Yesterday

• Fan-out $\Theta(B^{1/c})$ B-tree ($c \geq 1$)
 – Degree balanced tree with each node/leaf in $O(1)$ blocks
 – $O(N/B)$ space
 – $O(\log_B N + T_B)$ I/O query
 – $O(\log_B N)$ I/O update

• Persistent B-tree
 – Update current version, query all previous versions
 – B-tree bounds with N number of operations performed

• Buffer tree technique
 – Lazy update/queries using buffers attached to each node
 – $O(\frac{1}{B} \log_{\frac{M}{B}} \frac{N}{B})$ amortized bounds
 – E.g. used to construct structures in $O(\frac{N}{B} \log_{\frac{M}{B}} \frac{N}{B})$ I/Os
Simplifying Assumption

- **Model**
 - N : Elements in structure
 - B : Elements per block
 - M : Elements in main memory
 - T : Output size in searching problems

- **Assumption**
 - Today (and tomorrow) assume that $M > B^2$
 - Assumption not crucial but simplify expressions a lot, e.g.:
 $$O\left(\frac{N}{B} \log_{M/B} \frac{N}{B}\right) = O\left(\frac{N}{B} \log B \ N\right)$$
Today

• “Dimension 1.5” problems:
 – More complicated problems: Interval stabbing and point location
 – Looking for same bounds:
 * $O(N/B)$ space
 * $O(\log_B N + T/B)$ query
 * $O(\log_B N)$ update
 * $O(\frac{N}{B} \log_{M/B} \frac{N}{B}) = O(\frac{N}{B} \log_B N)$ construction

• Use of tools/techniques discussed yesterday as well as
 – Logarithmic method
 – Weight-balanced B-trees
 – Global rebuilding
Interval Management

• Problem:
 – Maintain N intervals with unique endpoints dynamically such that stabbing query with point x can be answered efficiently

• As in (one-dimensional) B-tree case we are interested in
 – $O(N/B)$ space
 – $O(\log_B N)$ update
 – $O(\log_B N + T/B)$ query
Interval Management: Static Solution

- **Sweep** from left to right maintaining persistent B-tree
 - Insert interval when left endpoint is reached
 - Delete interval when right endpoint is reached
- Query \(x \) answered by reporting all intervals in B-tree at “time” \(x \)
 - \(O\left(\frac{N}{B}\right) \) space
 - \(O\left(\log_B N + \frac{T_B}{B}\right) \) query
 - \(O\left(\frac{N}{B} \log_B N\right) \) construction using buffer technique
- Dynamic with \(O\left(\log_B^2 N\right) \) insert bound using logarithmic method
Internal Memory Logarithmic Method Idea

• Given (semi-dynamic) structure D on set V
 – $O(\log N)$ query, $O(\log N)$ delete, $O(N \log N)$ construction
• Logarithmic method:
 – Partition V into subsets $V_0, V_1, \ldots V_{\log N}$, $|V_i| = 2^i$ or $|V_i| = 0$
 – Build D_i on V_i

* Delete: $O(\log N)$

* Query: Query each $D_i \Rightarrow O(\log^2 N)$

* Insert: Find first empty D_i and construct D_i out of
 \[1 + \sum_{j=0}^{i-1} 2^j = 2^i \text{ elements in } V_0, V_1, \ldots V_{i-1} \]
 – $O(2^i \log 2^i)$ construction $\Rightarrow O(\log N)$ per moved element
 – Element moved $O(\log N)$ times $\Rightarrow O(\log^2 N)$ amortized
External Logarithmic Method Idea

- Decrease number of subsets V_i to $\log_B N$ to get $O(\log_B^2 N)$ query.

- **Problem**: Since $1 + \sum_{j=0}^{i-1} B^j < B^i$ there are not enough elements in $V_0, V_1, \ldots V_{i-1}$ to build V_i.

