Department of Computer Science
Aarhus University

Algorithms and Data Structures

Transition systems

Mikkel Nygaard
Erik Meineche Schmidt
February 2014

Contents

3.1 Exponentiation
3.2 Scanning

1 Transition systems
1.1 Introduction
1.2 Afootballmatch.
1.3 Definitions
1.4 Proof principles
1.4.1 Invariance
1.4.2 Termination
1.5 Examples.
151 Nim
152 Hanoi
153 Eucid
1.54 Expressions
1.5.5 Graph traversal
1.5.6 Red-black search trees
2 Algorithm theory
21 Commands.
22 Algorithms
23 Correctness.
231 Validity.
2.3.2 Termination
24 Examples
2.4.1 Extended Euclid . . .
2.4.2 Factorial
243 Powersum
25 Arrays
26 Complexity.
3 Fundamental algorithms

3.3

34

3.5

3.6

Searching 54

3.3.1 Linearsearch 54
332 Binarysearch 54
Sorting 56
341 Inmsertionsort 57
342 Mergesort oL 58
343 Quicksort e 62
Selection 67
3.5.1 Quickselect 67
3.5.2 Deterministicselection 69
Examples oo 70
3.6.1 Maximalsubsum 71
3.6.2 Longest monotone sequence 73

ii

Chapter 1

Transition systems

This chapter gives an introduction to transition systems, one of the sim-
plest and most useful formalisms in computer science. The theory of tran-
sition systems presented here provides the techniques we’ll need in the
rest of these notes for reasoning about algorithms.

1.1 Introduction

A transition system consists of a set of configurations and a collection
of transitions. Transition systems are used to describe dynamic processes
with configurations representing states and transitions saying how to go
from state to state.

As a concrete example of these somewhat abstract notions, consider a
game like chess. Here the configurations are the positions in the game (that
is, the placements of pieces on the board) while the transitions describe
the legal moves according to the rules of chess. A game is viewed as the
dynamic process with the players (starting with white’s first move) taking
turns in moving and thereby transforming one configuration into another
until a winner is found or the game has ended as a draw.

In computer science there are many situations where a process can be
seen as a sequence of configurations, one following another in a system-
atic way as with chess. An important example is the computer itself which
at a sufficiently high level of abstraction can be seen as a mechanism ca-
pable of transforming the contents of its registers and stores (the config-
urations) according to the rules built into the instruction set of the ma-
chine. Other examples are networks, communication systems, algorithms
etc. Using suitable abstractions they may all be described in terms of tran-
sition systems.

2 CHAPTER 1. TRANSITION SYSTEMS

The main purpose of describing processes formally is that this allows
us to subject the processes to formal analysis, ie. it allows us to talk about
their properties in a precise way. Traditionally, two kinds of properties are
of interest, safety properties and liveness properties. A safety property is
used to express that nothing bad can happen in a process, ie. that it is
impossible to enter an unwanted configuration. In contrast, liveness prop-
erties are used to express that something happens at all in a process—the
safest way of avoiding errors is to do nothing, but systems like that tend
to be rather boring.

The next section provides further intuition for the notions of configu-
ration and process by means of a well-known example. Following this, we
present techniques for expressing and reasoning about both safety proper-
ties and liveness properties, and we’ll put the techniques to use in a range
of different situations.

1.2 A football match

Consider as a simple example of a process a description of a football match
between two teams which we’ll call A and B. We may view the match as a
sequence of situations where the teams take turns in having the ball.

If we use two configurations A and B to name the situation where team
A, respectively team B, possesses the ball, and if we furthermore assume
that team A kicks off, we may describe the match as the following process:

A,B,AB,...,AB,...

Surely, this description is not very interesting, mainly because the purpose
of playing football (besides having fun) is to score goals, and the more the
better. We can bring the goals into the description by extending the con-
tigurations, ie. the descriptions of the situations in the match, so that they
contain the current score. A situation is now described by a configuration
of the form [A, 3,2] or [B, 1,0], saying that team A has the ball and is lead-
ing by three goals to two, or that team B has the ball and is behind by one
goal to nil. The description of the match is now a sequence starting with
the configuration [A, 0, 0], that is, a sequence of the form

[A,0,0], ...

But now it is no longer clear how this sequence proceeds, ie. what pro-
cesses are correct descriptions of the match. One could attempt to explic-
itly write down all possible processes according to the rules of football (eg.

1.2. A FOOTBALL MATCH 3

no team may score twice against the opponent without handing over the
ball in between). However, one would quickly realize that this is an im-
practical solution. Fortunately, it is often possible to describe processes in-
directly (and much more compactly) by using rules for transitions between
configurations. This is the technique used with transition systems. If we
describe a football match by the rule

F,: asituation where team A (team B) has the ball is followed by a situa-
tion where team B (team A) has the ball and where the score is either
unchanged or where team A (team B) has scored another goal,

then the start configuration [A, 0, 0] may be followed by the configurations
[B,0,0] and [B, 1,0] which then may be followed by [A,0,0] and [A,0,1],
respectively [A,1,0] and [A,1,1] etc. A legal process is now a sequence
starting with [A, 0, 0], and in which all configuration changes obey the rule
above. So examples of legal processes are

[A,0,0],[B,0,0],[A,0,1],[B,0,1],[A,0,2],...
[A,0,0],[B,0,0],[A,0,0],[B,0,0],...
[A,0,0],[B,1,0],[A,1,1],[B,2,1],[A,2,2],...

Although our description of the football match has improved, it still suf-
fers from non-termination: the match never ends! This is due to rule F, de-
manding that a configuration always has a successor so that all processes
are infinite. We could modify the rule as follows:

F5: a situation where team A (team B) has the ball is followed either
by a situation where the referee has the ball and where the score is
unchanged or by a situation where. .. (as for b,).

If we represent the situation where the referee has the ball and the score
is, say, three to two by the configuration [R, 3,2], the legal processes now
include

[A,0,0],[B,1,0],[A,1,0],[R,1,0]
[A,0,0],[B,0,0],[A,0,0],...,[B,0,0],[R,0,0] (boring match!)
[A, 0, 0], [B, 1, 0], [A, 1, 0], [B, 2, 0], ., [A, 6, 0], [R, 6, 0]

However, the possibility that processes may be infinite still exists, so the
problem from before is still there. We can solve it by adding a clock to
the description so that a configuration now also says how much time has
elapsed. The situation that B has the ball, the score is one to nil, and twenty
minutes has passed is expressed by the configuration [20, B, 1, 0]. We could
now say that a team always possesses the ball in precisely one minute, but
to make the description a bit more flexible, we’ll allow them to keep the
ball for one or two minutes. The description then obeys the following rule:

4 CHAPTER 1. TRANSITION SYSTEMS

Fy;: (a) a situation where team A (team B) has the ball and at most 89
minutes have passed is followed by a situation where team B
(team A) has the ball and where the score is either unchanged
or team A (team B) has scored another goal, and where one or
two more minutes (but never more than 90 minutes total) have
passed.

(b) a situation where team A (team B) has the ball and 90 minutes
have passed is followed by a situation where the referee has the
ball and where the time and score are unchanged.

Here is a legal process according to Fy:

0,4,0,0],[2,B,1,0],[3,A,1,0],...,[45,B,1,3],...
...,[88,B,6,7],]90, A,6,8],[90, R, 6,8]

The description has again improved, but still valid points may be raised.
One is that a team cannot score an own goal; another that the match con-
sists of only one half. We leave it to the reader to modify the rule F; to
address these (and any other) shortcomings.

As may be seen from the rule F; above, prose descriptions of situation
changes can easily become a bit heavy. In the following section, we’ll in-
troduce a mathematical formalism which in many cases is easier to work
with.

1.3 Definitions

Transition systems constitute a formalized method for description of pro-
cesses, defined by rules for change of configuration as in the preceding
discussion of the football example. A transition system is a mathematical
object consisting of two parts, a set of configurations and a binary relation
on this set:

Definition 1.3.1 A transition system S is a pair of the form
S=(CT)

where C is the set of configurations and T C C x C is a relation, the tran-
sition relation. [l

When using transition systems to describe processes as in the football ex-
ample, the configurations will name the situations and the transition rela-
tion will specify the legal transitions between the situations.

1.3. DEFINITIONS 5

Example 1.3.2 A transition system capturing the first description of a foot-
ball match (where all we said was that the two teams had to take turns in
possessing the ball) looks as follows:

S1=(C, T1)
where
C1 = {A,B} and T1 = {(A, B), (B,A)}

0]

The purpose of using transition systems is to describe processes which we’ll
define as certain sequences of configurations:

Definition 1.3.3 Let S = (C, T) be a transition system. S generates a set of
sequences, S(S), defined as follows:

1. the finite sequence ¢y, ¢y, . .., ¢x (for n > 0) belongs to S(S) if
) o€ C
() foralliwithl <i<mn:(ci_1,¢;)) €T
2. the infinite sequence cp, ¢y, ..., Cp, . .. belongs to S(S) if
(t) cgeC
() foralli > 1: (¢c;_1,¢;) €T

0]

Example 1.3.4 For the transition system S; we have that S(S1) contains
all finite sequences starting with A or B and where A’s follow B’s and vice
versa, together with the two infinite sequences

A,BA,...,AB,...
B,A,B,...,BA,...

0]

In most applications of transition systems we are only interested in some
of the sequences generated by the system, more precisely the sequences
that are maximal in the sense that they cannot be extended:

6 CHAPTER 1. TRANSITION SYSTEMS

Definition 1.3.5 Let S = (C, T) be a transition system. The set of processes
generated by S, written P(S), is the subset of S(S) containing

1. all infinite sequences of S(S)

2. all finite sequences ¢, c1,...,cn (n > 0) of S(S) for which it holds
that there is no ¢ € C with (¢, ¢) € T.

The final configuration of a finite process is called a dead configuration. []

Example 1.3.6 The processes generated by S; are precisely the two infinite
sequences of Example 1.3 .4. O

We have now introduced enough “machinery” to enable us to talk about
processes generated by general (abstract) transition systems. When using
the systems for something concrete, eg. the football examples, the need
arises for suitable notation for specifying configurations and especially
transition relations. Here we’ll be very liberal and allow practically any
kind of description precise enough to unambiguously specify both con-
tigurations and transitions. As for the latter we’ll often employ so-called
transition rules which look as follows:

left-hand side > right-hand side

Here, both sides are configurations and the meaning of the rule is that any
configuration matching the left-hand side may be followed by the corre-
sponding configuration on the right-hand side.

Example 1.3.7 For the system S; the following two rules constitute an al-
ternative way of giving the transition relation T; = {(A, B), (B, A) }:

A > B
B > A

0

Consider now the second version of the football match description where
the score is taken into account. The processes in such matches are gener-
ated by a transition system S, = (Cy, T;) where the configurations are

C; = {A B} xNxN
= {[X,a,b] | X € {A, B}, a,b € N}.

(N is the set of natural numbers, 0,1, . . .)—but how do we specify the tran-
sition relation?

1.3. DEFINITIONS 7

Since the relation is infinite (ie. infinitely many pairs of configurations
may follow each other) we cannot list all its elements. However, we can
specify them using parametrized transition rules of the following form:

[A,a,b] > [B,a+1,b].

This rule says that for arbitrary natural numbers a2 and b we have that the
configuration [A,a,b] may be followed by the configuration [B,a + 1, b].
So the rule is an alternative representation of the following part of the
transition relation

{(c1,¢2) € Co x Cy | Jc1 = [A,a,b] and c; = [B,a + 1,b]}.

In this way we can represent the rule F, from Section 1.2 using the follow-
ing four transition rules:

[A,a,b] > [B,a,b]
[A,a,b] > [B,a+1,b
[B,a,b] > [A,a,b]
[B,a,b] > [A,a,b+1]

—whose meaning should be clear.

Actually, it is necessary to extend the transition rules by adding the
conditions under which they may be used. The need for this becomes ap-
parent if we consider the last (clocked) version of the football example.
Here, the configurations are given by the set

C4 = {[t,X,ﬂ,b] | 0 § t S 90,X - {A,B,R},ﬂ,b - N},

and now the rules must express that they may only be used in such a way
that the t-value doesn’t exceed 90. This is done by adding conditions to
the rules as follows:

[t,A,a,b] > [t+2,Ba+1,b] ift <88

—saying that this rule may only “be used upon” a configuration whose
t-value is less than or equal to 88.

The following example shows the template for specification of transi-
tion systems that we’ll use in the following:

8 CHAPTER 1. TRANSITION SYSTEMS

Example 1.3.8 A transition system describing the final version of the foot-
ball match:

Transition system Football

Configurations: {[t, X,a,b] |0 <t <90,X € {A,B,R},a,b € N}
[t,A,a,b] > [t+2,B,a,b) if t <88

t,A,a,b] > [t+2,Ba+1,b] ift <88

[t,A,a,b] > [t+1,B,a,b] if t <89

t,A,a,b] > [t+1,Ba+1,b] ift<89

90, A,a,b] > [90,R,a,b]

[t,B,a,b] > [t+2,A,4a,Db] if t <88

[t,B,a,b] > [t+2,A,ab+1] ift <88

[t,B,a,b] 1> [t+1,A,a,b] if t <89

[t,B,a,b] 1> [t+1,A,ab+1] ift <89

[90,B,a,b] ©> [90,R,a,b]

Clearly, this system behaves correctly. g

We end this section with a more precise description of the format and
meaning of the transition rules. A rule of the form

left-hand side > right-hand side if condition
in which the parameters xy, ..., x,, occur, has the following meaning:

1. For all values of x, ..., x, for which left-hand side specifies a config-
uration and condition is true, right-hand side also specifies a configu-
ration.

2. The rule defines the relation consisting of the set of pairs of configu-
rations for which such values of x4, ..., x;, exist.

A collection of transition rules specifies the transition relation consisting
of the union of the relations defined by the individual rules.

Abusing notation slightly, we’ll also write > for the transition relation
itself. As 1> is then a binary relation, we may talk about its reflexive and
transitive closure, standardly written >*. Two configurations c, ¢’ are re-
lated by >* if ¢ = ¢’ or there exists a sequence generated by the transition
system in which ¢ comes before ¢’.

Example 1.3.9 For the transition system Football we have eg.

45,B,1,1] >* [47,A,1,2]
0,A,0,0 * [90,R,0,0]
39,A,7,6] >* [39,A,7,6]

1.4. PROOF PRINCIPLES 9

1.4 Proof principles

One of the purposes of introducing a precise mathematical formalism for
different notions is that we want to be able to reason precisely about the
properties of those notions. When we in the following sections want to
reason precisely about sequences and processes generated by transition
systems, a certain kind of mathematical proof principle will be used over
and over again, the so-called induction principle. In its simplest version,
the induction principle is used to show the correctness of a collection of
mathematical statements enumerated by the natural numbers. Take as an
example the (hopefully) well-known formula for the sum of the natural
numbers up to n:

0+1+2+ - +n=4in(n+1).

