External Memory Geometric Data Structures

Lars Arge
Duke University

June 27, 2002

Summer School on Massive Datasets
External Memory Geometric Data Structures

• Many massive dataset applications involve geometric data (or data that can be interpreted geometrically)
 – Points, lines, polygons
• Data need to be stored in data structures on external storage media such that on-line queries can be answered I/O-efficiently
• Data often need to be maintained during dynamic updates

• Examples:
 – Phone: Wireless tracking
 – Consumer: Buying patterns (supermarket checkout)
 – Geography: NASA satellites generate 1.2 TB per day
Example: LIDAR terrain data

- Massive (irregular) point sets (1-10m resolution)
- Appalachian Mountains (between 50GB and 5TB)
- Need to be queried and updated efficiently

Example: Jockey’s ridge (NC cost)
External memory data structures

Model

- **Model** as previously
 - N : Elements in structure
 - B : Elements per block
 - M : Elements in main memory
 - T : Output size in searching problems

- **Focus** on
 - Worst-case structures
 - Dynamic structures
 - Fundamental structures
 - Fundamental design techniques
Outline

• **Today:** Dimension one
 – External search trees: B-trees
 – Techniques/tools
 * Persistent B-trees (search in the past)
 * Buffer trees (efficient construction)

• **Tomorrow:** “Dimension 1.5”
 – Handling intervals/segments (interval stabbing/point location)
 – Techniques/tools: Logarithmic method, weight-balanced B-trees, global rebuilding

• **Saturday:** Dimension two
 – Two-dimensional range searching
External Search Trees

- Binary search tree:
 - Standard method for search among \(N \) elements
 - We assume elements in leaves

\[
O(\log_2 N)
\]

- Search traces at least one root-leaf path
- If nodes stored arbitrarily on disk
 \(\Rightarrow \) Search in \(O(\log_2 N) \) I/Os
 \(\Rightarrow \) Rangesearch in \(O(\log_2 N + T) \) I/Os
External memory data structures

External Search Trees

\[O(\log_2 B) \]

\[\Theta(B) \]

- BFS blocking:
 - Block height \(O(\log_2 N) / O(\log_2 B) = O(\log_B N) \)
 - Output elements blocked

\[\downarrow \]

Rangesearch in \(O(\log_B N + \frac{T}{B}) \) I/Os

- **Optimal**: \(O(\frac{N}{B}) \) space and \(O(\log_B N + \frac{T}{B}) \) query
External Search Trees

• Maintaining BFS blocking during updates?
 – Balance normally maintained in search trees using rotations

• Seems very difficult to maintain BFS blocking during rotation
 – Also need to make sure output (leaves) is blocked!
B-trees

- BFS-blocking naturally corresponds to tree with fan-out $\Theta(B)$

- B-trees balanced by allowing node degree to vary
 - Rebalancing performed by splitting and merging nodes
(a,b)-tree

- T is an (a,b)-tree ($a \geq 2$ and $b \geq 2a - 1$)
 - All leaves on the same level (contain between a and b elements)
 - Except for the root, all nodes have degree between a and b
 - Root has degree between 2 and b

- (a,b)-tree uses linear space and has height $O(\log_a N)$

\[\downarrow \]

Choosing $a,b = \Theta(B)$ each node/leaf stored in one disk block

\[\downarrow \]

$O(N/B)$ space and $O(\log_B N + T/B)$ query
(a,b)-Tree Insert

- Insert:

Search and insert element in leaf v
DO v has $b+1$ elements

Split v:
make nodes v' and v'' with
$\left\lfloor \frac{b+1}{2} \right\rfloor \leq b$ and $\left\lceil \frac{b+1}{2} \right\rceil \geq a$ elements
insert element (ref) in $parent(v)$
(make new root if necessary)
$v = parent(v)$

- Insert touch $O(\log_a N)$ nodes
(a,b)-Tree Insert
(a,b)-Tree Delete

- **Delete:**

 Search and delete element from leaf v

 DO v has a-1 children

 Fuse v with sibling v':

 move children of v' to v

 delete element (ref) from $\text{parent}(v)$

 (delete root if necessary)

