

The chapter is organized as follows. In Section 6.2 we formalize the con-
cept of faulty random geometric networks as previously described. We also de-
fine the emulation problem and fix the radius of the random geometric graphs
that we shall consider in the following. After these necessary preliminaries, in
Section 6.3 we deal with Hamiltonian cycles in random geometric networks and
faulty random geometric networks. In Section 6.4, we analyze the emulation
problem on random geometric networks with faulty vertices and faulty edges.
Finally, in Section 6.5 we present some layout problems on faulty random geo-
metric graphs.

All through this chapter, we will make use of techniques that have been
developed in the previous chapter.

6.2 Preliminaries

In this chapter, a network is modeled by a graph, where processors correspond
to vertices and communication channels correspond to edges. Let G be a graph
and let F be a subgraph of G; G represents a fault-free graph and F represents
the resulting graph after the occurrence of edge or vertex faults in G. We
differentiate between edge faults and vertex faults: graphs with faulty edges
are the result of removing edges from an original graph; graphs with faulty
vertices are the result of removing vertices from an original graph together with
the edges incident to the removed vertices. In graph theoretical terms, a graph
with faulty vertices refers to a vertex induced subgraph of an original graph and
a graph with faulty edges refers to a subgraph of an original graph. We assume
that vertex faults happen independently and with a constant probability f .
Likewise, we assume that edge faults happen independently and with a constant
probability f .

Definition 6.1 (Faulty graphs). Let G = (V,E) be a graph and let f ∈ [0, 1]
denote its vertex failure probability. Let V ′ be a subset of V where Pr [v ∈ V ′] =
1−f , independently for all vertices v ∈ V . Then we say that the subgraph of G
induced by V ′ is a graph with random faulty vertices. We denote by FN (G, f)
the corresponding probability space with uniform probability.

Analogously, let G = (V,E) be a graph and let f ∈ [0, 1] denote its
edge failure probability. Let E′ be a subset of E where Pr [uv ∈ E′] = 1 − f ,
independently for all edges uv ∈ E. Then we say that the subgraph of G
induced by E′ is a graph with random faulty edges. We denote by FE(G, f) the
corresponding probability space with uniform probability.

184 Faulty Random Geometric Networks

In particular, a random geometric graph with faulty vertices can be gen-
erated by the outcome of the following experiment: First, generate a random
geometric graph; then, with probability f , remove each of its vertices and all its
incident edges. Likewise, a random geometric graph with faulty edges can be
generated by the outcome of the following experiment: First generate a random
geometric graph; then, with probability f , remove each of its edges.

The emulation of a fault-free network G on a faulty network F consists in
performing the computations performed by the vertices of G in the vertices of
F and ensuring that the direct communication across edges of G is simulated
across paths in F . Formally, an emulation φ is an injective function that maps
V (G) to V (F) and E(G) to the set of paths of E(F) such that for all uv ∈ E(G),
φ(uv) = 〈w0w1, w1w2, . . . , wl−1wl〉 where w0 = φ(u), wl = φ(v) and wi−1wi ∈
E(F) for all i ∈ [l].

The slowdown of the emulation φ of G in F is defined as the length of
time it takes to the faulty graph F to emulate one communication step and one
computation step of the original network G. The parameters to measure the
quality of an emulation are: the dilation, defined as the length of the largest
associated path; the congestion, defined as the maximal number of paths that
share an edge of F ; and the load, defined as the maximum number of vertices
of G that are mapped to a vertex of F . We denote by d(φ), c(φ) and l(φ)
the dilation, congestion and load of an emulation φ. It is well known that an
emulation with dilation d, congestion c and load l has a slowdown of O(d+ c+
l) [167].

Through this chapter we restrict our attention to the particular case of
random geometric graphs in l∞ whose radius is of the form

rn =
√
an
n

where rn → 0 and an/ logn→∞.

As seen in Section 5.1.2, this choice guarantees almost surely the construction
of connected graphs—disconnected fault-free networks would not make much
sense in our setting. As in the previous chapter, we set bn = an/ logn.

Recall from Definition 5.5 that a geometric graph G with n vertices is ε-
nice if, dissecting the unit square into κn = 4 d1/rne2 square boxes of size sn×sn
with sn = 1/2 d1/rne, each box contains between 1

4(1 − ε)an and 1
4(1 + ε)an

vertices. Recall from Lemma 5.3 that, with high probability, random geometric
graphs are ε-nice.

All through this chapter, when we speak about boxes we refer to the above
dissection. For any vertex u, let Bu be denote the box where u belongs to. Also,
for any i ∈ [κn], let B(i) denote the i-th box in the dissection, according to some
arbitrary but fixed order. Finally, let α(i) denote the number of vertices of G
in box B(i).

6.3 Hamiltonian cycles 185

6.3 Hamiltonian cycles

In this section we deal with the existence of Hamiltonian cycles in random geo-
metric graphs and faulty random geometric graphs. First, we consider random
geometric graphs with random vertex faults, which include non-faulty random
geometric graphs as a particular case. Afterwards, we consider random geomet-
ric graphs with random edge faults.

6.3.1 Hamiltonian cycles in RGGs with vertex faults

The following definition expresses the fact that vertices of nice graphs fail “ap-
propriately” in the boxes of the dissection.

Definition 6.2 (Friendly graphs). Let ε ∈ (0, 1
5) and f ∈ [0, 1) be two con-

stants. Let G be an ε-nice geometric graph with n vertices and radius rn and
let F be a vertex induced subgraph of Gn. We say that F is (ε, f)-friendly if
every box of this dissection contains at least 1

4(1 − ε)2(1 − f)an vertices of F
and at most 1

4(1 + ε)2(1− f)an vertices of F .

The following lemma states that, with high probability, nice geometric
graphs with random faulty vertices are friendly.

Lemma 6.1. Let ε ∈ (0, 1
5) and f ∈ [0, 1) be two constants. For all n ∈ N, let

Gn be an ε-nice graph with n vertices and radius rn. Then,

lim
n→∞Pr [FN (Gn, f) is (ε, f)-friendly] = 1.

Proof. For any n, let Fn be drawn from FN (Gn, f). Choose any box B(i) in
the dissection; let α(i) be the number of vertices of Gn in this box and let A(i)
be the random variable counting the number of vertices of Fn in this box. As
Gn is ε-nice, we have that (1− ε)1

4an 6 α(i) 6 (1 + ε)1
4an. On the other hand,

as An is a sum of α(i) Bernoulli variables with parameter 1− f ,

(1− ε)1
4an(1− f) 6 E [An] = yn(1− f) 6 (1 + ε)1

4an(1− f).

The result follows by the use of Chernoff’s bounds and Boole’s inequality (The-
orems A.9 and A.1).

We are ready to prove that friendly geometric graphs are Hamiltonian.
The proof of this statement includes an algorithm to construct a Hamiltonian
cycle.

Lemma 6.2. Let ε ∈ (0, 1
5) and f ∈ [0, 1) be two constants. Let Gn be any

ε-nice geometric graph with n vertices and radius rn and let Fn be an (ε, f)-
friendly vertex induced subgraph of Gn. Then, Fn is Hamiltonian. Moreover,
there exists an algorithm to construct the Hamiltonian cycle in O(|E(Fn)|)
steps.

186 Faulty Random Geometric Networks

(a) Even number of vertices (b) Odd number of vertices

Figure 6.1: Hamiltonian cycles in grid graphs with diagonal edges.

Proof. First of all, notice that any square grid with diagonal edges has a Hamil-
tonian cycle (see Figure 6.1 for an example). Also, notice that in an (ε, f)-
friendly graph, any pair of vertices in the same box or in neighboring boxes,
including diagonals, are connected by an edge because 2sn 6 rn. For each box
in the dissection, construct a path visiting all the vertices of Fn in the box. This
is always possible, as vertices in a box form a clique. Then, following the order
given by a Hamiltonian cycle in the κn × κn square grid with diagonal edges,
patch the last point of each path with the first point of the next path. This is
always possible since the friendness of Fn ensures the existence of at least two
vertices in each box, and the vertices in two neighboring boxes form a clique.
This construction produces a Hamiltonian cycle for Fn. This algorithm can be
implemented in O(|E(Fn)|) steps.

Combining the previous lemmas, we have the following result:

Theorem 6.1. With high probability, random geometric graphs with radius
rn =

√
an/n, where rn → 0 and an/ logn→∞, and random vertex faults with

probability f ∈ [0, 1) are Hamiltonian.

Notice that taking f = 0 in the previous theorem implies that non-faulty
random geometric graphs are also Hamiltonian with high probability.

6.3.2 Hamiltonian cycles in RGGs with edge faults

The following lemma proves that, with high probability, nice geometric graphs
with random edge faults are Hamiltonian.

6.3 Hamiltonian cycles 187

Lemma 6.3. Let ε ∈ (0, 1
5) and f ∈ (0, 1) be two constants. For all n ∈ N, let

Gn be an ε-nice geometric graph with n vertices and radius rn. Then,

lim
n→∞Pr [FE(Gn, f) is Hamiltonian] = 1.

Proof. Let n be any natural. Let Fn be an edge faulty random geometric graph
of Gn drawn from FE(G, f). For a box B(i) and a vertex u ∈ V (Fn) inside this
box, let deg(u,B(i)) denote the number of neighbors of u in Fn inside box B(i).

Let us compute the probability π that, for some box B(i) and some vertex
u ∈ V (Fn) inside B(i), deg(u,B(i)) is smaller than 2. Using Boole’s inequality,
we have:

π = Pr
[∨κni=1 ∨u∈B(i) deg(u,B(i)) < 2

]

6
κn∑

i=1

∑

u∈B(i)

Pr [deg(u,B(i)) < 2] .

As Gn is ε-nice and its edges are faulty independently with probability f in Fn,
we have:

π 6
κn∑

i=1

∑

u∈B(i)

(
Pr [deg(u,B(i)) = 0] + Pr [deg(u,B(i)) = 1]

)

6 4 d1/rne2 · (1 + ε)1
4an ·

(
f (1−ε) 1

4
an−1 + (1− f)f (1−ε) 1

4
an−2

)

= d1/rne2 (1 + ε)anf (1−ε) 1
4
an−2

6 (1 + ε)3nf (1−ε) 1
4
bn logn−2

6 (1 + ε)3nf (1−ε) 1
5
bn logn.

Set t = −3/ log f ; then,

π 6 (1 + ε)3nf t logn = (1 + ε)3n1+t log f = (1 + ε)3/n2. (6.1)

Inside a box, the vertices of Gn form a clique, whose edges fail with probability
f independently in Fn. Therefore, the edges of Fn form a Gα(i),1−f binomial
random graph inside each box. The probability that such a binomial random
graph has a Hamiltonian cycle corresponds with the probability that each of
its vertices has at least degree 2 (see Theorem viii.11 of [34]). Therefore, with
probability greater than 1 − (1 + ε)3/n2, each box of the dissection contains a
Hamiltonian cycle.

In order to get a Hamiltonian cycle for Fn, we patch the Hamiltonian
cycles inside each box. We proceed as shown in Figure 6.2: The cycle will be

188 Faulty Random Geometric Networks

Figure 6.2: How to patch a big Hamiltonian cycle for the faulty
graph using the small Hamiltonian cycles inside each box of the

dissection.

made in a snake-like1 way, removing two edges from each Hamiltonian cycle
inside each box and joining the paths with the small Hamiltonian cycles of the
previous and next boxes. The probability that this construction cannot be done
is bounded above by

((
f2
)α(1)α(2)

) κn−1∏

i=2

(
f2
)(α(i)−1)α(i+1)

6
(
f2(1−ε) 1

4
an
)(

f2(1−ε)2 1
16
a2
n

)4d1/rne2−1
. (6.2)

Therefore, the probability that Fn does not have a Hamiltonian cycle is
smaller than the sum of the probabilities (6.1) and (6.2), which tends to zero
as n tends to infinity.

The previous lemma shows, with high probability, the existence of a
Hamiltonian cycle in a random geometric graph with edge faults. Still, it would
be desirable to have a polynomial time algorithm to construct such a Hamil-
tonian cycle. We now present an heuristic algorithm that, given a geometric
graph with edge faults, either returns a Hamiltonian cycle or reports that none
was found. This algorithm is inspired in the previous proof. Afterwards, we
pursue a probabilistic analysis of this algorithm, assuming that the distribution
of its inputs is FE(Gn, f) for nice graphs Gn.

Algorithm 6.1 (Algorithm FGeo-HAM). LetGn be a geometric graph with
n vertices and radius rn. Let Fn be an edge induced subgraph of Gn. Given a

1The term “snake-like” comes after [167].

6.3 Hamiltonian cycles 189

realization of Fn and rn, the following algorithm either returns a Hamiltonian
cycle in Fn or fails.

Dissect the unit square into κn = 4 d1/re2 boxes of side sn = 1/2 d1/rne.
For all i ∈ [κn], let B(i) be the i-the box of this dissection, with respect to the
snake-like ordering.

According to the proof of Lemma 6.3, to obtain a Hamiltonian cycle for
F , we have to

• find a Hamiltonian cycle for the vertices in each box, and
• patch the cycles in an snake-like way.

In order to perform the first step, we resort to the HAM algorithm of
Bollobás, Fenner and Frieze [36]. For each i ∈ [κn], the HAM algorithm either
fails or finds a Hamiltonian cycle 〈ui,0, ui,1, . . . , ui,α(i)−1, ui,0〉 where ui,j is a
vertex in B(i) for all j ∈ {0, . . . , α(i)−1}. If HAM does not find a Hamiltonian
cycle for some box B(i), FGeo-HAM reports that no Hamiltonian cycle for Fn
can be found.

To simplify notation, in the following, a subindex (i, j) must be understood
as (i, j mod α(i)).

In order to perform the second step, for each box B(i), the algorithm
needs to:

1. Decide in which direction will the cycle be traversed:
〈ui,0, ui,1, . . . , ui,α(i)−1〉 or 〈ui,α(i)−1, . . . , ui,1, ui,0〉.

2. Decide which edge in the cycle will be removed to patch with the cycle in
box B(i− 1) (unless i = 1).

3. Decide which edge in the cycle will be removed to patch with the cycle in
box B(i+ 1) (unless i = κn).

Of course, these three decisions must be in agreement with the edges in
E(Fn). In order to take the above decisions, we use a directed multistage flow
network. This network will contain 2κn stages, where stages 2i − 1 and 2i are
defined according to B(i):

• Stage 1 contains a source node s and stage 2κn contains a target node t.
• For all j ∈ [α(1)], the network contains two nodes w+

1,j and w−1,j at stage 2.
• For all j ∈ [α(κn)], the network contains two nodes v+

κn,j
and v−κn,j at stage

2κn − 1.
• For all i ∈ {2, . . . , κn − 1} and all j ∈ [α(i)], the network contains two

nodes v+
i,j and v−i,j at stage 2i− 1 and two nodes w+

i,j and w−i,j at stage 2i.

Figure 6.3 illustrates this construction.

190 Faulty Random Geometric Networks

The arcs in this network are given by the following rules, defined from
stage 2i− 1 to stage 2i according to box B(i), and from stage 2i to stage 2i+ 1
according to boxes B(i) and B(i + 1), where x → y means an arc connecting
node x towards node y:

• For all i ∈ {2, . . . , κn − 1} and all j, k ∈ [α(i)], add v+
i,j → w+

i,k provided
k 6= j + 1.
• For all i ∈ {2, . . . , κn − 1} and all j, k ∈ [α(i)], add v−i,j → w−i,k provided
k 6= j − 1.
• The source s is connected towards all nodes in stage 2, and all nodes in

stage 2κn − 1 are connected towards the target t.
• For all i ∈ [κn − 1], and for all j ∈ [α(i)] and all k ∈ [α(i + 1)], do the

following connections (p ∼ q means pq ∈ E(Fn)):

– If ui,j ∼ ui+1,k and ui,j+1 ∼ ui+1,k−1, then add w+
i,j → v+

i+1,k.
– If ui,j ∼ ui+1,k−1 and ui,j+1 ∼ ui+1,k, then add w+

i,j → v−i+1,k.
– If ui,j+1 ∼ ui+1,k and ui,j ∼ ui+1,k−1, then add w−i,j → v+

i+1,k.
– If ui,j+1 ∼ ui+1,k−1 and ui,j ∼ ui+1,k, then add w−i,j → v−i+1,k.

Figures 6.4 and 6.5 illustrate this construction.
Let σh ∈ {+,−} for h ∈ [κn]. By construction, the above network has the

following property: If
〈
s, wσ1

1,j1
, . . . , vσhh,ih , w

σh
h,jh

, v
σh+1

h+1,ih+1
, w

σh+1

h+1,jh+1
, . . . , v

σκn
κn,iκn

, t
〉

is a valid path of nodes in the network, then F contains the Hamiltonian cycle
determined by

〈 →
π
(
s, wσ1

1,j1

)
,

. . . ,
→
π
(
vσhh,ih , w

σh
h,jh

)
,
→
π
(
v
σh+1

h+1,ih+1
, w

σh+1

h+1,jh+1

)
, . . . ,

→
π
(
v
σκn
κn,jκn

, t
)
,

. . . ,
←
π
(
v
σh+1

h+1,ih+1
, w

σh+1

h+1,jh+1

)
,
←
π
(
vσhh,ih , w

σh
h,jh

)
, . . . ,

←
π
(
s, wσ1

1,j1

)

〉
,

where
→
π is the “outward” path given by:

→
π (s, w+

1,j1
) = 〈u1,j1〉,

→
π (s, w−1,j1) = 〈u1,j1+1〉,

6.3 Hamiltonian cycles 191

→
π (v+

h,ih
, w+

h,jh
) = 〈uh,ih , uh,ih+1, . . . , uh,jh〉,

→
π (v−h,ih , w

−
h,jh

) = 〈uh,ih−1, uh,ih−2, . . . , uh,jh+1〉,
→
π (v+

κn,iκn
, t) = 〈uκn,iκn , uκn,iκn+1, . . . , uκn,iκn−1〉,

→
π (v−κn,iκn , t) = 〈uκn,iκn−1, uκn,iκn−2, . . . , uκn,iκn 〉,

and
←
π is the “return” path given by:
←
π (v+

h,ih
, w+

h,jh
) = 〈uh,jh+1

, uh,jh+2
, . . . , uh,ih−1

〉,
←
π (v−h,ih , w

−
h,jh

) = 〈uh,jh , uh,jh−1
, . . . , uh,ih〉,

←
π (s, w+

1,j1
) = 〈u1,j1+1, u1,j1+2, . . . , u1,j1〉,

←
π (s, w−1,j1) = 〈u1,j1 , u1,j1−1, . . . , u1,j1+1〉.

These paths are illustrated in Figure 6.6.
In order to discover whether there is a path from s to t in the multistage

network, we use a breadth first search algorithm: From stage 1 to stage 2κn,
mark all nodes that are reachable from s. If t is not reachable from s, FGeo-
HAM reports that no Hamiltonian cycle for Fn can be found. Otherwise, it
recovers a path from t to s by looking iteratively to the predecessor nodes from
stage 2κn to stage 1 and returns the corresponding Hamiltonian cycle.

The following result characterizes the probabilistic asymptotic behavior
of the FGeo-HAM algorithm on nice graphs with random edge faults.

Lemma 6.4. Let ε ∈ (0, 1
5) and f ∈ (0, 1) be two constants. For all n ∈ N, let

Gn be an ε-nice geometric graph with n vertices and radius rn. Then,

lim
n→∞Pr [FGeo-HAM returns a Hamiltonian cycle in FE(Gn, f)] = 1

and

lim
n→∞Pr

[
Tn 6 γna3+ε

n

]
= 1

where γ > 0 is some constant and Tn is the random variable that measures
the number of steps of applying algorithm FGeo-HAM to an input drawn from
FE(Gn, f).

Proof. Let Fn be drawn from FE(Gn, f).
We first analyze the cost of the FGeo-HAM algorithm: As (Gn)n∈N are ε-

nice, maxi∈[κn] α(i) = O(an). The cost of finding (or not) a “small” Hamiltonian
cycle in a box with HAM is O(a4+ε

n) [36]. As there are O(n/an) boxes, each with
O(an) vertices, the number of steps needed to compute all the small Hamiltonian

192 Faulty Random Geometric Networks

s

1

w−1,α(1)−1

...

w−1,1

w−1,0

w+
1,α(1)−1

...

w+
1,1

w+
1,0

2

v−i,α(i)−1

...

v−i,1

v−i,0

v+
i,α(i)−1

...

v+
i,1

v+
i,0

2i−1

w−i,α(i)−1

...

w−i,1

w−i,0

w+
i,α(i)−1

...

w+
i,1

w+
i,0

2i

v−κ,α(κ)−1

...

v−κ,1

v−κ,0

v+
κ,α(κ)−1

...

v+
κ,1

v+
κ,0

2κ−1

t

2κ

· · · · · ·

Figure 6.3: Boxes in the multistage network build by the FGeo-
HAM algorithm.

v+
i,0

v+
i,1

v+
i,2

v+
i,3

v+
i,4

v−i,0

v−i,1

v−i,2

v−i,3

v−i,4

w+
i,0

w+
i,1

w+
i,2

w+
i,3

w+
i,4

w−i,0

w−i,1

w−i,2

w−i,3

w−i,4

Figure 6.4: Connections in the multistage network build by the
FGeo-HAM algorithm in a box B(i). (Part 1)

6.3 Hamiltonian cycles 193

ui,0 ui,1 ui,2 ui,3 ui,4

ui+1,0 ui+1,1 ui+1,2 ui+1,3 ui+1,4

(a) Thin dark lines represent edges between B(i) and B(i + 1) and bold
light lines represent the cycle in the two boxes

w+
i,0

w+
i,1

w+
i,2

w+
i,3

w+
i,4

w−i,0

w−i,1

w−i,2

w−i,3

w−i,4

v+
i+1,0

v+
i+1,1

v+
i+1,2

v+
i+1,3

v+
i+1,4

v−i+1,0

v−i+1,1

v−i+1,2

v−i+1,3

v−i+1,4

(b) Corresponding connections from stage 2i to stage 2i+ 1.
The four colors represent the four kinds of arcs.