We may consider this formula as a short-hand version of the following
(infinitely many) statements P(0), P(1), P(2),...,P(n),...

P(0) 0 101
P(1) 1 =112
P(2) 142 = 1.2.3
P(3) 1+2+3 = 1.3.4
P(n) 142+ +n = s-n-(n+1)

The induction principle now says that we can prove all these statements
by proving only the following two things:

a) P(0) is true

b) for any of the statements P(n) with n > 0 it holds that if P(n) is true,
then P(n + 1) is true.

Correctness of this induction principle is not hard to accept, for when P(0)
is true, it follows from b) that P(1) is true, from which it follows using b)
again that P(2) is true, and so on.

Let us now prove the formula above, that is, let us prove that for all
n > 0 it holds that P(n) is true. When proving something by induction,
we'll call the two proof-steps a) and b) above for the base case and the
induction step, respectively, as in the following proof:

10 CHAPTER 1. TRANSITION SYSTEMS

Base case We need to show that P(0) is true, which is obvious.

Induction step Assuming that P(n) is true for some n > 0, we need to

show that P(n + 1) is true. In other words, we need to prove that
0+142+-+n+(n+1)=3n+1)(n+2).

We argue as follows:

0+142+---+n+(n+1)

= (0+14+2+---+n)+(n+1)

(3n(n+1)) + (n+1) using P(n)
= I(n(n+1)+2(n+1))

Tn+1)(n+2)

—which proves P(n + 1) as wanted.

The assumption that P(n) is true is often called the induction hypothesis.
We highlight the induction principle as follows:

Induction principle Let P(0), P(1),...,P(n), ... be statements. If
a) P(0) is true
b) for all n > 0 it holds that P(n) implies P(n + 1),

then P(n) is true for all n > 0.

1.4.1 Invariance

As mentioned we’ll make extensive use of the induction principle in con-
nection with transition systems, but we’ll reformulate it in terms of config-
urations and transitions below. The new formulation, called the invariance
principle, is more convenient for our purpose, although it is equivalent in
power to the induction principle.

If S = (C, T) is a transition system, we'll often be interested in showing
that all configurations in a sequence or process have some property. Con-
sider again the transition system Football from Example 1.3.8 and recall
that the sequences are of the form

[0,A,0,0],[1,B,0,0],[3,4,0,1],...

It should be clear that in this model of a football match the number of
goals is at most the number of minutes elapsed. Let’s see how to prove
this formally.

1.4. PROOF PRINCIPLES 11

We want to show that for all configurations [t, X, 4, b] (Where X is either
A, B, or R) the following holds: in a sequence starting with [0, A, 0, 0] we
have a +b <t < 90. This can be done by showing that the statement a +
b <t <90 holds in the initial configuration and that its truth is preserved
by all the transition rules. The latter is proved by showing that for any
configuration [t, X, a,b] such thata +b < t < 90, it holds that a’ + b’ <
t' <90 for any successor configuration [t/, X', a’,V'].

It is clear that the property I, defined by

I([t,X,a,b]) :a+b <t <90,

is satisfied by the initial configuration [0, A, 0, 0]. In this example it is also
easy to show that I is preserved by the transition rules. As for the first rule
we must show that if the configuration [t, A, a, b] satisfies I, then so does
the successor configuration [t + 2, B, a, b]—in other words, we must show
the implication

a+b<t<90 = a+b<t+2<90.
That
a+b<t = a+b<t+42
is obvious, but it is not so clear that
F<90 = t+2<90;
in fact, it is not true. However, we should remember that the condition
if t <88

in the transition rule ensures that the configuration [t, A, a, b] is only fol-
lowed by [t + 2, B, a, b] if t < 88. Therefore we know both that I([t, A, a, b])
is true and that t < 88, and so the implication to be proved is

I([t,A,a,b)) N(t<88) = I([t+2,B,a,b]),
or in other words,
a+b<t<8 = a+b<t4+2<90

—which is obviously true. We leave it to the reader to check that the other
transition rules preserve the truth of the statements I([t, X, a, b]).

12 CHAPTER 1. TRANSITION SYSTEMS

That all configurations in the sequence above satisfy I follows from
the invariance principle which says that if the initial configuration of a
sequence satisfies I and I is preserved by the transition rules then all con-
tigurations in the sequence satisfy I.

A property which is preserved by the transition rules in a system is
called an invariant for the system, and we may formulate the following
principle:

Invariance principle for transition systems Let S = (C, T) be a transition
system and let ¢p € C be a configuration. If I(c) is a statement about the
configurations of the system, the following holds. If

a) I(cg) is true
b) for all (¢c,c¢’) € T it holds that I(c) implies I(¢’)

then I(c) is true for any configuration c that occurs in a sequence starting
with Co-

Invariants are used to show safety properties for sequences and processes
(cf. Section 1.1): a sequence whose initial configuration satisfies an invari-
ant will never enter the (unwanted) situation that the invariant doesn’t
hold.

The invariance principle can be seen as a specialization of the induction
principle in the following way: if one can show the demands a) and b),
then one can also complete an induction proof for

P(n) : I(c) is true for all ¢ € C at distance n from co.

The base case P(0) follows from a), and b) is exactly what is needed to
show correctness of the induction step P(n) = P(n + 1). The induction
principle now says that for all n > 0, P(n) holds, and since any ¢ in a
sequence starting with cg is at some distance from cy, we clearly have I(c)
for all such ¢, as wanted.

Conversely, one can view the induction principle as a specialization of
the invariance principle by considering the transition system with config-
urations the natural numbers and the transition rule n > n 4 1. We leave
the details to the reader.

1.4.2 Termination

Above we argued informally that adding the clock to the football sys-
tem ensured that all matches come to an end. In more general terms, this

1.4. PROOF PRINCIPLES 13

means that the system has the property that all processes terminate, that is,
all processes are finite sequences. Termination is an example of a liveness
property(!) and cannot be expressed in terms of an invariant. An invariant
says that something always holds in a process, whereas with termination
we are interested in concluding that something eventually holds, namely
that the process terminates. So a formal proof of termination has to de-
pend on another principle. Let’s see how the reasoning might proceed for
the system of Example 1.3.8.

We could introduce a measure yu([t, X, a,b]) of how far a configuration
[t, X,a,b] is from ending. By this we mean an upper bound of how long
processes starting in this configuration can be. In the football system the
measure could be the number 90 — t of minutes remaining plus 1 for hand-
ing over the ball to the referee:

(90—#)+1 ifX € {A, B}

“([t’X’a’b]):{o if X = R

From the definition of configurations in Example 1.3.8 it can be seen that
p is a function from configurations into N,

“I/IZC4—>N

Furthermore, by inspection of the transition rules it can be seen that the
value of y is decremented by at least one in any transition, that is,

t,X,a,b] > [t,X,d, V]
! u(t, X,a,b])) > u([f,X,a,v]).
This means that to any sequence of configurations
[to, Xo, a0, bo] > [t1, X1, a1, b1] > [t2, X2, a2, b2] B> - - - (%)

is associated a decreasing sequence of natural numbers

]’l([tOIXO/aO/bO]) >]/l([tl,Xl,al,bl]) > y([t2/X2/a21b2]) >

Of course, since any such sequence has as most p([to, Xo, a0, bo]) + 1 ele-
ments, we may conclude that any sequence of the form (x) is finite.

This discussion leads to the following general principle for showing
termination:

14 CHAPTER 1. TRANSITION SYSTEMS

Termination principle for transition systems Let S = (C, T') be a transi-
tion system and let 2 : C — N be a function. If

for all (¢,¢’) € T it holds that j(c) > u(c’)

then all processes in P(S) are finite.

If u satisfies the requirements of the principle, it is called a termination
function. Like the invariance principle, the termination principle follows
from the induction principle when we use the following hypothesis:

P(n): Forall c € C with u(c) < n it holds that
any process starting in c is finite.

The base case P(0) is true since no configuration has a negative measure.
Assuming P(n), we want to show P(n + 1). Then only new situations are
processes

CDC’D"',

where p(c) = n. From the assumption of the termination principle we
know that y(c’) < p(c) = n. Therefore, the induction hypothesis says that
the process is finite from ¢’ and so also from c. Since p(c) is finite for any
¢ € C it follows from P(n) being true for all n > 0 that the conclusion of
the termination principle is correct.

1.5 Examples

To illustrate the broad application area for transition systems we devote
this section to six different examples. Each shows how to use the notions
of Section 1.3 and how to reason about the properties of the processes gen-
erated by the systems.

1.5.1 Nim

In the first example we show how transition systems can describe games
where two or more persons play against each other. We consider a very
simple such game called Nim where two persons A and B take turns in
removing one or two matchsticks from a common pile. The player to take
the last matchstick has lost.

We may describe the situations in the game using configurations of the
form [A, n] ([B, n]) representing that it is A’s (B’s) turn, and that there are

1.5. EXAMPLES 15

n > 0 matchsticks left in the pile. It should be clear that the game may be
described by the following transition system:

Transition system Nim
Configurations: {A, B} x N

[A,n] > [Bn—2] ifn>2

[A,n] > [Bn—1] ifn>1
[B,n] > [An—-2] ifn>2
[B,n] > [An-1] ifn>1

Obviously all processes generated by Nim are finite; we may use the ter-
mination function p([A, n]) = n. So any game has a winner and a loser.
Let us now assume that we are only interested in games where A starts,
that is in processes with initial configuration of the form [A, n]. We might
want to know for which 7 (if any) the outcome of the game is determined
beforehand to A’s advantage, given that A plays optimally, and no matter
how B plays (in this case, A is said to have a winning strategy).

We immediately see that in the configuration [A, 1], A has lost because
at least one matchstick must be removed in each move. However, in both
[A,2] and [A, 3] A can produce the configuration [B, 1] where B has lost.
Inspired by this we define the notion of a configuration “lost for B” as
follows:

Definition 1.5.1 A configuration [B, n] is lost for B, if either
l.n=1or

2. n > 1 and for all transitions [B, n| > [A, m] there exists another tran-
sition [A, m| > [B, k] where [B, k] is lost for B.

O]

We can now prove

Proposition 1.5.2 Any configuration of the form B, 3i + 1] fori > 0 is lost
for B.

Proof: The proof is by induction on i, that is by using the induction prin-
ciple on the statements

P(i) : the configuration B, 3i + 1] is lost for B.

Base case P(0) says that [B, 1] is lost for B which follows directly from the
definition.

16 CHAPTER 1. TRANSITION SYSTEMS

Induction step Assuming that P(i) is true, we want to show P(i 4 1).
For the configuration [B,3(i + 1) + 1] there are two possible successors,
[A,3i + 3] and [A, 3i + 2]. By using the first transition rule in the former
case and the second transition rule in the latter case, we in both cases pro-
duce the configuration [B, 3i 4 1] which according to the induction hypoth-
esis is lost for B.

We conclude that P(7) is true for all i > 0 as wanted. O

It should now be clear that if A from the outset can make a move that
produces a configuration lost for B, then A can win.

In other words, we have shown that if A starts the game in a situation
where there are 2,3,5,6,8,9, ... matchsticks in the pile then A can always
win.

1.5.2 Hanoi

As the second example, we let a transition system describe a combina-
torial problem. This class of problems include all kinds of puzzles and
mazes, and we’ll look at an ancient puzzle called Towers of Hanoi, al-
legedly originating in a monastery in Tibet. Suppose we are given three
pegs, A, B and C. Piled on peg A in descending order are n rings of sizes
1,...,n, while the other pegs are empty. Here is the situation with n = 6:

We are interested in moving the rings from A to C, perhaps using B along
the way. The rules of the game say that rings are to be moved one at a time,
from the top of one peg to another, and at no instant may a larger ring be
placed atop a smaller one. In the original Tibetan version, n = 64, and
according to the legend, the world will end when all 64 rings are correctly
piled on peg C.

For each n > 0 we describe the Towers of Hanoi puzzle using a tran-
sition system, Hanoi(n), with configurations the legal placements of the n
rings and transitions the legal movements of a single ring. Formally, we’ll
represent configurations using triples [A, B, C] whose components are sub-
sets of {1,...,n} such that each of these integers occurs in exactly one of

1.5. EXAMPLES 17

the subsets (we say that {A, B, C} form a partition of {1,...,n}). Aring r
can be moved from peg A to peg B if r is the smallest ring in A and smaller
than any ring in B, ie. if r = min A and r < min B. With six combinations
of source and target peg, we get:

Transition system Hanoi(n)
Configurations: {[A, B,C] | {A, B, C} a partition of {1,...,n}}

[A,B,C] > [A\{r},BU{r},C] if(r=minA)A (r < minB)
()

[A,B,C] > [A\{r},B,CU{r}] if(r=minA)A (r <minC
[A,B,C] > [AU{r},B\{r},C] if (r =minB)A (r < minA)
[A,B,C] > [A,B\{r},CU{r}] if (r=minB)A (r < minC)
[A,B,C] > [AU{r},B,C\{r}] if (r=minC)A (r <minA)
[A,B,C] > [A,BU{r},C\{r}] if (r=minC) A (r < minB)

Solving the puzzle means finding a sequence for this transition system of
the form [{1,...,n},@,2]>--->[9,9,{1,...,n}]. We'll prove that any
such sequence needs to be at least exponentially long in #; in fact:

Proposition 1.5.3 At Jeast 2" — 1 steps are needed to move n rings from
one peg to another.

Proof: By induction on n.

Base case With n = 0 clearly 0 = 2° — 1 steps are needed.

Induction step To move 7 + 1 rings from source to target peg, one clearly
needs to move the largest ring away from the source at some point, and we
may without loss of generality assume that it is moved directly to the tar-
get. To accomplish this, it is necessary to first move the n smallest rings to
the third peg which takes at least 2" — 1 steps by the induction hypothesis.
Having moved also the largest ring, we’ve used 2" moves. What remains is
to move the n smallest rings back atop the largest ring, again using 2" — 1
steps, for a total of 2" 4 2" — 1 = 2"*1 — 1 steps as wanted.

By the induction principle, the proof is complete. O]

In the Tibetan case, 2% — 1 or 18 billion billion moves are needed—so it

probably shouldn’t worry us that the world ends on completion.