- **Solution**: We allow V_i to contain any number of elements $\leq B^i$.
 - **Insert**: Find first D_i such that $\sum_{j=0}^{i} |V_j| < B^i$ and construct new D_i from elements in $V_0, V_1, \ldots V_i$.
 - We move $\sum_{j=0}^{i-1} |V_j| \geq B^{i-1}$ elements.
 - If D_i constructed in $O((|V_i|/B) \log_B |V_i|)$ = $O(B^{i-1}\log_B N)$ I/Os.
 - Every moved element charged $O(\log_B N)$ I/Os.
 - Element moved $O(\log_B N)$ times \Rightarrow $O(\log_B^2 N)$ amortized.
External Logarithmic Method Idea

• Given (semi-dynamic) linear space external data structure with
 – $O(\log_B N + \frac{T}{B})$ I/O query
 – $O(\frac{N}{B} \log_B N)$ I/O construction
 (– $O(\log_B N)$ I/O delete)

↓

• Linear space **dynamic** data structure with
 – $O(\log_B^2 N + \frac{T}{B})$ I/O query
 – $O(\log_B^2 N)$ I/O insert amortized
 (– $O(\log_B N)$ I/O delete)

• Dynamic interval management
 – $O(\log_B^2 N + \frac{T}{B})$ I/O query
 – $O(\log_B^2 N)$ I/O insert amortized
- Base tree on endpoints – “slab” X_v associated with each node v
- Interval stored in highest node v where it contains midpoint of X_v
- Intervals I_v associated with v stored in
 - **Left slab list** sorted by left endpoint (search tree)
 - **Right slab list** sorted by right endpoint (search tree)

\Rightarrow Linear space and $O(\log N)$ update (assuming fixed endpoint set)
• **Query** with x on left side of midpoint of X_{root}
 – Search **left slab list** left-right until finding non-stabbed interval
 – Recurse in left child

$\Rightarrow O(\log N + T)$ query bound
External memory data structures

Externalizing Interval Tree

- **Natural idea:**
 - Block tree
 - Use B-tree for **slab lists**

- Number of stabbed intervals in large slab list may be small (or zero)
 - We can be forced to do I/O in each of \(O(\log N) \) nodes
Externalizing Interval Tree

- Idea:
 - Decrease fan-out to $\Theta(\sqrt{B}) \Rightarrow$ height remains $O(\log_B N)$
 - $\Theta(\sqrt{B})$ slabs define $\Theta(B)$ multislabs
 - Interval stored in two slab lists (as before) and one multislab list
 - Intervals in small multislab lists collected in underflow structure
 - Query answered in ν by looking at 2 slab lists and not $O(\log N)$
External Interval Tree

• Base tree: Fan-out $\Theta(\sqrt{B})$ B-tree on endpoints
 – Interval stored in highest node v where it contains slab boundary

• Each internal node v contains:
 – **Left slab list** for each of $\Theta(\sqrt{B})$ slabs
 – **Right slab lists** for each of $\Theta(\sqrt{B})$ slabs
 – $\Theta(B)$ multislab lists
 – Underflow structure

• Interval in set I_v of intervals associated with v stored in
 – **Left slab list** of slab containing left endpoint
 – **Right slab list** of slab containing right endpoint
 – Widest multislab list it spans

• If $< B$ intervals in multislab list they are instead stored in underflow structure (\Rightarrow contains $\leq B^2$ intervals)
External Interval tree

- Each leaf contains $O(B)$ intervals (unique endpoint assumption)
 - Stored in one $O(1)$ block
- Slab lists implemented using B-trees
 - $O(1 + \frac{T_v}{B})$ query
 - Linear space
 * We may “wasted” a block for each of the $\Theta(\sqrt{B})$ lists in node
 * But only $\Theta(\frac{N}{B\sqrt{B}})$ internal nodes
- Underflow structure implemented using static structure
 - $O(\log_B B^2 + \frac{T_v}{B}) = O(1 + \frac{T_v}{B})$ query
 - Linear space
- Linear space
External Interval Tree

• Query with x
 – Search down tree for x while in node ν
 reporting all intervals in I_ν stabbed by x

