External Memory Geometric Data Structures

Lars Arge
Duke University

June 29, 2002

Summer School on Massive Datasets
So Far So Good

• **Yesterday** we discussed “dimension 1.5” problems:
 – Interval stabbing and point location

• We developed a number of useful tools/techniques
 – Logarithmic method
 – Weight-balanced B-trees
 – Global rebuilding

• On **Thursday** we also discussed several tools/techniques
 – B-trees
 – Persistent B-trees
 – Construction using buffer technique
Interval Management

- Maintain N intervals with unique endpoints dynamically such that stabbing query with point x can be answered efficiently

- Solved using **external interval tree**
- We obtained the same bounds as for the Id case
 - Space: $O(N/B)$
 - Query: $O(\log_B N + T/B)$
 - Updates: $O(\log_B N)$ I/Os
External memory data structures

Interval Management

- External interval tree:
 - Fan-out $\Theta(\sqrt{B})$ weight-balanced B-tree on endpoints
 - Intervals stored in $O(B)$ secondary structure in each internal node
 - Query efficiency using filtering
 - Bootstrapping used to avoid $O(B)$ search cost in each node
 * Size $O(B^2)$ underflow structure in each node
 * Constructed using sweep and persistent B-tree
 * Dynamic using global rebuilding
3-Sided Range Searching

- Interval management corresponds to simple form of 2d range search

- More general problem: Dynamic 3-sided range searching
 - Maintain set of points in plane such that given query \((q_1, q_2, q_3)\), all points \((x,y)\) with \(q_1 \leq x \leq q_2\) and \(y \geq q_3\) can be found efficiently
3-Sided Range Searching: Static Solution

- **Construction**: Sweep top-down inserting x in persistent B-tree at (x,y)
 - $O(N/B)$ space
 - $O(N/B \log_B N)$ I/O construction using buffer technique

- **Query** (q_1, q_2, q_3): Perform range query with $[q_1, q_2]$ in B-tree at q_3
 - $O(\log_B N + T_B)$ I/Os

- **Dynamic using logarithmic method**
 - Insert: $O(2 \log_B N)$
 - Query: $O(2 \log_B N + T_B)$

- Improve to $O(\log_B N)$? Deletes?
External memory data structures

Internal Priority Search Tree

- **Base tree on** x-coordinates with nodes augmented with points
- **Heap on** y-coordinates
 - Decreasing y values on root-leaf path
 - (x,y) on path from root to leaf holding x
 - If v holds point then $parent(v)$ holds point

![Diagram of Internal Priority Search Tree](image-url)
Internal Priority Search Tree

Insert (10, 21)

- Linear space
- **Insert** of \((x, y)\) (assuming fixed \(x\)-coordinate set):
 - Compare \(y\) with \(y\)-coordinate in root
 - Smaller: Recursively insert \((x, y)\) in subtree on path to \(x\)
 - Bigger: Insert in root and recursively insert old point in subtree

⇒ \(O(\log N)\) update
External memory data structures

Internal Priority Search Tree

- **Query** with \((q_1, q_2, q_3)\) starting at root \(v\):
 - Report point in \(v\) if satisfying query
 - Visit both children of \(v\) if point reported
 - Always visit child(s) of \(v\) on path(s) to \(q_1\) and \(q_2\)

\[\Rightarrow O(\log N + T)\text{ query}\]
External memory data structures

Externalizing Priority Search Tree

• Natural idea: Block tree
• Problem:
 – $O(\log B N)$ I/Os to follow paths to to q_1 and q_2
 – But $O(T)$ I/Os may be used to visit other nodes ("overshooting")
 $\Rightarrow O(\log_B N + T)$ query
External memory data structures

Externalizing Priority Search Tree

• Solution idea:
 – Store B points in each node ⇒
 * $O(B^2)$ points stored in each supernode
 * B output points can pay for “overshooting”
 – Bootstrapping:
 * Store $O(B^2)$ points in each supernode in static structure
External Priority Search Tree

- **Base tree**: Weight-balanced B-tree on x-coordinates ($a,k=B$)
- **Points in “heap order”**:
 - Root stores B top points for each of the $\Theta(B)$ child slabs
 - Remaining points stored recursively
- **Points in each node stored in “$O(B^2)$-structure”**
 - Persistent B-tree structure for static problem

\[\downarrow \]

Linear space
External Priority Search Tree

- **Query** with \((q_1, q_2, q_3)\) starting at root \(v\):
 - Query \(O(B^2)\)-structure and report points satisfying query
 - Visit child \(v\) if
 * \(v\) on path to \(q_1\) or \(q_2\)
 * All points corresponding to \(v\) satisfy query
External Priority Search Tree