Figure 6.5: Connections in the multistage network built by the
FGeo-HAM algorithm for boxes B(i) and B(i+ 1). (Part 2)

194 Faulty Random Geometric Networks

←
π (s, w+

1,j1
)

u1,j1

u1,j1+1

u1,j1+2

←
π (s, w−1,j1

)

u1,j1−1

u1,j1

u1,j1+1

→
π (v+

h,ih
, w+

h,jh
)

←
π (v+

h,ih
, w+

h,jh
)

uh,ih

uh,ih+1

uh,jh

uh,jh+1

uh,jh+2

uh,ih−1

→
π (v−h,ih

, w−h,jh
)

←
π (v−h,ih

, w−h,jh
)

uh,ih

uh,jh−1

uh,jh

uh,jh+1

uh,ih−2

uh,ih−1

→
π (v+

κ,iκ
, t)

uκ,iκ

uκ,iκ+1

uκ,iκ−1

→
π (v−κ,iκ

, t)

uκ,iκ

uκ,iκ−2

uκ,iκ−1

Figure 6.6: Illustration of the paths. Original cycles are drawn
clockwise with a thin line, dashed at the edges that must be deleted.
The bold gray line with an arrow shows the paths

→
π and

←
π , together

with their direction. The thin arrows show the vertices and direction
where to patch the paths with the ones of the previous or following
box. The dashed lines are the edges that are removed from the

cycles.

6.4 Emulations 195

cycles isO(na3+ε
n). Afterwards, we have to find a path in a multistage graph with

O(n/an) stages and O(an) nodes per stage, which can be done in O(an ·n/an) =
O(n) steps. Thus, the total cost is O(na3+ε

n + n) = O(na3+ε
n).

We now analyze the failure probability of FGeo-HAM. There are two rea-
sons for failure: no small Hamiltonian cycle is found for some box, or no path
exists from s to t. The probability that HAM does not find a Hamiltonian cycle
on a Gn,p graph is o(2−n) [36]. So, the probability of not finding a small Hamil-
tonian cycle for some of the O(n/an) boxes is o(2−an ·n/an) = o(n1−bn/bn log n),
which tends to zero because bn tends to infinity. The probability that no path
exists from s to t is given by Equation (6.2), which tends to 0. Therefore, the
probability that FGeo-HAM returns a Hamiltonian cycle for a graph drawn
from FE(Gn, f) tends to 1 as n tends to infinity.

Notice that if the algorithm is not able to return a Hamiltonian cycle, this
means that, with high probability, no Hamiltonian cycle exists in the graph.

As a consequence of Lemmas 5.3 and 6.4, we have:

Theorem 6.2. With high probability, the FGeo-HAM algorithm returns in
polynomial time a Hamiltonian cycle on random geometric graphs with radius
rn =

√
an/n, where rn → 0 and an/ log n → ∞, and random edge faults,

provided the failure probability is constant.

6.4 Emulations

In this section we first study the emulation of random geometric graphs in
random geometric graphs with vertex faults. Then, we study the emulation of
random geometric graphs in random geometric graphs with edge faults.

6.4.1 Emulation in RGGs with faulty vertices

We introduce an algorithm to compute an emulation of a geometric graph G
on a vertex induced subgraph F of G. The basic ideas of this algorithm are:
First, use a round-robin strategy to map all the vertices of G in each box to
the vertices of F in the same box. Second, emulate edges between neighboring
boxes by the mapping of their end vertices. Third, emulate edges between non
neighboring boxes by selecting an auxiliary vertex (hop) in an intermediate box
assigned with a round-robin strategy.

Algorithm 6.2 (One hop emulation). Let Gn be a geometric graph with n
vertices and radius rn and let Fn be a vertex induced subgraph of Gn. The one
hop emulation φ of Gn in Fn is given by the following rules:

1. Dissect the unit square into κn = 4 d1/re2 boxes of side sn = 1/2 d1/rne.
Let B(i) be the i-the box of this dissection, according to some ordering.

196 Faulty Random Geometric Networks

2. For any i, let α(i) and β(i) denote the number of vertices of Gn and Fn
respectively in B(i). Let ui0, . . . , u

i
α(i)−1 be the vertices of Gn in B(i), and

let vi0, . . . , v
i
β(i)−1 be the vertices of Fn in B(i).

3. If β(i) = 0 for some i, abort.

4. For all i and for all 0 6 j < α(i), let φ(uij) = vij mod β(i).

5. For all i and for all 0 6 j < k < α(i), let φ(uiju
i
k) = 〈φ(uij)φ(uik)〉.

6. For all pair of neighboring boxes B(i) and B(j), for all 0 6 k < α(i), and
for all 0 6 l < α(j), let φ(uiku

j
l) = 〈φ(uik)φ(ujl)〉.

7. Let B(i) and B(j) be any different non neighboring boxes such that a
box B(k) is neighbor of both B(i) and B(j) and no box B(l) is neighbor
of both B(i) and B(j) for l < k. Then, for all 0 6 p < β(i) and for all
0 6 q < β(j), define w(vip, v

j
q) = vk(p+q) mod β(k). For all 0 6 r < α(i) and

all 0 6 s < α(j), if uiru
j
s ∈ E(Gn), let φ(uiru

j
s) = 〈φ(uir)w,wφ(ujs)〉, where

w = w(φ(uir), φ(ujs)).

The following lemma states that the one hop emulation is able to emulate
a nice graph Gn on a friendly vertex induced subgraph of Gn with constant
dilation, congestion and load.

Lemma 6.5. For any constants ε ∈ (0, 1
5) and f ∈ (0, 1) and for all sufficiently

large n, let Gn be an ε-nice geometric graph with n vertices and radius rn.
Also, let Fn be an (ε, f)-friendly vertex induced subgraph of Gn. Then, there
exist two positive constants c0 and l0 independent of n such that the one hop
algorithm computes an emulation φ of Gn on Fn with d(φ) = 2, c(φ) 6 c0 and
l(φ) 6 l0.

Proof. By the friendness of Fn, β(i) > 0 for all i. So, the one hop algorithm
does not abort at Step 3, and a one hop emulation φ can be obtained. The
computed emulation is correct, because the algorithm satisfies the conditions
given in Section 6.2.

By the definition of the one hop algorithm, φ maps all edges in Gn to a
path consisting of at most two edges in Fn; therefore d(φ) 6 2.

As Gn is ε-nice and Fn is (ε, f)-friendly, the round-robin mapping of ver-
tices in Step 4 ensures that any vertex vij ∈ V (Fn) in any box i has load at
most 1 + dα(i)/β(i)e, which is at most 2 + (1 + ε)(1− ε)−2(1− f)−1. Therefore,
l(φ) 6 2 + (1 + ε)(1− ε)−2(1− f)−1 = l0, which is a constant.

The congestion of an edge can be decomposed as the sum of the conges-
tions produced by Steps 5, 6 and 7. The congestion of an edge vijv

i
k produced

6.4 Emulations 197

by Step 5 is at most the product of the loads of vij and of vik, and it is at most
l20. Likewise, the congestion of an edge produced by Step 6 is at most the prod-
uct of the loads of its endpoints, so is at most l20. The congestion of an edge
produced by Step 7 is a bit more complicated to calculate: First notice that the
number of configurations for which a box is neighbor of two boxes that are not
neighbors is at most 40. Assume that k is the smallest integer such that box
B(k) is neighbor of two boxes B(i) and B(j). For all 0 6 p < β(i) and for all
0 6 q < β(j), vertex w(vip, v

j
q) is the hop to go from vip to vjq . By the round-

robin assignment of step 7, the number of paths that go from box B(i) to box
B(j) using edges vipw(vip, v

j
q) or w(vip, v

j
q)v

j
q is bounded by d(α(i) + α(j))/β(i)e,

which is smaller than 1 + 2l0. So, the number of edges in E(Gn) from box B(i)
to box B(j) that use the edges vipw(vip, v

j
q) or w(vip, v

j
q)v

j
q is bounded above by

the product of the loads of the endpoints times 1 + 2l0. Overall, the maximal
congestion is l20 + l20 + 40 · l20 · (1 + 2l0) = c0, which is a constant.

The combination of Lemmas 5.3, 6.1 and 6.5 implies our main result for
random geometric graphs with vertex faults.

Theorem 6.3. With high probability, random geometric graphs with radius
rn =

√
an/n, with rn → 0 and an/ log n → ∞, can be emulated with con-

stant slowdown in the presence of random vertex faults, provided the failure
probability is constant.

6.4.2 Emulation in RGGs with faulty edges

We associate now a box to each pair u, v ∈ Vn for which Bu and Bv are two
non neighboring boxes. If B(i) is a neighbor of both Bu and Bv but, for j < i,
no B(j) is a neighbor of both Bu and Bv define Buv = B(i), otherwise define
Buv = Bu. Observe that, when defined, Buv is a box such that all its vertices
are connected to all the vertices in box Bu and to all the vertices in box Bv.

The following definition expresses the fact that edges of nice graphs fail
“appropriately:”

Definition 6.3 (Kindly graphs). For any constants ε ∈ (0, 1
5) and f ∈ (0, 1),

let G be an ε-nice geometric graph with n vertices and radius rn. Let F be an
edge induced subgraph of G. Let us say that F is (ε, f)-kindly if, for all vertex
u ∈ V (F), degF (u) > (1− ε)3(1− f)an and if, for all edge uv ∈ E(Gn) \E(F),
there exists a vertex t in Buv such that ut ∈ E(F) and tv ∈ E(F).

The following result states that, with high probability, edge induced sub-
graphs of nice graphs are kindly, provided that f < 1

2 :

198 Faulty Random Geometric Networks

Lemma 6.6. For any constants ε ∈ (0, 1
5) and f ∈ (0, 1

2), let (Gn)n∈N be a
sequence of ε-nice graphs with n vertices and radius rn. Then,

lim
n→∞Pr [FE(Gn, f) is (ε, f)-kindly] = 1.

Proof. Let n be any sufficiently large natural, let Fn be an edge faulty random
geometric graph of Gn drawn from FE(Gn, f). We first compute the probability
π1(n) that some vertex in F has degree less than (1− ε)3(1− f)an. Afterwards
we compute the probability π2(n) that for some edge uv ∈ E(G) \ E(Fn) no
vertex t ∈ Buv satisfies u ∼ t and t ∼ v.

Let u be a vertex in Gn. As Gn is ε-nice, each box contains at least
1
4(1− ε)an vertices. As u is connected to all other vertices in its box and to all
the vertices in its neighboring boxes, we have

degGn(u) > 3
4(1− ε)an + 1

4(1− ε)an − 1 > (1− ε)2an.

As each edge of Gn fails independently with probability f , we have that µ =
E
[
degFn(u)

]
> (1− ε)2(1− f)an. Using Chernoff’s bounds we get

Pr
[
degFn(u) < (1− ε)µ] 6 exp(−1

2ε
2µ) 6 n−(1−f)(1−ε)2ε2bn/2.

As the number of boxes is certainly bounded by n, applying Boole’s inequality,
we get π1(n) 6 n1−(1−f)(1−ε)2ε2bn/2, which implies π1(n)→ 0.

Using Boole’s inequality and de Morgan’s laws, we have

π2(n) = Pr [∃uv ∈ E(Gn) : (u 6∼ v ∧ ¬∃t ∈ Buv : (u ∼ t ∧ t ∼ v))]

6
∑

uv∈E(Gn)

Pr [u 6∼ v ∧ ¬∃t ∈ Buv : (u ∼ t ∧ t ∼ v)]

=
∑

uv∈E(Gn)

Pr [u 6∼ v] ·Pr [∀t ∈ Buv : (u 6∼ t ∨ t 6∼ v)]

=
∑

uv∈E(Gn)

f
∏

t∈Buv
Pr [u 6∼ t ∨ t 6∼ v]

6 f
∑

uv∈E(Gn)

∏

t∈Buv
(Pr [u 6∼ t] + Pr [t 6∼ v])

= f
∑

uv∈E(Gn)

∏

t∈Buv
2f

6 fn2(2f)(1−ε)2an/4 = fnln(2f)(1−ε)2bn/4+2.

Since ln(2f) is negative, then π2(n)→ 0.
So, by Boole’s inequality, the probability that Fn is not (ε, f)-kindly is

smaller than π1(n) + π2(n), which tends to zero as n tends to infinity

6.4 Emulations 199

We introduce now a randomized algorithm to compute an emulation of
a geometric graph G on an edge induced subgraph of G. The basic idea is
to map all vertices to themselves, map all alive edges to themselves, and map
death edges to paths of two live edges with one hop, selected at random in some
suitable box.

Algorithm 6.3 (Randomized one hop emulation). Let Gn be a geomet-
ric graph with n vertices and radius rn, and let Fn be an edge induced subgraph
of Gn. The randomized one hop emulation φ of Gn on Fn is given by the fol-
lowing three steps:

1. Dissect the unit square.

2. For all u ∈ V (Gn), let φ(u) = u and for all uv ∈ E(Fn), let φ(uv) = 〈uv〉.

3. For all uv ∈ E(Gn) \ E(Fn), let φ(uv) = 〈uw,wv〉 where w is chosen at
random among all vertices t ∈ Buv such that ut ∈ E(Fn) and tv ∈ E(Fn).
If no such t exists, abort.

Given Gn and Fn, in the case that the above algorithm does not abort,
it returns a random emulation φ; therefore, l(φ), d(φ) and c(φ) are random
variables. The following theorem establishes their asymptotic probabilistic be-
havior.

Lemma 6.7. For any constants ε ∈ (0, 1
5) and f ∈ (0, 1

2) and for all n ∈ N, let
Gn be an ε-nice geometric graph with n vertices and radius rn, and let Fn be
an (ε, f)-kindly edge induced subgraph of Gn. Then, the randomized one hop
algorithm computes an emulation φn for Gn on Fn, such that

l(φn) = 1, d(φn) 6 2, and lim
n→∞Pr [c(φn) 6 log n/ log log logn] = 1.

Proof. The randomized one hop algorithm cannot abort because Fn is (ε, f)-
kindly. So, the randomized algorithm computes an emulation φn. By the defi-
nition of our randomized one hop emulation, all vertices in Gn are mapped to
themselves; thus l(φn) = 1. Moreover, every edge in Gn is mapped to a path
with at most two edges; thus d(φn) 6 2.

Let c(φn, uv) denote the congestion of an edge uv ∈ E(Fn) in the emu-
lation φn: c(φn, uv) denotes the number of edges in Gn mapped to uv by φn.
Then, by linearity of expectation,

µ = E [c(φn, uv)]

6 1 +
∑

w∈Buv
Pr [w 6∼ v] Pr [w ∼ u] Pr [φn(wv) = 〈wu, uv〉]

200 Faulty Random Geometric Networks

6 1 + (1 + ε)1
4an · f · (1− f) · 1

(1− ε)3(1− f)an

6 1 +
f(1 + ε)
4(1− ε)3

= Cε,f .

So, it holds that 1 6 µ 6 Cε,f . Assume n large enough and take d =
logn/µ log log logn − 1. Using the general Chernoff’s bounds (Theorem A.8),
we have

Pr
[
c(φn, uv) >

logn
log log logn

]
6




e
logn−µ log log logn

µ log log logn

(
logn

µ log log logn

) logn
µ log log logn




µ

6
(

eµ

log n

)logn/ log log logn

.

As the number of edges in Fn is less than n2, using Boole’s inequality we can
affirm that the probability that some edge in Fn has congestion greater than
logn/ log log logn is bounded above by

n2

(
eµ

log n

)logn/ log log logn

,

which tends to zero.

Notice that the previous proof can be strengthen to allow any congestion
growing as ω(log n/ log log n). In any case, the congestion is a sub-logarithmic
function in the number of vertices.

The combination of Lemmas 5.3, 6.6 and 6.7 implies our main result for
random geometric graphs with edge faults.

Theorem 6.4. With high probability, random geometric graphs with n vertices
and radius rn =

√
an/n, with rn → 0 and an/ log n→∞, can be emulated with

slowdown logn/ log log logn, in the presence of random edge faults, provided
the failure probability is constant and smaller than 1

2 .

Observe that in the case of faulty edges we had to deal with a randomized
emulation, so the slowdown is a bit larger than in the case of faulty vertices.
We suspect that a deterministic algorithm could achieve a constant congestion.
Also notice that in this case we required f < 1

2 , which was not necessary for
faulty vertices.

6.5 Layout problems 201

6.5 Layout problems

In this section we deal with the EdgeBis, Cutwidth and MinLA layout prob-
lems. We will develop the case of random geometric graphs with edge faults
and finish by pointing out the results for the case of vertex faults.

The following definition captures the property that edges of a geometric
graph are appropriately distributed in the unit square. This definition is similar
to the definition of mixing graphs (Definition 3.3), in the sense that it relates
the size of a cut between two sets of vertices with their size.

Definition 6.4 (Melting graphs). For any constants ε ∈ (0, 1) and f ∈
(0, 1), let G = (V,E) be an ε-nice geometric graph with n vertices and ra-
dius rn. Let F = (V,E′) be an edge induced subgraph of G. Let us say that F
is (ε, f)-melting if for every two disjoint vertex sets A and B such that |A| > εan,
|B| > εan, A is inside a box BA and B is inside a box BB, and either BA = BB
or BA is a neighbor of BB, then

θ′(A,B) > (1− ε)(1− f)|A||B|

where θ′(A,B) = |{uv ∈ E′ : u ∈ A and v ∈ B}|.
The following lemma shows that, with high probability, nice geometric

graphs are melting when their edges fail:

Lemma 6.8. For any constants ε ∈ (0, 1) and f ∈ (0, 1) and for all n, let Gn
be an ε-nice geometric graph with n vertices and radius rn. Then,

lim
n→∞Pr [FE(Gn, f) is (ε, f)-melting] = 1.

Proof. For any n ∈ N, let Gn be an ε-nice geometric graph with n vertices and
radius rn, and let Fn be an edge induced subgraph of Gn drawn from FE(Gn, f).

Let A,B ⊆ V (Gn) be two disjoint vertex sets such that |A|, |B| > εan, A
is inside a box BA and B is inside a box BB, and either BA = BB or BA is a
neighbor of BB. We have,

E
[
θ′(A,B)

]
=
∑

u∈A

∑

v∈B
Pr
[
uv ∈ E′] =

∑

u∈A

∑

v∈B
(1− f) = |A||B|(1− f).

Using Chernoff’s bounds, we get

Pr
[
θ′(A,B) < (1− ε)E [θ′(A,B)

]]
6 exp

(−1
2ε

2E
[
θ′(A,B)

])

= exp
(−1

2ε
2(1− f)|A||B|)

6 exp
(−1

2ε
2(1− f)ε2a2

n

)

= n−(1−f)ε4b2n lnn/2.

202 Faulty Random Geometric Networks

The number of possible choices for BA and BB is certainly smaller than
n. Once BA and BB are chosen, as Gn is ε-nice, there are at most 32(1+ε)an/4

choices for A and B. So, the probability that some pair of vertex sets A and B
satisfying the hypotheses of the lemma have θ′(A,B) < (1− ε)(1− f)|A||B| is
bounded above by

n · 32(1+ε)an/4 · n−ε4(1−f)b2n lnn/2 6 n1+bn(−(1−f)ε4bn lnn/2+2(1+ε) ln 3),

which tends to zero as n tends to infinity.

The following lemma is the basis of our lower bounds for melting graphs.
Its statement and its proof are an extension of the proof of Lemma 5.4.

Lemma 6.9. For any constants ε ∈ (0, 1
5) and f ∈ (0, 1), let G be an ε-nice

geometric graph with n vertices and radius rn; let F be a (ε, f)-melting subgraph
of G. Let ϕ be any layout of F . Then, for any integer i such that α = i/n ∈
(2ε, 1− 2ε),

θ(i, ϕ, F) > (1− ε)(1− f)3(1−5ε)
8 min

{√
α− 2ε,

√
1− α− 2ε

}
n2r3

n.

Proof. We assign colors to vertices and boxes: color the first i vertices in the
ordering “red” and the remaining vertices “green;” color the boxes containing at
most 1

5εan green vertices “red,” the boxes containing at most 1
5εan red vertices

“green,” and the remaining boxes “yellow.” Let Yn be the number of yellow
boxes.