• In node ν
 – Query two slab lists
 – Report all intervals in relevant multislab lists
 – Query underflow structure

• Analysis:
 – Visit $O(\log B \ N)$ nodes
 – Query slab lists
 – Query multislab lists $O(1+\frac{T_\nu}{B})$
 – Query underflow structure $O(1+\frac{T_\nu}{B})$

$\Rightarrow O(\log B \ N + \frac{T}{B})$
External Interval Tree

- **Update** (assuming fixed endpoint set – static base tree):
 - Search for relevant node
 - Update two slab lists
 - Update multislab list or underflow structure

\[O(\log_B N) \]

- Update of **underflow structure** in \(O(I) \) I/Os amortized
 - Maintain update block with \(\leq B \) updates
 - Check of update block adds \(O(I) \) I/Os to query bound
 - Rebuild structure when \(B \) updates have been collected using
 \[O\left(\frac{B^2 \log_B B^2}{B} \right) = O(B) \] I/Os (**Global rebuilding**)↓

Update in \(O(\log_B N) \) I/Os amortized
External Interval Tree

• Note:
 – Insert may increase number of intervals in underflow structure for same multislab to B
 – Delete may decrease number of intervals in multislab to B

\[\downarrow \]

Need to move B intervals to/from multislab/underflow structure

• We only move
 – intervals from multislab list when decreasing to size $B/2$
 – Intervals to multislab list when increasing to size B

\[\downarrow \]

$O(1)$ I/Os amortized used to move intervals
Removing Fixed Endpoint Assumption

- We need to use dynamic base tree
 - Natural choice is B-tree

- Insertion:
 - Insert new endpoints and rebalance base tree (using splits)
 - Insert interval as previously in $O(\log_B N)$ I/Os amortized

- Split: Boundary in v becomes boundary in $\text{parent}(v)$
Splitting Interval Tree Node

- When v splits we may need to move $O(w(v))$ intervals
 - Intervals in v containing boundary
 - Intervals in $\text{parent}(v)$ with endpoints in X_v containing boundary
- Intervals move to two new slab and multislab lists in $\text{parent}(v)$
• Moving intervals in v in $O(w(v))$ I/Os
 – Collected in left order (and remove) by scanning left slab lists
 – Collected in right order (and remove) by scanning right slab lists
 – Removed multislab lists containing boundary
 – Remove from underflow structure by rebuilding it
 – Construct lists and underflow structure for v' and v'' similarly
Splitting Interval Tree Node

- Moving intervals in \textit{parent}(v) in \(O(w(v))\) I/Os
 - Collect in left order by scanning left slab list
 - Collect in right order by scanning right slab list
 - Merge with intervals collected in \(v\) \(\Rightarrow\) two new slab lists
 - Construct new multislab lists by splitting relevant multislab list
 - Insert intervals in small multislab lists in underflow structure
Removing Fixed Endpoint Assumption

• Split of node \(v \) use \(O(w(v)) \) I/Os
 - If \(\Omega(w(v)) \) inserts have to be made below \(v \)
 \(\Rightarrow O(I) \) amortized split bound
 \(\Rightarrow O(\log_B N) \) amortized insert bound

• Nodes in standard B-tree do not have this property

(2,4)–tree
BB[α]-tree

- In internal memory BB[α]-trees have the desired property
- Defined using **weight-constraints**
 - Ratio between weight of left child and weight of right child of a node \(v \) is between \(α \) and \(1-α \)

 \[\downarrow \]

 Height \(O(\log N) \)

- If \(\frac{1}{11} < α < 1 - \frac{1}{2}\sqrt{2} \) rebalancing can be performed using rotations

\[\xymatrix{ x \ar[d] & } \quad \xymatrix{ x \ar[d] & y \ar[l] } \]

- Seems hard to implement BB[α]-trees I/O-efficiently
Weight-balanced B-tree

- **Idea:** Combination of B-tree and BB[α]-tree
 - Weight constraint on nodes instead of degree constraint
 - Rebalancing performed using split/fuse as in B-tree