 If v has $>b$ (and $\leq a+b-1$) children split v

 $v = \text{parent}(v)$

- **Delete touch** $O(\log_a N)$ nodes
(a,b)-Tree Delete
(a,b)-Tree

- (a,b)-tree properties:
 - If $b = 2a - 1$ one update can cause many rebalancing operations
 - If $b \geq 2a$ update only cause $O(1)$ rebalancing operations amortized
 - If $b > 2a$ $O\left(\frac{1}{b/2 - a}\right) = O\left(\frac{1}{a}\right)$ rebalancing operations amortized
 * Both somewhat hard to show
 - If $b = 4a$ easy to show that update causes $O\left(\frac{1}{a} \log_a N\right)$ rebalance operations amortized
 * After split during insert a leaf contains $\approx 4a/2 = 2a$ elements
 * After fuse (and possible split) during delete a leaf contains between $\approx 2a$ and $\approx 5/2 a$ elements
(a,b)-Tree

- (a,b)-tree with leaf parameters \(a_l, b_l \) (\(b=4a \) and \(b_l=4a_l \))
 - Height \(O(\log_a \frac{N}{a_l}) \)
 - \(O\left(\frac{1}{a_l}\right) \) amortized leaf rebalance operations
 - \(O\left(\frac{1}{a\cdot a_l}\log_a N\right) \) amortized internal node rebalance operations

- B-trees: (a,b)-trees with \(a, b = \Theta(B) \)
 - B-trees with elements in the leaves sometimes called B\(^+\)-tree

- Fan-out \(k \) B-tree:
 - \((k/4,k)\)-trees with leaf parameter \(\Theta(B) \) and elements in leaves

- Fan-out \(\Theta(B^{\frac{1}{c}}) \) B-tree with \(c \geq 1 \)
 - \(O(N/B) \) space
 - \(O(\log_{B^{\frac{1}{c}}} N + \frac{T}{B}) = O(\log_B N + \frac{T}{B}) \) query
 - \(O(\log_B N) \) update
Persistent B-tree

- In some applications we are interested in being able to access previous versions of data structure
 - Databases
 - Geometric data structures (later)
- Partial persistence:
 - Update current version (getting new version)
 - Query all versions

- We would like to have partial persistent B-tree with
 - $O(N/B)$ space – N is number of updates performed
 - $O(\log_B N)$ update
 - $O(\log_B N + T/B)$ query in any version
Persistent B-tree

- East way to make B-tree partial persistent
 - Copy structure at each operation
 - Maintain “version-access” structure (B-tree)

- Good $O(\log_B N + T/B)$ query in any version, but
 - $O(N/B)$ I/O update
 - $O(N^2/B)$ space
Persistent B-tree

• Idea:
 – Elements augmented with "existence interval"
 – Augmented elements stored in one structure
 – Elements "alive" at "time" t (version t) form B-tree

 – Version access structure (B-tree) to access B-tree root at time t
Persistent B-tree

- Directed **acyclic graph** with elements in leaves (sinks)
 - Routing elements in internal nodes
- Each element (routing element) and node has **existence interval**
- Nodes **alive** at time t make up $(B/4, B)$-tree on alive elements
- B-tree on all roots (version access structure)

\[\downarrow \]

Answer query at version t in $O(\log_B N + \frac{T}{B})$ I/Os as in normal B-tree

- **Additional invariant:**
 - New node (only) contains between $\frac{3}{8} B$ and $\frac{7}{8} B$ live elements

\[\downarrow \]

$O(N/B)$ blocks
Persistent B-tree Insert

- Search for relevant leaf l and insert new element
- If l contains $x > B$ elements: **Block overflow**
 - Version split:
 - Mark l dead and create new node v with x alive element
 - If $x > \frac{7}{8} B$: **Strong overflow**
 - If $x < \frac{3}{8} B$: **Strong underflow**
 - If $\frac{3}{8} B \leq x \leq \frac{7}{8} B$ then recursively update $parent(l)$:
 - **Delete** reference to l and **insert** reference to v
Persistent B-tree Insert

