
XMLTK: An XML Toolkit for Scalable XML Stream Processing

Iliana Avila-Campillo∗ Todd J. Green† Ashish Gupta∗ Makoto Onizuka‡

Demian Raven∗ Dan Suciu∗

Abstract

We describe a toolkit for highly scalable XML data
processing, consisting of two components. The first
is a collection of stand-alone XML tools, s.a. sort-
ing, aggregation, nesting, and unnesting, that can be
chained to express more complex restructurings. The
second is a highly scalable XPath processor for XML
streams that can be used to develop scalable solutions
for XML stream applications. In this paper we dis-
cuss the tools, and some of the techniques we used to
achieve high scalability. The toolkit is freely available
as an open-source project.

1 Introduction

We describe a toolkit for highly scalable XML data
processing. The toolkit has two components. The
first is a collection of stand-alone tools that perform
simple XML transformations (sorting, aggregation,
nesting, unnesting, etc) and that can be chained to
express more complex restructurings. The second is
a highly scalable XPath processor for XML streams
that can be used to develop scalable solutions for
XML stream applications. The toolkit is an open-
source project at http://xmltk.sourceforge.net.

Our project has two goals. The first is to provide
in the public domain a collection of stand-alone XML
tools, in analogy with Unix commands for text files.
Each tool performs one single kind of transformation,
but can scale to arbitrarily large XML documents in,
essentially, linear time, and using only a moderate
amount of main memory. There is a need for such
tools in user communities that have traditionally pro-
cessed data formatted in line-oriented text files, such
as network traffic logs, web server logs, telephone call
records, and biological data. Today, many of these
applications are done by combinations of Unix com-
mands, such as grep, sed, sort, and awk. All these
data formats can and should be translated into XML,
but then all the line-oriented Unix commands become

∗University of Washington
†Xyleme (work done at UW).
‡NTT Cyber Space Labs, NTT Corp (work done at UW).

useless. Our goal is to provide tools that can process
the data after it has been migrated to XML.

Our second goal is to study highly efficient XML
stream processing techniques. The problem in XML
stream processing is the following: we are given a
large number of boolean XPath expressions and a
continuous stream of XML documents and have to
decide, for each document, which of the XPath ex-
pressions it satisfies. In stream applications like pub-
lish/subscribe [2] or XML packet routing [15] this
evaluation needs to be done at a speed comparable
with the network throughput, and scale to large num-
bers of XPath expressions (say 104 − 106). DOM-
based approaches typically take too long to parse, and
in current XPath processors performance decreases
linearly with the number of XPath expressions. Our
approach, described in detail in [10], is to use a SAX
parser and a lazy deterministic automaton, DFA. This
results in a constant throughput, independent of the
number of XPath expressions. While this may sound
counter-intuitive, it essentially trades time for space,
since a DFA takes a constant amount of time to pro-
cess one SAX event, but its number of states may
grow very large. The work in [10] performs a theo-
retical study of the number of states, justifying this
approach, and validates it experimentally for up to
106 XPath expressions, with an XML data through-
put of about 5.4MB/s.

We report here one novel technique for stream
XML processing called Stream IndeX, SIX, and de-
scribe its usage in conjunction with the stand-alone
tools. A SIX for an XML file (or XML stream) con-
sists of a sequence of byte offsets in the XML file
that can be used by the XPath processor to skip
unneeded portions. When used in applications like
XML packet routing, the SIX needs to be computed
only once for each packet, which can be done when
the XML packet is first generated, then routed to-
gether with the packet. It is important here to keep
the size of the SIX small, otherwise it would consume
additional bandwidth: in our experiments the SIX
is about 2% of the data. When used in conjunction
with the stand-alone tools, one computes once a SIX
file for each XML file, then all the tools running on
that XML file will automatically run faster.