- **Weight-balanced B-tree** with parameters a and k ($a > 4$, $k > 0$)
 - All leaves on same level and contain between k and $2k - 1$ elements
 - Internal node v at level l has $w(v) < 2a^l k$
 - Except for the root, internal node v at level l have $w(v) > \frac{1}{2}a^l k$
 - The root has more than one child
Weight-balanced B-tree

• Every internal node has degree between
 \(\frac{1}{2} a^l k / 2a^{l-1} k = \frac{1}{4} a \) and \(2a^l k / \frac{1}{2} a^{l-1} k = 4a \)

\[\downarrow \]

Height \(O(\log_a \frac{N}{k}) \)

• External memory:
 – Choose \(4a=B \) (or even \(B^c \) for \(0 < c \leq l \))
 – \(2k=B \)

\[\downarrow \]

\(O(N/B) \) space, \(O(\log_B N) \) query
Weight-balanced B-tree

• **Insert:**

 - Search and insert element in leaf v
 - If $w(v)=2k$ then split v
 - For each node v on path to root
 if $w(v)>2a^lk$ then
 split v into two nodes with weight $<2a^lk-2a^{l-1}k<\frac{3}{2}a^lk$
 insert element (ref) in $\text{parent}(v)$

 \[
 \begin{array}{c}
 \frac{1}{4}a^l k...2a^l k \\
 \frac{1}{4}a^{l-1}k...2a^{l-1}k
 \end{array}
 \text{level } l
 \begin{array}{c}
 \frac{1}{4}a^{l-1}k...2a^{l-1}k
 \end{array}
 \text{level } l-1
 \]

• Number of splits after insert is $O(\log_a \frac{N}{k})$
• A split level l node will not split for next $\frac{1}{2}a^lk$ inserts below it
 \[\downarrow\]

Desired property: $\Omega(w(v))$ inserts below v between splits
External Interval Tree

- Use weight-balanced B-tree with $4a = \sqrt{B}$ and $2k=B$ as base structure
 - Space: $O(N/B)$
 - Query: $O(\log_B N + T/B)$
 - Insert: $O(\log_B N)$ I/Os amortized

- Deletes in $O(\log_B N)$ I/Os amortized using global rebuilding:
 - Delete interval as previously using $O(\log_B N)$ I/Os
 - Mark relevant endpoint as deleted
 - Rebuild structure in $O(N \log_B N)$ after $N/2$ deletes

- Note: Deletes can also be handled using fuse operations
External Interval Tree

• External interval tree
 – Space: $O(N/B)$
 – Query: $O(\log_B N + T/B)$
 – Updates: $O(\log_B N)$ I/Os amortized

• Removing amortization:
 – Moving intervals to/from underflow structure
 – Delete global rebuilding
 – Underflow structure update
 – Base node tree splits

Perform operations/construction lazily
Move lazily – complicated:
• Interference
• Queries
Other Applications

• Examples of applications of external interval tree:
 – Practical visualization applications
 – Point location
 – External segment tree

• Examples of applications of weight-balance B-tree
 – Base tree of external data structures
 – Remove amortization from internal structures (alternative to BB[α]-tree)
 – Cache-oblivious structures
Summary: Interval Management

- Interval management corresponds to simple form of 2d range search
 - Diagonal corner queries
- We obtained the same bounds as for the 1d case
 - Space: $O(N/B)$
 - Query: $O(\log B N + \frac{T}{B})$
 - Updates: $O(\log B N)$ I/Os
Summary: Interval Management

- Main problem in designing structure:
 - Binary \rightarrow large fan-out
- Large fan-out resulted in the need for
 - Multislabs and multislab lists
 - Underflow structure to avoid $O(B)$-cost in each node

- General solution techniques:
 - Filtering: Charge part of query cost to output
 - Bootstrapping:
 * Use $O(B^2)$ size structure in each internal node
 * Constructed using persistence
 * Dynamic using global rebuilding
 - Weight-balanced B-tree: Split/fuse in amortized $O(1)$
Planar Point Location