We may turn the proof above into a recursive procedure for solving
the Towers of Hanoi puzzle. Writing Hanoi(n, A, B, C) for the procedure
for moving n rings from A to C via B, we have

Hanoi(n, A, B,C): if n > 0 then carry out Hanoi(n — 1, A, C, B)
move the ring n from A to C
carry out Hanoi(n — 1, B, A, C)

18 CHAPTER 1. TRANSITION SYSTEMS

The number of moves performed by following this recipe is clearly a func-
tion of 7, so let’s write it as H(n). It satisfies the equation

H(n) = 0 %fn:O
2H(n—=1)+1 ifn>0

This kind of equation is called a recurrence equation, because H recurs on
the right-hand side. Such equations frequently arise when analyzing the
running time of recursive algorithms, and we’ll have more to say about
them later. We want to find a closed expression for H, saying what H(n) is
without using H again. From the result above, we may guess that H(n) =
2" —1 and that can indeed be verified by a simple induction on n. This
means that the procedure is optimal in the sense that is uses the least pos-
sible number of moves.

1.5.3 Euclid

The third example shows that an algorithm can be seen as a transition
system. The following is a transition system formulation of the usual ver-
sion of Euclid’s algorithm for finding the greatest common divisor of two
integers m, n > 1 (written ged (m, n)):

Transition system Euclid
Configurations: {[m,n| | m,n > 1}
m,n] > [m—nmn ifm>n
m,n] > [mn—m] ifm<n

The idea is that a process starting in the configuration [m, n] ends up in a
configuration that represents gecd(m, n). More precisely we have

Proposition 1.5.4 All processes for Euclid are finite and for any process
[mo, o] > [my, m] & - - - &> [my, ny]
it holds that my = n, = ged(mo, ng).

Proof: That all processes are finite follows from the termination principle
by using the termination function

u([m,n]) =m+n.
Since a process

[mo, no| > [mq, nq] > - - > [my, ny]

1.5. EXAMPLES 19

is a sequence that cannot be extended we have that none of the transi-
tion rules may be used on [my, ng]. Hence, we have neither my > n nor
my < ny, and so clearly my = ny. To show that my equals ged(mo, ng), we
show using the invariance principle that for all configurations [m, n] in the
process we have ged(m, n) = ged(mo, np):

I([m,n]) : ged(m, n) = ged(mo, no).
So we are to prove the following:

a) I([mg, ng)) is true

b) I([m,n]) is preserved by r>.

The proof of a) is trivial and for the proof of b) we first observe that if both
m, n, and m — n are positive integers, then for any (other) positive integer
d it holds that

d dividesbothmandn <« d divides both m —n and n (*)

We leave the easy proof of this to the reader. Now, because ged(m, n) di-
vides both m and n, it is also a common divisor of m — n and 7, according
to (*). Hence it is < the greatest common divisor, gcd (m — n,n). So

ged(m,n) < ged(m —mn,n) and, symmetrically,
ged(m —n,n) < ged(m,n)
which implies
ged(m,n) = ged(m —n,n).

To say that the truth of I([m, n]) is preserved by > is the same as saying
that these two implications are true:

I([m,n)) AN(m >n) = I([m—mn,n])

I([m,n)) AN(n >m) = I([m,n—m]).
Because of the symmetry, it is enough the show the former implication
which is equivalent to

(ged(m, n) = ged(mo, ng)) A (m > n)

4
ged(m —n,n) = ged(my, np)

But this implication follows from the reasoning above because the condi-
tion m > n ensures that all the numbers are positive. O

As the example suggests, any algorithm may be formulated as a transition
system, whose configurations have a component for each of the variables
of the algorithm, and where the transition relation specifies the individual
steps of its execution. We'll return to this in Chapter 2.

20 CHAPTER 1. TRANSITION SYSTEMS

1.5.4 Expressions

Our fourth example shows how transition systems can describe the way
syntax is built up according to a grammar. Here is a grammar describing
simple expressions like 7 — (3 + 4):

Exp = Term | Term + Exp | Term — Exp
Term == 0]1]2|3(4|5]/6|7]8]|9]| (Exp)

The grammar says that we can build the expression 7 — (3 + 4) by going
through the steps

Exp — Term — Exp — 7—Exp —
7 — Term — 7 — (Exp) — 7 — (Term + Exp) —
7—(3+Exp) — 7—(3+Term) — 7—(3+4)

We’ll see how to make these steps the transitions of a transition system.
For conciseness we simplify the grammar a bit:

E o= T|T+E
T == 0]|1](E)

We can view the grammar as a compact version of the following transition
system:

Transition system Expressions
Configurations: {0,1,+,E, T, (,)}*
«Ep > aTp

«Ep > aT+EB

«TB > al0p

«Tp > «alp

aTB > «(E)B

The transition rules express that in any configuration (which is a sequence
of 0’s, 1’s, +’s, E’s, T’s, (‘s and)’s) any occurrence of E and T may be re-
placed by the corresponding right-hand sides of the grammar (separated
by |). The symbols E and T that may be replaced are called non-terminals
and the other symbols are called terminals. A grammar as this one where
the replacement may take place independently of the surrounding sym-
bols is called context-free.

Context-free grammars are widely used to describe syntax of program-
ming languages and as a basis for writing programs (interpreters and
compilers) that among other things recognize those sequences of terminal

1.5. EXAMPLES 21

symbols that are legal programs, that is, those sequences that may be gen-
erated from a given non-terminal like E above. When a language is given
in terms of a grammar, we may use the grammar to prove properties of the
language. As an example, we may prove that in any legal expression, the
number of left parentheses equals the number of right parentheses, and
that the number of operators plus one equals the number of operands.
We'll write |a|? for the number of a’s in the sequence :

Proposition 1.5.5 For any finite process of the form
E=a>ai>ary>---D>ay

we have
| = |an)) and Jan|T 41 = Jan|” + |ay|!

Proof: We use the invariance principle with the following invariant

I(a): |a|t=]a) A
|t +1 = [T+ [+ |a] + |af!

Clearly, I(E) is true and it is also easy to see that the truth of the invariant is
preserved by all the transition rules of the system. The result now follows
because since the process is finite, &, is a dead configuration and so a;
contains neither E’s nor T’s, and so |a,|T = |a,|E = 0. O

Although transition systems are more general than context-free gram-
mars, the grammars are described more compactly. With the aim of getting
the best of both worlds, we’ll make our template for the description of
transition systems more flexible in two ways, inspired by grammars: First,
we allow rules with the same left-hand side and condition to be written as
one rule with alternative right-hand sides separated by commas. Second,
and more importantly, we allow the rules to be context-free whenever it
makes sense. This means that left-hand sides need only match part of a
configuration, and only the matched part is replaced by the right-hand
side when taking the transition. Incorporating these improvements, we
obtain the following alternative description of Expressions:

Transition system Expressions
Configurations: {0,1,+,E, T, (,)}*
E > TT+E

T > 0,1,(E)

22 CHAPTER 1. TRANSITION SYSTEMS

We stress that this is mathematically the exact same transition system as
above—only the description of it has changed. In the next section, we’ll
see another example of the power of context-freeness in the description of
transition systems.

1.5.5 Graph traversal

The example of this section shows how to use transition systems to de-
scribe manipulation of graphs like

The blobs are called nodes and the lines connecting them are called
edges. Graphs are often used to describe structures of “places” (eg. cities)
and “connections” (eg. airline routes). The graph above is undirected in
the sense that we talk of connections between places rather than from one
place to another.

Below we’ll describe traversal of such a graph as a coloring process
where the nodes and edges of the graph, initially white, are gradually col-
ored red. The red parts of the graph are the places and connections already
visited during the traversal. If we call partially colored, undirected graphs
Danish and a red node incident to at least one white edge pink, the tran-
sition system below specifies exactly what is meant by a traversal. In the
description of the system,

O @ -

denote white and red nodes, respectively white and red edges, and con-
tigurations are matched in a context-free way, such that eg.

®---O

matches an arbitrary Danish graph containing a red and a white node, con-
nected by a white edge. The reader may like to consider how to describe
this transition system without using context-freeness.

1.5. EXAMPLES 23

Transition system GraphColoring
Configurations: Danish graphs

O’Q 0/‘
0” 0/‘

Q > ‘ if there are no pink nodes

We’ll now prove that the traversal, thus described, has the following prop-
erties:

Proposition 1.5.6 Any process of GraphColoring starting with a finite graph
is finite and ends with a configuration where all nodes and edges are red.
The length of a process is at most n + m where n (m) is the number of white
nodes (edges) in the initial configuration.

Proof: We show the first part, leaving the other to the reader. Termination
is obtained by using the number of white nodes and edges as termination
function. Now, consider a dead configuration for a process. It cannot con-
tain any pink nodes because any such would allow us to take one of the
first two transitions. And so it also cannot contain any white nodes, be-
cause that would allow the third transition to take place. But when there
are no white or pink nodes, there can be no white edges either, because
there are no nodes for them to connect. O

1.5.6 Red-black search trees

Our last example employs a transition system to describe operations of an
abstract data type. We presume familiarity with binary search trees and
how they are used to implement the abstract data type Dictionary so that
the methods Search, Insert, and Delete all run in time proportional to the
height of the search tree.

We may describe this use of a search tree by a transition system whose
configurations are binary search trees and where the transition relation
contains the pair (T7,T,) of trees if T; is the result of using one of the
above methods on Tj. This transition system has the following invariant

24 CHAPTER 1. TRANSITION SYSTEMS

Invariant [; In each internal node there is a key k and all the keys in the
left (right) subtree of the node are less (larger) than k.

It is clearly advantageous to keep the height of the search trees as small as
possible, and this can be done by keeping each tree balanced, such that all
paths from the root to a leaf are of approximately the same length. There
are many ways to ensure this, but all involve strengthening the invariant
that the trees must satisfy. From this extra information one must be able to
conclude that the trees have height logarithmic in the number of nodes.

Definition 1.5.7 A red-black tree is a binary search tree in which all inter-
nal nodes are colored either red or black, in which the leaves are black,
and

Invariant I; Each red node has a black parent.

Invariant I3 There is the same number of black nodes on all paths from
the root to a leaf.

0

The following is an example of a red-black tree:

Since at least every other node on a path must be black, the longest path
from the root to a leaf is at most twice as long as the shortest. From this
it follows that all paths in the tree have logarithmic lengths. In proof, let
the tree have 7 internal nodes and let the number of edges on the shortest
and longest paths be eyin, respectively emax. Since the part of the tree lying
“above level enin” is a complete binary tree (that is, all possible nodes are
present), and since the whole tree lies “above level emax”, it follows that

2min < gy 41 < 2mx and SO lmin < log(n + 1) < emax,

so the shortest path has logarithmic length. As the longest path (which
determines the height of the tree) is at most twice as long, it (and so any
other path) is also of logarithmic length.

1.5. EXAMPLES 25

The problem remains of writing the three methods of Dictionary so that
they preserve all three invariants, I;, I, and I3. Search needs no changes;
a red-black tree is in particular a search tree. The problems lie in Insert
and Delete: here, the old implementations may lead to violations of the
invariants I, and Is.

Insertion

After having inserted a new node in place of an old leaf in a red-black tree,
we have a problem. We cannot just color this node; it cannot be red if it has
ared parent (I) and it cannot be black because that generally gives one too
many black nodes on the paths from the root to the two new leaves (I3).

However, it turns out that we can always get away with either coloring
the node or sending it further up the tree. The following is a transition
system which shows us how to do this in different situations. On each
side of > in the rules there is (almost) a red-black tree. The idea is that if
we have a tree matching the left-hand side, then we may replace it by the
tree on the right-hand side, and for most of the rules, the matching is done
context-freely so that we in fact only replace subtrees by other subtrees.
The trees contain a “phony” node that remains to be colored. We'll call it
an illegitimate red node and in the figures below it will look as follows:

Now, the algorithm for insertion proceeds by first inserting the element as
in a normal search tree, but contained in an illegitimate red node. Then the
rules in the transition system below are used on the tree, until we reach a
dead configuration (which happens when the illegitimate node is properly
colored). The invariant of the system is a weakened version of I1 A I, A I3
from above in that I is replaced by

Invariant I}: Each legitimate red node has a black parent.

The transition relation is defined by case analysis on the different possible
placements of the illegitimate node in the tree. We use the terminology of
a (male) family tree:

26 CHAPTER 1. TRANSITION SYSTEMS

The illegitimate node is the root of the tree In this case it is easy; we
just use the following rule:

-

1 2 1 2

We may simply color the illegitimate node black because we then increase
the number of black nodes on all paths. Notice that this rule is not context-
free because its correctness depends on the illegitimate node being the root
of the entire search tree. The rules below are all context-free.

The illegitimate node has a black father Here, we may just color the
illegitimate son red:

1 2 1 2

This is correct because it follows from the invariant that the roots of the
subtrees 1 and 2 are black.

The illegitimate node has a red father and ared uncle Here, we perform
a recoloring while passing the buck further up the tree. There are two sub-
cases, depending on whether the illegitimate node is a left or a right son:

3.1 >
3 4 5 3 4 5
1 2 1 2
3.2 >
1 4 5 1 4 5
2 3 2 3

1.5. EXAMPLES 27

Since the nodes B and C are colored black, the paths through them con-
tain an extra black node. In return for getting rid of it we make A into an
illegitimate red node.

The illegitimate node has a red father and a black uncle In this case, a
rearrangement of the tree is needed. There are again two sub-cases:

4.1 >
3 4 5 1 2 3
1 2 4 5

Notice that the tree is “rotated” about the axis x-B-A. Such a rotation will
always preserve the order invariant . It is easy to see that the other in-
variants are also preserved.

4.2 >
1 4 5 1 2 3
2 3 4 5

Being a rotation, this extensive transformation leaves I; intact, and the re-
coloring of nodes x and A ensures preservation of I} and I3 also.

It is easy to see that the above six transitions (and their symmetric vari-
ants obtained by reflection in the vertical line through the root of the sub-
trees) are complete in the sense that as long as the tree contains an illegit-
imate node, we can always use (exactly) one of them. Furthermore, since
we in each transition either eliminate the illegitimate node or push it fur-
ther up the tree, it is also clear that it eventually disappears. But if all nodes
in the tree are legitimate, the invariant I§_ is equivalent to I, so that after
the rebalancing we end up with a correct red-black tree. The transition
system is thus correct.

28 CHAPTER 1. TRANSITION SYSTEMS

Deletion

When removing a node from a search tree, we only need to consider the
situation where it has at most one non-trivial subtree (that is, a subtree
which is not a leaf). Recall that if it had two non-trivial subtrees we would
have swapped the element in it with its immediate successor (or predeces-
sor), which cannot have a non-trivial left (right) subtree. We now mentally
remove both the element in the node and the associated leaf and are at
this point left with a “hole” with only one son. If the hole is red, we may
remove it immediately. If the hole is black but has a red son, we may re-
establish the invariant by removing the hole and color the son black. If the
son is black we have to use a transition system as we did for insertion. We
draw the hole as follows

and call it an illegitimate black node. This time we change both I; and I»:
Invariant I; The tree satisfies I; if we remove the illegitimate node.
Invariant I, Each red node has a legitimate black father.