1

<dblp>
<book key="books/oreilly/HaroldM01">
<author>Elliotte Rusty Harold</author>
<author>W. Scott Means</author>
<title>XML in a Nutshell</title>
<publisher>O’Reilly</publisher>
<year>2001</year>
<isbn>0-596-00058-8</isbn>
</book>
<inproceedings key="conf/www/Devillers01">
<author>Sylvain Devillers</author>
<title>XML and XSLT Modeling for Multimedia

Bitstream Manipulation.</title>
<year>2001</year>
<booktitle>WWW Posters</booktitle>
<ee>http://www10.org/cdrom/posters/1112.pdf</ee>
<url>db/conf/www/www2001p.html#Devillers01</url>
</inproceedings>
<inproceedings key="conf/webdb/HosoyaP00">
<author>Haruo Hosoya</author>
<author>Benjamin C. Pierce</author>
<title>XDuce: A Typed XML Processing Language

(Preliminary Report).</title>
<pages>111-116</pages>
<year>2000</year>
<booktitle>WebDB (Informal Proceedings)</booktitle>
<ee>www.research.att.com/conf/webdb2000/PAPERS/7c.ps</ee>
<url>db/conf/webdb/webdb2000.html#HosoyaP00</url>
</inproceedings>
<article key="journals/cn/GirardotS00">
<author>Marc Girardot</author>
<author>Neel Sundaresan</author>
<title>Millau: an encoding format for efficient representation

and exchange of XML over the Web.</title>
<pages>747-765</pages>
<year>2000</year>
<volume>33</volume>
<journal>WWW9 / Computer Networks</journal>
<number>1-6</number>
<url>db/journals/cn/cn33.html#GirardotS00</url>
</article>

</dblp>

Figure 1: Sample XML data from the DBLP database

We describe the stand-alone tools in Sec. 2 then
describe the XPath processor in Sec. 3. Related work
is discussed in Sec. 4, then we conclude in Sec. 5.

2 The Tools

2.1 Overview

The stand-alone tools currently in the XML toolkit
are summarized in Fig. 2. Every tool’s inputs/outputs
XML stream via standard i/o, except file2xml which
takes a directory as an input and outputs XML to the
standard output.

xsort is by far the most complex one and we de-
scribe it in more detail. The others we only illustrate
briefly, for lack of space, but note that most can be
used in quite versatile ways. We shall illustrate the
tools on the DBLP database [13]; a fragment is shown
in Fig. 1. There are 256599 bibliographic entries in
the version used in our experiments.

2.2 Sorting

The command below sorts the entries in the bib file
in ascending order of their year of publication1:

xsort -c /dblp -e * -k year/text()

dblp.xml > sorted-dblp.xml

The first argument, -c, defines the context: this is
the collection under which we are sorting. The sec-
ond argument, -e, specifies the items to be sorted
under the context: for the example in Fig. 1, this
matches the book, inproceedings, inproceedings,
and article items. Finally, the last argument, -k,
defines the key on which we sort the items. The result
of this command is the file sorted-dblp.xml which
lists the four publications in increasing order of the
year. In the four publications in Fig. 1 year has val-
ues 2001, 2001, 2000, and 2000, hence the items will
be listed in the output in the order 3, 4, 1, 2, since
the sorting algorithm we use is stable. The input file,
when omitted, defaults to the standard input.

The command arguments for xsort are shown in
Fig. 2, with some details omitted. There can be sev-
eral context arguments (-c), each followed by several
item arguments (-e), and each followed by several
key arguments (-k). The semantics is illustrated in
Fig. 3. First, all context nodes in the tree are iden-
tified (denoted c in the figure): all nodes that are
not below some context node are simply copied to
the output in unchanged order. Next, for each con-
text node, all nodes that match that context’s item
expressions are identified (denoted e1, e2, ... in
the figure), and a key value is computed for each of
them, by evaluating the corresponding key expres-
sions. These item nodes are then sorted according to
the key values, and output in increasing order of the
keys. Notice that the nodes that are below a context,
but not below an item are deleted from the output.

We show below several examples of xsort.

Simple sorting We start with a simple example:

xsort -c /dblp -e */author -k text()

which returns all authors, sorted by their text value.
Other elements under dblp that are not author ele-
ments are erased. The result is shown in Fig. 4 (a).

Sorting with multiple key expressions The fol-
lowing example illustrates the use of two keys. As-
suming that author elements have a firstname and a
lastname subelement, it returns a list of all authors,
sorted by lastname first, then by firstname:

1Unix shells interpret the wild-cards, so the command
should be given like: xsort -c /dblp -e "*" We omit
the quotation marks throughout the paper to avoid clutter.