Observe that θ(i, ϕ, F) is the total number of edges between opposite-color
vertices. Let us refer to such edges as “within-box” if the vertices in question
lie in the same box, or “between-box” otherwise. We consider two cases:

Case 1: Yn > 25ε−2n1/2a
−1/2
n . As F is melting, for each yellow box, the

cost of within-box edges is at least (1− ε)(1− f)ε2a2
n/25. Hence,

θ(i, ϕ, F) > (1− ε)(1− f)(1
5εan)2 · Yn

> (1− ε)(1− f)n1/2a3/2
n = (1− ε)(1− f)n2r3

n.

Case 2: Yn < 25ε−2n1/2a
−1/2
n . In this case, we consider only between-

box edges that are between neighboring boxes, including diagonal neighbors.
Consider a particular box containing a total of t vertices, of which r of them
are red. Suppose that the total number of red vertices in neighboring boxes is
r′ and the total number of green vertices in neighboring boxes is g′. Then, the
total number of between-box edges of the type we are considering, involving
vertices in that particular box, is

(rg′ + (t− r)r′) = (r(g′ − r′) + tr′).

6.5 Layout problems 203

Given t, r′, and g′, the above equation is a linear function of r and it attains
its minimum at the interval [0, t] at r = 0, at r = t or at both of them. Hence,
it is possible to change the vertices in that box to either all red or all green
without increasing the total number of between-box edges of the type we are
considering.

Let us modify the coloring of vertices by going through the yellow boxes
in turn, successively changing the color of vertices in each box either to all red
or to all green, whichever does not increase the total number of between-box
edges of the type we are considering. When we are done, there will no longer
be any yellow boxes. Let Rn be the number of red boxes and Gn the number
of green boxes based on this modified coloring.

By niceness of G, the number of vertices whose color has been changed is
at most

Yn · (1 + ε)1
4an 6 25ε−2n1/2a1/2

n = 25ε−2nrn.

Thus, for n so large that 25ε−2rn 6 ε, the number of red vertices in the modified
coloring is at least (α− ε)n.

By definition of “green box,” the number of red vertices in green boxes
is at most 1

5εan4 d1/rne2 6 εn. Thus, the total number of red vertices in red
boxes in the modified coloring is at least (α − 2ε)n, for n large enough. By a
similar argument, the number of green vertices in green boxes in the modified
coloring is at least (1− α− 2ε)n, for n large enough.

As G and F are ε-nice, no box can contain more than 1
4(1 + ε)an vertices

and there are at least (α−2ε)n red vertices in red boxes and (1−α−2ε)n green
vertices in green boxes, we have

Rn >
(α− 2ε)n
1
4(1 + ε)an

=
4(α− 2ε)
(1 + ε)r2

n

and

Gn >
(1− α− 2ε)n

1
4(1 + ε)an

=
4(1− α− 2ε)

(1 + ε)r2
n

.

Let ∂F denote the number of pairs of neighbor boxes of opposite colors
in F with the modified coloring. By Proposition 5.1,

∂F > 3 min
{√

Rn,
√
Gn

}
> 6
rn

min

{√
α− 2ε
1 + ε

,

√
1− α− 2ε

1 + ε

}
.

By niceness and the definition of box coloring, each red box contains at
least (1− 2ε)1

4an red vertices, and each green box contains at least (1− 2ε)1
4an

green vertices. As F is (ε, f)-melting,

θ(i, ϕ, F) > ∂F (1− ε)(1− f) (1−2ε)2

16 a2
n

204 Faulty Random Geometric Networks

> (1− ε)(1− f)3(1−2ε)2

8
√

1+ε
a3/2
n n1/2 min

{√
α− 2ε,

√
1− α− 2ε

}

> (1− ε)(1− f)3(1−5ε)
8 n2r3

n min
{√

α− 2ε,
√

1− α− 2ε
}
.

This lower bound is smaller than the one for Case 1 and thus holds for both
cases.

The following result presents lower bounds for the layout problems, con-
sidered on melting graphs:

Lemma 6.10 (Lower bounds). For any constants ε ∈ (0, 1
5) and f ∈ (0, 1)

and for all n large enough, let Gn be an ε-nice geometric graph with n vertices
and radius rn; let Fn be a (ε, f)-melting subgraph of Gn. Then, the following
lower bounds hold:

mineb(Fn) > (1− ε)(1− f)3(1−8ε)

8
√

2
· n2r3

n, (6.3)

mincw(Fn) > (1− ε)(1− f)3(1−8ε)

8
√

2
· n2r3

n, (6.4)

minla(Fn) > (1− ε)(1− f) (1−42
√
ε)

4
√

2
· n3r3

n. (6.5)

Proof. The proofs of (6.3) and (6.4) are obtained from Lemma 6.9 by setting
i = bn/2c. To prove (6.5), take any layout ϕ of Fn. Then, by Lemma 6.9,

la(ϕ,Fn) =
n∑

i=1

θ(i, ϕ, Fn) >
∑

2εn<i<(1−2ε)n

θ(i, ϕ, Fn)

> (1− ε)(1− f)3(1−5ε)
4 n2r3

n

∑

2εn<i<n/2

√
i/n− 2ε.

Using the facts that a > b implies
√
a− b > √a −

√
b and that

∑m
k=1

√
k >

2
3m

3/2 +O (
√
m) we obtain (6.5) by successive minorizations.

To obtain upper bounds on the cost of the layout problems on faulty
graphs, we make use of the upper bounds computed by the projection algorithm;
see algorithm 5.1).

Lemma 6.11. For any constants ε ∈ (0, 1
5) and f ∈ (0, 1), let G be a ε-nice

geometric graph vertices and radius rn; let F be a (ε, f)-melting subgraph of
G. Then with high probability, the following upper bounds on the cost of the
projected layout π of F hold:

cw(π, F) 6 (1 + 3ε)5 · n2r3
n,

eb(π, F) 6 (1 + 3ε)5 · n2r3
n,

la(π, F) 6 (1 + 3ε)5 · n3r3
n.

6.6 Conclusion 205

Proof. By Lemma 1.3, the monotonicity characteristics of minla and mincw
suffice to prove that the la(π, F) 6 la(π,G) and cw(π, F) 6 cw(π,G). As
far as the number of vertices remains unchanged, the Edge Bisection problem
is also monotonic. So we also have eb(π, F) 6 eb(π,G). The result is obtained
using Lemma 5.11.

As a consequence of Lemmas 6.8, 6.10 and 6.11, we get:

Theorem 6.5. With high probability, the Projection algorithm is a constant
approximation algorithm for the Minimum Linear Arrangement, Cutwidth and
Edge Bisection problems on random geometric graphs, with radius rn =

√
an/n,

where rn → 0 and an/ log n → ∞, and random edge faults, provided that the
failure probability is constant.

In the case of random geometric graphs with vertex faults, the resulting
subgraph is also a random geometric graph. It is straightforward to see that a
random geometric graph with vertex faults is ε-nice with a slight modification
in the required number of vertices per box, just to incorporate the failure proba-
bility f . Therefore all the results in Lemma 5.11 concerning layout measures are
also true for random geometric graphs with random vertex faults. In particular,
the following result holds:

Theorem 6.6. With high probability, the Projection algorithm is a constant
approximation algorithm for the Minimum Linear Arrangement, Cutwidth and
Edge Bisection problems on random geometric graphs, with radius rn =

√
an/n,

where rn → 0 and an/ log n→∞, and random vertex faults, provided the failure
probability is constant.

6.6 Conclusion

In this chapter we have analyzed the computational power of random geometric
networks in the presence of random edge or vertex faults, considering several
important network properties and parameters. The radius of the random geo-
metric graphs has been chosen so that the non-faulty graph is connected almost
surely.

We have first shown that, with high probability, faulty random geometric
networks do have a Hamiltonian cycle, provided that the edge or vertex failure
probability is constant. Such capability enables performing distributed compu-
tations based on end-to-end communication protocols. We have also presented
algorithms that, with high probability, construct the Hamiltonian cycle.

Afterwards, we have analyzed how to emulate an original random geo-
metric network G on a faulty network F . Theorem 6.3 states that, under the
presence of some natural assumptions, random geometric networks can tolerate

206 Faulty Random Geometric Networks

a constant vertex failure probability with a constant slowdown. In the case
of constant edge failure probability, Theorem 6.4 states that the slowdown is
sub-logarithmic in the number of vertices in the graph. We leave as an open
problem to seek an emulation with constant slowdown.

We have also considered several network measures, stated as linear layout
problems: Edge Bisection, Minimum Linear Arrangement and Cutwidth. Our
results have shown that random geometric networks can tolerate a constant
edge or vertex failure probability while maintaining the order of magnitude of
the measures considered here.

An exposition of the results of Section 6.4 was presented at the Interna-
tional Conference on Mathematical Foundation of Informatics (Hanoi, ).
The results of Section 6.4 and Section 6.5 will appear in Parallel Processing Let-
ters [68]. The results in Section 6.3 have been submitted for publication [211].
The case where both vertex and edge failure can happen is left as future work.
Other parameters that have been analyzed in the non-faulty version remain
open, for instance, k-connectivity or chromatic number [8, 9, 10, 206].

7
Communication Tree

Problems

7.1 Introduction

In general, communication problems involve a set of locations with communica-
tion requirements between pairs of them. The goal is to establish a communi-
cation pattern, often a tree, optimizing some communication cost. Problems in
which a communication tree has to be constructed arise in many applications.
For instance, in phone communication, it is usual to have several locations with
a known expected number of phone calls between each pair of locations. In
this case, the goal is to design a network to handle these calls in an optimal
way. In distributed or mobile computing, there are shared resources as disks,
input, output devices, etc., and system requirements that force to establish an
optimal point-to-point communication. In tree-structured computations, the
computational activity often is limited to the leaves of the tree. In such a case,
it is important not only to distribute the tasks evenly among the leaves but also
to build an adequate computation tree taking into account the communication
parameters. In all cases, it makes sense to restrict the maximum degree of the
communication tree.

Given a collection of terminal sites where some pairs of them want to
exchange information, a communication tree is a tree that contains the set of
sites but that might not contain direct links between communicating pairs [139].

208 Communication Tree Problems

Following the nomenclature in [222], in the case where the terminal sites must
appear as the leaves of the communication tree we speak of a routing tree. In
the particular case that all internal nodes of a routing tree have degree 3, we
speak of a tree layout. We model the input by a graph, whose vertices cor-
respond to terminal sites and whose edges join each communicating pair. In
this chapter we are interested in the problem of finding communication trees,
routing trees or tree layouts minimizing different communication costs like edge
congestion, vertex congestion, dilation, load and total communication (see Sec-
tion 7.2 for the formal definitions of these terms). Observe that in the case that
the maximum degree of the communication tree is 2, the tree becomes a path
and the communication tree becomes a linear layout. In this case, the corre-
sponding problems are Cutwidth, Bandwidth, Vertex Separation and Minimum
Linear Arrangement.

From the previous paragraph, tree layouts are routing trees, and routing
trees are communication trees. Thus, a natural question to ask is whether there
exists any useful relation between the considered problems on these different
types of trees.

Another interesting question is whether a randomly selected tree can pro-
vide a good approximation to any of the problems previously described. We
answer this on the negative for some of the problems: In particular, we show
that, for a given graph, the average cost might be far away from the optimum.

Very few hardness results are known for communication tree problems; Ta-
ble 7.1 summarizes them. The minimum dilation communication tree problem
is NP-hard even for trees [184]; the minimum congestion communication tree
problem is NP-hard for planar graphs [228], in contrast with the minimum con-
gestion routing tree problem, also known as the carving-width problem, which is
solvable in polynomial time for planar graphs, but is NP-hard in general [222].
In [77] it is shown that there is a logarithmic gap between the minimum conges-
tion and the minimum dilation of a given graph, where the minimum is taken
over all routing trees with maximum degree 3. Also, the problem of solving the
vertex congestion on communication trees and tree layouts is NP-complete [7].
In the case that we consider communication trees with unbounded maximum
degree the problems become easier, finding a communication tree of minimum
total communication cost is in P [130], and an analogous result for the case of
a routing tree is given in [4].

Due to the lack of efficient or approximation algorithms for communi-
cation tree problems, it is interesting to ask for the approximability of these
problems when the input graph is obtained from some probabilistic distribution
representing the communication requirements. In this chapter, we deal with
two models of random graphs: binomial random graphs and random geometric
graphs; see Definitions 3.1 and 5.3 respectively.

7.2 Problems and preliminaries 209

Problem Communication tree Tree layout

Dilation NP-complete for trees Open
when d = 3 [184]

Congestion NP-complete when G is planar NP-complete
P if G is outerplanar P if G is planar
for any d > 3 [228] for d > 3 [222]

V. Congestion NP-complete [7] NP-complete [7]

Comm. Load Open Open

Length Open Open

Table 7.1: Complexity results for communication problems.

The outline of this chapter is as follows: In Section 7.2 we define all the
measures, costs and problems we are interested in. In Section 7.3, we relate the
costs of the problems on communication trees, routing trees and tree layouts.
From this point on, we only will have to deal with tree layouts. In Section 7.4 we
analyze the average cost of a random tree layout. Then, in Section 7.5, we study
the approximability of tree layout problems on binomial random graphs. Square
meshes are considered in Section 7.6 as the base for building approximation
algorithms for tree layout problems on random geometric graphs in Section 7.7.
Finally, in Section 7.8 we present the conclusions of this chapter.

7.2 Problems and preliminaries

Let us introduce some notation used all through the chapter: For an undirected
graph G, we denote by diam(G) its diameter. Given a graph G and an edge uv of
E(G), G\{uv} represents the graph (V (G), E(G)\{uv}). Unless explicitly said
all our trees are non-rooted. Any node of a tree with degree one will be called
a leaf, any non-leaf node of a tree will be called an internal node. Let L(T)
denote the set of leaves of a tree T . Given a tree T and two nodes x, y ∈ V (T),
let dT (x, y) denote the distance between x and y in T , counted as the number
of edges of the unique path joining x and y.

The following definition formally defines the general concept of communi-
cation tree for a given graph.

Definition 7.1 (Communication tree). Given a graph G, a communication
tree for G is a tree T such that V (G) ⊆ V (T).

210 Communication Tree Problems

A communication tree T for a graph G associates to each edge uv ∈ E(G) the
unique path PT (uv) that connects u and v in T . Notice that no relationship
is required between the set of edges of the graph and the set of edges of the
tree. Also remark that if T is a path and V (T) = V (G), a communication tree
represents two linear layouts ϕ and ϕR.

We are particularly interested in communication trees whose set of leaves
coincide with the vertices of the graph:

Definition 7.2 (Routing tree). A routing tree for a graph G is a communi-
cation tree T such that V (G) = L(T).

In the following, we will restrict our attention to routing trees with bounded
degree, and specially to routing trees whose internal nodes have degree 3:

Definition 7.3 (Tree layout). A tree layout for a graph G is a routing tree
such that every non-leaf node has exactly degree 3.

See Figure 7.1 for an illustration of the different communication trees.
Given a graph G and a communication tree T of G, we define the following

measures:

• The dilation λ(uv, T,G) of an edge uv in E(G) is the distance from u to
v in T .

• The edge congestion θ(xy, T,G) of an edge xy in E(T) is the number of
edges uv in E(G) such that the path from u to v in T traverses xy.

• The vertex congestion ϑ(x, T,G) of a vertex x in V (T) is the number of
edges uv in E(G) such that the path from u to v in T goes through x.

• The communication load δ(xy, T,G) of an edge xy in E(T) is the number
of vertices u in G such that some of its neighboring vertices in G lies in a
different component of T after the removal of the edge xy.

Table 7.2 summarizes these definitions.
A function F (T,G) mapping a communication tree T and a graph G to the

positive numbers is called a communication tree cost. For any communication
tree cost F and any graph G,

• d-mincF (G) is the minimum value of F over all communication trees T
for G with ∆(T) 6 d.

• d-minrF (G) is the minimum value of F over all routing trees T for G
with ∆(T) 6 d.

7.2 Problems and preliminaries 211

PT (uv) = Path from u to v in T for uv ∈ E(G)

dT (u, v) = Distance between u and v in T

λ(uv, T,G) = dT (u, v)

θ(xy, T,G) = |{uv : uv ∈ E(G) and PT (uv) contains xy}|
ϑ(x, T,G) = |{uv : uv ∈ E(G) and PT (uv) contains x}|
δ(xy, T,G) = |{u : ∃uv ∈ E(G) such that u and v lie

in different components of T \ {xy}}|

Table 7.2: Communication tree measures for a communication tree
T of a graph G. In the table, uv ∈ E(G), u, v ∈ V (G), xy ∈ E(T)

and x ∈ V (T).

Problem Name Cost

Min. Tree Dilation MinTD td(T,G) = maxuv∈E(G) λ(uv, T,G)

Min. Tree Congestion MinTC tc(T,G) = maxxy∈E(T) θ(xy, T,G)

Min. Tree Vertex Congestion MinTVC tvc(T,G) = maxx∈V (T) ϑ(x, T,G)

Min. Tree Comm. Load MinTCL tcl(T,G) = maxxy∈E(T) δ(xy, T,G)

Min. Tree Length MinTL tl(T,G) =

{∑
uv∈E(G) λ(uv, T,G)∑
xy∈E(T) θ(xy, T,G)

Table 7.3: Tree layout problems. Here G stands for a graph and T
for a tree layout of G.

212 Communication Tree Problems

1

2

34

5

(a) Graph

1 2 3 45

(b) Linear layout

1

2

34

5

(c) Communication tree

1

2

34

5

(d) Tree layout

Figure 7.1: Different types of communication trees for a graph.
Thin edges represent edges of the graph; bold edges represent edges

of the communication tree.

• d-minF (G) is the minimum value of F over all routing trees for G with
internal nodes of degree exactly d.

We will omit the d- prefix when d = 3, so that, minF (G) is the minimum value
of F over all tree layouts.

Given a graph G, the tree layout problem for a cost F consists in finding
an optimal tree layout T ∗ such that F (T ∗, G) is minimal, that is F (T ∗, G) =
minF (G). We are interested in the following problems:

• Minimum Tree Dilation (MinTD): Given a graph G, find a tree layout
T ∗ such that td(T ∗, G) = mintd(G), where

td(T,G) = max
uv∈E(G)

λ(uv, T,G).

• Minimum Tree Congestion (MinTC): Given a graph G, find a tree layout

7.2 Problems and preliminaries 213

T ∗ such that tc(T ∗, G) = mintc(G), where

tc(T,G) = max
xy∈E(T)

θ(xy, T,G).

• Minimum Tree Vertex Congestion (MinTVC): Given a graph G, find a
tree layout T ∗ such that tvc(T ∗, G) = mintvc(G), where

tvc(T,G) = max
x∈V (T)

ϑ(x, T,G).

• Minimum Tree Communication Load (MinTCL): Given a graph G, find
a tree layout T ∗ such that tcl(T ∗, G) = mintcl(G), where

tcl(T,G) = max
xy∈E(T)

δ(xy, T,G).

• Minimum Tree Length (MinTL): Given a graph G, find a tree layout T ∗

such that tl(T ∗, G) = mintl(G), where

tl(T,G) =
∑

uv∈E(G)

λ(uv, T,G) =
∑

xy∈E(T)

θ(xy, T,G).

The definitions of these tree layout problems are summarized in Table 7.3.
The above problems, defined for tree layouts, can easily be generalized to

communication tree and routing problems, both restricted to trees with bounded
degree.

The following basic upper bounds on the cost of a tree layout will be
useful.

Lemma 7.1. Let G be any graph with n nodes and m edges. Let T be any
tree layout of G. Then,

tc(T,G) 6 m,
tvc(T,G) 6 m,
tcl(T,G) 6 n,
td(T,G) 6 diam(T),
tl(T,G) 6 m · diam(T).

As we always have a tree layout with n leaves and diameter logn+ 1, the
previous lemma implies that td(T,G) 6 logn+ 1 and tl(T,G) 6 m log n+m.
On the other hand, tc(T,G) and tvc(T,G) can be Θ(n2) and tcl(T,G) can
be Θ(n), for instance in the case that G is a complete graph on n vertices.

The following basic inequalities follow from the definitions.

214 Communication Tree Problems

Lemma 7.2. Let G be any graph with n nodes and m edges and let T be any
tree layout for G. Then, tcl(T,G) 6 tc(T,G) 6 tvc(T,G) 6 3tc(T,G).

Let us finish this section with a result on trees that we will need later. We
say that an edge in a tree T is a s-splitter if its removal splits T in two rooted
trees, each one with at least bsc leaves. The following lemma is similar to a
result referred in [173].

Lemma 7.3. Let T be any tree layout with n leaves. Then, T always contains
a 1

3n-splitter edge.