The transition system follows below. Again we can show that progress
is made in each transition, and since there is always an applicable rule
as long as the tree contains an illegitimate node, we have again that all
processes terminate and that any dead configuration is a correct red-black
tree.

The illegitimate node is the root It follows from I that the son of the
hole is black so we may simply remove the hole:

. B

Contrary to the rules below, this rule is not context-free.

1.5. EXAMPLES 29

The illegitimate node has a red father and a red closer nephew The
hole disappears by rearrangement:

: e
1 4
1 2 3 4
2 3

The invariants are clearly preserved.

The illegitimate node has a red father and a black closer nephew Again
the hole disappears by an invariant-preserving rearrangement:

3 > 4
1 4 1
2 3 b A

The illegitimate node has a black father, a black sibling and one red
nephew We rearrange; there are two cases:

1 4
1 2 3 4
2 3
1 2
1 2 3 4
3 4

30 CHAPTER 1. TRANSITION SYSTEMS

The illegitimate node has a black father, a black sibling and two black
nephews This time, we cannot remove the hole; instead we send it fur-
ther up the tree:

2 3 4 5

The illegitimate node has a black father and a red sibling In this last
case, the transition doesn’t look like we’re making any progress:

—but since the root of subtree 2 must be black, we can finish up with either
rule 2 or 3.

Chapter 2

Algorithm theory

In this chapter, we go into details with the idea of Section 1.5.3 to view
algorithms as transition systems. The general theory of transition systems
provides us with tools to reason formally about qualitative aspects like
correctness and quantitative aspects like running time.

2.1 Commands

There are many ways to describe algorithms, ranging from informal prose
or pictures to formal programming language code. Our approach will be
tilted towards the formal side, but we want to avoid complicating our de-
scriptions by the intricacies of a real programming language. We therefore
use a small, semi-formal language of pseudo-code. To start with, pseudo-
code will be sequences of the form C = cj;¢p; - - - ; cx where each ¢; is one
of these three commands:

X<+e (assignment)
if b then C; else C, (selection)
while b do C (loop)

Here, Cy, C; and C are again sequences of commands, while x is a variable
and e and b are expressions (we demand that b has type bool). We’ll use
standard mathematical notation for expressions and assume that they are
evaluated in the same way as in Java. In particular, the boolean operators
A and V, corresponding to Java’s && and | | , are short-circuiting mean-
ing that eg. by A by is evaluated by first evaluating b; and only if the result
is true is b, evaluated. So an expression like (x # 0) A (y/x > 2) evalu-
ates to false when x = 0 rather than giving a division-by-zero error. We’ll
write if b then C as a shorthand for if b then C else A where A is the empty
sequence.

31

32 CHAPTER 2. ALGORITHM THEORY

At any stage during the execution of a command-sequence, a number
of the variables of the sequence have been assigned a value. We'll call this
assignment of values to variables a state, and we can describe it using a
table like the following:

Variable | Value

X 35
Y true

z 3.1416

One may view the state as a function mapping variables to values. If we
call the state in the table above o, we have ¢(x) = 35. Given a state we
may compute the value of an expression containing the variables of the
state. For example, the expression x < 19 V y will have the value true in
the state o. We'll use the notation o (e) for the value of the expression e in
o and thus write o(x < 19V y) = true. When b is a boolean expression
and o(b) = true we say that o satisfies b. This notion will be useful later
when we want to specify the behaviour of algorithms. We shall then allow
arbitrary mathematical notation, saying for example that ¢ satisfies z > 7.
Here, 7 is a mathematical number, not an expression in pseudo-code. We
call such generalized boolean expressions assertions.

We’ll now describe how commands and command-sequences are exe-
cuted in a given state o

e The assignment x < e changes the value of x to ¢(e) and leaves o
unchanged in other variables. We'll write o(x:e) for the new state.

e The selection if b then C; else C; is executed by executing C; in o if
o(b) = true, and C; in 0 if o(b) = false.

e The loop while b do C has no effect if o(b) = false, but if o(b) = true,
the sequence C;while b do C is executed in o.

e The command-sequence cy;cy; - - - ; ¢k is executed by first executing
c1 in o which yields a new state ¢’ in which we execute c; etc. The
empty sequence, A, has no effect.

Starting from this description, it is fairly easy to construct a transition sys-
tem capturing the effect of executing command-sequences. The configu-
rations are pairs of the form [C, o] where C is the command-sequence left
to be executed and ¢ is the current state. The configuration [A, o] will be
written just 0.

2.2. ALGORITHMS 33

A process for the transition system will describe how the state “runs
through” the command-sequence and changes along the way. The possible
transitions from a given configuration depends on the first command of
the sequence and on the state:

Transition system Commands
Configurations: {[C,¢] | C a command-sequence, o a state}

[x ¢ C',0] > [C,o(x:e)]

[if b then Cy else Co; C,0] > [Ci; C',0] if o(b) = true
[if b then Cy else Co; C,0] © [Cy; C',0] if o(b) = false
[while bdo C; C/, 0] > [C while bdo C; C/, 0] if o(b) = true
[while bdo C; C/, 0] > [C,0] if o(b) = false

Suppose C is the (one-element) command-sequence

while m # n do

if m > n then
m<—m—n
else
n<n—m

and that o is a state with o(m) = 35 and o(n) = 77. A process generated
by the transition system Commands starting in the configuration [C, o] will
correspond to a process generated by the transition system Euclid starting
in [35,77]. Each transition of the latter will require three transitions of the
former, making up a full iteration of the while-loop. The reader should try
this out.

2.2 Algorithms

Here is a formulation of Euclid’s algorithm in the notation we’ll be using
in the rest of this note:

Algorithm Euclid(m, n)
Input cm,n>1
Output :r = ged(mo, ng)
Method : while m # n do

if m > n then
m<—m—n
else
n<n—m;

r<—m

34 CHAPTER 2. ALGORITHM THEORY

So an algorithm consists of

e a name and some parameters, used in the same way as with Java
methods,

e a specification of the input and output of the algorithm, and

e a method—which is a command-sequence—implementing the algo-
rithm.

For Euclid we have specified that if we execute its method in a state where
m and n are both positive integers, we’ll end up in a state where the value
of r is the greatest common divisor of the original values of m and n. We’ll
always use subscript 0 to denote the original value of a variable, and we’ll
use “result variables” like r rather than adding a return command to the
language. Output specifications are always given in terms of the parame-
ters and the result variables.

Notice that the specification does not involve explicit type informa-
tion. The types of variables will always be clear from context. For Euclid,
the variables are of integer type, because the notion of greatest common
divisor is defined only for integers (in fact, only for positive integers, but
restrictions like that are captured by the input specification instead).

2.3 Correctness

The formalization above allows a precise definition of correctness. Let

Algorithm A(---)

Input :In
Output : Out
Method :C

be an algorithm with input specification In, output specification Out, and
method C.

Definition 2.3.1 The algorithm A is correct if any process for the transition
system Commands starting in a configuration [C, 0], where ¢ satisfies In, is
finite and ends with a configuration ¢’ satisfying Out. O

So there are two aspects of correctness: the algorithm must do the right
thing, and it must finish doing it. Below, we’ll see how the invariance
and termination principles can be used in these two parts of a correctness
proof.

2.3. CORRECTNESS 35

2.3.1 Validity

In practice it is difficult to carry out a correctness proof for an algorithm
without thoroughly understanding the algorithm, and since loops are of-
ten the hardest parts to come to terms with, we’ll start with them. Consider
again the loop of Euclid. As we have seen, we can describe its effect with
the transition system of the same name. It seems reasonable then that the
invariant for this system,

I:ged(m,n) = ged(mo, ng),

should provide some information about the loop. In fact, the invariant cap-
tures the whole idea of Euclid’s algorithm: that the greatest common di-
visor of m and n doesn’t change although m and n do. In more general
terms, an invariant provides a handle for describing the effect of a loop
without referring to the number of iterations. Because of this, invariants
will be important stepping stones in our correctness proofs.

Copying the proof of Proposition 1.5.4 we can show that I is satisfied
before and after each iteration of the loop of Euclid. Accordingly, we call it
a loop invariant, and we’ll document it as follows:

{I}while m # n do

if m > n then
m<—m—n
else
n<n—m

An algorithm whose method contains assertions like I about the state will
be called a decorated algorithm. The intention is that whenever execution
reaches an assertion, the assertion should be satisfied by the state at that
point. Accordingly, we want loop invariants to show up before and after
each iteration, and we therefore extend our transition system Commands to
deal with decorated commands, so that it has transitions like eg.

[{I}while bdo C;C’, 0] > [C; {I}while bdo C;C’, 0] if o(b) = true.

Most of our assertions will be invariants for loops, but we’ll also use asser-
tions in other places as needed for clarity—well-placed assertions provide
good documentation of an algorithm. In particular, we’ll implicitly regard
the input and output specifications of an algorithm as assertions placed at
the beginning and end of the method, respectively.

Definition 2.3.2 An assertion U of a decorated algorithm is valid for a
process if for all configurations of the form [{U}C, o] in the process, the
assertion U is satisfied by the state o. O

36 CHAPTER 2. ALGORITHM THEORY

Consider again the generic algorithm A from before.

Definition 2.3.3 The algorithm A is valid if all its assertions are valid for
all processes starting in a configuration [C, 0| where ¢ satisfies In. O

Since we insist that the output specification is implicitly added as an as-
sertion after the last command of the method, a valid algorithm is correct if
and only if it terminates. What termination means will be made clear in the
next section. Here, we’ll see how to prove validity in practice.

We can prove validity by showing that it is preserved from assertion to
assertion following the control-flow of the algorithm, and starting with the
input specification. Suppose we have an algorithm in which two assertions
U and V are separated by a command-sequence C. Showing that validity
is preserved then amounts to the following so-called proof-burden

For any state o, if o satisfies U and the execution of C in ¢ leads
to o’ (ie. [C, 0] >* ¢’), then ¢’ must satisfy V.

We’ll write such a proof-burden in the same way as it appears in the dec-
orated pseudo-code:

{upc{vy

If C is just a sequence of assignments, we can prove the proof-burden di-
rectly in the following way.

We start by writing the values of all variables after the assignments
as functions of the values before. For example, if C is the (rather silly)
sequence

X—x+Y, Y<x+z z4x x4 3
we'll write (using primed variables for the values after the assignments):
=3 y=x+y+z, and Z=x+y.

This says that after the assignments, x holds the value 3, y holds the sum
of the previous values of x, y and z, and z holds the sum of the previous
values of x and y. Now suppose that our assertions are

U:z=x+y and Viy=2z

Proving the proof-burden {U}C{V} is then simply a matter of showing
that if U is true for x,y, z then V is true for x’, 1/, 2/, in other words that

z=x+y = y =27,

2.3. CORRECTNESS 37

Inserting the expressions above for the primed variables, this is the same
as showing

z=x4+y = x+y+z=2x+y).

—which is clearly true. We highlight this method as a proof principle:

Proof principle for simple proof-burdens Let C = cy;--- ;¢ be a se-
quence of assignments and let xy,...,x, be the variables of the algo-
rithm. Suppose that C executed in ¢ leads to ¢’. Then the proof-burden
{U}C{V} is proved by proving the implication

U(xy, ..., xq) = V(xy,...,x))

—where x], ..., x}, are the values of the variables in ¢’ expressed as func-
tions of their values in ¢.

Notice that if C is the empty sequence A, we just need to show the impli-
cation U = V. We'll therefore write U = V as a synonym for the proof-
burden {U}A{V}.

If C is more complicated than just a sequence of assignments, we’ll
introduce new assertions to divide up the proof-burden {U}C{V} into
proof-burdens with less complicated command-sequences. We can repeat
this process until we end up with a collection of proof-burdens, all of the
simple form above. The division of proof-burdens can be done in a sys-
tematic way according to the following proof principle:

Proof principle for compound proof-burdens A proof-burden of the
form {U}Cy; C2{V} gives rise to the proof-burdens

{UpGi{w} and {W}G{V}.

A proof-burden of the form {U}if b then C; else Co{V'} gives rise to the
proof-burdens

{UADb}C1{V} and {UA-b}C{V}.

A proof-burden of the form {U }while b do C{V'} gives rise to the proof-
burdens

Uu=1 (basis)
{IANb}C{I} (invariance)
IN—-b=V (conclusion).

38 CHAPTER 2. ALGORITHM THEORY

For proof-burdens of the last form, I is a loop invariant, shown to be true
the first time the loop is reached (given that U is) by proving the basis,
shown to be preserved by the loop body by proving invariance, and used
to establish V' after termination by proving the conclusion.

The principle provides no guidance as to how to come up with the
assertions W and I in the principles for sequences and loops. However,
as we shall see in Chapter 3, the algorithms and their correctness proofs
may be developed hand in hand (with the proof ideas leading the way!), so
that invariants and other central assertions are already there when needed.
Supposing that we had developed Euclid and its invariant I : ged(m, n) =
ged(mp, np) in this way, we would proceed as follows:

Example 2.3.4 Initially, the input specification, method, and output speci-
fication of Euclid give us the following compound proof-burden:

1: {m,n>1}whilem #ndo ---; r < m{r = ged(mp,no)}

We divide it using the proof principle for sequences. What should the as-
sertion W be? Since it is placed immediately after a while-loop with in-
variant I and condition m # n, we can use W : I A (m = n) because this is
what we know holds after termination. We get:

2: {m,n>1}whilem #ndo ---{IN(m=n)}
3: {IN(m=mn)}r <+ m{r=ged(mo,ng)}

Proof-burden 3 is simple. We use the principle for loops to divide proof-
burden 2 into

4: mn>1=1
5: {IN(m#n)}if m > nthenm < m—nelsen < n—m{l}
6: IN—(m#n)=1AN(m=n)

Proof-burden 6 is trivial because of our choice of W above, so we’ll ignore
it. Proof-burden 4 is simple (it is the same as {m, n > 1}A{I}). We split up
proof-burden 5 using the principle for selections:

7: {IN(m#n)N(m>n)}tm < m—n{l}
8: {IN(m#n)AN—(m>n)tn <+ n—m{l}

Both are simple. In total, we get the following four simple proof-burdens:

3: {IN(m=mn)}r < m{r=ged(mp,np)}
4: mn>1=1

7: {IN(m>n)}tm <+ m—n{l}

8: {IN(m<n)ln<+n—m{l}

2.3. CORRECTNESS 39

Proof-burdens 4, 7, and 8 are already shown as part of the proof of Propo-
sition 1.5.4 (as for proof-burden 4, remember that m = my and n = ny
holds initially). To prove proof-burden 3, we must show the implication

INm=n) = 1 =gcd(mg,ng).
Inserting ¥’ = m, m" = m, and n’ = n, this is
(ged(m, n) = ged(mo, np)) A (m=n) = m = gcd(mg,np)

So assume ged(m,n) = gcd(mg,ng) and m = n. We must prove m =
ged(mg, ng) and argue as follows:

m = ged(mg, no)
& m =ged(m,n) since ged(m, n) = ged(my, ng)
< m=gced(m,m) sincem =n

Ending up with something trivially true, we have proved proof-burden 3.
O

2.3.2 Termination

Consider once again our generic algorithm A:

Algorithm A(- -)

Input :In
Output : Out
Method :C

Even if A is valid it need not be correct, because validity only says that the
assertion Out at the end of the method C holds if we ever reach it. Reaching
this assertion is exactly what termination is about:

Definition 2.3.5 We say that A terminates if any process starting in a con-
figuration [C, 0], where o satisfies In, is finite. O

Clearly, algorithms with just assignments and selections always terminate,
so the problem lies with the loops. Again we look to the loop of Euclid and
the corresponding transition system of Section 1.5.3 for a hint on how to
solve it. The transition system has termination function y([m, n]) = m+n,
so it is reasonable to expect the value o (m + n) to be a non-negative integer
that decreases with every full iteration of the loop.