- **Strong overflow** \((x > \frac{7}{8} B)\)
 - Split \(v\) into \(v'\) and \(v''\) with \(\frac{x}{2}\) elements each \((\frac{3}{8} B < \frac{x}{2} \leq \frac{1}{2} B)\)
 - Recursively update \(parent(l)\):
 - Delete reference to \(l\) and insert reference to \(v'\) and \(v''\)

- **Strong underflow** \((x < \frac{3}{8} B)\)
 - Merge \(x\) elements with \(y\) live elements obtained by version split on sibling \((x + y \geq \frac{1}{2} B)\)
 - If \(x + y \geq \frac{7}{8} B\) then (strong overflow) perform split
 - Recursively update \(parent(l)\):
 - Delete two references insert one or two references
Persistent B-tree Delete

- Search for relevant leaf l and mark element dead
- If l contains $x < \frac{1}{4}B$ alive elements: Block underflow
 - Version split:
 Mark l dead and create new node v with x alive element
 - Strong underflow ($x < \frac{3}{8}B$):
 Merge (version split) and possibly split (strong overflow)
 - Recursively update $parent(l)$:
 Delete two references insert one or two references
Persistent B-tree

Insert

Block overflow

Version split

Strong overflow

Split

don -1,+2

don -1,+1

Delete

Block underflow

Version split

Strong underflow

Merge

Strong overflow

don -2,+2

don -2,+1

0,0
Persistent B-tree Analysis

• **Update:** $O(\log_B N)$
 - Search and “rebalance” on one root-leaf path

• **Space:** $O(N/B)$
 - At least $\frac{1}{8} B$ updates in leaf in *existence interval*
 - When leaf l die
 * At most two other nodes are created
 * At most one block over/underflow one level up (in $\text{parent}(l)$)

 \[\begin{align*}
 &\text{During } N \text{ updates we create:} \\
 &\quad \ast \quad O\left(\frac{N}{B}\right) \text{ leaves} \\
 &\quad \ast \quad O\left(\frac{N}{B^i}\right) \text{ nodes } i \text{ levels up} \\
 &\Rightarrow \text{Space: } \bigoplus_{i} O\left(\frac{N}{B^i}\right) = O\left(\frac{N}{B}\right)
 \end{align*} \]
Summary: B-trees

- **Problem**: Maintaining N elements dynamically

- **Fan-out $\Theta(B^{1/c})$ B-tree ($c \geq 1$)**
 - Degree balanced tree with each node/leaf in $O(1)$ blocks
 - $O(N/B)$ space
 - $O(\log_B N + T/B)$ I/O query
 - $O(\log_B N)$ I/O update

- **Space and query optimal in comparison model**

- **Persistent B-tree**
 - Update current version
 - Query all previous versions
Other B-tree Variants

• **Weight-balanced B-trees**
 – Weight instead of degree constraint
 – Nodes high in the tree do not split very often
 – Used when secondary structures are used

 More later!

• **Level-balanced B-trees**
 – Global instead of local balancing strategy
 – Whole subtrees rebuilt when too many nodes on a level
 – Used when parent pointers and divide/merge operations needed

• **String B-trees**
 – Used to maintain and search (variable length) strings

 More later (Paolo)
B-tree Construction

• In internal memory we can sort N elements in $O(N \log N)$ time using a balanced search tree:
 – Insert all elements one-by-one (construct tree)
 – Output in sorted order using in-order traversal

• Same algorithm using B-tree use $O(N \log_B N)$ I/Os
 – A factor of $O(B \frac{\log M}{\log B})$ non-optimal

• We could of course build B-tree bottom-up in $O(\frac{N}{B} \log_{M/B} \frac{N}{B})$ I/Os
 – But what about persistent B-tree?
 – In general we would like to have dynamic data structure to use in $O(\frac{N}{B} \log_{M/B} \frac{N}{B})$ algorithms $\Rightarrow O(\frac{1}{B} \log_{M/B} \frac{N}{B})$ I/O operations
Buffer-tree Technique