Proof. We prove it by induction on the number of leaves. The base case is n = 3.
There only exists a tree layout with three leaves, which satisfies the property.
Assume that any tree layout with n′ leaves always contains a 1

3n
′-splitter edge

for some n′ > 3. Let T be any tree with n = n′ + 1 leaves.
Take any node with two adjacent leaves from T and substitute this group

by a marked leaf m, obtaining a new tree T ′ with n′ = n − 1 leaves. By the
induction hypothesis, T ′ contains a 1

3n
′-splitter edge uv that splits T ′ into two

rooted trees T ′u and T ′v rooted at u and v respectively. Also, uv splits T into
two rooted trees Tu and Tv rooted at u and v respectively. Let a′ be the number
of leaves in T ′u and let b′ be the number of leaves in T ′v. Also, let a be the
number of leaves in Tu, and let b be the number of leaves in Tv. Without loss
of generality, assume a′ 6 b′. This situation is illustrated in Figure 7.2(a).

As uv is a 1
3n
′-splitter edge for T ′, we have

1
3n
′ 6 a′ 6 1

2n
′ 6 b′ 6 2

3n
′ and a′ + b′ = n′.

We break the proof in several cases:

Case 1: m belongs to T ′u and 1
3n
′ 6 a′ < 1

2n
′. As a = a′ + 1, we have

1
3n 6 a 6

1
2n and so uv is a 1

3n-splitter edge for T .

Case 2: m belongs to T ′u and a′ = 1
2n
′. In this case, n must be even, b′ = a′

and a = a′+ 1. So, 1
2n 6 a = 1

2(n+ 1) 6 2
3n and 1

3n 6 b = 1
2(n− 1) 6 1

2n. This
proves that uv is a 1

3n-splitter edge for T .

Case 3: m belongs to T ′v and 1
2n
′ 6 b′ < 2

3n
′. As b = b′ + 1, we have

1
2n 6 b 6

2
3n and so uv is a 1

3n-splitter edge for T .

Case 4: m belongs T ′v and b′ = 2
3n
′. In this case, n′ is a multiple of 3,

a′ = 1
3n and b = b′ + 1. Let uw and ut be the two edges adjacent to v in

T ′v. Let T ′w the subtree of T ′v rooted at w and let T ′t the subtree of T ′v rooted
at t. Also, let b′1 be the number of leaves in T ′w and let b′2 be the number of
leaves in T ′t . Assume, without loss of generality, that b′1 6 b′2. Notice that
1 6 b′1 6 1

3n 6 b′2 6 2
3n. This situation is illustrated in Figure 7.2(b). Several

new sub-cases must be considered:

7.3 Tree layouts, routing trees and communication trees 215

T ′
u T ′

v

a
′
le

av
es

b′
le

av
es

u v

(a)

a
′ =

1 3
n

′
le

av
es

b′ 1
le

av
es

b′ 2
le

av
es

u v

w

t b′
le

av
esT ′

u

T ′
w

T ′
t

(b)

Figure 7.2: Illustration for the proof of Lemma 7.3.

Case 4.1: m belongs T ′v. In this case, let T1 be the tree rooted at v
obtained by splitting T with vt. Let c be the number of leaves in T1. Then,
c = a′ + b′1 and so 1

3n 6 c 6
2
3n. Therefore, vt is a 1

3n-splitter edge for T .

Case 4.2: m belongs T ′w and b′1 <
1
3n
′. As in the previous case, let T1 be

the tree rooted at v obtained by splitting T with vt. Let c be the number of
leaves in T1. Then, c = a′ + b′1 + 1 and so 1

3n 6 c 6
2
3n. Therefore, vt is also a

1
3n-splitter edge for T .

Case 4.3: m belongs T ′w and b′1 = 1
3n
′. In this case, let T2 be the tree

rooted at w obtained by splitting T with vw. Let d be the number of leaves in
T2. Then, d = b′1 + 1 and so 1

3n 6 d 6 2
3n. Therefore, vw is a 1

3n-splitter edge
for T .

As there are no other possible cases, the induction step is proved and the
lemma follows.

7.3 Relationships between tree layouts, routing trees
and communication trees

In this section we relate the costs of communication tree problems defined on
tree layouts to the costs of communication tree problems on routing trees and
communication trees. In this section we assume that the maximal degree of a
communication tree is bounded by a constant.

Any tree layout is a routing tree, and every routing tree is a communication
tree. Therefore we have:

Lemma 7.4. For any cost F ∈ {td,tc,tvc,tcl,tl}, any fixed d > 3 and
any graph G, we have d-mincF (G) 6 d-minrF (G) 6 d-minF (G).

216 Communication Tree Problems

Taking into account that any communication or routing tree T is a valid
communication or routing tree for any d > ∆(T) we have:

Lemma 7.5. For any cost F ∈ {td,tc,tvc,tcl,tl}, any fixed d > 3 and any
graph G we have (d + 1)-mincF (G) 6 d-mincF (G) and (d + 1)-minrF (G) 6
d-minrF (G).

The next theorem relates the optimal costs of the communication tree
problems on tree layouts and communication trees.

Theorem 7.1. For any fixed d > 3 and any non-empty graph G,

mintd(G) 6 c1 · d-minctd(G),
mintc(G) 6 c2 · d-minctc(G),

mintvc(G) 6 c3 · d-minctvc(G),
mintcl(G) 6 c4 · d-minctcl(G),
mintl(G) 6 c5 · d-minctl(G).

where c1, . . . , c5 are positive constants that depend only on d.

Proof. The proof considers a way of constructing a tree layout starting from a
communication tree. In Figure 7.3 we give a sketch of the construction. Assume
that T is a communication tree for G with ∆(T) 6 d. Construct a routing tree
T ′ in the following way: for every vertex u ∈ V (G), let t(u) be the corresponding
node in T . If t(u) is not a leaf, add a new leaf connected to t(u) with label u.
The resulting tree is a routing tree T ′ for G with ∆(T ′) 6 d+ 1. Then we have,

td(T ′, G) 6 td(T,G) + 2 6 3 · td(T,G),
tc(T ′, G) 6 max{tc(T,G),∆(G)} 6 d · tc(T,G),

tvc(T ′, G) 6 tvc(T,G),
tcl(T ′, G) 6 tcl(T,G),
tl(T ′, G) 6 tl(T,G) + 2|E(G)| 6 3 · tl(T,G).

To reduce the degree in the routing tree T ′ we construct a new routing tree
T ′′ for G, as follows: replace every node x in V (T ′) with degree deg(x) > 3 by
a worm layout with deg(x) leaves. Notice that as deg(x) 6 d, the number of
nodes in such a caterpillar is a constant that is different for each value of d.
Then,

td(T ′′, G) 6 d · td(T ′, G),
tc(T ′′, G) 6 (d− 2) · tc(T ′, G),

tvc(T ′′, G) 6 tvc(T ′, G),

7.3 Tree layouts, routing trees and communication trees 217

1

23

45

6 11

7

8 9 10

(a) 4-communication tree

1

23

45

6

11

7

8 9 10

(b) Intermediate 5-routing tree

12

3

45

6

11

7

8
9

10

(c) Final tree layout

Figure 7.3: Transforming a 4-communication tree into a tree lay-
out.

218 Communication Tree Problems

tcl(T ′′, G) 6 tcl(T,G′),
tl(T ′′, G′) 6 d · tl(T ′, G).

Observe that T ′′ is a tree layout. Considering as starting point an optimal
tree according to each of the costs, the result follows.

The relationship between the tree layout and congestion presented in the
previous theorem can be strengthened for the vertex congestion.

Theorem 7.2. For any graph G, mintvc(G) = minrtvc(G) = minctvc(G).

Proof. Assume that we have a communication tree T for G with tvc(T,G) > 3.
We will produce a tree layout T ′ for G with the same cost.

For every vertex x ∈ V (G) let t(x) be the corresponding node in T . If
t(x) has degree 2, we add a new leaf connected to t(x) with label x. If t(x) has
degree 3, split one of the three edges out of t(x) by adding a new internal vertex
t′ and a new leaf connected to t′ with label x.

The vertex congestion of the new nodes introduced by the previous con-
struction is less than or equal to the vertex congestion of the node t(x) in the
original graph. Therefore tvc(T ′, G) 6 tvc(T,G).

7.4 Average

In this section we study the average costs of the MinTD and MinTL problems
over all possible tree layouts for a fixed graph. Our main task here is to identify
these trees.

Let us define the basic nomenclature and notation we are going to use
through this section.

Recall that two non-rooted trees are different as plane trees if one cannot
be obtained from the other by continuous operations in the plane [118]. Fol-
lowing Knuth [161], an ordered tree is defined recursively as formed by a root
and an ordered sequence (possibly empty) of ordered trees, called subtrees of
the root. A non-ordered tree is defined recursively as formed by a root and
a multi-set (possibly empty) of non-ordered trees, called also subtrees of the
root. Notice that a non-ordered tree can have multiple representations using
ordered trees. The degree deg(x) of a node x in a non-rooted tree is defined as
the number of adjacent nodes to x, whereas the degree deg(x) of a node x in
a rooted tree is defined as the number of subtrees of x. Therefore, a leaf in a
rooted tree has degree 0. Let l(T) denote the number of leaves in T . A k-ary
tree is a rooted tree such that each internal node has degree k.

Given a non-ordered tree T let us consider, for each node x ∈ V (T),
the multi-set of subtrees hanging from x. In this multi-set, subtrees can have

7.4 Average 219

a

b f

c
3

d
6

e
9

g i

1 2 4 5 7 8
h

12 13 14
j

17

10 11 15 16

Figure 7.4: A rooted-tree T in which β2(T) = 9 (in nodes
b, c, d, e, f, g, h, i, j), β3(T) = 1 (in node b), βi(T) = 0 for i > 4.

different degrees of multiplicity. Let ηi(x) be the number of different subtrees
that have degree of multiplicity exactly i. Let ηi(T) =

∑
x∈V (T) ηi(x); see

Figure 7.4.
Given a non-ordered tree T , let T(T) be the set of all ordered trees that

are representations of T and let c(T) = |T(T)|. In order to construct the set
T(T) for T , we have to

• permute in all possible ways all the subtrees of each node x ∈ V (T),
• and remove the duplicated trees.

From this observation, we obtain an expression for c(T):

Lemma 7.6. The number of ordered trees representing a given non-ordered
tree T is

c(T) =

∏
x∈V (T) deg(x)!∏
i>1(i!)ηi(T)

.

Proof. The total number of permutations of the subtrees is given by
∏

x∈V (T)

deg(x)!. (7.1)

On the other hand, the number of repetitions obtained by performing the con-
struction described above to obtain T(T) is

∏

i>1

(i!)ηi(T) (7.2)

220 Communication Tree Problems

because the repetitions are associated with the existence of identical trees hang-
ing from the same node, and, for every constructed tree, each time that i iden-
tical subtrees occur in a node, there are i! identical constructions on the same
tree.

As the number of repetitions is the same for every element in T(T), the
result follows from equations (7.1) and (7.2).

Given a non-ordered tree T , let E(T) be the set on non-ordered trees
obtained by labelling the leaves in T with labels in [l(T)] and let e(T) = |E(T)|.
Starting from T we can construct the set E(T) by

• considering all the l(T)! possible labellings,
• and removing the duplicated trees.

From this observation, we can also obtain an expression for e(T):

Lemma 7.7. The number of different non-ordered labelled trees obtained by
labelling the leaves of a given non-ordered tree T is

e(T) =
l(T)!∏

i>1(i!)ηi(T)
.

Proof. The number of labellings obtained by performing the construction de-
scribed above to obtain E(T) is l(T)!. As in the proof of Lemma 7.6, the
number of repetitions obtained by the above construction to obtain E(T) is∏
i>1(i!)ηi(T).

If T is a k-ary tree with n internal nodes, then the number of leaves is
l(T) = (k− 1)n+ 1. So, from the two previous lemmas, we obtain the following
corollary.

Corollary 7.1. For any non-ordered k-ary tree T , e(T)/c(T) is independent
on the shape of T and depends only on the size of T . If T has n internal nodes,
we get

e(T)
c(T)

=
((k − 1)n+ 1)!

k!n
.

Our next goal is to find the average distance between any two leaves, the
average being taken among all possible tree layouts.

Definition 7.4 (NLN, RLN and Catalan trees). Let n-NLN denote the
set of trees that are non-rooted, non-plane, with n internal nodes, with n + 2
labeled leaves, and such that each of its n internal nodes has degree 3. Also, let
n-RLN denote the set of trees that are rooted, non-ordered, with n+ 1 labelled
leaves, and such that each of its n internal nodes has outgoing degree 2. Finally,
define the n-Catalan trees as the set of ordered, non-labeled, rooted binary trees
with n internal nodes.

7.4 Average 221

Our strategy is to use the well know results on n-Catalan trees to obtain
results for n-NLN trees, that is, for tree layouts.

Lemma 7.8. The set of n-NLN trees is isomorphic to the set of n-RLN trees.

Proof. Let us define the following isomorphism between the n-NLN trees and
the n-RLN trees: given a n-NLN tree, suppress the leaf with label n + 2 and
make its neighbor the root of the new n-RLN tree.

The isomorphism just described, will allow us to interchange the study of
both families of trees.

Given a Catalan tree T and a property function f on T , as for example
internal path length, height, etc, we say that f is order invariant if the value
of f is the same for all Catalan trees that are equivalent to T as non-ordered
trees. In the same manner, given a RLN tree T and a property function f on
T , we say that f is order invariant if the value of f is the same for all RLN
trees that as non-labelled trees are equivalent to T .

Lemma 7.9. For any order invariant property function, its average value is the
same on n-RLN trees and on n-Catalan trees.

Proof. Let Bn denote the set of all n-Catalan trees, En the set of all n-RLN
trees and Cn the set of all non-ordered, rooted and non-labeled binary trees
with n internal nodes. Also, let f(T) be an order invariant property function.
Do the following decompositions,

Bn =
⋃

T∈Cn
T(T) and En =

⋃

T∈Cn
E(T),

where T(T) and E(T) are restricted to binary trees. As the considered trees
have internal nodes with degree 2, and the only possible multiplicities are 1 or
2, using Lemmas 7.6 and 7.7 we have

c(T) = |T(T)| = 2n

2η2(T)
and e(T) = |E(T)| = (n+ 1)!

2η2(T)
.

On the other hand,
∑

T ′∈Bn

f(T ′) =
∑

T∈Cn

∑

T ′∈T(T)

f(T ′) =
∑

T∈Cn
c(T)f(T),

and

∑

T ′′∈En
f(T ′′) =

∑

T∈Cn

∑

T ′′∈E(T)

f(T ′′) =
∑

T∈Cn
e(T)f(T).

222 Communication Tree Problems

Using Corollary 7.1 with k = 2, and the previous equations, we get
∑

T ′′∈En
f(T ′′) =

∑

T∈Cn
f(T)e(T)

=
∑

T∈Cn
f(T)c(T)

e(T)
c(T)

=
(n+ 1)!

2n
∑

T∈Cn
f(T)c(T)

=
(n+ 1)!

2n
∑

T ′∈Bn

f(T ′)

=
e(n)
c(n)

∑

T ′∈Bn

f(T ′).

In particular, taking 1 as order invariant property function,

∑

T ′′∈En
1 =

e(n)
c(n)

∑

T ′∈Bn

1.

As a consequence,
∑

T ′′∈En f(T ′′)∑
T ′′∈En 1

=

∑
T ′∈Bn

f(T ′)∑
T ′∈Bn

1
,

and we can conclude that the average value of f(T ′′) for all T ′′ ∈ En is the same
that the average value of f(T ′) for all T ′ ∈ Bn.

The average distance between two different leaves among all n-Catalan
trees is known to be one unit more than the average depth of a leaf, which
is 4n/

(
2n
n

) − 1 =
√
πn − 1 + o(

√
n) (see Section 2.3.4.5 of [161]). This result,

together with Lemma 7.9, implies the following theorem.

Theorem 7.3. Given a graph G = (V,E) with |V | = n and |E| = m > 1 the
average length for G is Θ(m

√
n), and the average dilation for G is Θ(

√
n); these

averages being taken over all possible (n− 2)-NLN trees.

The previous theorem says that using a random (n−2)-NLN as tree layout
for a graph with n nodes, will provide communication costs far away from the
optimal ones, as by Lemma 7.1, selecting a tree layout of diameter 2 logn + 2
will do better than a randomly selected routing tree. Note however that a tree
layout with logarithmic diameter does not always provide the optimum. In
particular, when the graph is a line or a cycle, a “worm” layout (caterpillar
with hair length 1) gives the optimum (see Figure 7.5).

7.5 Binomial random graphs 223

Figure 7.5: A worm (caterpillar tree) layout for a line.

7.5 Binomial random graphs

In this section we consider tree layout problems on binomial random graphs
Gn,pn (see Definition 3.1). We show that all the tree layout problems defined in
Section 7.2 are approximable within a constant on mixing graphs (see Defini-
tion 3.3). More precisely, our results establish that the cost of any balanced tree
layout for a mixing graph is within a constant of the optimal cost. Recall from
Lemma 3.2 that, for suitable pn, with overwhelming probability, Gn,pn graphs
are mixing.

The following result will prove helpful. For any node u in a given tree T
and any integer i, let L>i(T, u) denote the set of leaves of T at distance greater
than i from u.

Lemma 7.10. Let α, β ∈ (0, 1). Let T be a tree with n leaves and with internal
nodes of degree 3. Then, for any node u in T , it holds that L>α logn(T, u) > βn
for sufficiently large n.

Proof. Starting at a vertex u, consider a breadth first search process in T . At
iteration i, all nodes at distance i from u have been marked and there can be
at most 3 · 2i−1 such nodes. Therefore,

L>α logn(u) > n−
α logn∑

i=0

3 · 2i−1 > n− 3nα + 3
2 > βn

by the assumption that n is large enough.

Using a balanced tree, it is possible to obtain a constant approximation
for the MinTC, MinTD, MinTL and MinTCL problems on mixing graphs:

Lemma 7.11. Let ε ∈ (0, 1
9), γ ∈ (0, 1). Consider a sequence (cn)n∈N such that

Cε,γ 6 cn 6 n for all n > n0 for some natural n0. Let G be any (ε, γ, cn)-mixing
graph with n nodes where n is large enough. Let Tb be a balanced tree layout
of G. Then,

tc(Tb, G)/mintc(G) 6 2(1− γ)ε2/ (1 + γ) ,

td(Tb, G)/mintd(G) 6 (1− γ)2/ (1 + γ) ,

224 Communication Tree Problems

tl(Tb, G)/mintl(G) 6 (1− γ)32ε2/(1 + γ)2,

tcl(Tb, G)/mintcl(G) 6 3/2(1− 7ε2).

Proof. To prove this result, we present lower and upper bounds to each of the
considered problems. The lower bounds hold for any tree layout, while the
upper bounds are obtained through a balanced tree layout.

Lower bound for mintc(G): Consider any tree layout T of G. Let uv
be a n

√
ε-splitter edge of T that separates T into two binary trees Tu and Tv

rooted at u and v respectively. Such an edge must exist by Lemma 7.3. Let
α, β ∈ (0, 1) be two parameters to be determined latter. By Lemma 7.10, there
exists a set of leaves Lu of Tu such that for all x ∈ Lu, dTu(x, u) > α log(n

√
ε)

and |Lu| > βn
√
ε. Also, there exists a set of leaves Lv of Tv such that for

all y ∈ Lv, dTv(y, v) > α log(n
√
ε) and |Lv| > βn

√
ε. Setting β =

√
ε, we

have |Lu| > εn and |Lv| > εn. As G is (ε, γ, cn)-mixing, we have θ(Lu, Lv) >
(1 − γ)|Lu||Lv|cn/n > (1 − γ)ε2ncn. Thus, θ(uv, T,G) > (1 − γ)ε2ncn. So,
tc(T,G) > (1−γ)ε2ncn and as T is arbitrary we get mintc(G) > (1−γ)ε2ncn.

Lower bounds for mintd(G) and mintl(G): Observe that for all x ∈ Lu
and all y ∈ Lv, dT (x, y) > 2α log(n

√
ε) + 1. Setting α = 1− γ, we have

td(T,G) > 2α log(n
√
ε) + 1 > (1− γ)22 logn

and

tl(T,G) > (1− γ)ε2ncn(2α log(n
√
ε) + 1) > (1− γ)32ε2cnn logn.

As T is arbitrary, mintd(G) > (1−γ)22 logn and mintl(G) > 2(1−γ)3ε2cnn logn.
Lower bound for mintcl(G): Let us say that a graph G with n nodes

satisfies the dispersion property if, for any two disjoint subsets A and B of
V (G) with |A| > εn and |B| > εn, it is the case that there is at least one edge
between A and B. From Definition 3.3 we get θ(A,B) > (1 − γ)ε2n2, which
implies θ(A,B) > 1 for n large enough. Therefore mixing graphs satisfy the
dispersion property.

Let xy be a
⌊

1
3n
⌋
-splitter edge of T separating T into two binary trees Tx

and Ty rooted at x and y respectively. Let Lx and Ly denote the leaves of Tx
and Ty respectively. For n large enough, |Lx| > (1− ε)1

3n and |Ly| > (1− ε)1
3n.

Let L1
x be a subset of size dεne of Lx and let L1

y be a subset of the same size of
Ly. Because of dispersion, there must be at least one edge in E(G) connecting
a node from L1

x to a node in L1
y. Let u1

xu
1
y be such edge and let v1

x be a node in
Lx \ L1

x and let v1
y be a node in Ly \ L1

y

Now we will construct recursively two sequences of sets Lix and Liy for
1 < i 6 (1 − ε)1

3n − (1 + ε)εn: Let Lix = (Li−1
x \ {ui−1

x }) ∪ {vi−1
x }, and let

Liy = (Li−1
y \ {ui−1

y }) ∪ {vi−1
y }.