Indeed, consider u(m,n,r) = m+ n as a function of the variables of
Euclid in states satisfying the loop-invariant I : ged(m, n) = ged(myg, ng). It
has the following properties:

40 CHAPTER 2. ALGORITHM THEORY

e Itis integer-valued by the typings of m and n.

e It is non-negative, since by the invariant, gcd(m, n) is well-defined,
meaning that m,n > 1.

e Each iteration of the loop makes it decrease, because an iteration is
only performed when the invariant holds and m # n so that either m
is larger (and then n > 1 is subtracted) or n is larger (and then m > 1
is subtracted).

We can formulate the following general proof principle:

Termination principle for algorithms Let x4, ..., x, be the variables of
an algoritm A. A terminates if for every loop

{I}while bdo C

in its method with I as valid invariant, there exists an integer-valued
function p(x1, ..., x,) satisfying

a) I = pu(xy,...,xp) >0
b) INb= u(x1,...,x0) > p(x},...,x;) >0

—where xi, ..., x), are the values of the variables after an iteration ex-
pressed as functions of their values before.

This completes the theory we need so far for specifying algorithms and
proving them correct. Even though we have based the development on
the general theory of transition systems, there is no need to refer to transi-
tion systems when writing an algorithm or conducting a correctness proof. All
that’s required is an understanding of how pseudo-code is executed and
the proof principles of this section.

2.4 Examples

In this section, we go through three correctness proofs in quite some detail.
The first concerns an extension of Euclid’s algorithm while the second and
third are prototypical examples of correctness proofs for simple loops.

2.4. EXAMPLES 41

2.4.1 Extended Euclid

Euclid’s algorithm is easily extended so that it also computes the least
common multiplum (lecm) of its input. For integers m,n > 1 the number
lem(m, n) is defined as the least positive number divisible by both m and
n. One can easily show the following:

m-n = ged(m,n) - lem(m, n) (%)

Here is the algorithm:

Algorithm ExtendedEuclid(m, n)
Input m,n>1
Output : (r = ged(mg, ng)) A (s = lem(mg, ng))
Method :p < m; q < n;
{I}while m # n do
if m > n then
m<—m—n;, p<—p+q
else
n—n—m q<q+p;
r—m; s (p+4q)/2

It is probably not immediately clear that this algorithm is correct. So let’s
prove it. We can use the following invariant

I: (mg+np =2mong) A (ged(m,n) = ged(mo, ng)).

This may seem intimidating at first, especially if one is to come up with it
just by looking at the algorithm. But again: I was there to start with and
then the algorithm has been written to make I a valid invariant.

The form of the method is almost the same as for Euclid. An extra use of
the principle for division of sequences with W = [separates the initializa-
tions of p and g from the loop. We get the following simple proof-burdens:

1: {m,n>1}p < m; q < n{l}
2: {INm>n)tm<+m—n; p<+ p+q{I}
3: {IN(m<n)ln<n—m; q<« g+ p{l}
4: {IN(m=n)}r<«m; s+ (p+q)/2
{(r = ged(mo, o)) A (s = lem(mo, o)) }-

Let’s show them one by one:

42 CHAPTER 2. ALGORITHM THEORY

Proof-burden 1 We must show
mn>1 = I(m, n,...).

Inserting m’' = m = my, n’ =n =ny, p’ =m,and g’ = n, this is
mn>1 = (mn+nm=2mn)A (gcd(m,n) = ged(m,n)).

So assume that m,n > 1. mn + nm = 2mn trivially holds. ged(m,n) =
gcd(m, n) holds whenever it makes sense, that is, whenever m, n > 1. But
this is exactly what we assumed.

Proof-burden 2 We must show
INm>n) = I(m,d,...).
Insertingm’ =m —n,n' =n,p’ = p+gq,and g’ = g, this is

(mg +np = 2mong) A (ged(m,n) = ged(mo, ng)) A (m >n) =
((m—mn)g+n(p+q) =2mong) A (ged(m —n,n) = ged(mo, ng)).

So assume mgq + np = 2mong and ged(m, n) = ged(mp, ny) and m > n. To
prove (m —n)q + n(p + q) = 2mong we argue as follows:

(m —n)q +n(p +q) = 2mono
& mg —ng +np +ng = 2mong
& mg +np = 2mong

—and end up with our first assumption. To prove that ged(m —n,n) =
ged(mo, np) we argue as follows:

ged(m —n,n) = ged(my, ng)
< ged(m, n) = ged(my, ng) since m > n; cf. Proposition 1.5.4

—and end up with our second assumption.
Proof-burden 3 Symmetrical to proof-burden 2.

Proof-burden 4 We must show
INm=mn) = (¥ =gcd(mg,ng)) A (s =lem(mg,np)).
Inserting ¥’ = m and s’ = (p + q) /2 (other variables unchanged), this is

(mg +np = 2mong) A (ged(m,n) = ged(mo, ng)) A (m =n) =
(m = ged(mo,no)) A ((p +4)/2 = lem(mo, no))

2.4. EXAMPLES 43

So assume mq + np = 2mony and ged(m, n) = ged(mg, ng) and m = n.
The equation m = gecd(mg, ng) is shown exactly as for Euclid. To prove
(p +q)/2 =lem(mp, ng) we argue as follows:

(P + E])/Z = lcm(mo, no)
& (mg+mp)/2 =m-lem(mg, ng) since m # 0
& (mg+np)/2 = m-lem(mg,ng) sincem =n
< mong = m - lem(mq, ng) since mq + np = 2mony
< mong = ged(my, ng) - lem(mg, ng) since m = ged(mo, ng)

—and end up with a true equation according to (x).

So ExtendedEuclid is valid. To show correctness we just need a termination
function and here we may use y(m,n,p,q,t,s) = m + n. The proof is the
same as for Euclid. We conclude that ExtendedEuclid is correct.

2.4.2 Factorial

The following algorithm computes the factorial

of a natural number 1, with the understanding that 0! = 1:

Algorithm Factorial(n)
Input n>0
Output :7r = ng!
Method :r <« 1;
{I}while n # 0 do
r—rEn;
n+<n-—1;

As a loop invariant we may use
I:(r=mnp!/n!)A(ng>n=>0).

The shape of this invariant is typical: it expresses how far we have come
in the computation by saying that r is what we want, except for a factor n!.
Proving validity of the algorithm, we are faced with a proof-burden of the
form

{n > 0}C’;while n # 0do C{r = ny!}.

44 CHAPTER 2. ALGORITHM THEORY

According to the proof principles for division of a sequence (with W = I)
and for loops, this gives rise to three simple proof-burdens:

1: {n>0}r«+ 1{I}
2: {IN(n#£0)}r+r*n;, n+n—1{I}
3: IN(n=0)=r=np!

(together with the trivial proof-burden I = I). We show them one by one:
Proof-burden 1 We must show

n>0 = In,7).
Inserting n’ = n = npand v’ = 1, this is

n>0 = @A=nl/n)AN(n>n2>0)

So assume n > 0.1 = n!/n! is true when n! makes sense which it does
by the assumption. The inequalities n > n > 0 follow directly from the
assumption.

Proof-burden 2 We must show
INn#0) = I(#,7).
Inserting ¥’ = rn and n’ = n — 1, this is

(r=mno!t/n!)A(ng >n>0)A(n#0) =
(rn=mng!/(n —1)!) A (ng >n—1>0)

So assume r = ng!/n! and np > n > 0 and n # 0. To prove that rn =
ng!/(n —1)! we argue as follows:

rmn=mnp!l/(n—1)!
<= (np!/n!)n sinceny >n #0
& r=ng!/n! since n # 0

—and end up with our first assumption. The inequalities ng > n —1 >0
follow from the second and third assumptions.

Proof-burden 3 We must show
IN(n=0) = r=ng!
which is
(r=mnol/n)AN(ng>n>0A(n=0) = r=np!

Using the first and third assumption, the wanted conclusion follows im-
mediately.

2.4. EXAMPLES 45
So Factorial is valid. To show correctness we just need a termination func-
tion and here we may use ji(n,7) = n, because

a) I = wu(n,r) > 0because I says that n > 0.

b) IN(n # 0) = u(x,n,r,m) > u(x',n’,r',m") simply because n’ =
n — 1 (we don’t use the assumptions here).

We conclude that Factorial is correct.

2.4.3 Power sum

Consider an algorithm for computing the sum
T+x+x+- x4y

of the powers of x # 0 up to x" with n a natural number. One might expect
the output specification for this algorithm to be something like r = X! x,
but this is not quite good enough. A trivial way to establish it is

n<+ 0, r« 1.

—and clearly, this is not the intention of the algorithm; x and 7 should not
be changed. So formally, we need to add (x = xg) A (n = np) to all asser-
tions used, including the output specification. Since this is a lot of bureau-
cracy for saying something simple, we'll introduce a convenient shorthand
in the form of a constant clause in the specification of the algorithm:

Algorithm PowerSum (x, 1)

Input :(x #0)A (n>0)

Constants: x, n

Output :r = Z?:Oxi

Method :r<+ 1, m + 0;

{I}while m # n do

r—rxx+1;
m<+——m-+1;

We stress that this is merely a shorthand for writing assertions—we still
need to show that x = xp and n = ng hold at each of them. However,
this can be done once and for all: the method implementing the algorithm
doesn’t have x or n on the left-hand side of any assignment commands,
so they cannot change. Accordingly, we'll treat x and # as constants in the
correctness proof below.

46 CHAPTER 2. ALGORITHM THEORY

The loop invariant is
[:(r=2"gx')A(n>m>0).

Again, this expresses how far we have come in the computation. Proving
validity of the algorithm, we have a compound proof-burden of the same
form as for Factorial, so we get these three simple proof-burdens:

1: {x#0O)An>0)}r<+ 1, m<«+ 0{I}
2: {INm#n)}r<«rxx+1, m<+ m+1{I}
3: IN(m=mn)=r=5%" x

We show them one by one:
Proof-burden 1 We must show
(x#0)A(n>0) = I(x,n7,m).
Inserting ¥’ = 1 and m’ = 0, this is
(x#0)A(n>0) = (1A=L xX)A(n>0>0)

So assume x # 0 and n > 0. That 1 = i:Oxi is true by our first assump-
tion, and n > 0 > 0 is true by our second assumption.

Proof-burden 2 We must show
INm#n) = I(x,n7,m).
Inserting ¥’ = rx + 1 and m’ = m + 1, this is

(r=2pgx)A(n>m>0)A(m#n) =
(rx+1=X"x)A(n>m+1>0)

So assume r = Zlmzoxi and n > m > 0 and m # n. To prove thatrx + 1 =
Z;”;Bl x' we argue as follows:
rx+1= Z?:lei
& rx = 2y
Srx = lem:ox”rl
Sr=x"x since x # 0

—and end up with our first assumption. The inequalitiesn > m+1 > 0
follows from the second and third assumptions.

2.5. ARRAYS 47

Proof-burden 3 We must show
INm=n) = r=x"x
which is
r=X"o) Am>m>0A(m=n) = r=2xIx

Using the first and third assumption, the wanted conclusion follows im-
mediately.

So PowerSum is valid. To show correctness we just need a termination func-
tion and here we may use y(x, n,7,m) = n — m, because

a) I = wu(x,n,r,m) > 0because I says thatn > m.

b) IN(m # n) = u(x,n,r,m) > u(x’,n',v',m") simply because m’ =
m + 1 (we don’t use the assumptions here).

We conclude that PowerSum is correct.

The theory above allows us to reason about the correctness of simple
algorithms working on simple data like integers. However, we also want
to reason about algorithms that compute on structured data, like arrays, as
well as about quantitative aspects of algorithms, like their execution time.

2.5 Arrays

Our concept of an array will be the same as in Java, although the nota-
tion will be more user-friendly. When reasoning about arrays, we’ll write
|A| for the length of the array A, and A[i] for its i'th entry, 0 < i < |A]|.
Further, we'll use the notation A[i..j] for the subarray of A with elements
Alil,..., A[j — 1]. In using this notation we’ll always have i < j, and if
i = j, Ali..j] is the empty array. We'll often need to say that something
holds about all elements of an array or subarray—eg. that A[i],..., A[j — 1]
are all less than 35—and we'll write this as A[i..j] < 35. We'll write AB for
the concatenation of A and B.
We add arrays to our pseudo-code as follows:

Indexing If ¢ is an integer expression whose value is a valid index into an
array A, we treat Ale] as a variable in itself, so that we may assign to it.

Length We'll use | A| as an integer expression for the length of the array A.

48 CHAPTER 2. ALGORITHM THEORY

Allocation If e is an integer expression, the command
A < allocate e

executes in one step and leads from a state ¢ to a state ¢’ such that 0/(A)
is a reference to a newly allocated array of length o (e).

Actually, we’ll never use the allocation command explicitly in our algo-
rithms, since we’ll always want to initialize the array. Rather, we’ll use
these abbreviations:

Construct If e, e; are expressions with e; of integer type, we’ll write

A < allocateey; i < 0;
A+ [e1 :)] for while i # |A| do
Ali] «—ep i+ i+1

So A < [e1 : ep] executes in 3e; + 3 steps and constructs an array with e
entries, all initialized to e.

Copy If e, e; are integer expressions and B is an array variable, we’ll write

A < allocateey —eq; i < O
A < Bley..es] for while i # |A| do
Ali] + Ble1 +i]; i+ i+1

So A < Blej..ex] executes in 3(ex — e1) + 3 steps and makes a copy of the
subarray Blej..ez].