2

Command Arguments (fragment) Brief description
P = XPath expr, N = number

xsort (−c P (−e P (−k P)∗)∗)∗ sorts an XML stream
xagg (−c P (−a aggFun valP)∗)∗ computes the aggregate function aggFun

(see Fig. 6)
xnest (−e P ((−k P)∗) | −n N)∗ groups elements based on key equality or number
xflatten (−r)? − e P flattens collections

(deletes tags, but not content)
xdelete −e P removes elements or attributes
xpair (−e P − g P)∗ replicates an element multiple times,

pairing it with each element in a collection
xhead (−c P (−e P (−n N)?)∗)∗ retains only a prefix of a collection
xtail (−c P (−e P (−n N)?)∗)∗ retains only a suffix of a collection
file2xml −s dir generates an XML stream for the dir file directory hierarchy

Figure 2: Current tools in the XML toolkit.

c

c

c

e3e4 e2e1 e8 e7e6
e10 e9

c

c

c

e1 e2
e3

e4 e6 e7 e8 e9 e10

xsort

Figure 3: Semantics of xsort. Under each context node the item nodes are sorted based on their key. Any
nodes that are “between” context nodes and item nodes are not copied in the output.

xsort -c /dblp -e */author -k text()

<dblp>
<author>Benjamin C. Pierce</author>
<author>Elliotte Rusty Harold</author>
<author>Haruo Hosoya</author>
<author>Marc Girardot</author>
<author>Neel Sundaresan</author>
<author>Sylvain Devillers</author>
<author>W. Scott Means</author>

</dblp>

(a)

xsort -c /dblp -e article -e inproceedings -e book -e *

<dblp>
<article> </article>
<article> </article>
. . .
<inproceedings> . . . </inproceedings>
<inproceedings> . . . </inproceedings>
. . .
<book> . . . </book>
<book> . . . </book>
. . .
<manuscript> . . . </manuscript>
<incollection> . . . </incollection>
. . .

</dblp>

(b)

Figure 4: Results of various xsort commands.

xsort -c /dblp -e */author

-k lastname/text() -k firstname/text()

Sorting with multiple item expressions When
multiple -e arguments are present, items are included
in the result in the order of the command line. For
example the following command:

xsort -c /dblp

-e article -e inproceedings -e book -e *

lists all articles first, then all inproceedings, then
all books, then everything else. Within each type of
publication the input document order is preserved.
The output will look like in Fig. 4 (b).

Sorting at deeper contexts By choosing contexts
other than the root element we can sort at different
depths in the XML document. A common use is to
normalize the elements by listing their subelements
in a standard order. For example, consider:

xsort -c /dblp/*

-e title -e author -e url -e *

3

xsort -c /dblp/* -e title -e author -e url -e *

<dblp>
<book>

<title>XML in a Nutshell</title>
<author>Elliotte Rusty Harold</author>
<author>W. Scott Means</author>
<publisher>O’Reilly</publisher>
<year>2001</year>
<isbn>0-596-00058-8</isbn>

</book>
<inproceedings>

<title>XML and XSLT Modeling . . . </title>
<author>Sylvain Devillers</author>
<url>db/conf/www/www2001p.html#Devillers01</url>
<year>2001</year>
<booktitle>WWW Posters</booktitle>
<ee>http://www10.org/cdrom/posters/1112.pdf</ee>

</inproceedings>
. . . .

</dblp>

(a)

xsort -c /dblp/* -e title -e author

<dblp>
<book>

<title>XML in a Nutshell</title>
<author>Elliotte Rusty Harold</author>
<author>W. Scott Means</author>

</book>
<inproceedings>

<title>XML and XSLT Modeling . . . </title>
<author>Sylvain Devillers</author>

</inproceedings>
<inproceedings>

<title>XDuce: A Typed XML Processing . . . </title>
<author>Haruo Hosoya</author>
<author>Benjamin C. Pierce</author>

</inproceedings>
<article>

. . .
</article>

</dblp>

(b)

Figure 5: Normalizing element order with xsort:
with a catch-all (a), and without a catch-all (b).