7.6 Square grid graphs 225

As, the two sets have size dεne, by dispersion, there must be at least
one edge in E(G) connecting a node from Lix to a node in Liy. Call uixu

i
y the

endpoints of such an edge.
Let vix be a node in Lx \ (Lix ∪ {ujx : 1 6 j 6 i}) and similarly let viy be

a node in Ly \ (Liy ∪ {ujy : 1 6 j 6 i}), notice that such nodes must exist.
By construction, all nodes in {uix : 1 6 i 6 (1 − ε)1

3n − (1 + ε)εn} are
connected in G to some node in Ly and, likewise, all nodes in {uiy : 1 6 i 6
(1− ε)1

3n− (1 + ε)εn} are connected in G to some node in Lx. Therefore,

tcl(T,G) > 2 · ((1− ε)1
3n− (1 + ε)εn) > (1− 7ε2)2

3n.

As T is arbitrary, we have mintcl(G) > (1− 7ε2)2
3n.

Upper bounds: Let m denote the number of edges of the graph G. Using
Lemma 7.1, we have tcl(Tb, G) 6 n. Moreover, as G is mixing, we also obtain
tc(Tb, G) 6 m 6 (1 + γ)1

2ncn. As Tb is a balanced tree of G, its height is at
most dlogne 6 (1 + γ) log n. Therefore, we have td(Tb, G) 6 2(1 + γ) log n and
tl(Tb, G) 6 2m(1 + γ) log n 6 (1 + γ)2ncn log n.

As a consequence of Lemmas 3.2, 7.11 and 7.2, we get our main result on
the approximability of tree layout problems on binomial random graphs:

Theorem 7.4. Let ε ∈ (0, 1
9), γ ∈ (0, 1) and define Cε,γ = 3(1 + ln 3)(εγ)−2.

Consider a sequence (cn)n∈N such that Cε,γ 6 cn 6 n for all n > n0 for some
natural n0 and let pn = cn/n. Then, with overwhelming probability, the prob-
lems MinTD, MinTC, MinTVC, MinTCL and MinTL can be approximated
within a constant on binomial random graphs Gn,pn using a balanced tree layout.
Moreover, in the case of the MinTD, the approximation factor can be made as
small as desired.

7.6 Square grid graphs

In this section we study tree layout problems on square grid graphs. This is
intended as an intermediate step to treat random geometric graphs on the next
section. Recall from Section 4.1 that Lm denotes a m × m square grid with
V (Lm) = {0, . . . ,m− 1}2 and E(Lm) = {uv : u, v ∈ V (Lm) ∧ ‖u− v‖2 = 1}.

Let (A,B) be a partition of V (Lm). Let θ(A,B) denote the number of
edges between A and B in Lm. The following proposition will be of help. It is
similar to Proposition 5.1, but without diagonal edges.

Proposition 7.1. For any partition (A,B) of V (Lm) it holds that

θ(A,B) > min
{√
|A|,

√
|B|
}
.

226 Communication Tree Problems

Proof. If A includes an entire row of nodes, and B includes an entire row of
nodes, then each column includes an edge with one endpoint in A and the other
in B, which contributes 1 to θ(A,B), so that θ(A,B) > m. If B contains no
entire row or column, and at least as many rows as columns have non-empty
intersection with B, then there are at least

√
B such rows, and each contains a

cutting edge which contributes 1 to θ(A,B), so that θ(A,B) >
√
B. Applying

similar arguments to the other possible cases, we have

θ(A,B) > min
{√
|A|,

√
|B|, m

}

but this minimum is always achieved at
√
|A| or at

√
|B|, proving the result.

The next lemma presents lower bounds of the costs of several tree layout
problems on square grids. Notice that despite the fact that MinTC belongs to
P for planar graphs, the exact value of mintc(Lm) is unknown.

Lemma 7.12. Let m be a sufficiently large natural. Then,

mintc(Lm) > 1
2m,

mintd(Lm) > logm,

mintcl(Lm) >
√

6
3 m,

mintl(Lm) > 6m2 − 8m+ 1.

Proof. Let T be any tree layout of Lm. Let uv be a
⌊

1
3m

2
⌋
-splitter edge of T .

As uv determines a partition (A,B) of Lm with |A|, |B| > ⌊1
3m

2
⌋
, by Propo-

sition 7.1 the congestion of edge uv is at least equal to min{
√
|A|,

√
|B|} >√

bm2/3c. Therefore, tc(T,Lm) >
√
bm2/3c >

√
m2/4 = 1

2m. As T is arbi-
trary, the mintc result follows.

Recall from Lemma 4.2 that for any linear layout ϕ on Lm and any k ∈
[m2], it is the case that δ(k, ϕ, Lm) > δ(k, ϕD, Lm), where φD stands for the
diagonal layout of Lm. Set

qm =
⌊

1
6

√
9 + 24m2 − 1

2

⌋
.

Then,

qm∑

i=1

i 6
⌊
m2/3

⌋
.

So, δ(
⌊

1
3m

2
⌋
, ϕ, Lm) > qm (recall Figure 4.11).

To prove the mintd and the mintcl lower bounds, let T be any tree
layout of Lm and let uv be a

⌊
1
3m

2
⌋
-splitter edge of T . As there are at least qm

7.6 Square grid graphs 227

leaves from one subtree connected in Lm to at least one other leave in the other
subtree, we have td(T,Lm) > log qm + 2 and tcl(T,G) > δ(1

3m
2, ϕ, Lm). As

T is arbitrary, an for m sufficiently large, mintd(Lm) > log qm + 2 > logm and
mintcl(Lm) >

√
6

3 m.
To prove the mintl result, let G = (V,E) be any graph. Observe that

in any tree layout of G no edge can have length 0 or 1. Also, observe that,
at most, only 1

2 |V | edges can have length 2, which happens in a balanced tree.
Furthermore, at most |V |−1 edges can have length 3, which happens in a worm.
Finally, observe that all edges that do not have length 2 or 3 must have, at least,
length 4. In the case of Lm with |V | = m2 nodes and |E| = 2m2 − 2m edges,
we get

mintl(Lm) > 2(1
2m

2) + 3(m2 − 1) + 4((2m2 − 2m)− 1
2m

2 − (m2 − 1))

> 6m2 − 8m+ 1,

which ends the proof.

In order to get upper bounds, we shall use a recursive algorithm to produce
a tree layout for Lm. We start describing the algorithm for the case that m is
a power of two.

Algorithm 7.1 (The recursive algorithm). Let m = 2k for some integer
k ∈ N. The recursive algorithm generates a tree layout of Lm according to the
following two rules:

• If k = 1: form a tree layout by joining the four nodes of Lm as shown in
Figure 7.6(a).

• If k > 1: divide Lm in four Lm/2 sub-grids (top/left, bottom/left, top/right
and bottom/left); recursively create a tree layout for each one of the sub-
grids; join the four tree layouts in one tree layout as shown in Figure 7.6(b).

This construction generates an H-tree. Figure 7.7 illustrates the tree lay-
out and problem costs produced by the recursive algorithm on L2, L4 and L8.
Observe that the recursive algorithm generates balanced tree layouts and pro-
duces a (2k−1)-splitting edge, which we call the top edge. We will also assume
that the so obtained tree layout is rooted at the top edge. The following lemma
states the costs computed by the recursive algorithm.

Lemma 7.13. Assume k ∈ N. Let T2k be the tree layout of L2k computed by
the recursive algorithm. Then,

tc(T2k , L2k) = 2k,
td(T2k , L2k) = 4k − 1,

228 Communication Tree Problems

(a) Base case: k = 1

2
k

2k

2
k
−

1

2k−1

(b) Recursive case

Figure 7.6: Recursive algorithm to build a tree layout for a L2k

square grid.

tcl(T2k , L2k) = 2k+1,

tl(T2k , L2k) = 14 · 4k − 8 · 2kk − 15 · 2k.

Proof. The proof for tc and tcl is obtained showing by induction on k that
the maximal congestion and the maximal separation are reached at the top edge
and the edges that are incident to its endpoints.

In order to compute td(T2k , L2k), observe that T2k is made of four tree
layouts T2k−1 for which the distance from any leaf to their respective top edge
is 2k − 3. But to construct T2k one node is inserted in these top edges and to
connect a left sub-grid with a right sub-mesh three edges are added. So,

td(T2k , L2k) = 2((2k − 3) + 1) + 3 = 4k − 1.

In the following, let f(k) = tl(T,L2k); note that f(1) = 10. For k > 2, in
order to compute f(k) observe that T2k is made of four tree layouts T2k−1 , each
one containing 2k−1 · 2k−1 nodes and whose height from the top edge is 2k − 3.
We obtain the following recurrence:





f(k) = 4f(k − 1) + 4 · 2k−1 + 2 · 2k−1(2(2k − 3) + 4)+
+2 · 2k−1(2(2k − 3) + 5),

f(1) = 10.

The first term of f(k) comes from the cost of the four recursive tree layouts; the
second term comes from the lengthening of the four recursive tree layouts due
to the addition of a new node on its top edge; the third term comes from the
cost of the length of the horizontal edges between the two top trees and the two

7.6 Square grid graphs 229

(a) L2: tc = 2, td = 3, tl = 10, tcl = 4.

(b) L4: tc = 4, td = 7, tl = 100, tcl = 8.

(c) L8: tc = 8, td = 11, tl = 584, tcl = 16.

Figure 7.7: Illustration of tree layouts computed by the recursive
algorithm.

230 Communication Tree Problems

bottom trees; the fourth term comes from the cost of the length of the vertical
edges between the two left trees and the two right trees.

The resolution of the recurrence yields the result.

We now generalize the recursive algorithm to handle general square grids,
when their side is not a power of two.

Algorithm 7.2 (The generalized recursive algorithm). Let m ∈ N. Let
k be the integer such that m 6 2k < 2m and let T2k be the tree computed by
the recursive algorithm on L2k rooted at the top edge. The generalized recursive
algorithm generates a tree layout Tm of Lm applying iteratively the following
transformation for all node u ∈ V (L2k) \ V (Lm):

• let p1 be the parent of u, let v be the sibling of u and let p2 be the parent
of p1;

• remove the nodes u and p1 from T together with its three incident edges;

• add the edge p2v to T

Figure 7.8 shows the above transformation. Figure 7.9 illustrates the
application of the generalized recursive algorithm to a 3× 3 square grid.

The following theorem states that the generalized recursive algorithm
is a constant approximation algorithm for the MinTD, MinTC, MinTVC,
MinTCL and MinTL tree layout problems on square grids:

Theorem 7.5. Let m be a sufficiently large natural; let Lm be a m×m square
grid and let Tm be its tree layout computed by the generalized recursive algo-
rithm. Then,

td(Tm, Lm)/mintd(Lm) < 4,
tc(Tm, Lm)/mintc(Lm) < 4,

tvc(Tm, Lm)/mintvc(Lm) < 12,

tcl(Tm, Lm)/mintcl(Lm) <
√

6,
tl(Tm, Lm)/mintl(Lm) < 10.

Proof. Let k be the natural such that m 6 2k < 2m, and let T2k be the tree
computed by the recursive algorithm on L2k . Observe that the iterative deletion
of a leaf by the generalized recursive algorithm cannot increase the congestion or
separation at an edge of the tree layout. Also, the iterative deletion of a leave
by the generalized recursive algorithm cannot increase the length of a graph
edge in the tree layout. Therefore, using Lemmas 7.13 and 7.2, we get

td(Tm, Lm) 6 td(T2k , L2k) 6 4k − 1 < 4 logm− 3,

7.6 Square grid graphs 231

v u

p1

p2 p2

v

Figure 7.8: Deleting a leaf with the generalized recursive algo-
rithm.

Figure 7.9: Application of the generalized recursive algorithm to
a 3× 3 square grid.

232 Communication Tree Problems

tc(Tm, Lm) 6 tc(T2k , L2k) 6 2k < 2m,

tvc(Tm, Lm) 6 3 · tc(T2k , L2k) 6 3 · 2k < 6m,

tcl(Tm, Lm) 6 tcl(T2k , L2k) 6 2k < 2m,

tl(Tm, Lm) 6 tl(T2k , L2k) 6 14·4k − 8·2k ·k − 15·2k 6 14·4k 6 56m2.

The statement of the theorem follows from these upper bounds, together with
the lower bounds of Lemma 7.12.

7.7 Random geometric graphs

In this section, we are concerned with the approximability of the MinTD,
MinTC, MinTVC, MinTCL and MinTL tree layout problems on random
geometric graphs.

Recall from Definition 5.3 that, given a set V of points in the unit square
and a positive real r, the geometric graph G(V ; r) is the graph G = (V,E)
where E = {uv : u, v ∈ V ∧ 0 < ‖u − v‖ 6 r}. All through this chapter,
‖ · ‖ will denote the l∞ norm. Let (rn)n∈N be a sequence of positive numbers
and let X = (Xn)n∈N be a sequence of independently and uniformly distributed
random points in [0, 1]2. According to Definition 5.4, for any n ∈ N, we write
Xn = {X1, . . . , Xn} and call G(Xn; rn) the random geometric graph of n vertices
on X with radius rn. As we did in Section 5.3 and in Chapter 6, in the remaining
of this section we shall restrict our attention to almost surely connected random
geometric graphs, that is, random geometric graphs whose radius is of the form

rn =
√
an
n

where rn → 0 and an/ logn→∞.

The rationale behind this choice was explained in Section 5.3.
An easy adaptation of the proofs of Lemmas 5.9 and 5.10 suffices to prove

the following lower bounds for some tree layout problems on random geometric
graphs. Recall that (mintd(G(Xn; rn)))n∈N and alike are sequences of random
variables.

Lemma 7.14. Let (rn)n∈N be a sequence of positive numbers with rn → 0 and
nr2

n/ logn → ∞; let (Xn)n∈N be a sequence of independently and uniformly
distributed random points in [0, 1]2. Then, with probability 1,

mintd(G(Xn; rn)) = Ω(logn),

mintc(G(Xn; rn)) = Ω(n2r3
n),

mintcl(G(Xn; rn)) = Ω(nrn),

mintl(G(Xn; rn)) = Ω(n2r2
n logn).

7.7 Random geometric graphs 233

We introduce now a subclass of geometric graphs that captures the prop-
erties we need to bound our tree layout costs on random geometric graphs.

Definition 7.5 (Well behaved graphs). Consider any set Vn of n points
in [0, 1]2, which together with a radius rn, induce a geometric graph Gn =
G(Vn; rn). Dissect the unit square into 4 b1/rnc2 boxes of size 1/2 b1/rnc ×
1/2 b1/rnc placed packed in [0, 1]2 starting at (0, 0). By construction, all the
boxes exactly fit in the unit square, and any two points of Vn connected by
an edge in Gn will be in the same or neighboring boxes (including diagonals)
because 1/2 b1/rnc > rn/2. Given ε ∈ (0, 1), let us say that Gn is ε-well behaved
if every box of this dissection contains at least (1 − ε)1

4an points and at most
(1 + ε)1

4an points.

Notice that well behaved graphs are not exactly the same as nice graphs,
the dissections of Definitions 7.5 and 5.5 are slightly different. But well behaved
graphs share with nice graphs the fact that almost every random geometric
graph is well behaved. The proof of the following lemma is similar to the proof
of Lemma 5.3.

Lemma 7.15. Let ε ∈ (0, 1
5). Then, with probability 1, random geometric

graphs G(Xn; rn) are ε-well behaved.

In order to handle geometric graphs, we present now a modification to
the recursive algorithm defined in the previous section. This algorithm uses the
same dissection as the definition of well behaved graphs and exploits the fact
that the vertices inside a box form a clique, whose best tree layout is a balanced
one (use Theorem 7.4 with Gn,1). Figure 7.10 illustrates the algorithm.

Algorithm 7.3 (The boxed recursive algorithm). Let Gn be a well be-
haved graph with n vertices and radius rn. Dissect the unit square into 4 b1/rnc2
boxes of size 1/2 b1/rnc × 1/2 b1/rnc placed packed in [0, 1]2 starting at (0, 0).
The boxed recursive algorithm generates a tree layout T of G in the following
way:

• All points in the same box are the leaves of a balanced tree layout.
• The generalized recursive tree layout is used to form a tree layout for all

the graph, taking as its leaves a node that is inserted at the top edge of
each of the balanced trees for each box.

The following lemma presents upper bounds on the cost of tree layout
problems on well behaved graphs. These upper bounds are obtained with the
boxed recursive algorithm and they match the order of growth of the lower
bounds in Lemma 7.14.

234 Communication Tree Problems

w
w

w = 1/(2 b1/rnc) (1± ε) 1
4
an points

Figure 7.10: Illustration of tree layouts computed by the boxed
recursive algorithm.

Lemma 7.16. Let ε ∈ (0, 1
5). For all n ∈ N, let Gn be any ε-well behaved

geometric graph with n vertices and radius rn and let Tn be the tree layout
produced by the boxed recursive algorithm for Gn. Then,

tc(Tn, Gn) = O(n2r3
n),

td(Tn, Gn) = O(log n),
tcl(Tn, Gn) = O(nrn),

tl(Tn, Gn) = O(n2r2
n logn).

Proof. As in the case of the square grid, the maximal congestion and separation
are located at the top of Tn. In this place we have an edge which hosts the edges
of two rows of

√
n/an boxes, each with at most (1 + ε)an points and connected

to at most 3 neighbors. So, we have

tc(Tn, Gn) 6 3 · (1 + ε)a2
n ·
√
n/an = O (an

√
ann) = O(n2r3

n)

and

tcl(Tn, Gn) 6 2 ·
√
n/an = O(nrn).

The diameter of the tree layout T obtained by the boxed recursive algo-
rithm is upper bounded by dlog((1 + ε)an)e + 1 +

⌈
log(4

⌊
1/r2

n

⌋
)
⌉

= O(log n).
So, applying Lemma 7.1, we get that td(Tn, Gn) = O(logn).

According to the boxed recursive algorithm, we can analyze the cost of
the edges that appear at each level of the grid-like construction. At level 0, we

7.8 Conclusion 235

consider all the edges that form a clique in each of the boxes. The total number
of levels is

l =
√

log(4 b1/rc2).

Let us define hi as the height of the subtree at level i. We have h0 = log((1 +
ε)1

4an) and hi+1 = hi + 2. Let ti be the contribution of the edges taken into
account in level i. We have t0 = ((1 + ε)1

4an)2 h0 4 b1/rc2 and ti+1 = 48 2i ((1 +
ε)1

4an)2 hi+1 4 b1/rc2 41−i. Using Maple to compute
∑l

i=1 ti, we get the result.

The combination of Lemmas 7.14, 7.15, 7.16 and 7.2 leads to our main
result on tree layouts for random geometric graphs:

Theorem 7.6. Let (rn)n∈N be a sequence of positive numbers with rn → 0
and nr2

n/ log n → ∞; let (Xn)n∈N be a sequence of independently and uni-
formly distributed random points in [0, 1]2. Then, with probability 1, the prob-
lems MinTD, MinTC, MinTVC, MinTCL and MinTL can be approximated
within a constant on random geometric graphs G(Xn; rn) using the boxed re-
cursive algorithm.

7.8 Conclusion

In this chapter we have considered communication tree problems. These are
a kind of problems that, appearing in some routing settings, extend the linear
layout problems we have been considering in the previous chapters. Communi-
cation tree problems should not be confused with Steiner tree problems. General
communication tree problems are difficult, and only a few results exist for them.

Our results show that the optimal costs of the edge congestion, vertex
congestion, dilation, load and total communication problems on tree layouts,
routing trees, and communication trees are related by a constant factor, pro-
vided that the maximal degree of the trees is bounded. Furthermore, we have
proved that the optimal costs of the vertex congestion coincide for the three
types of trees. Our results also show that selecting a random tree layout will
not provide a good cost for the MinTD and MinTL problems on a given graph.

Using the same tools we introduced in Chapters 3 and 5, we have analyzed
the minimal costs of the MinTC, MinTD, MinTL, MinTVC and MinTCL
problems on binomial random graphs and random geometric graphs. We have
also presented algorithms that, with high probability, find tree layouts whose
cost is within a constant a factor of the optimal. Using Theorem 7.1, these
approximation results on tree layouts can can be extended to communication
trees and routing trees with bounded degree.

236 Communication Tree Problems

A preliminary version with the probabilistic results within Sections 7.4
to 7.7 has been presented at the workshop Approximation and Randomized
Algorithms in Communication Networks—ARACNE2000 (Geneva, ) [6].
These results together with the ones in Section 7.3 and some considerations
on complexity hardness have been sent to publication [7]. Our results can be
extended in several ways: Results on square grids can be formulated in higher
dimensions, and results on random geometric graphs can be analyzed for a
different family of radii. We leave these as open problems.

A
Appendix

This appendix describes some of the notations used in this thesis and gives some
background of probability theory.

A.1 Notation

Table A.1 lists several notations and abbreviations that might be unfamiliar to
some readers.

