Design Considerations for a Software Library Supporting
Algorithms for Massive Data Sets (WP1, D6)

Peter Sanders*

May 29, 2001

1 Introduction

The status of the project is that we have completed the single-disk external memory library
LEDA-SM [3] as planned (Section 2. Furthermore, our algorithm design work has made
progress with respect to supporting parallel disks. [11, 9, 10, 4].

On the software side our next main goal is to develop essential components of a new
library (working name AIPHA Algorithms for Parallel Hard disk Arrays) with a focus on
high performance operation in particular with respect to supporting parallel disks.

In the following we outline general design issues for AIPHA. We have no detailed design
yet for two reasons. On the one hand, Andreas Crauser, the author of LEDA-SM will soon
leave our group and we are still looking for an new researcher working full time on the
project. On the other hand, we have made contacts with other groups working on external
memory libraries (e.g., TPIE by Duke University, Durham NC) and see the possibility for
a cooperation that leads to a widely accepted system. In this situation, pushing a detailed
design from our side would be counterproductive.

Figure 1 outlines the layer structure of AIPHA. Subsequent sections discuss the layers
one by one. Section 3 explains why different more or less portable options for the operating
system platform make a thin compatibility layer desirable that shields the rest of the system
from operating system dependencies. Our main focus of software development will first be
a low level abstraction of external memory that nevertheless already allows to transparently
integrate nontrivial disk scheduling algorithms. Sections 4 and 5 give details. A lot of higher
level reusable software could be incorporated in a way compatible to the C++ standard
template library as explained in Section 6. But the functionality of existing libraries should
also be available to application programs by integrating them into the system. Section 7
summarizes the main design issues and outlines challenges for work farther in the future.

*Max-Planck-Institute for Computer Science, Im Stadtwald, 66123 Saarbriicken, Germany, sanders@
mpi-sb.mpg.de.

Application programs

external o o
_ TPIE, MPI-1/0

STL plus LEDA-SM !} datamining ... |

expansions adaptor 11 adaptors m

a:
automatically load balanced parallel hard disk array

compatibility layer

Unix file system POSIX aio
Unix raw devices POSIX pthreads (DAFS, ...)

Figure 1: Layers of AIPHA (surrounded by fat dashed line) and other components for pro-
cessing large volumes of data.

2 Experiences with LEDA-SM

We have completed the single disk external memory library LEDA-SM (Library of Efficient
Data types and Algorithms - Secondary Memory) [3] that can serve as the basis for our
further work. LEDA-SM consists of two main parts.

The lower level part is a block processing engine that provides us with the external
memory abstraction of the model of Vitter and Shriver [15] including a memory manager.
This engine works on either Unix file systems or Unix raw devices. Since there are functions
in Unix that work with both sources of data, this flexibility comes at relatively low cost.
Although such a block engine is a rather simple device, it has important advantages compared
to the traditional file systems. It allows comfortable use of the high bandwidth offered by raw
devices. Furthermore, previous systems like TPIE [14] open one file for each data stream.
This leads to problems with the maximum allowed number of open files in algorithms such
as sorting or buffer trees [1] that work on huge number of data streams concurrently. LEDA-
SM supports parallel disks to the limited (since suboptimal) extend that one can use a file
system that stripes its blocks over several disks.

The higher level of LEDA-SM implements data structures and algorithms using similar
abstractions as the internal memory library LEDA [8]. Besides simple data structure like
stacks, queues, and arrays with different caching strategies there are more sophisticated data
structures like priority queues, B-trees, buffer trees, and and suffix arrays. There are also
algorithms for sorting, matrix arithmetics and some simple graph algorithms. To our best
knowledge, no previous library [14, 2] implements such a wide spectrum of sophisticated
algorithms in one consistent framework.

3 Interfacing with the Operation System

On the one hand, AIPHA should be able to work on a wide range of systems. On the other
hand, it should be able to take advantage of emerging standards for high performance I/0.
The following decisions are likely to achieve this goal:

e We will provide a thin compatibility layer that shields the rest of the library from the

rest of the hardware.

o We will restrict the first implementations to Unix but may make some effort to allow
a later port to Windows.

e Basic Unix is not flexible enough to allow independent parallel disk access within a user
thread. But there are two mechanisms in the POSIX standard that allow it — threads
and asynchronous I/O. Either mechanism alone already allows sufficient functionality
for a useful implementation. It is likely that eventually a good implementation uses
both mechanisms together.

e In the basic implementation, we will adopt the approach from LEDA-SM to use only
functions that are available both for the file system and for raw devices. Our support for
raw devices may be more efficient however since asynchronous I/O and multithreading
can dissolve some of the disadvantages of raw devices.

e High-end systems for external memory computing are increasingly composed of net-
works of servers and storage devices. DAFS! seems to be an emerging standard for
supporting such systems. Hence, we consider to design the system in such a way that
a migration to DAFS is possible.

4 Support For Parallel Disks

AIPHA should support a number of useful algorithms that have been developed recently and
support a shared memory view on distributed hardware containing multiple independent
disks: An external memory segment consists of a homogeneous virtual address space (64
bit). An arbitrary number of concurrent accesses to arbitrary pieces of the memory can be
made as long as the pieces have starting addresses and lengths that are a multiple of some
minimal blocks size (e.g., 512 byte for the disk sector, or 8192 for a virtual memory page
size). Physically, this address space is distributed over all the disks using random placement
of data and (optionally) redundant storage. The accesses can be efficiently supported using
scheduling algorithms that exploit redundancy [11, 9] or lookahead [5, 4]. A prototype library
may support only a single segment. Later versions could also offer multiple dynamically
growing segments with different allocation strategies for each segment.