Example 2.5.1 As a simple example, here is an algorithm for computing
the maximum, written max A, of an array A of numbers. If A is empty, we
define max A = —o0:

Algorithm ArrayMax(A)
Input : true
Constants: A
Output :r =maxA
Method :7 <+ —o0; i < 0;
{I}while i # |A| do
if r < Ali] then r < A[i];
i+ i+1

Using the invariant I : (0 <i < |A]) A (r = max A[0..i]) and the termina-
tion function pu(A,i,r) = |A| — i, itis not hard to show that the algorithm
is correct. O

2.6. COMPLEXITY 49

2.6 Complexity

In the preceding sections we have been concerned with a qualitative as-
pect of algorithms, namely correctness. Of course, algorithms also have
quantitative aspects, and among these the questions of how long it takes
to execute them (time complexity) and how much storage they use (space
complexity) are the most important ones. In these notes, we’ll only discuss
time complexity formally. Consider the algorithm

Algorithm A(xy, ..., x,)

Input :In
Output : Out
Method :C

Definition 2.6.1 The time complexity of A is the function T[A] taking a
state o satisfying In to the length of the process starting at [C, ¢].! O

Notice that this definition says that the evaluation of any expression takes
just one “time unit”. This is reasonable because all our expressions are
simple: they can be implemented on a real machine so that their evalua-
tion takes constant time. Also notice that T[A](c) will only depend on the
values in ¢ of the input parameters xj, ..., x, of A, and so we can consider
T[A] as a function of x1, ..., xy,.

Example 2.6.2 Consider the algorithm ArrayMax of Example 2.5.1. The ini-
tialization of r and i takes 2 steps, and each of the |A| iterations of the loop
takes 3 or 4 steps, depending on whether r is updated or not. Further, the
loop test is evaluated an extra time (when i = | AJ). So the total number of
steps will be between

3|A| +3 if Ais empty or all elements of A equal —oo, so
that r is never updated;

and 4|A|+3 if A issorted in increasing order, so that is up-
dated in every iteration.

We therefore have 3| A| 4+ 3 < T[ArrayMax](A) < 4|A| + 3. More precisely,
T[ArrayMax](A) equals 3|A| + 3 plus the number of times A[i] is strictly

larger than max A[0..i], with i running through the indices 0, ..., |A| — 1.
O

IFor the algorithms we have seen so far, only one process starts at [C,] for each o.
Later we'll allow our algorithms to make random choices and then each possible choice
gives rise to a different process. We then define T[A](c) as the maximum of their lengths
and E[A](c) as the expected length, taken over all random choices.

50 CHAPTER 2. ALGORITHM THEORY

Although T[A] is a well-defined mathematical function, it can sometimes
be extremely hard to find a nice expression for it. For example, the time
complexity of Euclid is quite erratic judging from the table below:

mn T\mn T\mn T\m n T\m n T
11 2121 5/31 841115 1 14
1 2 5122 2(3 2 842 5|5 211
1 3 823 833 243115 3 11
1 4 11|12 4 5|3 4 11|14 4 2|5 4 14
1 5 14|12 5 113 5 11|14 5 14| 5 5 2
1 6 172 6 8/ 3 6 54 6 8|5 6 17

Although we may be able to find a succinct way of expressing T[Euclid], al-
gorithms exist that are complicated enough that such a table is the best we
can do. Fortunately, T[A] often provides more information than needed in
practice anyway, and so approximating it will be sufficient.

The crucial step here is to view T[A] as a function of the size of the input,
rather than as a function of the input itself. A reasonable notion of input
size for ArrayMax would be the length of the array A. Of course, there are
many possible inputs with the same size 1, namely all arrays of length #,
and T[ArrayMax]] will now assign the same execution time to all of them.
Recall that in the worst case, when A is sorted in increasing order, ArrayMax
uses 4|A| + 3 steps. We want to be as pessimistic as possible and so we
take T[ArrayMax] to be the function mapping n > 0 to 4n + 3. The reason
for this pessimism is a pragmatic one: we aim for algorithms that perform
well on all possible inputs. This justifies the following definition:

Definition 2.6.3 Let size be a function mapping states satisfying In to non-
negative integers. The worst-case time complexity of A is the function
mapping n > 0 to the maximum of T[A](c) for states o (satisfying In)
with size(c) = n.? O

How we define size will depend on the algorithm and will be made clear
in each case, but again, we may view it as a function of the input parame-
ters of the algorithm. For ArrayMax above, we have size(A) = | A| while for
PowerSum of Section 2.4.3, we may reasonably take size(x,n) = n. Accord-
ingly, we can write T[ArrayMax](A) = 4|A| 4+ 3 and T[PowerSum](n) =
3n + 3 for the worst-case time complexities. In fact, we’ll use O-notation
to suppress the constants involved, and simply say that ArrayMax runs in
O(]A|) time, while PowerSum runs in O(n) time.

2The worst-case expected time complexity of A is obtained by replacing T[A] by E[A].

Chapter 3

Fundamental algorithms

The formal techniques of the previous chapter can not only be used to
prove existing algorithms correct; more importantly, they provide the ba-
sis of a programming methodology. In particular, to solve an algorithmic
problem by iteration, one comes up with an invariant and builds an algo-
rithm around it. In this chapter, we’ll apply this programming methodol-
ogy to a range of fundamental algorithmic problems.

3.1 Exponentiation

As an easy start in the application of our methodology, let us use it to
improve an existing algorithm. Consider the following way of computing
xP for a number x and a natural number p:

Algorithm LinExp(x, p)
Input :p>0
Constants: x, p
Output :r =x*
Method :r<1; g < p;
{I}while g > 0do
r<r*xx; q<q—1

With the invariant I : (rx7 = x?) A (g > 0) and the termination function
u(x,p,r,q) = qacorrectness proof is easy. The execution time is linear in p,
hence the name. Intuitively, we may improve LinExp by making sure that g
decreases faster; for example, we could try to obtain logarithmic running
time by repeatedly dividing q by two instead of subtracting 1.

Consider the first part of the invariant above, rx7 = x?. If this equation
is true, and g is even, then we can divide g by two and square the x of

51

52 CHAPTER 3. FUNDAMENTAL ALGORITHMS

x1, and the resulting equation, r(x?)7/2 = xP will also be true. Since x
is specified to be constant we introduce a new variable & which we may
modify as needed. The invariant should now look as follows:

I:(rh1 =xP)A(q>0).

To establish it we must start by initializing / to x. This gives us a new
initialization-sequence, which we'll call < init >:

Linit> =r<+1, g« p;, h < x.

The body of the loop must update r and h, and so we'll call it < update >>.
If g is even, we can divide g by two and square /h without spoiling the
invariant, but otherwise we need to do something else. Therefore, let’s
make < update > a selection:

< update > = if g even then < q even > else < q odd >,
—where the then-branch is
L qgeven> =g < q/2; h< hxh.

We may now prove {I A (g > 0) A (q even)}< qeven >{I}. An obvious
solution for the other branch is to subtract 1 from g because then g will be
even in at least every other iteration (which is good for the execution time).
The simplest way to update the other variables is to leave h unchanged
and multiply r by h:

KLqodd>»=g<4qg—1,r<rxh.

Then {I A (g > 0) A (g odd)}< p odd >{I} can be shown, and so can
clearly also the last proof-burden, I A (g < 0) = r = xP. The algorithm is
thus valid. Since g is decreased in every iteration and since I says that g is
non-negative, we can use pt(x, p.7.q, h) = g as a termination function. So
the algorithm below is correct and runs in time O(log p).

Algorithm LogExp(x, p)
Input :p=>0
Constants: x, p
Output :r =x?
Method :r <1, g« p; h < x;
{I}while g > 0do
if g even then
q<q/2;, h<hxh
else
g—qg—1,r<rxh

3.2. SCANNING 53

3.2 Scanning

A standard way to do computations on arrays—say finding a maximal
element in an array A of numbers—is to write a loop that scans through
the array from left to right using an index i. An invariant for such a loop
can be pictured as follows:

A

The red part of the array, A[0..i], represents the elements we have already
scanned, and so know some information about—say their maximum—
while the shaded part contains elements that we have not yet looked at.
Formally, the invariant looks like

1:(0<i<|ADAT

—where I’ says what information we have about the red part, which for
the computation of maximum would be, say, r = max A|0..i]. We can write
a general outline of the algorithm’s method as follows:

L init >; 1+ 0;
{I}while i # |A| do

L update >; i+ i+ 1;
< end >

The three unspecified command-sequences are specific to the computa-
tion, but notice that if < update > does not change i or the length of A,
then we already have two elements of a correctness proof: the first part of
I is a valid invariant and p(A4,1,...) = |A| — i is a termination function.

Of course, sometimes there’s no need to scan the whole array, and one
can then use a loop like

while (i # |A|) Abdo---

—where b is a boolean expression which is only true as long as we have to
keep scanning. The LinearSearch algorithm below is of this kind.

Scanning algorithms are often simple and should be your first attempt
at a solution when faced with an algorithmic problem on arrays.

54 CHAPTER 3. FUNDAMENTAL ALGORITHMS

3.3 Searching

Searching for an element s in an array A is a truly fundamental compu-
tation that in one form or other happens almost every time we need to
retrieve data stored in a computer. Still, it is not obvious what output a
search algorithm should give. For some applications it suffices to know
whether s occurs in A or not. In others, one needs an index of s if it occurs,
and some other (non-index) value if it doesn’t. Further, if there are multi-
ple occurrences of s, one might want the first or the last or all of them. To
accommodate for these different needs, we’ll specify our algorithms below
such that they provide the basic computation needed in any case.

3.3.1 Linear search

Our first search algorithm finds the smallest index r such that A[r] = s.
If no such index exists, it returns ¥ = |A|. A simple scanning solution
is immediate; it uses r as the scanning index and scans only as long as

Alr] # s:

Algorithm LinearSearch(A,s)
Input : true
Constants: A, s
Output : (0 <r <|A|)A (s & Al0.r]) A (r = |A|V Alr] =)
Method :7 <+ 0;
{I}while (r # |A|) A (A[r] # s) do
rr+1;

The invariant
[:(0<r<|A])A (s & A0..r])

is valid and we can use the termination function u(A,s,r) = |A| —r to
conclude that the algorithm is correct. It clearly runs in time O(|A|).

3.3.2 Binary search

The linear search algorithm is slow if a long array is to be searched many
times, and in such cases, it is more efficient to sort the array first. This is
exactly why telephone books are sorted. Sorting makes sense for any kind
of value, including numbers and strings, for which an ordering < can be
defined. In the following, we describe an efficient algorithm that searches

3.3. SEARCHING 55

for an element s in a sorted array A of integers. Since A is sorted, it makes
sense to find the first index r where s must appear if it occurs in A at all:

Algorithm BinarySearch(A4, s)

Input : A sorted
Constants: A, s
Output : (0 <r < |A]) A (A]0.r] <s)A (s < Alr..|A]])

Since we want to do better than linear search, we cannot use scanning.
Then what? It seems obvious that we need to compare s with elements of
A. Doing so provides knowledge about A of the form

A -;—
low high

The intended meaning of this picture is that the red elements are all < s
and the blue elements are all > s, whereas we don’t know how the white
elements relate to s.

If we narrow the gap between low and high until they are equal, we get
the wanted result by putting r = low = high. Therefore, we can use the
above picture as an invariant and write

low < 0; high < |A|;
{I}while low # high do
< narrow the gap >;

r < low
Formally, the invariant is

I:(0 <low < high < |Al|) A (A]0..low] < s) A (s < Alhigh..|Al]).
Now, consider an index m between low and high.

e If A[m] < s we can extend the red part by setting low to m + 1.

o If s < A[m] we can extend the blue part by setting high to m.

So clearly, choosing m in the middle of the range, we can approximately
halve the distance between low and high. Doing so in each iteration will
quickly make low equal high:

56 CHAPTER 3. FUNDAMENTAL ALGORITHMS

Algorithm BinarySearch(A,s)
Input : A sorted
Constants: A, s
Output : (0 <r < |A|) A (A[0..r] <s) A (s < Alr..|Al])
Method :low < 0; high < |A|;
{I}while low # high do
m < (low + high) /2;
{U}if A[m] < s then
low <~ m+1
else
high < m;
r 4 low

With
U:IA(low<m < high)
it is quite easy to prove the proof-burdens

{I A (low # high)}m <+ (low + high) /2{U}
{U N (Alm] < s) How + m + 1{I}
{UN (s < Alm]) }high < m{I}

establishing the invariant. As for termination, we can use the termination
function

u(A,s,low, high,m,r) = high — low.

It is non-negative because by the invariant low < high and it decreases in
each iteration because either low increases or high decreases. In fact, the
value high — low + 1 is at least halved in each iteration, and so the running
time is O(log |A|).

3.4 Sorting

BinarySearch clearly demonstrates that sorting is an important problem,
and so we'll develop three different sorting algorithms in the following.
We start with a simple scanning algorithm, called InsertionSort, whose run-
ning time is quadratic in the length n of the input array. Next, by using
a common problem solving technique, we obtain the MergeSort algorithm
with optimal running time nlog n. Although this second algorithm is op-
timal, there is room for improvement in the constant factors involved and
our third sorting algorithm, QuickSort, achieves greater speed on the aver-
age by using random choices.

3.4. SORTING 57

3.4.1 Insertion sort

A scanning algorithm for sorting would have an invariant like this:
I:(Aperm Ag) A (0 <i<|A|) A (A[0..i] sorted)

where A perm Ay means that A is a permutation of its original elements;
it holds the same elements, but possibly in a different order.

In each iteration we need to perform some actions that allow us to
increment i without I becoming incorrect. A simple way to achieve this
is by repeatedly swapping the element at A[i] with its predecessor until
AJ0..i + 1] is in sorted order. This calls for a new loop with the invariant

J: (Aperm Ag) A (0 <j<i<|A|)A(A[0..j]A]j + 1..i 4 1] sorted)
A(A]j..i + 1] sorted)

Here, j is the current index of the element originally at A[i]. Clearly we
are done when j = 0 or A[j — 1] < A[j], because then the second half of |
says that A[0..i 4 1] is sorted. Here’s the full algorithm:

Algorithm InsertionSort(A)
Input : true
Output : (A perm Ap) A (A sorted)
Method :i <+ 0;
{I}whilei # |A| do
IRt?
{T}wile] #0) A (4]j ~ 1] > Al do
Alj—1] < A[j);
j<—7—1
i+ i+1

We can use uj(A,i,j) = |A| — i as termination function for the outer loop
and u](A, i,j) = j for the inner loop. The running time of the algorithm is
O(]A|?) in the worst case which happens when A is sorted in backwards
order to begin with. In that case, the inner loop is executed first |A| — 1
times, then |A| — 2 times and so on. This gives the sum

AldAI = 1)

(A =1+ (JA|=2)+---+1= .