This outputs, for each publication, its elements in
the following order: first all title elements, then all
author elements, then all year elements, and then
everything else. The output looks like in Fig. 5(a)
(attributes are omitted).

Notice the use of the “catch all” element -e * at
the end. We can omit it, and include only selected
fields in the result. For example:

xsort -c /dblp/* -e title -e author

returns a result like in Fig. 5 (b).
In the last two examples the author order is pre-

served, since no key has been specified for author.
If we want to sort authors alphabetically inside each
publication, then we issue the following command:

xsort -c /dblp/* -e author -k text() -e *

xsort -c /dblp -e * -k title/text()

data size (KB) Xalan (sec) xsort (sec)

0.41 0.08 0.00
4.91 0.09 0.00

76.22 0.27 0.02
991.79 2.52 0.26

9,671.42 27.45 2.85
100,964.43 - 43.97

1,009,643.71 - 461.36

(a)
xsort -c /dblp/* -e title -e author -e year -e *

data size (KB) Xalan (sec) xsort (sec)

0.41 0.08 0.00
4.91 0.10 0.00

76.22 0.29 0.03
991.79 2.78 0.35

9,671.42 29.42 3.54
100,964.43 - 35.52

1,009,643.71 - 358.47

(b)

Table 1: Experiments with xsort: a global sort (a),
and multiple local sorts (b). Numbers are running
times in seconds. A “-” indicates ran out of memory

Sorting with multiple context expressions Fi-
nally, multiple context arguments can be specified to
sort according to different criteria. For example:

xsort -c /dblp/book -e publisher -e title -e *

-c /dblp/* -e title -e *

lists publisher then title first under books, and
lists title first under all other publications.

DTDs xsort and the other tools use a non-validating
xml parser, and do not generate a DTD for the output
data. Inferring a DTD for the transformed output
data is a complex that we don’t address.

Implementation We have optimized xsort to scale
up efficiently to large XML streams. We sort one con-
text at a time, copying the other elements to the out-
put file in unchanged order. When sorting one con-
text, we create a global key for each item to be sorted,
consisting of the item identification number on the
command line, the concatenation of all its keys, and
its order number under the current context (to make
xsort stable). We use multiway merge-join, with as
much main memory as available, and stop after at
most two steps. The first step produces the initial
runs, using STL’s priority queue [3], and applying re-
placement selection [9]. This results in initial runs
that may be larger than main memory: in particular,
a single run is produced if the input is already sorted.
If more than one run is generated then a second step

4

valP type meaning
(from Fig. 2)

int number text() interpreted as integer
float number text() interpreted as float
text text text() interpreted as string
depth number the depth of the current element

aggFun type meaning
(from Fig. 2)

count any counts the elements
sum number sum value

text concatenates the values
max number maximum value
min number minimum value
avg number average value
first any returns the first data value found
last any returns the last data value found

choice#342 any returns the 342nd data value,
or 0 if out-of-bound

Figure 6: Details of the xagg command.

is executed, which merges all runs to produce the final
output. With today’s main memories, practically any
XML file can be sorted in only two steps. For exam-
ple, with 128MB of main memory and disk pages of
4KB, we can sort XML streams of up to 4TB [7], and
the file size increases quadratically with the memory
size. More practical considerations, such as a hard
limit of 2GB on file sizes on most systems, or limits
on the number of file descriptors, are more likely to
limit the size of the largest file we can sort.

Experiments Two sets of experiments2 are shown
in Table 1, where we compare xsort with xalan, a
publicly available XSL processor. For xsort we limit
the main memory window to 32MB. The first rep-
resents a global sort which reorders all bibliographic
entries: xsort’s running time increases linearly, with
the exception of an extra factor of two, when the data
size exceeds the memory size. The second table rep-
resents local sorts, with small contexts. Here a single
pass over the data is always sufficient, and the sort-
ing time increases linearly. xalan’s processing model
is DOM-based, and supports a more general class of
transformations (including joins).