Additionally, there is a cache that avoids many disk accesses. We plan to support schedul-
ing algorithms for integrated prefetching and caching [7, 6] and user configured replacement
strategies.

5 Support for Parallelism

AIPHA will be thread safe to the extent possible so that parallel applications on shared
memory systems can be implemented. The compatibility layer working with the standard
Unix file system or raw devices will use threads or asynchronous I/O for implementing

1http://www.dafscollaborative.org/

parallel disk access. Later versions may implement parallel shared memory algorithms for
basic tasks such as sorting. Thanks to the shared memory abstraction, this can be done
transparently without changes of outside interfaces.

Support for distributed memory parallel machines is a more difficult issue. Later versions
could provide different levels of support:

e No special support. Every processor (or SMP node) runs a local incarnation of the
library on its own local disks. Other libraries such as MPI [12] are used to organize
processor interaction.

e The parallel disk support implements private and shared segments that are distributed
over all the disks of the system. The application processes remain responsible for
coordinating accesses to shared segments of this memory.

e Distributed segments with locking of data and mechanisms to coordinate work between
processors. This would replicate functionality of other libraries such as MPI but has the
advantage to provide one seamless programming environment for parallel processing
with large volumes of data.

6 Compatibility with the STL

The C++ standard template library provides simple algorithms and data structures and an
elegent and efficient interface to the file system and internal memory data structures. Of
particular importance are streams and iterators. Streams provide uniform access to files and
sequential data structures. By providing a stream interface for AIPHA, applications can
freely switch between internal representations, files, and our high performance implemen-
tation depending on the problem sizes and machines used. Similar considerations hold for
iterators that add random access and hence allow a wider range of applications.

Functionality that can be supported over the interface of the STL are arrays, stacks,
queues, priority queues, search trees, hash tables, sorting, median finding, random permuta-
tions, strings.

Some data structures will be augmented with additional functions that make more ef-
ficient external memory implementations possible. Usually this involves bulk updates like
inserting many elements into a search tree, Or performing a large batch of array accesses.
(The gather and scatter operations known from vector computers).

7 Conclusions

The current design of AIPHA already anticipates the coexistence of an STL-like library
and LEDA-SM on top of the basic support functionality for parallel disks. Similarly, other
libraries might be added, for example, for data mining, relational data base like functionality,
or geometry or particular applications, e.g., from bioinformatics.

Our main focus for the near future is on the following goals that have not been completely
met by previous systems:

o Effective support for parallel disks. This is important because disks are cheap and
allow an external memory throughput comparable to the internal memory bandwidth.
Such balanced systems are challenging for external memory libraries and algorithms
since both external memory access and internal work should be efficient.

e For the balanced systems mentioned above it is also important to support overlapping
of internal work and I/0O.

e Interfaces to the hardware that can be adapted to emerging technologies such as DAF'S.
e Interfaces to applications that are consistent with industry standards such as STL [13].

e Support for external data structures persisting over several program runs using file
names. This can be implemented by storing the low volume data that organizes exter-
nal memory data into ordinary files.

A challenge for the future is support for multiple processors.

References

[1] L. Arge. The buffer tree: A new technique for optimal I/O-algorithms. In 4th WADS,
number 955 in LNCS, pages 334—-345. Springer, 1995.

[2] Alex Colvin and Thomas H. Cormen. ViC*: A Compiler for Virtual-Memory C*.
Technical Report PCS-TR97-323, Dartmouth College, Computer Science, Hanover, NH,
November 1997.

[3] Andreas Crauser. External memory algorithms and data structures in theory and prac-
tice. Technical Report ALCOMFT-TR-01-18, MPI-Informatik, 2001. PhD Thesis, Uni-
versitat des Saarlandes.

[4] D. A. Hutchinson, P. Sanders, and J. S. Vitter. Duality between prefetching and queued
writing with applications to integrated caching and prefetching and to external sorting.
In 9th European Symposium on Algorithms (ESA), LNCS. Springer, 2001. to appear,
also report ALCOMFT-TR-01-79.

[6] M. Kallahalla and P. J.Varman. Optimal read-once parallel disk scheduling. In IOPADS,
pages 68-77, 1999.

[6] M. Kallahalla and P.J. Varman. Optimal prefetching and caching for parallel 1/O
systems. In ACM Symposium on Parallel Architectures and Algorithms, 2001. To appear.

[7] Tracy Kimbrel and Anna R. Karlin. Near-optimal parallel prefetching and caching.
SIAM Journal on Computing, 29(4):1051-1082, 2000.

[8] K. Mehlhorn and S. Naher. The LEDA Platform of Combinatorial and Geometric
Computing. Cambridge University Press, 1999.

[9] P. Sanders. Asynchronous scheduling of redundant disk array. In 12th ACM Symposium
on Parallel Algorithms and Architectures, pages 89-98, 2000. also report ALCOMFT-
TR-01-99.

[10] P. Sanders. Reconciling simplicity and realism in parallel disk models. In 12th ACM-
SIAM Symposium on Discrete Algorithms, pages 67-76, Washington DC, 2001. also
report ALCOMFT-TR-01-82.

[11] P. Sanders, S. Egner, and J. Korst. Fast concurrent access to parallel disks. In 11th
ACM-SIAM Symposium on Discrete Algorithms, pages 849-858, 2000.

[12] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. MPI — the
Complete Reference. MIT Press, 1996.

[13] B. Stroustrup. The C++ Programming Language. Addison Wesley, 3rd edition, 1998.

[14] D. E. Vengroff. TPIE User Manual and Reference. Duke University, 1995. http:
//www.cs.duke.edu/"dev/tpie_home_page.html.

[15] J.S. Vitter and E. A. M. Shriver. Algorithms for parallel memory I: Two level memories.
Algorithmica, 12(2-3):110-147, 1994.