- **Main idea**: Logically group nodes together and add buffers
 - Insertions done in a “lazy” way – elements inserted in buffers.
 - When a buffer runs full elements are pushed one level down.
 - Buffer-emptying in $O(M/B)$ I/Os
 - \Rightarrow every *block* touched constant number of times on each level
 - \Rightarrow inserting N elements (N/B blocks) costs $O\left(\frac{N}{B} \log_{M/B} \frac{N}{B}\right)$ I/Os.
Basic Buffer-tree

- **Definition:**
 - Fan-out $\frac{M}{B}$ B-tree — $(\frac{1}{4} \cdot \frac{M}{B}, \frac{M}{B})$-tree with size B leaves
 - Size M buffer in each internal node

- **Updates:**
 - Add time-stamp to insert/delete element
 - Collect B elements in memory before inserting in root buffer
 - Perform **buffer-emptying** when buffer runs full
Basic Buffer-tree

- Note:
 - Buffer can be larger than M during recursive buffer-emptying
 * Elements distributed in sorted order
 \Rightarrow at most M elements in buffer unsorted
 - Rebalancing needed when “leaf-node” buffer emptied
 * Leaf-node buffer-emptying only performed after all full internal node buffers are emptied
Basic Buffer-tree

- Internal node buffer-empty:
 - Load first M (unsorted) elements into memory and sort them
 - Merge elements in memory with rest of (already sorted) elements
 - Scan through sorted list while
 * Removing “matching” insert/deletes
 * Distribute elements to child buffers
 - Recursively empty full child buffers

- Emptying buffer of size X takes $O(X/B+M/B)=O(X/B)$ I/Os
Basic Buffer-tree

- **Buffer-empty** of leaf node with K elements in leaves

 - Sort buffer as previously
 - Merge buffer elements with elements in leaves
 - Remove “matching” insert/deletes obtaining K' elements
 - If $K' < K$ then
 * Add $K-K'$ “dummy” elements and insert in “dummy” leaves

 Otherwise
 * Place K elements in leaves
 * Repeatedly insert block of elements in leaves and rebalance

- Delete dummy leaves and rebalance when all full buffers emptied
Basic Buffer-tree

• Invariant:
 Buffers of nodes on path from root to emptied leaf-node are empty
 \[\downarrow \]

 • Insert rebalancing (splits)
 performed as in normal B-tree

 \[\overset{v}{\longrightarrow} \overset{v'}{\longrightarrow} \overset{v''}{\longrightarrow} \]

 • Delete rebalancing: \(v'\) buffer emptied before fuse of \(v\)
 – Necessary buffer emptyings performed before next dummy-block delete
 – Invariant maintained

 \[\overset{v}{\longrightarrow} \overset{v'}{\longrightarrow} \overset{v}{\longrightarrow} \]
Basic Buffer-tree

- Analysis:
 - Not counting rebalancing, a buffer-emptying of node with $X \geq M$ elements (full) takes $O(X/B)$ I/Os
 \Rightarrow total full node emptying cost $O(\frac{N}{B} \log_{\frac{M}{B}} \frac{N}{B})$ I/Os
 - Delete rebalancing buffer-emptying (non-full) takes $O(M/B)$ I/Os
 \Rightarrow cost of one split/fuse $O(M/B)$ I/Os
 - During N updates
 * $O(N/B)$ leaf split/fuse
 * $O(\frac{N}{B} \log_{\frac{M}{B}} \frac{N}{B})$ internal node split/fuse

\downarrow

Total cost of N operations: $O(\frac{N}{B} \log_{\frac{M}{B}} \frac{N}{B})$ I/Os
Basic Buffer-tree