- Analysis:
 - $O(\log_B B^2 + \frac{T_v}{B}) = O(1 + \frac{T_v}{B})$ I/Os used to visit node v
 - $O(\log_B N)$ nodes on path to q_1 or q_2
 - For each node v not on path to q_1 or q_2 visited, B points reported in parent(v)

$O(\log_B N + \frac{T_v}{B})$ query
External Priority Search Tree

- **Insert** \((x, y)\) (assuming fixed \(x\)-coordinate set – static base tree):
 - Find relevant node \(v\):
 * Query \(O(B^2)\)-structure to find \(B\) points in root corresponding to node \(u\) on path to \(x\)
 * If \(y\) smaller than \(y\)-coordinates of all \(B\) points then recursively search in \(u\)
 - Insert \((x, y)\) in \(O(B^2)\)-structure of \(v\)
 - If \(O(B^2)\)-structure contains \(>B\) points for child \(u\), remove lowest point and insert recursively in \(u\)

- **Delete**: Similarly
External Priority Search Tree

• Analysis:
 – Query visits $O(\log_B N)$ nodes
 – $O(B^2)$-structure queried/updated in each node
 * One query
 * One insert and one delete

• $O(B^2)$-structure analysis:
 – Query: $O(\log_B B^2 + B / B) = O(1)$
 – Update in $O(1)$ I/Os using update block and global rebuilding

\[O(\log_B N) \text{ I/Os} \]
Removing Fixed x-coordinate Set Assumption

- **Deletion:**
 - Delete point as previously
 - Delete x-coordinate from base tree using global rebuilding
 \[\Rightarrow O(\log_B N) \text{ I/Os amortized} \]

- **Insertion:**
 - Insert x-coordinate in base tree and rebalance (using splits)
 - Insert point as previously

- **Split:** Boundary in v becomes boundary in $\text{parent}(v)$
Removing Fixed x-coordinate Set Assumption

• **Split**: When \(v \) splits \(B \) new points needed in \(\text{parent}(v) \)

• One point obtained from \(v' \) (\(v'' \)) using “bubble-up” operation:
 – Find top point \(p \) in \(v' \)
 – Insert \(p \) in \(O(B^2) \)-structure
 – Remove \(p \) from \(O(B^2) \)-structure of \(v' \)
 – Recursively bubble-up point to \(v \)

• **Bubble-up** in \(O(\log_B w(v)) \) I/Os
 – Follow one path from \(v \) to leaf
 – Uses \(O(1) \) I/O in each node

\[\text{Split in } O(B \log_B w(v)) = O(w(v)) \text{ I/Os} \]
Removing Fixed x-coordinate Set Assumption

- $O(1)$ amortized split cost:
 - Cost: $O(w(v))$
 - Weight balanced base tree: $\Omega(w(v))$ inserts below v between splits

- External Priority Search Tree
 - Space: $O(N/B)$
 - Query: $O(\log_B N + T/B)$
 - Updates: $O(\log_B N)$ I/Os amortized

- Amortization can be removed from update bound in several ways
 - Utilizing lazy rebuilding
Summary: 3-sided Range Searching

- **3-sided range searching**
 - Maintain set of points in plane such that given query \((q_1, q_2, q_3)\), all points \((x, y)\) with \(q_1 \leq x \leq q_2\) and \(y \geq q_3\) can be found efficiently

- We obtained the same bounds as for the 1d case
 - Space: \(O(N/B)\)
 - Query: \(O(\log_B N + T/B)\)
 - Updates: \(O(\log_B N)\) I/Os
Summary: 3-sided Range Searching

- Main problem in designing external priority search tree was the increased fanout in combination with “overshooting”

- Same general solution techniques as in interval tree:
 - Bootstrapping:
 * Use $O(B^2)$ size structure in each internal node
 * Constructed using persistence
 * Dynamic using global rebuilding
 - Weight-balanced B-tree: Split/fuse in amortized $O(1)$
 - Filtering: Charge part of query cost to output
Two-Dimensional Range Search

- We have now discussed structures for special cases of two-dimensional range searching
 - Space: $O(N/B)$
 - Query: $O(\log_B N + T/B)$
 - Updates: $O(\log_B N)$

- Cannot be obtained for general 2d range searching:
 - $O(\log_B^c N)$ query requires $\Omega\left(\frac{N}{B} \log_B N \right)$ space
 - $O\left(\frac{N}{B}\right)$ space requires $\Omega\left(\sqrt{\frac{N}{B}}\right)$ query
External memory data structures