If S is any Boolean statement, the parenthesized notation (S) stands for
1 if S, 0 if ¬S. Also, an expression of the form a/bc means the same as a/(bc).
These notations follow the ones of Graham, Knuth and Patashnik [108].

Given a number n, the notation [n] denotes the set {1, . . . , bnc}, when the
context makes it clear it is not a reference.

The asymptotic notationsO(f(n)), Ω(f(n)), Θ(f(n)), o(f(n)) and ω(f(n))
are used as defined in the book of Cormen, Leiserson and Rivest [53].

Norms are defined by their associated distance functions in Rd: Norm lp
is defined by the distance function ‖ · ‖p : Rd → R where for any p ∈ N,

‖x‖p =

(
d∑

i=1

|xi|p
)1/p

.

The distance function for l∞ is given by

‖x‖∞ = max
i∈[d]
|xi|.

238 Appendix

Notation Description

(B) 1 if B is true, 0 if B is false
N Set of natural numbers {1, 2, . . . }
Z Set of integer numbers {. . . ,−1, 0, 1, . . . }
Z+ Set of positive integer numbers {0, 1, . . . }
R Set of real numbers
Sc Complement of a set S
P(S) Power set of a set S
|S| Cardinality of a set S
[n] Set of the first n natural numbers {1, 2, . . . , n}
|x| Absolute value of a number x
lnx Natural logarithm of x: loge x
log x Binary logarithm of x: log2 x
bxc Floor of x: max{n ∈ Z : n 6 x}
dxe Ceiling of x: min{n ∈ Z : n > x}
Pr [E] Probability of the event E
E [X] Expectation of the random variable X
Var [X] Variance of the random variable X

X
Pr−→ Y Convergence in probability of X to Y

X
as−→ Y Convergence almost surely of X to Y

a.a. Almost always
i.o. Infinitely often
w.h.p. With high probability
w.o.p. With overwhelming probability

Table A.1: Notation.

A.2 Background of probability theory 239

The l1 norm is usually referred to as the Manhattan norm, the l2 norm as the
Euclidean norm, and the l∞ norm as the Maximum coordinate or Chebyshev
norms.

A.2 Background of probability theory

This section reviews some basic definitions and facts from probability theory
that will be used in the body of this thesis. For a more complete presentation,
refer to any standard reference [49, 88, 89, 110].

A.2.1 Basics

A sample space Ω is the set of possible outcomes of an experiment. Any element
ω ∈ Ω is called an elementary event and any subset E ⊆ Ω is called an event.
In probability theory, it is customary to write ω instead of {ω}. A sigma field
is a nonempty set of subsets F of Ω satisfying:

1. ∅ ∈ F ;
2. if E ∈ F then Ec ∈ F ; and
3. the countable union of elements in F also is in F .

The event ∅ ∈ F is called the impossible event and the event Ω ∈ F is
called the sure event. For a sequence of events (En)n∈N, define

lim supEn =
⋂

n∈N

⋃

k>n
Ek and lim inf En =

⋃

n∈N

⋂

k>n
Ek.

By the definition of sigma field, these sets are events: lim supEn ∈ F and
lim inf En ∈ F . It is said that lim supEn is the event that En occurs infinitely
often (written En i.o.), and that lim inf En is the event that En occurs almost
always (written En a.a.). By de Morgan’s laws, (En i.o.)c = (Ecn a.a.).

A probability measure Pr [·]: F → R is a function that satisfies the follow-
ing conditions:

1. Pr [E] > 0, for any E ∈ F ;
2. Pr [Ω] = 1; and
3. Pr [∪n∈NEn] =

∑
n∈NPr [En] for any sequence (En)n∈N of events in F

such that En ∩ Em = ∅ for n 6= m.

A probability space is a triple (Ω,F ,Pr) where Ω is a sample space, F is a sigma
field and Pr is a probability measure.

An event E is called null if Pr [E] = 0 and is called certain if Pr [E] = 1.
Null events and the impossible event ∅ are different things, as the impossible

240 Appendix

event cannot happen but null events can. Also, certain events and the sure
event Ω are different.

Boole’s inequalities, also known as Bonferroni’s inequalities, are useful to
bound the probability that, given a set of events, at least one of them or all of
them happen:

Theorem A.1 (Boole’s inequalities). Let (En)n∈N be a collection of events.
Then,

Pr

[⋃

n∈N
En

]
6
∑

n∈N
Pr [En] and Pr

[⋂

n∈N
En

]
> 1−

∑

n∈N
Pr [Ecn] .

From now on, assume that a probability space (Ω,F ,Pr) is fixed. A
collection of events (Ei)ni=1 are independent if Pr [∩ni=1Ei] =

∏n
i=1 Pr [Ei].

A random variable is a function X: Ω → R such that {ω ∈ Ω : X(ω) <
x} ∈ F for any x ∈ R. The distribution function of X is FX : R → [0, 1]
given by FX(x) = Pr [X 6 x]. A random variable is discrete if the set X(Ω)
is discrete. Given a discrete random variable X, the function fX : R → [0, 1]
defined by fX(x) = Pr [X = x] is called the mass function of X. A random
variable X is continuous if FX(x) =

∫ x
−∞ fX(u)du for some integrable density

function fX : R→ [0,∞).
A sequence of random variables (Xi)ni=1 are independent if, for all

x1, . . . , xn, the collection of events ({Xi 6 xi})ni=1 are independent.
Given two random variables X and Y their joint distribution is defined

by fX,Y : R2 → [0, 1] given by fX,Y (x, y) = Pr [{X = x} ∩ {Y = y}].
Given a discrete random variable X, its expectation is defined as

E [X] =
∑

x∈X(Ω)

xPr [X = x] ,

For a continuous random variable Y , the expectation is

E [X] =
∫ +∞

−∞
xfX(x)dx,

whenever this integral exists.
The variance of a random variable X is defined as

Var [X] = E
[
(X −E [X])2

]

and its standard deviation as σX =
√

Var [X].
The following theorem presents some basic properties of expectations and

variances, including the linearity of the expectation.

A.2 Background of probability theory 241

Theorem A.2. For any random variables X and Y and any c ∈ R,

E [cX + Y] = cE [X] + E [Y] ,

Var [X] = E
[
X2
]−E [X]2 ,

Var [cX] = c2 Var [X] .

Moreover, if X and Y are independent,

E [XY] = E [X] E [Y] ,
Var [X + Y] = Var [X] + Var [Y] .

Let us now recall the definition and properties of some probability distri-
butions. A random variable X has the Bernoulli distribution with parameter
p ∈ [0, 1] if Pr [X = 1] = p and Pr [X = 0] = 1 − p = q. This distribution
has expectation p and variance pq. When (Xi)ni=1 is a sequence of n indepen-
dent Bernoulli random variables, the random variable Sn =

∑n
i=1Xi has the

binomial distribution with parameters n and p. Its expectation is np and its
variance npq. A Poisson variable with parameter λ > 0 is a random variable
P(λ) whose mass function is f(k) = λke−λ/k!, for all k ∈ N. Its expectation
is λ.

In this thesis we consider the Poisson process on R2 with intensity λ,
which formalizes the idea of scattering points at random in R2 so that the
average number of points per unit volume is λ. To do so, each measurable
subset B of R2 is associated with a random variable X(B) such that

i) X(B) has the Poisson distribution with parameter λ|B|, and
ii) if B1, . . . , Bn are disjoint, then X(B1), . . . , X(Bn) are independent and

X(B1 ∪B2) = X(B1) +X(B2).

A.2.2 Convergence

It is often necessary to state that a sequence of random variables converges to
some limit or that the probabilities of a sequence of events tend to 1. There
exist several ways to do this.

Let X be a random variable and (Xn)n∈N a sequence of random variables.
We say that Xn converges in distribution to X, written Xn

D−→ X, if

lim
n→∞Pr [Xn 6 x] = Pr [X 6 x] ,

for all x where Pr [X 6 x] is continuous. Xn converges in probability to X,
written Xn

Pr−→ X, if

lim
n→∞Pr [|Xn −X| > ε] = 0, ∀ε > 0.

242 Appendix

Moreover, Xn converges almost surely to X, written Xn
as−→ X, if

Pr [{ω ∈ Ω : Xn(ω)→ X(ω)}] = 1.

This type of convergence is also called convergence with probability 1.
The following theorem states that convergence almost surely implies con-

vergence in probability, which implies convergence in distribution:

Theorem A.3. Let X be a random variable and (Xn)n∈N a sequence of random
variables. If Xn

as−→ X then Xn
Pr−→ X. Moreover, if Xn

Pr−→ X then Xn
D−→ X.

The converse implications of the above theorem are false in general (see
e.g. Lemma 7.10 of [110] for counterexamples). The following result is a way to
prove almost surely convergence.

Theorem A.4. Let X be a random variable and (Xn)n∈N a sequence of random
variables. If, for all ε > 0,

∑
n∈NPr [|Xn −X| > ε] <∞, then Xn

as−→ X.

A sequence of events (En)n∈N occurs with high probability, written En
w.h.p., if

lim
n→∞Pr [En] = 1.

In the case Pr [En] > 1−2−cn for some constant c > 0 and all large enough n, it
is said that (En)n∈N occurs with overwhelming probability, written En w.o.p..
Of course, with overwhelming probability is stronger than with high probability.

For all n ∈ N and all w ∈ Ω, let In(ω) = (ω ∈ En) be the indicator
random variable of En. Using the above definitions, In

Pr−→ 1 holds if and only
if (En)n∈N occurs with high probability. Moreover, using Theorem A.4, when
(En)n∈N occurs with overwhelming probability, then In

as−→ 1.
The following result, know as the Borel–Cantelli Lemma, is similar to

Theorem A.4, but for a sequence of events rather than a sequence of random
variables.

Theorem A.5 (Borel–Cantelli Lemma). Let (En)n∈N be a sequence of events.
If
∑

n∈NPr [En] <∞ then Pr [En i.o.] = 0 and Pr [Ecn a.a.] = 1.

As an example of the application of these concepts, consider a sequence
of events (En)n∈N where Pr [En] = 1/n2 for all n. It is the case that ¬En holds
with high probability, but ¬En does not hold with overwhelming probability.
On the other hand, as

∑
n∈NPr [En] =

∑
n∈N 1/n2 = 1

6π
2, using the Borel–

Cantelli Lemma, we get Pr [Ecn a.a.] = 1; that is, with probability 1, there
exists a finite random N0 such that, for all n > N0, En does not hold.

A.2 Background of probability theory 243

A.2.3 Concentration bounds

Let X be a random variable and let x be a large positive real number. The
functions Pr [X > x] and Pr [X < x] are called the upper and lower tails of
X, respectively. Concentration bounds give upper bounds for the tails of the
random variable X−E [X]. A survey of some of the concentration bounds that
are used in the field of combinatorics and theoretical computer science can be
found in [69].

The following classical bound on the deviation from the expected value
states a well known bound attributed to Markov.

Theorem A.6 (Markov inequality). Let X be a positive random variable.
Then, for all t > 0, Pr [X > tE [X]] 6 1/t.

Another classical bound, attributed to Chebyshev, relates |X − E [X] |
with Var [X]:

Theorem A.7 (Chebyshev inequality). LetX be a random variable. Then,
for all t > 0, Pr

[
|X −E [X] | > t

√
Var [X]

]
6 1/t2.

The following result, due to Chernoff, gives bounds for the concentration
around the expected value of a sum of independent Bernoulli variables.

Theorem A.8 (General Chernoff’s bounds). Let (Xi)ni=1 be independent
random variables corresponding to Bernoulli experiments, each variable Xi with
probability pi of success. Let X =

∑n
i=1Xi be a random variable with expected

value µ =
∑n

i=1 pi. Then,

Pr [X > (1 + d)µ] 6
(
ed/(1 + d)1+d

)µ
, ∀d > 0.

Moreover,

Pr [X < (1− d)µ] 6
(
e−d/(1− d)1−d

)µ
, ∀d ∈ (0, 1).

The previous theorem is the basis to develop customized Chernoff’s bounds,
which usually are weaker but easier to apply:

Theorem A.9 (Chernoff’s bounds). Let (Xi)ni=1 be independent random
variables corresponding to Bernoulli experiments, each variable with proba-
bility pi of success. Let X =

∑n
i=1Xi be a random variable with expectation

µ =
∑n

i=1 pi. Then, for any d ∈ (0, 1),

Pr [X < (1− d)µ] 6 exp
(−1

2d
2µ
)
,

Pr [X > (1 + d)µ] 6 exp
(−1

3d
2µ
)
,

Pr [|X − µ| > dµ] 6 2 exp
(−1

3d
2µ
)
.

The proofs of these concentration bounds can be found, for instance,
in [69].

Bibliography

[1] E. Aarts and J. K. Lenstra, editors. Local search in combinatorial opti-
mization. Wiley, New York, 1997.

[2] D. Adolphson. Single machine job sequencing with precedence constraints.
SIAM Journal on Computing, 6:40–54, 1977.

[3] D. Adolphson and T. C. Hu. Optimal linear ordering. SIAM Journal on
Applied Mathematics, 25(3):403–423, 1973.

[4] S. Agarwal, A. K. Mittal, and P. Sharma. Constrained optimum com-
munications trees and sensitivity analysis. SIAM Journal on Computing,
13:315–328, 1984.

[5] N. Alon, J. H. Spencer, and P. Erdős. The probabilistic method. Wiley,
New York, 1992.

[6] C. Àlvarez, R. Cases, J. Dı́az, J. Petit, and M. Serna. Routing trees for
random graphs. In J. Rolim, editor, ICALP Workshops 2000, volume 8
of Proceedings in Informatics, pages 99–110, Canada, 2000. Carleton Sci-
entific.

[7] C. Àlvarez, J. Dı́az, R. Cases, J. Petit, and M. Serna. Communication tree
problems. Technical report, Universitat Politècnica de Catalunya, Depar-
tament de Llenguatges i Sistemes Informàtics, http://www.lsi.upc.es/∼jpetit,
2000.

http://www.lsi.upc.es/~jpetit

246 Bibliography

[8] M. J. B. Appel and R. P. Russo. The connectivity of a graph on uniform
points in [0, 1]d. Technical report, University of Iowa, 1996.

[9] M. J. B. Appel and R. P. Russo. The maximum vertex degree of a graph on
uniform points in [0, 1]d. Advances in Applied Probability, 29(3):567–581,
1997.

[10] M. J. B. Appel and R. P. Russo. The minimum vertex degree of a graph on
uniform points in [0, 1]d. Advances in Applied Probability, 29(3):582–594,
1997.

[11] S. Arora, A. Frieze, and H. Kaplan. A new rounding procedure for the
assignment problem with applications to dense graphs arrangements. In
37th Annual Symposium on Foundations of Computer Science, pages 21–
30. IEEE Computer Society Press, 1996.

[12] S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation
schemes for dense instances of NP-hard problems. In Proceedings of the
27th Annual ACM Symposium on the Theory of Computing, pages 284–
293, 1995.

[13] S. F. Assman, G. W. Peck, M. M. Syslo, and J. Zak. The bandwidth of
caterpillars with hair of lengths 1 and 2. SIAM Journal on Algebraic and
Discrete Methods, 2:387–393, 1981.

[14] J. E. Atkins, E. G. Boman, and B. Hendrickson. A spectral algorithm for
seriation and the consecutive ones problem. SIAM Journal on Computing,
28(1):297–310, 1999.

[15] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-
Spaccamela, and M. Protasi. Complexity and approximation. Springer–
Verlag, Berlin, 1999.

[16] F. Avram and D. Bertsimas. The minimum spanning tree constant in geo-
metric probability and under the independent model: A unified approach.
The Annals of Applied Probability, 2:113–130, 1992.

[17] R. Bar-Yehuda, G. Even, J. Feldman, and S. Naor. Computing an opti-
mal orientation of a balanced decomposition tree for linear arrangement
problems. Technical report, http://www.eng.tau.ac.il/∼guy/Projects/Minla, 2001.

[18] A. D. Barbour, L. Holst, and S. Janson. Poisson approximation. Oxford
University Press, New York, 1992.

http://www.eng.tau.ac.il/~guy/Projects/Minla

Bibliography 247

[19] S. T. Barnard, A. Pothen, and H. Simon. A spectral algorithm for envelope
reduction of sparse matrices. Numerical Linear Algebra with Applications,
2(4):317–334, 1995.

[20] S. T. Barnard and H. D. Simon. A fast multilevel implementation of
recursive spectral bisection for partitioning unstructured problems. Con-
currency: Practice and Experience, 6:101–107, 1994.

[21] R. Battiti and A. Bertossi. Greedy, prohibition, and reactive heuristics for
graph partitioning. IEEE Transactions on Computers, 2001. To appear.
http://rtm.science.unitn.it/∼battiti/archive/gp.ps.gz.

[22] J. Beardwood, J. Halton, and J. M. Hammersley. The shortest path
through many points. Mathematical Proceedings of the Cambridge Phi-
losophy Society, 55:299–327, 1959.

[23] J. W. Berry and M. K. Goldberg. Path optimization for graph partitioning
problems. Discrete Applied Mathematics, 90:27–50, 1999.

[24] S. L. Bezrukov. Edge isoperimetric problems on graphs (a survey). In
L. Lovasz, A. Gyarfas, G. O. H. Katona, A. Recski, and L. Szekely, editors,
Graph theory and combinatorial biology, volume 7, pages 157–197. János
Bolyai Math. Soc., Budapest, 1999.

[25] S. L. Bezrukov, R. Elsässer, B. Monien, R. Preis, and J.-P. Tillich. New
spectral lower bounds on the bisection width of graphs. In U. Brandes
and D. Wagner, editors, Graph-Theoretic Concepts in Computer Science,
volume 1928 of Lecture Notes in Computer Science, pages 23–34, Berlin,
2000. Springer–Verlag.

[26] S. N. Bhatt and F. T. Leighton. A framework for solving VLSI graph
layout problems. Journal of Computer and System Sciences, 28:300–343,
1984.

[27] G. Blache, M. Karpinski, and J. Wirtgen. On approximation in-
tractability of the bandwidth problem. Technical report TR98-
014, Electronic Colloquium on Computational Complexity, 1998.
http://cs.uni-bonn.de/∼marek/publications/85182-CS.ps.Z.

[28] A. Blum, G. Konjevod, R. Ravi, and S. Vempala. Semi-definite relaxations
for minimum-bandwith and other vertex-ordering problems. In Proceed-
ings of the 30th Annual ACM Symposium on the Theory of Computing,
pages 284–293, 1998.

http://rtm.science.unitn.it/~battiti/archive/gp.ps.gz
http://cs.uni-bonn.de/~marek/publications/85182-CS.ps.Z

248 Bibliography

[29] H. Bodlaender, M. R. Fellows, and M. T. Hallet. Beyond NP-completeness
for problems of bounded width: hardness for the W-hierarchy. In Proceed-
ings of the 26th Annual ACM Symposium on the Theory of Computing,
pages 449–458, 1994.

[30] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica,
11(1-2):1–21, 1993.

[31] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions
of small treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.

[32] H. L. Bodlaender, T. Kloks, and D. Kratsch. Treewidth and pathwidth of
permutation graphs. SIAM Journal on Discrete Mathematics, 8(4):606–
616, 1995.

[33] H. L. Bodlaender and R. H. Möhring. The pathwidth and treewidth of
cographs. SIAM Journal on Discrete Mathematics, 6(2):181–188, 1993.

[34] B. Bollobás. Random graphs. Academic Press, London, 1985.

[35] B. Bollobás. The isoperimetric number of random regular graphs. Euro-
pean Journal of Combinatorics, 9:241–244, 1988.

[36] B. Bollobás, T. I. Fenner, and A. M. Frieze. An algorithm for finding
Hamilton paths and cycles in random graphs. Combinatorica, 7(4):327–
341, 1987.

[37] B. Bollobás and I. Leader. Compressions and isoperimetric inequalities.
Journal of Combinatorial Theory Series A, 56:47–62, 1991.

[38] R. Boppana. Eigenvalues and graph bisection: An average case analysis.
In 28th Annual Symposium on Foundations of Computer Science, pages
280–285. IEEE Computer Society Press, 1987.

[39] R. A. Botafogo. Cluster analysis for hypertext systems. In R. Korfhage,
E. M. Rasmussen, and P. Willett, editors, Proceedings of the 16th Annual
International ACM-SIGIR Conference on Research and Development in
Information Retrieval, pages 116–125. ACM, 1993.

[40] G. Brassard and P. Bratley. Algorithmique. Conception et analyse. Mas-
son, Paris, 1987.

[41] H. Breu. Algorithmic aspects of constrained unit disk graphs. PhD thesis,
University of British Columbia, 1996.

[42] H. Breu and D. G. Kirkpatrick. Unit disk graph recognition is NP-hard.
Computational Geometry. Theory and Applications, 9(1-2):3–24, 1998.

Bibliography 249

[43] T. Bui, S. Chaudhuri, T. Leighton, and M. Sipser. Graph bisection al-
gorithms with good average case behavior. Combinatorica, 7:171–191,
1987.

[44] T. N. Bui and A. Peck. Partitioning planar graphs. SIAM Journal on
Computing, 21(2):203–215, 1992.