• **Emptying all buffers** after N insertions:
 Perform buffer-emptying on all nodes in BFS-order
 \[\Rightarrow \text{resulting full-buffer emptyings cost } O\left(\frac{N}{B} \log_{\frac{M}{B}} \frac{N}{B}\right) \text{ I/Os} \]
 empty \(O\left(\frac{N}{M/B}\right) \) non-full buffers using \(O(M/B) \) \(\Rightarrow\) \(O(N/B) \) I/Os

\[
\begin{array}{c}
\frac{1}{4} & M & B & \cdots & M & \frac{N}{B} \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\end{array}
\]

\[\downarrow\]

• N elements can be sorted using buffer tree in $O\left(\frac{N}{B} \log_{\frac{M}{B}} \frac{N}{B}\right)$ I/Os
Buffer-tree Technique

- **Insert** and **deletes** on buffer-tree takes $O\left(\frac{1}{B} \log_{M/B} \frac{N}{B}\right)$ I/Os amortized
 - Alternative rebalancing algorithms possible (e.g. top-down)
- One-dim. **rangesearch** operations can also be supported in $O\left(\frac{1}{B} \log_{M/B} \frac{N}{B} + \frac{T}{B}\right)$ I/Os amortized
 - Search elements handle lazily like updates
 - All elements in relevant sub-trees reported during buffer-emptying
 - Buffer-emptying in $O\left(\frac{X}{B} + T'/B\right)$,
 where T' is reported elements

- Buffer-tree can e.g. be use in standard plane-sweep algorithms for orthogonal line segment intersection (alternative to distribution sweeping)
Buffered Priority Queue

- Basic buffer tree can be used in external priority queue
- To delete minimal element:
 - Empty all buffers on leftmost path
 - Delete $\frac{1}{4}M$ elements in leftmost leaf and keep in memory
 - Deletion of next M minimal elements free
 - Inserted elements checked against minimal elements in memory

- $O\left(\frac{M}{B} \log_{M/B} \frac{N}{B}\right)$ I/Os every $O(M)$ delete $\Rightarrow O\left(\frac{1}{B} \log_{M/B} \frac{N}{B}\right)$ amortized
Other External Priority Queues

- External priority queue has been used in the development of many I/O-efficient graph algorithms

- Buffer technique can be used on other priority queue structure
 - Heap
 - Tournament tree

- Priority queue supporting update often used in graph algorithms
 - $O\left(\frac{1}{B} \log_2 \frac{N}{B}\right)$ on tournament tree
 - Major open problem to do it in $O\left(\frac{1}{B} \log_{M/B} \frac{N}{B}\right)$ I/Os

- Worst case efficient priority queue has also been developed
 - B operations require $O\left(\log_{M/B} \frac{N}{B}\right)$ I/Os
Other Buffer-tree Technique Results

- Attaching $\Theta(B)$ size buffers to normal B-tree can also be used to improve update bound
- Buffered segment tree
 - Has been used in batched range searching and rectangle intersection algorithm
- Can normally be modified to work in D-disk model using D-disk merging and distribution
- Has been used on String B-tree to obtain I/O-efficient string sorting algorithms
- Can be used to construct (bulk load) many data structures, e.g:
 - R-trees
 - Persistent B-trees
Summary

• Fan-out $\Theta(B^{1/c})$ B-tree ($c \geq 1$)
 – Degree balanced tree with each node/leaf in $O(1)$ blocks
 – $O(N/B)$ space
 – $O(\log B N + T_B)$ I/O query
 – $O(\log B N)$ I/O update

• Persistent B-tree
 – Update current version, query all previous versions
 – B-tree bounds with N number of operations performed

• Buffer tree technique
 – Lazy update/queries using buffers attached to each node
 – $O(\frac{1}{B} \log M/B \frac{N}{B})$ amortized bounds
 – E.g. used to construct structures in $O(\frac{N}{B} \log M/B \frac{N}{B})$ I/Os
Tomorrow

- “Dimension 1.5” problems: Interval stabbing and point location

- Use of tools/techniques discussed today as well as
 - Logarithmic method
 - Weight-balanced B-trees
 - Global rebuilding