External Range Tree

- **Base tree:** Fan-out $\Theta(\log B N)$ weight balanced tree on x-coordinates
 \[O\left(\frac{\log B N}{\log B \log B N}\right) \text{height} \]

- Points below each node stored in 4 linear space secondary structures:
 - “Right” priority search tree
 - “Left” priority search tree
 - B-tree on y-coordinates
 - Interval tree
 \[\Omega\left(\frac{N}{B} \frac{\log B N}{\log B \log B N}\right) \text{space} \]

Lars Arge
External Range Tree

- Secondary interval tree structure:
 - Connect points in each slab in y-order
 - Project obtained segments in y-axis

- Intervals stored in interval tree
 * Interval augmented with pointer to corresponding points in y-coordinate B-tree in corresponding child node
• **Query** with \((q_1, q_2, q_3, q_4)\) answered in top node with \(q_1\) and \(q_2\) in different slabs \(v_1\) and \(v_2\)

• **Points in slab** \(v_1\)
 – Found with 3-sided query in \(v_1\) using right priority search tree

• **Points in slab** \(v_2\)
 – Found with 3-sided query in \(v_2\) using left priority search tree

• **Points in slabs between** \(v_1\) and \(v_2\)
 – Answer stabbing query with \(q_3\) using interval tree
 ⇒ first point above \(q_3\) in each of the \(O(\log B N)\) slabs
 – Find points using y-coordinate B-tree in \(O(\log B N)\) slabs

External Range Tree

\[\Theta(\log B N) \]
External memory data structures

External Range Tree

• Query analysis:
 – \(O(\log_B N) \) I/Os to find relevant node
 – \(O(\log_B N + T/B) \) I/Os to answer two 3-sided queries
 – \(O(\log_B N + \log_B N/B) = O(\log_B N) \) I/Os to query interval tree
 – \(O(\log_B N + T/B) \) I/Os to traverse \(O(\log_B N) \) B-trees

\[O(\log_B N + T/B) \] I/Os
External Range Tree

- **Insert:**
 - Insert x-coordinate in weight-balanced B-tree
 * Split of v can be performed in $O(w(v) \log_B w(v))$ I/Os
 $\Rightarrow O\left(\frac{\log^2 N}{\log_B \log_B N}\right)$ I/Os
 - Update secondary structures in all $O\left(\frac{\log_B N}{\log_B \log_B N}\right)$ nodes on one root-leaf path
 * Update priority search trees
 * Update interval tree
 * Update B-tree
 $\Rightarrow O\left(\frac{\log^2 N}{\log_B \log_B N}\right)$ I/Os

- **Delete:**
 - Similar and using global rebuilding
Summary: External Range Tree

- **2d range searching** in $O\left(\frac{N}{B} \frac{\log_B N}{\log_B \log_B N}\right)$ space
 - $O(\log_B N + \frac{T}{B})$ I/O query
 - $O\left(\frac{\log_B N}{\log_B \log_B N}\right)$ I/O update

- **Optimal** among $O(\log_B N + \frac{T}{B})$ query structures
External memory data structures

kdB-tree

- **kd-tree:**
 - Recursive subdivision of point-set into two half using vertical/horizontal line
 - Horizontal line on even levels, vertical on uneven levels
 - One point in each leaf

\[\downarrow\]

Linear space and logarithmic height
External memory data structures

kdB-tree

- **Query:**
 - Recursively visit node corresponding to regions intersected query
 - Report point in trees/nodes completely contained in query
- **Analysis:**
 - Number of regions intersecting horizontal line satisfy recurrence
 \[
 Q(N) = 2 + 2Q\left(\frac{N}{4}\right) \Rightarrow Q(N) = O(\sqrt{N})
 \]
 - Query intersects \(4 \cdot O(\sqrt{N}) + T = O(\sqrt{N} + T)\) regions
Lars Arge

External memory data structures

kB-tree

- **KdB-tree:**
 - Blocking of kd-tree but with B point in each leaf
- **Query** as before
 - Analysis as before except that each region now contains B points
 \[
 O(\sqrt{\frac{N}{B}} + \frac{T}{B}) \text{ I/O query}
 \]
kdB-tree

- kdB-tree can be constructed in $O\left(\frac{N}{B} \log_B N\right)$ I/Os
 - somewhat complicated

↓

- Dynamic using logarithmic method:
 - $O\left(\sqrt{\frac{N}{B}} + \frac{T}{B}\right)$ I/O query
 - $O\left(\log_B^2 N\right)$ I/O update
 - $O(N/B)$ space
O-Tree Structure