- **Static problem:**
 - Store planar subdivision with N segments on disk such that region containing query point q can be found I/O-efficiently

- **We concentrate on** vertical ray shooting query
 - Segments can store regions it bounds
 - Segments do not have to form subdivision

- **Dynamic problem:**
 - Insert/delete segments
Static Solution

- Vertical line imposes **above-below** order on intersected segments

- **Sweep** from left to right maintaining persistent B-tree on above-below order
 - Left endpoint: Insert segment
 - Right endpoint: Delete segment

- Query q answered by successor query on B-tree at time q_x
 - $O(N/B)$ space
 - $O(\log_B N + T_B)$ query
Static Solution

- **Note**: Not all segments comparable!
 - Have to be careful about what we compare

- **Problem**: Routing elements in internal nodes of leaf oriented B-trees
 - Luckily we can modify persistent B-tree to use regular elements as routing elements

- However, buffer technique construction cannot be used

- Only $O(N \log_B N)$ I/O construction algorithm
- Cannot be made dynamic using logarithmic method
Dynamic Point Location

- Structure similar to external interval tree
 - Built on x-projection of segments
- Fan-out $\Theta(\sqrt{B})$ base B-tree on x-coordinates
 - Interval stored in highest node v where it contains slab boundary

\[\Theta(\sqrt{B}) \]
Dynamic Point Location

• Linear space in node $v \Rightarrow$ linear space
• Query idea:
 – Search for q_x
 – Answer query in each node v encountered
 – Result is globally closest segment

$O(\log_B N)$ query in each node $\Rightarrow O(\log_B^2 N)$ I/O query
Dynamic Point Location

• Secondary structures:
 – For each slab:
 * **Left slab structure** on segments with left endpoint in slab
 * **Right slab structure** on segments with right endpoint in slab
 – **Multislab structure** on part of segments completely spanning slab
Dynamic Point Location

- To answer query we query
 - One left slab structure
 - One right slab structure
 - Multislab structure
 and return globally closest segment

- We need to answer query on each secondary structure in $O(\log_B N)$ I/Os
Left (right) slab Structure

- B-tree on segments sorted by y-coordinate of right endpoint
- Each internal node v augmented with $\Theta(B)$ segments
 - For each child c_v:
 - The segment in leaves below c_v with minimal left x-coordinate
 \downarrow
 $O(N/B)$ space (each node fits in block)

- Construction:
 - Sort segments
 - Build level-by-level bottom up
 \downarrow
 $O\left(\frac{N}{B} \log_{M/B} \frac{N}{B}\right)$ I/Os
Left (right) slab Structure

- **Invariant**: Search top-down such that i^{th} step visit nodes v_u and v_d
 - v_u contains answer to **upward** query among segments on level i
 - v_d contains answer to **downward** query among segments on level i
 \[\Rightarrow v_u \text{ contains query result when reaching leaf level} \]

- **Algorithm**: At level i
 - Consider two children of v_u and v_d containing two segments hit on level i
 - Update v_u and v_d to relevant of these nodes base on their segments

- **Analysis**: $O(1)$ I/Os on each of $O(\log_B N)$ levels
Multislab Structure

- Segments crossing a slab are ordered by *above-below order*
 - But *not* all segments are comparable!
- B-tree in each of $\Theta(\sqrt{B})$ slabs on segments crossing the slab
 \Rightarrow query answered in $O(\log_B N)$ I/Os
- **Problem:** Each segment stored in many structures
- **Key idea:**
 - Use *total order* consistent with above-below order in each slab
 - Build one structure on *total order*
Multislab Structure

- Fan-out $\Theta(\sqrt{B})$ B-tree on total order
- Node v augmented with $\Theta(\sqrt{B})$ segments for each of $\Theta(\sqrt{B})$ children
 - For child v_i and each slab s_i:

 Maximal segment below v_i crossing s_i

 $\Rightarrow O(N/B)$ space (each node v fits in one block)