[45] R. E. Burkard, S. E. Karisch, and F. Rendl. QAPLIB — A quadratic
assignment problem library. Journal of Global Optimization, 391(10):391–
403, 1997.

[46] P. Chinn, J. Chvátalová, A. Dewdney, and N. Gibbs. The bandwidth
problem for graphs and matrices—A survey. Journal of Graph Theory,
6:223–254, 1982.

[47] S. Chirravuri, S. M. Bhandarkar, and J. Arnold. Parallel computing of
physical maps—A comparative study in SIMD and MIMD parallelism.
Journal of Computational Biology, 3(4):503–528, 1996.

[48] F. R. K. Chung. Labelings of graphs. In L. Beineke and R. Wilson, editors,
Selected topics in graph theory, 3, pages 151–168. Academic Press, San
Diego, 1988.

[49] K. L. Chung. A course in probability theory. Academic Press, New York,
second edition, 1974.

[50] M. Chung, F. Makedon, I. H. Sudborough, and J. Turner. Polynomial
time algorithms for the min cut problem on degree restricted trees. In 23th
Annual Symposium on Foundations of Computer Science, pages 262–271.
IEEE Computer Society Press, 1982.

[51] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete
Mathematics, 86:165–177, 1990.

[52] A. Condon and R. M. Karp. Algorithms for graph partitioning on the
planted bisection model. Random Structures & Algorithms, 2001. To
appear. http://www.cs.ubc.ca/∼condon/papers/karp99.ps.

[53] T. H. Cormen, C. Leiserson, and R. Rivest. Introduction to algorithms.
The MIT Press, Cambridge, 1989.

[54] P. Crescenzi, R. Silvestri, and L. Trevisan. To weight or not to weight:
where is the question? In Israel Symposium on Theory of Computing and
Systems, pages 68–77. IEEE Computer Society Press, 1996.

http://www.cs.ubc.ca/~condon/papers/karp99.ps

250 Bibliography

[55] E. H. Cuthill and J. Mckee. Reducing the bandwidth of sparse symmetric
matrices. In 24th ACM National Conference, pages 157–172, 1969.

[56] F. Darema, S. Kirkpatrick, and V. A. Norton. Parallel algorithms for
chip placement by simulated annealing. IBM Journal of Research and
Development, 31:391–402, 1987.

[57] L. Davis. Handbook of genetic algorithms. Van Nostrand Reinhold, New
York, 1991.

[58] N. Deo, M. S. Krishnamoorthy, and M. A. Langston. Exact and approx-
imate solutions for the gate matrix layout problem. IEEE Transactions
on Computer Aided Design, 6(1):79–84, 1987.

[59] J. Dı́az. The δ-operator. In L. Budach, editor, Fundamentals of Compu-
tation Theory, pages 105–111. Akademie–Verlag, 1979.

[60] J. Dı́az. Graph layout problems. In I. M. Havel and V. Koubek, editors,
Mathematical Foundations of Computer Science 1992, volume 629 of Lec-
tures Notes in Computer Sciences, pages 14–23, Berlin, 1992. Springer–
Verlag.

[61] J. Dı́az, A. Gibbons, G. Pantziou, M. Serna, P. Spirakis, and J. Torán.
Parallel algorithms for the minimum cut and the minimum length tree
layout problems. Theoretical Computer Science, 181(2):267–288, 1997.

[62] J. Dı́az, A. M. Gibbons, M. S. Paterson, and J. Torán. The Minsumcut
problem. In F. Dehen, R. J. Sack, and N. Santoro, editors, Algorithms
and Data Structures, volume 519 of Lecture Notes in Computer Science,
pages 65–79, Berlin, 1991. Springer–Verlag.

[63] J. Dı́az, M. Penrose, J. Petit, and M. Serna. Linear ordering of random
geometric graphs. In P. Wiedmayer and G. Neyer, editors, Graph The-
oretic Concepts in Computer Science, volume 1665 of Lecture Notes in
Computer Science, Berlin, 1999. Springer–Verlag.

[64] J. Dı́az, M. D. Penrose, J. Petit, and M. Serna. Layout problems on lattice
graphs. In T. Asano, H. Imai, D. T. Lee, S. Nakano, and T. Tokuyama,
editors, Computing and Combinatorics, volume 1627 of Lecture Notes in
Computer Science, pages 103–112, Berlin, 1999. Springer–Verlag.

[65] J. Dı́az, M. D. Penrose, J. Petit, and M. Serna. Convergence theorems for
some layout measures on random lattice and random geometric graphs.
Combinatorics, Probability and Computing, 9(6):489–511, 2000.

Bibliography 251

[66] J. Dı́az, M. D. Penrose, J. Petit, and M. Serna. Approximating layout
problems on random geometric graphs. Journal of Algorithms, 39(1):78–
116, 2001.

[67] J. Dı́az, J. Petit, and M. Serna. Random geometric problems on [0, 1]2.
In J. Rolim, M. Luby, and M. Serna, editors, Randomization and Approx-
imation Techniques in Computer Science, volume 1518 of Lecture Notes
in Computer Science, pages 294–306, Berlin, 1998. Springer–Verlag.

[68] J. Dı́az, J. Petit, and M. Serna. Faulty random geometric networks. Par-
allel Processing Letters, 10(4):343–357, 2001.

[69] J. Dı́az, J. Petit, and M. Serna. A guide to concentration bounds. In
P. Pardalos and J. Rolim, editors, Handbook on Randomized Computing.
Kluwer Press, New York, 2001. To Appear.

[70] J. Dı́az, J. Petit, M. Serna, and L. Trevisan. Approximating layout prob-
lems on random graphs. Discrete Mathematics, 235(1–3):245–253, 2001.

[71] J. Dı́az, M. Serna, P. Spirakis, and J. Torán. Paradigms for fast parallel
approximability. Cambridge University Press, Cambridge, 1997.

[72] R. Dieckmann and B. Monien. A local graph partitioning heuristic meet-
ing bisection bounds. In 8th SIAM Conference of Parallel Processing in
Scientific Computing, 1997.

[73] R. Diekmann, R. Lüling, and B. Monien. Communication throughput of
interconnection networks. In I. Privara, B. Rovan, and P. Ruzicka, edi-
tors, Mathematical Foundations of Computer Science 1994, volume 841 of
Lecture Notes in Computer Science, pages 72–86, Berlin, 1994. Springer–
Verlag.

[74] R. Diekmann, R. Lüling, B. Monien, and C. Spräner. Combining helpful
sets and parallel simulated annealing for the graph-partitioning problem.
Parallel Algorithms and Applications, 8:61–84, 1996.

[75] R. Diekmann, R. Lüling, and J. Simon. A general purpose distributed im-
plementation of simulated annealing. In 4th IEEE Symposium on Parallel
and Distributed Processing, pages 94–101. IEEE Computer Society Press,
1992.

[76] R. Diekmann, B. Monien, and R. Preis. Using helpful sets to improve
graph bisections. In D. F. Hsu, A. L. Rosenberg, and D. Sotteau, editors,
Interconnection Networks and Mapping and Scheduling Parallel Computa-
tions, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 57–73. AMS, 1995.

252 Bibliography

[77] G. Ding and B. Oporowski. Some results on tree decomposition of graphs.
Journal of Graph Theory, 20(4):481–499, 1995.

[78] R. G. Downey and M. R. Fellows. Parameterized complexity. Springer–
Verlag, New York, 1999.

[79] N. Dunford and J. Schwartz. Linear operators. Part I: general theory.
Interscience Publisher, New York, 1958.

[80] J. Ellis, I. H. Sudborough, and J. Turner. The vertex separation and search
number of a graph. Information and Computation, 113:50–79, 1979.

[81] U. Elsner. Graph partitioning—A survey. Tech-
nical report 393, Technische Universität Chemnitz,
http://www.tu-chemnitz.de/sfb393/Files/PS/sfb97-27.ps.gz, 1997.

[82] P. Erdős and A. Rényi. On random graphs—I. Publicationes Matematicae,
6:290–297, 1959.

[83] G. Even, J. Naor, S. Rao, and B. Schieber. Divide-and-conquer approxi-
mation algorithms via spreading metrics. In 36th Annual Symposium on
Foundations of Computer science, pages 62–71. IEEE Computer Society
Press, 1995.

[84] S. Even and Y. Shiloach. NP-completeness of several arrangements prob-
lems. Technical Report TR-43, The Technion, Haifa, 1978.

[85] U. Feige. Approximating the bandwidth via volume respecting embed-
dings. In Proceedings of the 29th Annual ACM Symposium on the Theory
of Computing, pages 23–26, 1998.

[86] U. Feige and R. Krauthgamer. Improved performance guarantees
for bandwidth minimization heuristics (draft). Technical report,
http://www.wisdom.weizmann.ac.il/∼robi/papers, 1998.

[87] U. Feige, R. Krauthgamer, and K. Nissim. Approximating the minimum
bisection size. In Proceedings of the 32nd Annual ACM Symposium on the
Theory of Computing, pages 530–536, 2000.

[88] W. Feller. An Introduction to Probability Theory and its Applications.
Volume I. Wiley, New York, 1957.

[89] W. Feller. An Introduction to Probability Theory and its Applications.
Volume II. Wiley, New York, 1966.

http://www.tu-chemnitz.de/sfb393/Files/PS/sfb97-27.ps.gz
http://www.wisdom.weizmann.ac.il/~robi/papers/FK-BandwidthHeuristics-manuscript98.ps.gz

Bibliography 253

[90] M. R. Fellows and M. A. Langston. Layout permutation problems and
well-partially-ordered sets. In Advanced research in VLSI, pages 315–327.
MIT Press, Cambridge, MA, 1988.

[91] M. R. Fellows and M. A. Langston. On well-partial-order theory and its
application to combinatorial problems of VLSI design. SIAM Journal on
Discrete Mathematics, 5(1):117–126, 1992.

[92] M. R. Fellows and M. A. Langston. On search, decision, and the efficiency
of polynomial-time algorithms. Journal of Computer and System Sciences,
49(3):769–779, 1994.

[93] P. Fishburn, P. Tetali, and P. Winkler. Optimal linear arrangement of a
rectangular grid. Discrete Mathematics, 213:123–139, 2000.

[94] L. R. Ford and D. R. Fulkerson. Flows in networks. Princeton University
Press, 1962.

[95] A. Frieze and R. Kannan. The regularity lemma and approximation
schemes for dense problems. In 37th Annual Symposium on Foundations
of Computer Science, pages 12–20. IEEE Computer Society Press, 1996.

[96] A. Frieze and C. McDiarmid. Algorithmic theory of random graphs. Ran-
dom Structures & Algorithms, 10(1-2):5–42, 1997.

[97] M. R. Garey, R. L. Graham, D. S. Johnson, and D. Knuth. Complexity
results for bandwidth minimization. SIAM Journal on Applied Mathe-
matics, 34:477–495, 1978.

[98] M. R. Garey and D. S. Johnson. Computers and intractability. A guide
to the theory of NP-completeness. Freeman and Company, 1979.

[99] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-
complete graph problems. Theoretical Computer Science, 1:237–267, 1976.

[100] F. Gavril. Some NP-complete problems on graphs. In 11th Conference on
Information Sciences and Systems, pages 91–95, John Hopkins University,
Baltimore, 1977.

[101] N. E. Gibbs, W. G. Poole, Jr., and P. K. Stockmeyer. An algorithm for
reducing the bandwidth and profile of a sparse matrix. SIAM Journal on
Numerical Analysis, 13(2):236–250, 1976.

[102] F. Glover and M. Laguna. Tabu Search. Kluwer, Boston, second edition,
1997.

254 Bibliography

[103] A. Goerdt and M. Molloy. Analysis of edge deletion processes on faulty
random regular graphs. In G. H. Gonnet, D. Panario, and A. Viola, edi-
tors, LATIN 2000: Theretical Informatics, volume 1776 of Lecture Notes
in Computer Science, Berlin, 2000. Springer–Verlag.

[104] M. K. Goldberg and I. A. Klipker. An algorithm for minimal numeration
of tree vertices. Sakharth. SSR Mecn. Akad. Moambe, 81(3):553–556, 1976.
In Russian.

[105] P. W. Goldberg, M. C. Golumbic, H. Kaplan, and R. Shamir. Four strikes
against physical mapping od DNA. Journal of Computational Biology,
2(1):139–152, 1995.

[106] M. C. Golumbic. Algorithmic graph theory and perfect graphs. Academic
Press, New York, 1980.

[107] R. E. Gomory and T. C. Hu. Multi-terminal flows in a network, volume 11
of Studies in Mathematics, pages 172–199. Mathematical Association of
America, 1975.

[108] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete mathematics.
Addison–Wesley, Reading, second edition, 1994.

[109] G. R. Grimmett. Percolation. Springer–Verlag, Heidelberg, second edi-
tion, 1999.

[110] G. R. Grimmett and D. R. Stirzaker. Probability and random processes.
Oxford University Press, New York, second edition, 1992.

[111] W. Gropp, E. Lusk, and A. Skjellum. Using MPI. The MIT Press,
Massachussets, 2 edition, 1995.

[112] E. Gurari and I. H. Sudborough. Improved dynamic programming algo-
rithms for the bandwidth minimization and the mincut linear arrangement
problem. Journal of Algorithms, 5:531–546, 1984.

[113] J. Gustedt. On the pathwidth of chordal graphs. Discrete Applied Math-
ematics, 45(3):233–248, 1993.

[114] M. D. Hansen. Approximation algorithms for geometric embeddings in the
plane with applications to parallel processing problems. In 30th Annual
Symposium on Foundations of Computer Science, pages 604–609. IEEE
Computer Society Press, 1989.

[115] J. Haralambides and F. Makedon. Approximation algorithms for the band-
width minimization problem for a large class of trees. Theory of Comput-
ing Systems, 30:67–90, 1997.

Bibliography 255

[116] J. Haralambides, F. Makedon, and B. Monien. Bandwidth minimization:
an approximation algorithm for cartepillars. Mathematical Systems The-
ory, (24):169–177, 1991.

[117] F. Harary. Problem 16. In M. Fiedler, editor, Graph Theory and Com-
puting, page 161, Prague, 1967. Czechoslovak Academy Sciences.

[118] F. Harary and E. M. Palmer. Graphical enumeration. Academic Press,
New York, 1973.

[119] L. H. Harper. Optimal assignments of numbers to vertices. Journal of
SIAM, 12(1):131–135, 1964.

[120] L. H. Harper. Optimal numberings and isoperimetric problems on graphs.
Journal of Combinatorial Theory, 1(3):385–393, 1966.

[121] L. H. Harper. Chassis layout and isoperimetric problems. Technical report
SPS 37–66, vol II, Jet Propulsion Laboratory, 1970.

[122] L. H. Harper. Stabilization and the edgesum problem. Ars Combinatoria,
4:225–270, Dec. 1977.

[123] R. Heckmann, R. Klasing, B. Monien, and W. Unger. Optimal embed-
ding of complete binary trees into lines and grids. In G. Schmidt and
R. Berghammer, editors, Graph-theoretic Concepts in Computer Science,
volume 570 of Lectures Notes in Computer Sciences, pages 25–35, Berlin,
1992. Springer–Verlag.

[124] C. Helmberg, F. Rendl, B. Mohar, and S. Poljak. A spectral approach
to bandwidth and separator problems in graphs. Linear and Multilinear
Algebra, 39(1-2):73–90, 1995.

[125] B. Hendrickson and R. Leland. Multidimensional spectral load balancing.
6th SIAM Conf. Parallel Proc. Sci. Comput., 1993.

[126] B. Hendrickson and R. Leland. The Chaco user’s guide: version 2.0.
Technical report SAND94–2692, Sandia National Laboratories, 1997.
ftp://ftp.cs.sandia.gov/pub/papers/bahendr/guide.ps.gz.

[127] N. Hooker. Needed: An empirical science of algorithms. Operations Re-
search, 42:201–212, 1994.

[128] N. Hooker. Testing heuristics: We have it all wrong. Journal of Heuristics,
1:33–42, 1996.

ftp://ftp.cs.sandia.gov/pub/papers/bahendr/guide.ps.gz

256 Bibliography

[129] J. Hromkovič and B. Monien. The bisection problem for graphs of degree 4
(configuring transputer systems). In Informatik, pages 215–233. Teubner,
Stuttgart, 1992.

[130] T. C. Hu. Optimum communication spanning trees. SIAM Journal on
Computing, 3:188–195, 1974.

[131] H. B. Hunt, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J.
Rosenkrantz, and R. E. Stearns. NC-approximation schemes for NP- and
PSPACE- hard problems for geometric graphs. Journal of Algorithms,
26(2):238–274, 1998.

[132] A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter. Hamilton paths in
grid graphs. SIAM Journal on Computing, 11(4):676–686, 1982.

[133] S. Janson, T. Luczak, and A. Rucinski. Random graphs. Wiley, New York,
2000.

[134] M. Jerrum and G. Sorkin. The Metropolis algorithm for graph bisection.
Discrete Applied Mathematics, 82(1-3):155–175, 1998.

[135] D. S. Johnson. Local optimization and the traveling salesman problem.
In M. S. Paterson, editor, Automata, languages and programming, volume
443 of Lectures Notes in Computer Sciences, pages 25–35, Berlin, 1990.
Springer–Verlag.

[136] D. S. Johnson. A theoretician’s guide to the experimental analysis of
algorithms. http://www.research.att.com/∼dsj/papers/exper.ps, 1996.

[137] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimiza-
tion by simulated annealing: an experimental evaluation; part I, graph
partitioning. Operations Research, 37(6):865–892, 1989.

[138] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimiza-
tion by simulated annealing: an experimental evaluation; part II, graph
coloring and number partitioning. Operations Research, 39(3):378–405,
1991.

[139] D. S. Johnson, J. K. Lenstra, and A. H. G. R. Kan. The complexity of
the network design problem. Networks, 8(4):279–285, 1978.

[140] D. S. Johnson, L. A. McGeoch, and E. E. Rothberg. Asymptotic experi-
mental analysis for the Held–Karp traveling salesman bound. In Proceed-
ings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 341–350. ACM/SIAM, 1996.

http://www.research.att.com/~dsj/papers/exper.ps

Bibliography 257

[141] A. Juels. Topics in black-box combinatorial optimization. PhD thesis,
University of California at Berkeley, 1996.

[142] M. Juvan and B. Mohar. Optimal linear labelings and eigenvalues of
graphs. Discrete Applied Mathematics, 36(2):153–168, 1992.

[143] P. Kadluczka and K. Wala. Tabu search and genetic algorithms for
the generalized graph partitioning problem. Control and cybernetics,
24(4):459–476, 1995.

[144] D. R. Karger. A randomized fully polynomial approximation scheme for all
terminal network realiability problem. In Proceedings of the 27th Annual
ACM Symposium on the Theory of Computing, pages 11–17. ACM, 1996.

[145] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations,
pages 85–103. Plenum Press, New York, 1972. To Appear.

[146] R. M. Karp. Probabilistic analysis of partitioning algorithms for the
travelling-salesman problem in the plane. Mathematics of Operation Re-
search, 2:209–224, 1977.

[147] R. M. Karp. Mapping the genome: some combinatorial problems arising
in molecular biology. In Proceedings of the 25th Annual ACM Symposium
on the Theory of Computing, pages 278–285. ACM, 1993.

[148] R. M. Karp. Mapping the genome: some combinatorial problems arising
in molecular biology. In Proceedings of the 25th Annual ACM Symposium
on the Theory of Computing, pages 278–285, 1993.

[149] M. Karpinski, J. Wirtgen, and A. Zelikovsky. An approximating al-
gorithm for the bandwidth problem on dense graphs. Technical re-
port TR 97-017, Electronic Colloquium on Computational Complexity,
http://cs.uni-bonn.de/ marek/publications/85164-CS.ps.Z, 1997.

[150] G. Karypis. Metis’s home page. Web page, 2001.
http://www-users.cs.umn.edu/∼karypis/metis.

[151] D. G. Kendall. Incidence matrices, interval graphs, and seriation in arche-
ology. Pacific Journal of Mathematics, 28:565–570, 1969.

[152] B. W. Kernighan and S. Lin. An efficient heuristic procedure for parti-
tioning graphs. Bell System Technical Journal, (49):291–307, 1970.

[153] H. Kesten. Percolation theory for mathematicians. Birkhäuser Boston,
Massachussets, 1982.

http://cs.uni-bonn.de/~marek/publications/85164-CS.ps.Z
http://www-users.cs.umn.edu/~karypis/metis

258 Bibliography

[154] N. G. Kinnersley. The vertex separation number of a graph equals its
path-width. Information Processing Letters, 42(6):345–350, 1992.

[155] S. Kirkpatrik, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220:671–680, 1983.

[156] L. M. Kirousis and C. H. Papadimitriou. Searching and pebbling. Theo-
retical Computer Science, 47:205–216, 1986.

[157] R. Klasing. The relationship between the gossip complexity in vertex-
disjoint paths mode and the vertex bisection width. Discrete Applied
Mathematics, 83:229–246, 1998.

[158] K. Klohs. parSA library user manual (version 2.1a), 1999.
http://www.uni-paderborn.de/cs/ag-monien/SOFTWARE/PARSA/PUBLICATIONS/ParSALibDoc.ps.