Notice, on the other hand, that the element originally at index i is only
swapped with those elements at indices j < i that are strictly larger than
it. Such pairs of indices (j,i) are called inversions and the total number

58 CHAPTER 3. FUNDAMENTAL ALGORITHMS

of inversions in A gives a measure of how far from being sorted it is. If
there are k inversions in A, then InsertionSort takes O(|A| + k) time, which
means that this algorithm might be a good choice if you know that your
array is almost sorted.

3.4.2 Merge sort

To improve on the quadratic worst case running time of the insertion
sort algorithm, we employ a powerful problem-solving technique, called
divide-and-combine. Using this technique, one solves a big problem by
tirst dividing it into smaller problems, then solving those smaller problems,
and finally combining the results into a solution to the original problem.
Obviously, there has to be some way of solving small problems directly,
but by using recursion, we can keep on dividing problems into subprob-
lems until they are trivial to solve.

Applied to the problem of sorting an array, it is at least clear how to
handle small problems: arrays of length < 1 are already sorted. As for big
problems—Ilonger arrays—one can divide them into, say, two halves and
then sort those recursively. Combining two sorted arrays into one is called
merging, hence the name of the algorithm:

Algorithm MergeSort(A)

Input : true

Output : (A perm Ap) A (A sorted)

Method :if |A| > 1then
B « AJ0..]A]/2];
C «+ A[|A]/2..|Al];
{U}MergeSort(B);
{V}MergeSort(C);
{W}Merge(A, B,C)

The algorithm Merge is specified by

Algorithm Merge(A, B, C)

Input :(|A| =|B|+|C|) A (B,C sorted)
Constants: B, C

Output : (A perm BC) A (A sorted)

We develop this algorithm below, but let’s first look at the correctness and
running time of MergeSort. Write A1, A, for A[0..|A|/2] and A[|A|/2..|Al],

3.4. SORTING 59

respectively. Validity of the algorithm follows from validity of assertions

U: (A=A))A(A| >1)A(B=A)A(C=A)
V: (A= Ag) A(JA] >1)A(Bperm A1) A (Bsorted) A (C = Ap)
W: (A= Ap) A (Bperm A1) A (C perm Ay) A (B, C sorted)

Since we use recursion we had better find a termination function: with
|A| > 1both |A;]| and |A;| are strictly smaller than |A| and so u(A) = |A|
can be used. The algorithm is correct.

As we shall see, Merge(A, B, C) takes time linear in |A|, and so we can
characterize the running time of MergeSort as follows: Suppose for sim-
plicity that |A| = n is a power of 2. Then the call-tree will have height
log 1 and there will be a total of 2/ subarrays of length 1/2' at level i, for
0 <i <logmn, as shown in the figure below for n = 16:

level 0
level 1
level 2

level 3

level 4

Now, for some reasonable time unit, we may say that dividing an array
of length 7 into two subarrays each of length /2 and to merge two such
subarrays once they are sorted takes a total of n time units. It is then easy
to see that the total time spent at level i of the call-tree is 2/ - n/2' = n
time units. The total time is therefore nlog n time units which means that
MergeSort takes O(nlogn) time on an array of length .

Merge

We want an algorithm

Algorithm Merge(A, B, C)

Input :(|A| = |B|+|C]) A (B, C sorted)
Constants: B, C

Output : (A perm BC) A (A sorted)

60 CHAPTER 3. FUNDAMENTAL ALGORITHMS

so that given, say, A of length 11 and
B=1[1,1,4,7,8] and C=11,22347|
we should obtain
A=1[1,1,1,2,2,3,4,4,7,7,8].

The algorithm must fill the array A with the right elements. A first guess
(as always) is to scan through A from left to right, maintaining the invari-
ant that we are finished with the part of A that we have already scanned.
Clearly, this will also involve scanning the arrays B and C from left to right.
So we have the following picture of the invariant:

g =

‘- .

From the picture it seems that we need three indices i, j and k, but notice
that k is redundant since k = i 4 j. So formally, the invariant is

[(JAl = [B[+|C)A(0<i<[B)A(0<j<[C|)A
(A[0..i + j] perm B[0..{]C[0..j]) A (A[0..i + j] sorted)

We can now write the usual outline of the algorithm:

Algorithm Merge(A, B, C)
Input :(|A| =|B|+|C|) A (B,C sorted)
Constants: B, C
Output : (A perm BC) A (A sorted)
Method : < init >;

{I}whilei+j # |A| do

< update >;
< end >

According to the invariant, the initialization should create a picture with
all three arrays shaded and so we put

Linit>=1+0;]« 0.

3.4. SORTING 61

Now the proof-burden {(|A| = |B| + |C|) A (B, C sorted) }< init >{I}
can be proved.

In each iteration of the loop, we would like to fill in one more element
of A. It should be either B[i] or C[j] but which one? The requirements that
it may be B[i] are as follows: First, of course, B[i] must be defined, that is
we must have i < |B|. Second, B[i] must be < any element of C[j..|C|]. This
trivially happens if j = |C|, and otherwise it happens if B[i] < CJj] since C
is sorted. In all other cases, we must use C[j]. So we can take < update >
to be the selection

if (i < |B|) A (j =|C|V B[i] < CJj]) then
< use B[i] >

else
< use C[j] >

Knowing that we can use B[], it is quite easy to restore the invariant. Ac-
cording to the picture, we should increment i and leave j as it is. With

<L useB[i] > =A[i+j] < Bli]; i+ i+1
we can prove the proof-burden

{UUNG+]# A A< [B]) A (= |C[VBli] < C[])}

< use BJi] >

{1}
The command-sequence < use C[j] > is symmetric. Notice that the loop
must terminate because the value i + j increases in every iteration and
cannot exceed |A|. In other words, (A, B, C,i,j) = |A| — (i +j) is a termi-
nation function.

When the loop finishes, we have i + j = | A| by the loop condition and
so by the invariant, i = |B| and j = |C|. It immediately follows from the
invariant that A is the merge of B and C as wanted. So < end >> may be
empty. Here is the complete algorithm:

Algorithm Merge(A, B, C)
Input :(|A| = |B|+|C]) A (B, C sorted)
Constants: B, C
Output : (A perm BC) A (A sorted)
Method :i < 0; j < 0;
{I}whilei +j # |A| do
if (i < |B|) A (j = |C| V B[i] < CJj]) then
Ali+j] < Bli]; i < i+1

else

Ali+j]«Clj; j«j+1

62 CHAPTER 3. FUNDAMENTAL ALGORITHMS

Clearly, the running time of this algorithm is proportional to the number
of iterations of the loop. Hence, the algorithm runs in time O(|A|).

3.4.3 Quick sort

One can prove that MergeSort is as fast as any comparison-based sorting
algorithm, if we ignore constant factors. However, because sorting is such
an important problem, it makes sense to try to improve the constants in-
volved. To this end, notice that MergeSort spends a lot of time copying
arrays to auxiliary storage (the arrays B and C). Avoiding that may give a
faster algorithm.

In this section, we describe the algorithm QuickSort which performs
the sorting in-place, that is, it sorts the input array A just by swapping
elements. The central idea is to choose an element s = A[r] of A and then
swap the elements of A around to obtain a picture like this:

3 B

The red elements are all strictly smaller than s, the white elements equal s,
and the blue elements are strictly larger than s. Having done so, we may
sort the red and blue parts by applying QuickSort recursively to these sub-
arrays, after which the whole array is sorted. Notice that this means that
QuickSort must be parameterized with two indices, saying where to start
and end the sorting, and of course, it should not alter the array outside
this range. Formally,

Algorithm QuickSort(A, low, high)

Input 10 < low < high < |A|

Constants: low, high, A[0..low)], A[high..| A|]

Output : (A[low..high] perm Ag[low..high]) A (Allow..high| sorted)

For simplicity we shall delegate the rearrangement of A[low..high] to an
auxiliary algorithm, called the “Dutch flag” algorithm because of the pic-
ture above—it looks like a Dutch flag rotated 90 degrees. In addition to
rearranging A in this range, DutchFlag must give us the boundaries of the
red and blue parts. The formal specification is as follows:

Algorithm DutchFlag(A, low, high, s)

Input :0 < low < high < |A]

Constants: low, high, A[0..low], A[high..|A|], s

Output : (A[low..high] perm Ag[low..high]) A (low < w < b < high) A
(Allow..w] < s) A (Alw..b] = s) A (A[b..high] > s)

3.4. SORTING 63

The red part is then given by A[low..w| and the blue part by A[b..high]. We
shall later develop DutchFlag as a scanning algorithm with linear running
time. At this point, the method of QuickSort looks as follows:

if high — low > 1 then
<& choose r >;
(w, b) < DutchFlag(A, low, high, A[r]);
QuickSort (A, low, w);
QuickSort(A, b, high)

Notice that in the case of ranges containing less than 2 elements, the algo-
rithm does nothing, thus providing a bottom for the recursion. We still
have to say how to choose the index r of s. For the correctness of the
algorithm it doesn’t matter what r is as long as it belongs to the range
low..high so that the white part becomes non-empty. This restriction makes
1(A, low, high) = high — low a termination function.

So one possibility would be to take r = low. But what about the run-
ning time? At each level of the call-tree for QuickSort we spend O(|A|) time
doing DutchFlag on all the red and blue parts. Because all other computa-
tions take constant time at each level, the total running time of QuickSort is
therefore O(|A| - height of call-tree).

Now, suppose that A is already sorted and has all elements distinct.
Then during the execution all red parts will be empty (because with r =
low the smallest element in the range is s = A[r]), all white parts will
contain a single element, s, and the blue parts will occupy the rest. So
there will be approximately |A| levels in the call-tree, corresponding to
blue parts of length |A| — 1, |A| — 2, ..., giving a quadratic time behavior.

A similar argument can be given for any other fixed way of choosing r:
we cannot with a fixed choice of r guarantee that neither the red nor the
blue part becomes very long—and so we cannot guarantee a shallow call-
tree. To obtain a better behavior, we therefore choose r uniformly at random
in the legal range:

< choose r > = r < random (low, high)

Let n = high — low and call a choice of r good if it results in both the red
and blue parts having size at least £ (and so at most 2). Since we can only

remove one quarter of n (that is, divide n by %) approximately logs n times

before the result is < 1, the recursion continues only until we have seen
log% n good choices of r. The question then is: how long should we expect

to wait for a good choice?

64 CHAPTER 3. FUNDAMENTAL ALGORITHMS

Assuming that all elements in A are distinct, there is a probability of
1 for each of the possible ways that our choice of r divides the range.
Since r is good for half of the possibilities, r is good with probability 3.
But then probability theory tells us that the expected number of divisions
performed before 7 is good is 2.

In conclusion, the expected height of the call-tree for QuickSort is at
most 2 log% |A| and so the expected running time of QuickSort on an array

of length n is O(nlogn). Here is the completed algorithm:

Algorithm QuickSort(A, low, high)
Input 10 < low < high < |A|
Constants: low, high, A[0..low), A[high..| A|]
Output : (A[low..high] perm Ag[low..high]) A (Allow..high] sorted)
Method :if high — low > 1 then
r < random(low, high);
(w, b) < DutchFlag(A, low, high, A[r]);
QuickSort(A, low, w);
QuickSort(A, b, high)

Timing experiments on concrete implementations will show that although
QuickSort has worst-case quadratic running time, it is fast enough on the
average to outperform MergeSort in many applications. Beware though,
that if A is too large to fit in internal storage, then MergeSort is the better
choice. The somewhat erratic indexing done by DutchFlag incurs far too
many accesses to external storage (eg. a hard disk) and such operations
are extremely slow compared to processor speed.

Dutch flag

The Dutch flag algorithm is a classic application of our methodology and
we’ll therefore give a rather detailed development of it. To keep notation
manageable, we shall simplify the specification above by requiring the al-
gorithm to rearrange the whole array rather than a particular range:

Algorithm DutchFlag(A,s)
Input : true
Constants: s
Output : (Aperm Ap) AN(0<w <b < |A|]) A
(A[0.w] < s) A (Alw..b] =) A (A[b..|]A]] >s)

As usual, our first guess would be a scanning algorithm. The invariant
should then look like this:

3.4. SORTING 65

i
:

! !

~N

Formally, it can be expressed as

I: (Aperm Ag) N(0<w <b<i<|A|)A
(A[0..w] < s) A (A[w..b] =s) A (A[b..i] > s)

Our problem is now to write the sequences < init >, < update >, and
< end > so that the command-sequence

Linit >; 1+ 0
{I}while i # |A| do

<L update >; i i+ 1;
< end >

makes [valid and the algorithm correct. The sequence < init > must ini-
tialize the variables w and b. From the outset we have not looked at any
element of A and so the picture of the invariant looks like this:

A

w=b=i

It is thus easy to see that if we put < init > = w <~ 0; b <— 0 we can prove
the proof-burden {true} < init >; i < 0{I}.

Next, we must write the sequence < update >> so that we can prove the
proof-burden {I Ai # |A|} < update >; i < i+ 1{I}. Here itis intuitively
clear that we need to consider three cases, depending on how A[i] relates
to s. So we let < update > be the selection

if A[i] < s then

< red >
else if Afi] = sthen

< white >
else

< blue >

The proof-burden for < update > now splits into
1: {IN@GE#|A])AN(A]i] <s)p<red>; i« i+1{I}

2: {IN(i #|A]) A (Afi] =)< white >; i+ i+ 1{I}
3: {IN(#|A]) A (A]i] >s)}< blue >; i+ i+ 1{I}.

66 CHAPTER 3. FUNDAMENTAL ALGORITHMS

We look at each case in turn:

Case 1: In the case A[i] < s we have the situation

A \ \

\
w b i

and so < red > first swaps A[i] and A[b], then swaps A[w] and A[b], and
finally increments b and w. This way of doing it also works in the case
where two or more of w, b, and i are equal:

< red > = Ali] < A[b]; Alb] <> Alw];
w<—w+1, b+ b+ 1.

This enables us to prove proof-burden 1.

Case 2: In the case A[i] = s we have the situation

3 BN
! ! !

w b

and so < white > must swap A[i] and A[b] and then increment b to extend
the white block with A[i]:

< white > = A[i] &> A[b]; b+ b+ 1.

This enables us to prove proof-burden 2.

Case 3: In the case A[i] > s we have the situation

B

b

.

and so < blue > doesn’t need to do anything and we take < blue > = A.