- $O(\log_B N)$ query as in normal B-tree
 - Only $\Theta(\sqrt{B})$ segments crossing s_i considered in v
Multislab Structure Construction

- Multislab structure constructed in $O(N/B)$ I/Os bottom-up
 - after total order computed

- **Sorting:**
 - Distribute segments to a list for each multislab
 - Sort lists individually
 - Merge sorted lists: Repeatedly consider top segment all lists and select/output (any) segment not below any of the other segments

- **Correctness:**
 - Selected top segment cannot be below any unprocessed segment

- **Analysis:**
 - Distribute/Merge in $O(N/B)$, sort in $O(N/B \log_{M/B} N)$ I/Os
Dynamic Point Location

- Static point location structure:
 - $O(N/B)$ space
 - $O(\frac{N}{B} \log_B \frac{N}{B})$ I/O construction
 - $O(\log_B^2 N)$ I/O query

- Updates involve:
 - Updating (and rebalance) base tree
 - Updating two slab structures
 - Updating one multislab structure

- Base tree update as in interval tree case using weight-balanced B-tree
 - Inserts: Node split in $O(w(v))$ I/Os
 - Deletes: Global rebuilding
Updating Left (right) Slab Structures

- Recall that each internal node augmented with minimal left x-coordinate segment below each child

 Insert:
 - Insert in leaf l and (B-tree) rebalance
 - Insert segment in relevant nodes on root-l path

 Delete:
 - Delete from leaf l and rebalance as in B-tree
 - Find new minimal x-coordinate segment in l
 - Replace deleted segment in relevant nodes on root-l path

$O(\log_B N)$ update
Updating Multislab Structure

- **Problem:** Insertion of segment may change total order completely

 - Seems hard to control changes

 \[\downarrow \]

 Need to rebuild multislab structure completely!

- **Segment deletion** does not change order \(\Rightarrow O(\log_B N) \) I/O delete
Updating Multislab Structure

• Recall that each node in multislab structure is augmented with maximal segment for each child and each slab
 – Deleted segment may be stored in nodes on one root-leaf path
 – Stored segment may correspond to several slabs

• **Delete** in $O(\log_B N)$ I/Os amortized:
 – Search leaf-root path and replace segment with segment above in relevant slab
 – Relevant replacement segments found in leaf or on path
 – Use global rebuilding to delete from leaf
Dynamic Point Location

• Semi-dynamic point location structure:
 – $O(N/B)$ space
 – $O\left(\frac{N}{B} \log B \frac{N}{B}\right)$ I/O construction
 – $O\left(\log^2 B N\right)$ I/O query
 – $O\left(\log B N\right)$ I/O amortized delete

• Using external logarithmic method we get:
 – Space: $O(N/B)$
 – Insert: $O\left(\log^2 B N\right)$ amortized
 – Deletes: $O\left(\log B N\right)$ amortized
 – Query: $O\left(\log^3 B N\right)$
 * Improved to $O\left(\log^2 B N\right)$ (complicated – fractional cascading)
Summary: Dynamic Point Location

• Maintain planar subdivision with N segments such that region containing query point q can be found efficiently

• We did not quite obtain desired ($1d$) bounds
 – Space: $O(N/B)$
 – Query: $O(\log_B^2 N)$
 – Insert: $O(\log_B^2 N)$ amortized
 – Deletes: $O(\log_B N)$ amortized

• Structure based on interval tree with use of several techniques, e.g.
 – Weight-balancing, logarithmic method, and global rebuilding
 – Segment sorting and augmented B-trees
Summary

• **Today** we discussed “dimension 1.5” problems:
 – **Interval stabbing** and point location
 – We obtained linear space structures with update and query bounds similar to the ones for 1d structures

• We developed a number of
 – Logarithmic method
 – Weight-balanced B-trees
 – Global rebuilding

• We also used techniques from yesterday:
 – Persistent B-trees
 – Construction using buffer technique
Summary

- **Tomorrow** we will consider two dimensional problems
 - 3-sided queries
 - Full (4-sided) queries