[159] T. Kloks, H. L. Bodlaender, J. R. Gilbert, and H. Hafsteinsson. Ap-
proximating treewidth, pathwidth, and minimum elimination tree height.
Journal of Algorithms, 18:238–255, 1995.

[160] T. Kloks, D. Kratsch, and H. Müller. Bandwidth of chain graphs. Infor-
mation Processing Letters, 68(6):313–315, 1998.

[161] D. E. Knuth. The art of computer programming: fundamental algorithms.
Addison–Wesley, Reading, third edition, 1997.

[162] V. Kumar, A. Grama, A. Gupta, and G. Karypis, editors. Introduction
to parallel computing. Benjamin Cummings, Redwood City, 1994.

[163] D. Kuo and G. J. Chang. The profile minimization problem in trees.
SIAM Journal on Computing, 23:71–81, 1994.

[164] Y.-L. Lai and K. Williams. A survey of solved problems and applications
on bandwidth, edgesum, and profile of graphs. Journal of Graph Theory,
31(2):75–94, 1999.

[165] K. Lang and S. Rao. Finding near-optimal cuts: An empirical evaluation.
In Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 212–221. ACM/SIAM, 1993.

[166] M. Ledoux. Isoperimetry and Gaussian analysis. In P. Groeneboom,
R. Dobrushin, and M. Ledoux, editors, Lectures in Probability Theory,
volume 1648 of Lectures Notes in Mathematics, pages 165–294, Berlin,
1994. Springer–Verlag.

[167] F. T. Leighton. Introduction to parallel algorithms and architectures: ar-
rays, trees, hypercubes. Morgan Kaufmann, San Mateo, 1993.

http://www.uni-paderborn.de/cs/ag-monien/SOFTWARE/PARSA/PUBLICATIONS/ParSALibDoc.ps

Bibliography 259

[168] F. T. Leighton and S. Rao. An approximate max-flow min-cut theorem
for uniform multicommodity flow problem with applications to approxima-
tion algorithms. In 29th Annual Symposium on Foundations of Computer
Science, pages 422–431. IEEE Computer Society Press, 1988.

[169] C. E. Leiserson. Area-efficient graph layouts (for VLSI). In 21st Annual
Symposium on Foundations of Computer Science, pages 270–281. IEEE
Computer Society Press, 1980.

[170] R. Leland and B. Hendrickson. An empirical study of static load balancing
algorithms. In Scalable High-Performance Computing Conference, pages
682–685. IEEE Computer Society Press, 1994.

[171] T. Lengauer. Black-white pebbles and graph separation. Acta Informatica,
16:465–475, 1981.

[172] T. Lengauer. Upper and lower bounds on the complexity of the min-cut
linear arrangements problem on trees. SIAM Journal on Algebraic and
Discrete Methods, 3:99–113, 1982.

[173] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs.
SIAM Journal on Applied Mathematics, 36:177–189, 1979.

[174] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combina-
torica, 8:261–277, 1988.

[175] M. L. Luczak and C. McDiarmid. Bisecting sparse random graph. Random
Structures & Algorithms, 18:31–38, 2001.

[176] F. Makedon, C. H. Papadimitriou, and I. H. Sudborough. Topological
bandwidth. SIAM Journal on Algebraic and Discrete Methods, 6(3):418–
444, 1985.

[177] F. Makedon and I. H. Sudborough. On minimizing width in linear layouts.
Discrete Applied Mathematics, 23(3):243–265, 1989.

[178] C. C. McGeoch. Toward an experimental method for algorithm simula-
tion. INFORMS Journal on Computing, 8(1):1–15, 1996.

[179] K. Mehlhorn and S. Näher. LEDA — A platform for combinatorial and
geometric computing. Cambridge University Press, 1999.

[180] M. V. Menshikov, S. A. Molchanov, and A. F. Sidorenko. Percolation
theory and some applications. Journal of Soviet Mathematics, 42:1766–
1810, 1988.

260 Bibliography

[181] W. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller.
Equation of state calculations by fast computing machines. The Journal
of Chemical Physics, 21(6):1087–1092, 1953.

[182] G. Mitchison and R. Durbin. Optimal numberings of an n×n array. SIAM
Journal on Algebraic and Discrete Methods, 7(4):571–582, 1986.

[183] B. Mohar and S. Poljak. Eigenvalues in combinatorial optimization. In
R. A. Brualdi, S. Friedland, and V. Klee, editors, Combinatorial and
Graph-Theoretical Problems in Linear Algebra, volume 50 of IMA Vol-
umes in Mathematics and its Applications, pages 107–151, Berlin, 1993.
Springer–Verlag.

[184] B. Monien. The complexity of embedding graphs into binary trees.
In L. Budach, editor, Fundamentals of computation theory, volume 199
of Lecture Notes in Computer Science, pages 300–309, Berlin, 1985.
Springer–Verlag.

[185] B. Monien. The bandwidth minimization problem for caterpillars with
hair length 3 is NP-complete. SIAM Journal on Algebraic and Discrete
Methods, 7(4):505–512, 1986.

[186] B. Monien and H. Sudborough. Embedding one interconnection network
in another. In G. Tinhofer, E. Mayr, H. Noltemeier, and M. M. Syslo,
editors, Computational graph theory, volume 7 of Computing Supplementa,
pages 257–282, Berlin, 1990. Springer–Verlag.

[187] B. Monien and I. H. Sudborough. Min Cut is NP-complete for edge
weighted trees. Theoretical Computer Science, 58(1-3):209–229, 1988.

[188] B. M. E. Moret. Towards a discipline of experimental algo-
rithms. In C. C. McGeoch and D. S. Johnson, editors, DI-
MACS, DIMACS Monograph Series. AMS Press, 2001. To appear.
http://www.cs.unm.edu/∼moret/dimacs algorithmics.ps.

[189] D. O. Muradyan and T. E. Piliposjan. Minimal numberings of vertices of
a rectangular lattice. Akad. Nauk. Armjan. SRR, 1(70):21–27, 1980. In
Russian.

[190] P. Mutzel. A polyedral approach to planar augmentation and related prob-
lems. In P. Spirakis, editor, Algorithms — ESA’95, volume 979 of Lecture
Notes in Computer Science, pages 497–507, Berlin, 1995. Springer–Verlag.

[191] K. Nakano. Linear layouts of generalized hypercubes. In J. van
Leeuwen, editor, Graph-Theoretic Concepts in Computer Science, volume

http://www.cs.unm.edu/~moret/dimacs_algorithmics.ps

Bibliography 261

790 of Lecture Notes in Computer Science, pages 364–375, Berlin, 1994.
Springer–Verlag.

[192] L. Niepel and P. Tomasta. Elevation of a graph. Czechoslovak Mathemat-
ical Journal, 31(106)(3):475–483, 1981.

[193] S. Nikoletseas, K. Palem, P. Spirakis, and M. Yung. Short vertex disjoint
paths and multiconnectivity in random graphs: reliable network comput-
ing. In S. Abiteboul and E. Shamir, editors, Automata, Languages and
Programming, volume 820 of Lecture Notes in Computer Science, pages
508–519, Berlin, 1994. Springer–Verlag.

[194] S. Nikoletseas and P. Spirakis. Efficient communication establishment
in adverse communication environments. In J. Rolim, editor, ICALP
Workshops 2000, volume 8 of Proceedings in Informatics, pages 215–226,
Canada, 2000. Carleton Scientific.

[195] J. K. Ousterhout. Tcl and the Tk Toolkit. Adisson–Wesley, 1994.

[196] J. Pach, F. Shahrokhi, and M. Szegedy. Applications of the crossing
number. Algoritmica, 16:111–117, 1996.

[197] C. Papadimitriou. The NP-completeness of the bandwidth minimization
problem. Computing, 16:263–270, 1976.

[198] C. Papadimitriou. Computational complexity. Addison–Wesley, Reading,
1994.

[199] C. Papadimitriou and K. Steiglitz. Combinatorial optimizations, algo-
rithms and complexity. Prentice–Hall, Englewood Cliffs, 1982.

[200] C. H. Papadimitriou. The probabilistic analysis of matching heuristics.
In 15th Annual Conference on Communication Control Computing, pages
368–378, 1978.

[201] C. H. Papadimitriou and M. Sideri. The bisection width of grid graphs.
Mathematical Systems Theory, 29(2):97–110, 1996.

[202] B. Parlett, H. Simmon, and L. Stringer. Estimating the largest eigenvalue
with the Lanczos algorithm. Mathematics of Computation, 38(157):153–
165, 1982.

[203] M. Penrose. Single linkage clustering and continuum percolation. Journal
of Multivariate Analysis, 53:94–109, 1995.

[204] M. Penrose. The longest edge of the random minimal spanning tree. The
Annals of Applied Probability, 7:340–361, 1997.

262 Bibliography

[205] M. Penrose. Vertex ordering and partitioning problems for random spatial
graphs. The Annals of Applied Probability, 10:517–538, 2000.

[206] M. D. Penrose. On k-connectivity for a geometric random graph. Random
Structures & Algorithms, 15(2):145–164, 1999.

[207] J. Petit. Combinning spectral sequencing with simulated annealing for
the MinLA problem: sequential and parallel heuristics. Report de re-
cerca LSI-97-46-R, Departament de Llenguatges i Sistemes Informàtics,
Universitat Politècnica de Catalunya, http://www.lsi.upc.es/∼jpetit, 1997.

[208] J. Petit. Approximation heuristics and benchmarkings for the
MinLA problem. In R. Battiti and A. Bertossi, editors, Alex ’98
— Building bridges between theory and applications, pages 112–128,
http://rtm.science.unitn.it/alex98/book/jpetit.ps.gz, 1998. Università di Trento.

[209] J. Petit. Lower bounds for the minimum linear arrangement prob-
lem. In R. Fleischer, B. Moret, and E. M. Schmidt, editors, Ex-
perimental Algorithms, number 00371 in Dagstuhl Seminar, page 9,
ftp://ftp.dagstuhl.de/pub/Reports/00/00371.ps.gz, 2000.

[210] J. Petit. Experiments for the MinLA problem. Report de recerca LSI-
R01-7-R, Departament de Llenguatges i Sistemes Informàtics, Universitat
Politècnica de Catalunya, http://www.lsi.upc.es/∼jpetit, 2001.

[211] J. Petit. Hamiltonian cycles in faulty random geometric networks. Re-
port de recerca LSI-01-8-R, Departament de Llenguatges i Sistemes In-
formàtics, Universitat Politècnica de Catalunya, http://www.lsi.upc.es/∼jpetit,
2001.

[212] R. Preis and R. Diekmann. The Party partitioning library user
guide. Technical report TR-RSFB-96-024, Universität Paderborn, 1996.
http://www.uni-paderborn.de/fachbereich/AG/monien/RESEARCH/PART/party.html.

[213] S. Rao and A. W. Richa. New approximation techniques for some ordering
problems. In 9th ACM-SIAM Symposium on Discrete Algorithms, pages
211–218, 1998.

[214] R. Ravi, A. Agrawal, and P. Klein. Ordering problems approximated:
single-processor scheduling and interval graph completition. In J. Leach,
B. Monien, and M. Rodriguez, editors, Automata, Languages and Pro-
gramming, volume 510 of Lecture Notes in Computer Science, pages 751–
762, Berlin, 1991. Springer–Verlag.

[215] G. Reinelt. TSPLIB, 1995.
http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/TSPLIB95.

http://www.lsi.upc.es/~jpetit
http://rtm.science.unitn.it/alex98/book/jpetit.ps.gz
ftp://ftp.dagstuhl.de/pub/Reports/00/00371.ps.gz
http://www.lsi.upc.es/~jpetit
http://www.lsi.upc.es/~jpetit
http://www.uni-paderborn.de/fachbereich/AG/monien/RESEARCH/PART/party.html
http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/TSPLIB95

Bibliography 263

[216] N. Robertson and P. D. Seymour. Graph minors—a survey. In Surveys
in combinatorics, pages 153–171. Cambridge University Press, 1985.

[217] H. L. Royden. Real Analysis. MacMillan, New York, 1963.

[218] W. Rudin. Real and Complex Analysis. McGraw-Hill, New York, 1966.

[219] Y. Saad. Iterative methods for sparse linear systems. PWS Publishing
Company, Boston, 1996.

[220] A. Sangiovanni-Vincentelli. Automatic layout of integrated circuits. In
A. De Michelli, Sangiovanni-Vincentelli, editor, Design Systems for VLSI
circuits, pages 113–195, Dordrecht, 1987. Martinus Nijhoff Publishers.

[221] J. B. Saxe. Dynamic-programming algorithms for recognizing small-
bandwidth graphs in polynomial time. SIAM Journal on Algebraic Dis-
crete Methods, 1(4):363–369, 1980.

[222] P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combi-
natorica, 14(2):217–241, 1994.

[223] F. Shahrokhi, O. Sykora, L. A. Szekely, and I. Vrto. On bipartite drawings
and the linear arrangement problem. SIAM Journal on Computing, 2001.
To appear. ftp://ifi.savba.sk/pub/imrich/siam2.ps.gz.

[224] M. I. Shamos and D. Hoey. Closest-point problems. In 16th Annual
Symposium on Foundations of Computer Science, pages 151–162. IEEE
Computer Society Press, 1975.

[225] Y. Shiloach. A minimum linear arrangement algorithm for undirected
trees. SIAM Journal on Computing, 8(1):15–32, 1979.

[226] M. T. Shing and T. C. Hu. Computational complexity of layout prob-
lems. In T. Ohtsuki, editor, Layout design and verification, volume 4 of
Advances in CAD for VLSI, pages 267–294, Amsterdam, 1986. North–
Holland.

[227] H. D. Simon and S.-H. Teng. How good is recursive bisection? SIAM
Journal on Scientific Computing, 18(5):1436–1445, 1997.

[228] S. Simonson. A variation on the min cut linear arrangement problem.
Mathematical Systems Theory, 20(4):235–252, 1987.

[229] K. Skodinis. Computing optimal linear layouts of trees in linear time.
In M. Paterson, editor, Algorithms — ESA 2000, volume 1879 of Lecture
Notes in Computer Science, pages 403–414, Berlin, 2000. Springer–Verlag.

ftp://ifi.savba.sk/pub/imrich/siam2.ps.gz

264 Bibliography

[230] G. Skorobohatyj. Code for finding a minimum cut be-
tween all node pairs in an undirected graph, 1994.
ftp://ftp.zib.de/pub/Packages/mathprog/mincut/all-pairs/index.html.

[231] D. A. Spielman and S.-H. Teng. Spectral partitioning works: Planar
graphs and finite element meshes. In 37th Annual Symposium on Foun-
dations of Computer Science, pages 96–105. IEEE, 1996.

[232] J. M. Steele. Subadditive Euclidean functional and nonlinear growth in
geometric probability. Annals of Probability, 9:365–376, 1981.

[233] J. M. Steele. Growth rates of Euclidean minimal spanning trees with
power weighted edges. Annals of Probability, 16:1767–1787, 1988.

[234] J. M. Steele. Probability theory and combinatorial optimization. Regional
Conference Series in Applied Mathematics. SIAM, 1997.

[235] D. M. Thilikos, M. J. Serna, and H. L. Bodlaender. A constructive linear
time algorithm for small cutwidth. Report de recerca LSI-00-48-R, Uni-
versitat Politècnica de Catalunya, Departament de Llenguatges i Sistemes
Informàtics, http://www.lsi.upc.es/dept/techreps/ps/R01-4.ps.gz, 2001.

[236] D. M. Thilikos, M. J. Serna, and H. L. Bodlaender. A polyno-
mial time algorithm for the cutwidth of bounded degree graphs with
small treewidth. Report de recerca LSI-01-4-R, Universitat Politècnica
de Catalunya, Departament de Llenguatges i Sistemes Informàtics,
http://www.lsi.upc.es/dept/techreps/ps/R01-4.ps.gz, 2001.

[237] J. S. Turner. On the probable performance of heuristics for bandwidth
minimization. SIAM Journal on Computing, 15(2):561–580, 1986.

[238] W. Unger. The complexity of the approximation of the bandwidth prob-
lem. In 37th Annual Symposium on Foundations of Computer Science,
pages 82–91. IEEE Computer Society Press, 1998.

[239] L. G. Valiant. Universality considerations in VLSI circuits. IEEE Trans-
actions on Computers, 30(2):135–140, 1981.

[240] P. J. M. van Laarhoven and E. H. L. Aarts. Simulated Annealing: Theory
and Applications. Kluwer, New York, 1987.

[241] M. Yannakakis. A polynomial algorithm for the min cut linear arrange-
ment of trees. In 24th Annual Symposium on Foundations of Computer
Science, pages 274–281. IEEE Computer Society Press, 1983.

ftp://ftp.zib.de/pub/Packages/mathprog/mincut/all-pairs/index.html
http://www.lsi.upc.es/dept/techreps/ps/R01-4.ps.gz
http://www.lsi.upc.es/dept/techreps/ps/R01-4.ps.gz

Bibliography 265

[242] J. Yuan, Y. Lin, Y. Liu, and S. Wang. NP-completeness of the profile
problem and the fill-in problem on cobipartite graphs. Journal of Mathe-
matical Study, 31(3):239–243, 1998.

[243] J. E. Yukich. Probability theory of classical Euclidian optimization prob-
lems. Springer–Verlag, Heidelberg, 1998.

Remark: When possible, references to unpublished documents, such as tech-
nical reports or software packages, include an uniform resource locator (URL) to
ease the reader obtaining them. Although these URLs were correct at the time
this bibliography was made, the author cannot guarantee their future behavior,
their contents, nor the legality of their contents.

	Title
	Contents
	Introduction
	1 A Survey on Layout Problems
	1.1 Introduction
	1.2 Definitions
	1.3 Basic observations
	1.4 Motivations and applications
	1.5 Complexity results
	1.5.1 NP-completeness results
	1.5.2 Fixed parameter results
	1.5.3 Positive results

	1.6 Lower bounds
	1.6.1 The Path method
	1.6.2 Bounds based on spectral properties
	1.6.3 Bounds based on fundamental cuts

	1.7 Approximation algorithms
	1.8 Heuristics
	1.9 Conclusion

	2 Experiments on the MinLA Problem
	2.1 Introduction
	2.2 Lower and upper bounding methods
	2.2.1 Lower bounds
	2.2.2 Approximation heuristics
	2.2.3 The llsh toolkit for the MinLA problem

	2.3 Test suite
	2.4 Experimental evaluation
	2.4.1 Experimental environment and representation of results
	2.4.2 Comparison of the lower bounding methods
	2.4.3 Graphs with known minima
	2.4.4 Comparing the Flip2 and Flip3 neighborhoods
	2.4.5 Binomial random graphs versus geometric random graphs
	2.4.6 Other graphs
	2.4.7 Viewing layouts

	2.5 The SS+SA heuristic
	2.5.1 The sequential SS+SA heuristic
	2.5.2 The parallel SS+SA heuristics
	2.5.3 Experimental evaluation

	2.6 Conclusions

	3 Layout Problems and Binomial Random Graphs
	3.1 Introduction
	3.2 Approximation results
	3.3 Conclusion

	4 Layout Problems and Unit Disk Graphs
	4.1 Introduction
	4.2 Complexity results
	4.3 Optimal layouts for square grids
	4.4 Upper bounds for grid graphs
	4.5 Conclusion

	5 Layout Problems and Random Unit Disk Graphs
	5.1 Introduction
	5.1.1 Random grid graphs and site percolation
	5.1.2 Random geometric graphs
	5.1.3 The Euclidean model

	5.2 Subcritical random grid graphs
	5.2.1 Order of growth of minvs and mincw
	5.2.2 Convergence results for minla, minmc and minsc
	5.2.3 Experimental determination of LA(p)

	5.3 Connected random geometric graphs
	5.3.1 Isoperimetric inequalities
	5.3.2 Lower bounds for mineb, mincw and minla
	5.3.3 Lower bounds for minvs, minsc, minvb and minbw
	5.3.4 Approximation algorithms
	5.3.5 Experimental considerations

	5.4 Subcritical random geometric graphs
	5.4.1 Convergence results for mineb and minvb
	5.4.2 Order of growth of mincw and minvs
	5.4.3 Convergence results for minla, minmc and minsc

	5.5 Conclusion

	6 Faulty Random Geometric Networks
	6.1 Introduction
	6.2 Preliminaries
	6.3 Hamiltonian cycles
	6.3.1 Hamiltonian cycles in RGGs with vertex faults
	6.3.2 Hamiltonian cycles in RGGs with edge faults

	6.4 Emulations
	6.4.1 Emulation in RGGs with faulty vertices
	6.4.2 Emulation in RGGs with faulty edges

	6.5 Layout problems
	6.6 Conclusion

	7 Communication Tree Problems
	7.1 Introduction
	7.2 Problems and preliminaries
	7.3 Tree layouts, routing trees and communication trees
	7.4 Average
	7.5 Binomial random graphs
	7.6 Square grid graphs
	7.7 Random geometric graphs
	7.8 Conclusion

	A Appendix
	A.1 Notation
	A.2 Background of probability theory
	A.2.1 Basics
	A.2.2 Convergence
	A.2.3 Concentration bounds

	Bibliography