When the loop terminates, we have i = |A| and the picture of the invariant
looks as follows:

1 s

3.5. SELECTION 67

—which is just what we want, so we can put < end > = A. Assembling
the different pieces, we get the completed algorithm:

Algorithm DutchFlag(A,s)
Input : true
Constants: s
Output : (Aperm Ap) A (0 <w <b < |A|]) A
(A[0..w] < s) A (Alw..b] =s) A (A[b..|A]] > s)
Method :w <+ 0; b+ 0; i<+ 0;
{I}while i # |A| do
if A[i] < sthen
Ali] + Alb]; Alb] < Alw];
w<+—w+1,b+b+1
else if A[i] = sthen
Ali] < Alb]; b+ b+1
i+ i+1

Since the initialization as well as each iteration by itself takes constant
time, the time complexity of the algorithm is given by the number of itera-
tions—which for any scanning algorithm is just the length of the array. So
DutchFlag runs in time O(|A|) as wanted.

3.5 Selection

In some statistical applications, it is of interest to compute, say, the min-
imum or the median of a dataset of numbers. The algorithmic problem
underlying such computations is called selection: Given a non-empty ar-
ray A of integers and a number k in 0..| A|, rearrange A such that A[0..k] <
Alk] < Alk..|Al]. The minimum is then obtained as A[k] by using k = 0
and the median using k = |A|/2.

3.5.1 Quick select

Selection resembles the problem solved by the Dutch flag algorithm. But
notice that A must now be rearranged with respect to some unknown ele-
ment (with k predecessors). Still, we can use DutchFlag for this problem in
very much the same way it was used in QuickSort. First, select at random
an index r of A and use DutchFlag on s = A[r| to obtain the situation

3 B

68 CHAPTER 3. FUNDAMENTAL ALGORITHMS

—with red elements A[0..w] < s, white elements A[w..b] = s, and blue
elements A[b..|A|] > s.
There are now three possibilities depending on how k relates to w and b:

Case k < w: The element of A with k predecessors must be red because
the white and blue elements all have at least w predecessors. If we recurse
on the red part, we obtain A[0..k] < A[k] < Alk..w] and so we're done
because all other elements of A are larger.

Case w < k < b: The element of A with k predecessors must be white,
because the red elements have strictly less than w predecessors and the
blue elements have at least b predecessors. We are therefore done because
Alw..k] = Alk] = Alk..b] with the red elements smaller and the blue ele-
ments larger.

Case b < k: The element of A with k predecessors must be blue, because
the red and white elements all have at most b predecessors. If we recurse
on the blue part, we obtain A[b..k] < A[k] < Alk..|A|] and so we're done
because all other elements of A are smaller.

As for QuickSort we need indices low and high to bound the rearrangements
and we can use (A, low, high, k) = high — low as a termination function:

Algorithm QuickSelect(A, low, high, k)
Input : (0 <low < k < high < |A|)
Constants: low, high, A[0..low], Alhigh..|A|], k
Output : (A[low..high] perm Ap[low..high]) A
(Aflow..k] < A[k] < Alk..high])
Method :r < random(low, high);
(w, b) < DutchFlag(A, low, high, A[r]);
if kK < w then
QuickSelect (A, low, w, k)
else if k > b then
QuickSelect(A, b, high, k)

The expected running time on a range of length n = high — low is O(n)
which can be seen as follows: If we do not count the time spend on re-
cursive calls, it takes 7 time units to run QuickSelect on an array of length
n for some suitable time unit. For n = 1 there will be no recursive calls
and so the running time is just 1 time unit. For larger arrays the running
time depends on r. Let’s call the choice of r good if it results in both the red
and blue parts having size at most %”. Write g(n) for the random function

3.5. SELECTION 69

giving the number of recursive calls needed before r is good. The running
time T'(n) for QuickSelect is then bounded by the recurrence

1 ifn=1

Tn) < {n-g(n) +T(%) ifn>1

We're interested in the expected running time E(T(n)). Assuming the ele-
ments of A are distinct, 7 is good with probability 1 and so E(g(n)) = 2.
By linearity of the expectation, we therefore get

1 ifn=1
2n+E(T(%)) ifn>1

E(T(n)) < {

We can prove by induction that E(T(n)) < 8n for all n > 1. The base case
is trivial. In the step we calculate as follows:

2(n+1) + E(T(?’(”L;l)))

2(n+1)+8- 3“’:1 by the induction hyp.
2n+2+6n+6

8(n+1)

E(T(n+1))

I VANRVAN

We conclude that QuickSelect runs in expected linear time.

3.5.2 Deterministic selection

We’ll now show that selection can be done in deterministic worst-case lin-
ear time. The algorithm presented is mainly of theoretical interest since the
constant involved in its O(|A|) running time is rather high compared to
QuickSelect. For simplicity, we shall assume that n = |A| is a power of 5.
The algorithm then proceeds in the following steps:

Step 1: Scan through A while considering the elements in groups of 5.
Find the median of each group and copy these “baby-medians” to another
array B of length .

n

Step 2: Apply the selection algorithm recursively to B with k = 75 and
find the median m of the baby-medians.

Step 3: Use m instead of A[r] and proceed with DutchFlag and recursive
calls as in QuickSelect.

We are not going to write this out in detail, but we’ll analyze the running
time as follows: First, as there are 1”—0 baby-medians less than m, there are at

70 CHAPTER 3. FUNDAMENTAL ALGORITHMS
least 2 elements of A less than m and symmetrically at least 34 elements
of A larger than m. Therefore, both the red and blue parts will have size at
most % after DutchFlag. Now, for some suitable time unit, it takes n time
units to perform the algorithm not counting the recursive calls. For n = 1
there are no recursive calls so the running time here is just 1 time unit. For
larger n there are in the worst case two recursive calls, on arrays of sizes %

and %. So we get the recurrence

T(n) < 1 ifn=1
T\ n+T(E)+T(H) ifn>1

We can prove by induction that T(n) < 10u for all n > 1. The base case is
trivial. In the step we calculate as follows:

T(n+1) < n+1+T(5L) + (1)
n+1—|—10-”T+1+10-77$1) by the induction hyp.
n+1+2(n+1)+7n+1)

10(n +1)

We conclude that deterministic selection runs in time O(n) on an array of
length n.

I IA

3.6 Examples

In the remainder of this chapter we’ll solve two algorithmic problems on
arrays using our programming methodology. We claim that while the de-
velopment is reasonably systematic, the resulting solutions are not at all
obvious, thus providing evidence of the strength of a methodological ap-
proach.

Problem 1: Given an array A of integers, find the maximal subsum of A,
that is, the largest sum found in any subarray of A. If

A=1[3,-4,6,3,-2,5-9,64],

then the maximal subsum is 12, the sum of the subarray [6,3, —2,5]. We
define the empty sum to be 0 and so if A = [—4, —2, —9], the maximal
subsum is 0.

Problem 2: Given an array A of integers, find the length of the longest
monotone sequence in A. If

A=16,2,00,3,8,723,4,09],
then the longest monotone sequence 0,0, 3, 3,4, 9 has length 6.

3.6. EXAMPLES 71

Note that it is not too hard to come up with quadratic solutions (in |A|).
What we are looking for are efficient solutions, which in this case means
something better than quadratic in O-notation.

3.6.1 Maximal subsum

Given an array A of integers, we'll write ms(A) for the maximal sub-
sum of A. Once again, we will develop a scanning algorithm and our task
will therefore be to write command-sequences < init >, < update >, and
< end > so that the following algorithm becomes valid and correct:

Algorithm MaxSubsum(A)

Input : true
Constants: A
Output :7 =ms(A)
Method : < init >; i < 0
{I}while i # |A| do
L update >; i+ i+ 1;
< end >

The invariant has the form
[:(0<i< |A|)/\I'

where I’ describes the information gathered until now, that is, the infor-
mation we have about A|0..i]. What do we need to remember about these
elements? It would be natural to try storing ms(A[0..i]) in r because we
then have the wanted result when i = | A|. But it is not immediately possi-
ble to update r correctly in the loop since we lack the information needed
to determine whether the element A[i] is part of ms(A[0..i + 1]) or not.
Now, ms(A|0..i + 1]) is the maximum of

the maximal subsum obtained by not using Ali]—this is just
ms(A[0..7]) which we’ve got stored in r

and

the maximal subsum obtained by using A[i]—we call this the
maximal right subsum of A[0..i + 1], in short mrs(A[0..i + 1]).

If we store mrs(A[0..i]) in a variable & and are able to update it correctly
in the loop, we can thus also update r correctly. Updating h is easy since
mrs(A[0..i 4 1]) is clearly either mrs(A[0..i]) + A[i] or 0, whichever is greater.

72 CHAPTER 3. FUNDAMENTAL ALGORITHMS

Therefore, we are able to update both r and h without further information.
The invariant now looks as follows:

[:(0<i<]A|)A(r=ms(A[0..])) A (h = mrs(A[0..]])).

The command-sequence < init > is followed by the assignment i <— 0
and so must initialize r and & to ms(A[0..0]) and mrs(A[0..0]), respectively.
Both values are zero, and so

<Lint>=r<+0; h < 0.
We can now prove the proof-burden
{true} < init >; i < 0{I}.

According to the discussion above, the sequence < update > must assign
to r the maximum of ms(A|0..]]) and mrs(A[0..i + 1]) and to & the maxi-
mum of mrs(A[0..i]) + A[i] and 0. That is most easily done in the opposite
order:

< update > = h <+ max{h + A[i],0}; r + max{r, h}.
We are now able to prove the proof-burden
{INi < |A|}< update >; i « i+ 1{I}.

By termination of the loop we have I A (i = |A|) and so in particular r =
ms(A). The sequence < end > may therefore be empty. The algorithm

Algorithm MaxSubsum(A)

Input : true

Constants: A

Output :m =ms(A)

Method :r<+0; h < 0; 1<+ 0;

{I}while i # |A| do

h < max{h + A[i],0};
r < max{r, h};
i+ i+1

is valid and correct and runs in time O(|A|).

3.6. EXAMPLES 73

3.6.2 Longest monotone sequence

We write llms(A) for the length of the longest monotone sequence of A.
We attempt to compute it using yet another scanning algorithm:

Algorithm LLMS(A)
Input : true
Constants: A
Output :7 =1ms(A)
Method : < init >; i < 0
{I}whilei # |A| do
L update >; i+ i+ 1;
< end >

The natural choice of an invariant is
I[:(0<i<|A|)A(r=1ms(A[0..]])) A I.

where I’ will specify the information needed about A[0..i] to update r cor-
rectly. At a first glance, this seems to involve every monotone sequence
from AJ0..i] since all of them could be the start of a longest sequence in
all of A. But notice that if there are several sequences from A[0..i] of equal
length, then we only need to remember one with minimal last element—
because if any of the sequences of that length can be extended, so can those
whose last element is smaller.

During the loop we therefore only need to store information about a
single sequence of each length. Since there are a total of |A| + 1 possible
lengths we can use an array B with |A| + 1 elements of which B[0] will
represent the empty sequence. In the i’th iteration of the loop, B[I] for 1 <
I < |A] must contain

the necessary information about a monotone sequence from
AJ0..i] of length I whose last element is minimal (if there is no
sequence of length I, we just record that).

What information is necessary? First notice that if we are able to maintain
B during the loop then we are also able to maintain r—it is given by the
largest index in B that represents a sequence. So whenever we update B[],
we can just update r to max{r, [}. Thus, we need no information except for
what it takes to maintain B itself.

In order to maintain B through the i’th iteration we as a minimum need
to change the first element of B that represents a sequence whose last ele-
ment is strictly larger than A[i]. Assume that this element has index ! > 1.

74 CHAPTER 3. FUNDAMENTAL ALGORITHMS

The element B[l — 1] then represents a sequence of length I — 1 which is ei-
ther empty or whose last element is at most A[i], and so it may be extended
to a monotone sequence of length I, whose last element is A[i]. This new
sequence must therefore be represented by B[l] instead.

No other elements of B should be changed because the elements B[!']
for I’ < I represent sequences whose last elements are smaller than A[i].
And the elements B[l’] for I’ > | represent sequences whose last element
is larger than A[i] and so they cannot be extended with A[i]. So we only
need to update B[l] and we can find the index I using just A[i] and the last
elements of the represented sequences. We conclude that the only infor-
mation we need in B are these last elements.

Since we have to search for the least element in B which is strictly larger
than A[i], it would be nice if B was sorted. Fortunately, we can make sure
that it is. Consider two consecutive entries of B, containing last elements
B[l —1] = x and B[l] = y. If we had x > y the first | — 1 elements of
the sequence represented by B[I] would constitute a monotone sequence
whose last element is less than x. This is a contradiction and therefore
B[1..Imax + 1] is sorted by definition (where Imay is the length of the longest
sequence we have found). So if we define B[0] to be —oco and B[!’] for I’ >
Imax to be oo then all of B is sorted. The invariant now looks as follows:

I: (0<i<|A]) A(r=1ms(A[0..]])) A
(B[l] = ms;(A]0..i]) for 0 <1 < |A])

where we define

—00 ifl =0
minimal last element in

ms;(A[0..i]) = { a monotone sequence of if such exists
length I from AJ0..i]
o otherwise

We must write < init > so that {true}< init >; i +— 0{I} can be shown.
Since A[0..i] with i = 0 only contains the empty sequence, r must be ini-
tialized to 0 and B must be initialized to [—o0, 00, ..., 0] where the length
of the array is |A| + 1.

< init> = B+« [|A|+1:]; B[0] + —o0;
r<0

< update > must first conduct a search in B for an index [such that the
inequations B[l — 1] < A[i] < BJ[l] are satisfied. Since B is sorted we can
achieve this by a variant of binary search which instead of searching for s
searches for the smallest element larger than s:

3.6. EXAMPLES 75

Algorithm BinarySearch’(B, s)
Input : B sorted

Constants: B, s
Output : (0 <1< |B|)A(B[0..l] <s)A(s < B[l..|B|])

We leave the modification of the method of BinarySearch to the reader. After
the search, B[I] must be updated to Ali], and we can then update r to be
the larger of r and I:

< update > = | <+ BinarySearch’(B, Ali]);
Bl] « Alil;
r < max{r,l}.

Finally, at termination we have i = |A|, and so r = llms(A) as wanted. We
can therefore take < end > = A.

The complete algorithm below is valid and correct. Its running time is
O(|A|log | A|) because there are | A| iterations of the loop, and the running
time of each iteration is dominated by the binary search algorithm which
takes time O(log |B|) = O(log |A|).

Algorithm LLMS(A)

Input : true
Constants: A
Output :7 =1ms(A)
Method : B < [|A|+1: c0]; B[0] +— —oo0;
r<0;i+0;
{I}whilei # |A| do
| < BinarySearch’(B, A[i]);
B[l] < Ali];
r « max{r,1};
i+ i+1