- O-tree:
 - B-tree on $\Theta(\sqrt{\frac{N}{B}}/\log_B N)$ vertical slabs
 - B-tree on $\Theta(\frac{N}{B}/\log_B N)$ horizontal slabs in each vertical slab
 - kdB-tree on $\Theta(\sqrt{\frac{N}{B}/\log_B N})^2 = \Theta(B \log^2_B N)$ points in each leaf
O-Tree Query

- Perform rangesearch with q_1 and q_2 in vertical B-tree
 - Query all kB-trees in leaves of two horizontal B-trees with x-interval intersected but not spanned by query
 - Perform rangesearch with q_3 and q_4 horizontal B-trees with x-interval spanned by query
 * Query all kB-trees with range intersected by query

\[
\frac{\sqrt{N/B}}{\log_B N} \quad \frac{N/B}{\log_B^2 N} \quad B \log_B^2 N
\]
O-Tree Query Analysis

- **Vertical B-tree query:** $O(\log_B (\sqrt{N/B} / \log_B N)) = O(\sqrt{N/B})$
- **Query of all kB-trees in leaves of two horizontal B-trees:**

 $$O(\sqrt{N/B} / \log_B N) \cdot O(\sqrt{B \log_B^2 N/B + T_B}) = O(\sqrt{N/B} + T_B)$$

- **Query $O(\sqrt{N/B} / \log_B N)$ horizontal B-trees:**

 $$O(\sqrt{N/B} / \log_B N) \cdot O(\log_B (\sqrt{N/B} / \log_B N)) = O(\sqrt{N/B})$$

- **Query $2 \cdot O(\sqrt{N/B} / \log_B N)$ kB-trees not completely in query**

 $$2 \cdot O(\sqrt{N/B} / \log_B N) \cdot O(\sqrt{B \log_B^2 N/B + T_B}) = O(\sqrt{N/B} + T_B)$$

- **Query in kB-trees completely contained in query:** $O(T_B)$

 \[\downarrow \]

 $$O(\sqrt{N/B} + T_B) \text{ I/Os}$$
O-Tree Update

- **Insert:**
 - Search in **vertical** B-tree: \(O(\log_B N)\) I/Os
 - Search in **horizontal** B-tree: \(O(\log_B N)\) I/Os
 - Insert in **kB-tree**: \(O(\log_B^2 (B \log_B^2 N)) = O(\log_B N)\) I/Os
- **Use global rebuilding** when structures grow too big/small
 - B-trees not contain \(\Theta(\sqrt{N/B}/\log_B N)\) elements
 - kB-trees not contain \(\Theta(B \log_B^2 N)\) elements
 \[\downarrow \]
 \(O(\log_B N)\) I/Os

- **Deletes** can be handled in \(O(\log_B N)\) I/Os similarly
Summary: O-Tree

- **2d range searching** in linear space
 - $O(\sqrt{\frac{N}{B}} + \frac{T}{B})$ I/O query
 - $O(\log_B N)$ I/O update

- **Optimal** among structures using linear space

- Can be extended to work in d-dimensions with optimal query bound $O((\frac{N}{B})^{1-\frac{1}{d}} + \frac{T}{B})$
Summary: 3 and 4-sided Range Search

• 3-sided 2d range searching: External priority search tree
 – $O(\log_B N + \frac{T}{B})$ query, $O(\frac{N}{B})$ space, $O(\log_B N)$ update

• General (4-sided) 2d range searching:
 – External range tree: $O(\log_B N + \frac{T}{B})$ query, $\Omega(\frac{N}{B} \frac{\log_B N}{\log_B \log_B N})$ space, $O(\frac{\log^2_B N}{\log_B \log_B N})$ update
 – O-tree: $\Omega(\sqrt{\frac{N}{B}} + \frac{T}{B})$ query, $O(\frac{N}{B})$ space, $O(\log_B N)$ update
Techniques (one final time)

- **Tools:**
 - B-trees
 - Persistent B-trees
 - Buffer trees
 - Logarithmic method
 - Weight-balanced B-trees
 - Global rebuilding

- **Techniques:**
 - Bootstrapping
 - Filtering
Other results

- Many other results for e.g.
 - Higher dimensional range searching
 - Range counting
 - Halfspace (and other special cases) of range searching
 - Structures for moving objects
 - Proximity queries

- Many heuristic structures in database community

- Implementation efforts:
 - LEDA-SM (MPI)
 - TPIE (Duke)
THE END