2.3 Other Tools

All the other tools are designed to do a single pass
over the XML data; we illustrate them here only
briefly. Some are straightforward, like xdelete; oth-
ers are quite versatile, like xagg, but we omit more
interesting examples for lack of space.

2The platform is a Pentium III, 800 MHz, 256 KB cache
128 MB RAM, 512 MB swap, running Redhat Linux 2.2.18,
the compiler is gcc version 2.95.2 with the “-O” command-line
option, and Xalan-c 1.3.

Aggregation The xagg command line is given in
Fig 2, while some details of the -a argument are given
in Fig. 6. We illustrate it here with three examples:

xagg -c /dblp -a count text *

xagg -c /dblp -a count text *

-a count text */author -a avg float */price

xagg -c /dblp/* -a first text title

-a count text author -a count text url

The first example counts the total number of publi-
cations under dblp. Its result is:

<xagg>

<context path="/dblp">

<agg type="count" path="*">256599</agg>

</context>

</xagg>

That is, there are 256599 bibliographical entries in
the dblp data. The tags xagg, context, and agg

are chosen by default and can be overridden in the
command line.

The second computes two aggregate functions: the
total number of elements, and the average value of
price (assuming some publications have a numeric
price subelement). Its result will look like in Fig. 7
(a): this is a hypothetical result, in reality the dblp
data does not contain prices.

The third computes two aggregate functions for
each publication: the first title element and the
number of authors. The result will have the form
shown in Fig. 7 (b). There will be as many context

elements in the result as publications in the input
data.

Collection-oriented operations The toolkit con-
tains a few collection-oriented tools, inspired from [4]:
xnest, xflatten, xpair, and xdelete. The xdelete
command simply deletes elements matching one or
several XPath expressions. xflatten flattens a nested
collection; equivalently, it deletes only the tags, but
not the content. For example:

xflatten -e //b

transforms the input XML document as follows:

from: to:
<a> <c> </c> <a> <c> </c>

<d> </d> <d> </d>
 <e> </e> <e> </e>

<c> <d> </d> </c> <c> <d> </d> </c>
<c> <e> </e> </c> <c> <e> </e> </c>

Only the two top-most b tags are deleted: the flag
-r specifies recursive flattening. xnest groups mul-
tiple adjacent elements under a new collection: in
other words, it inserts new tags in the XML docu-
ment, without erasing anything. For example:

5

xagg -c /dblp -a count text * -a count text */author
-a avg float */price

<xagg>
<context path="/dblp">

<agg type="count" path="*">256599</agg>
<agg type="count" path="*/author">548856</agg>
<agg type="avg" path="*/price">44.4503945</agg>

</context>
</xagg>

(a)

xagg -c /dblp/* -a first text title
-a count text author
-a count text url

<xagg>
<context path="/dblp/*">

<agg type="first" path="title">XML in a Nutshell</agg>
<agg type="count" path="author">2</agg>
<agg type="count" path="url">0</agg>

</context>
. . .

</xagg>

(b)

Figure 7: Results of various xagg commands.

xnest -e /dblp/* -k year/text()

groups publications based on their year subelement.
The output is illustrated in Fig. 8 (a). Here one group
is created for every set of adjacent publications that
have the same year value. Notice that there may be
multiple groups with the same key value, like 2001
above: to have unique groups, one needs to sort first.
Multiple keys can be specified, like in xsort. If no
key is specified then all adjacent elements are placed
under the same group. There is a second variant of
xnest that creates groups by their number of ele-
ments, see Fig. 2.

Finally, xpair, called pair-with in [4], pairs an
element with each item of a collection. It corresponds
to pairwith in [4]. For example:

xpair -e /a/b/c -g /a/b/d

replaces each occurrence of /a/b/d with an element
<pair> <c> </c> <d> </d> </pair>, where the c

element is the last it has seen before. Its effect is:

from
<a> <c> 1 </c>

<d> 2 </d>
<d> 3 </d>

 <d> 4 </d>
 <c> 5 </c>

<d> 6 </d>

to
<a> <c> 1 </c>

<pair> <c> 1 </c>
<d> 2 </d>

</pair>
<pair> <c> 1 </c>

<d> 3 </d>
</pair>

 <pair> <c> 1 </c>

<d> 4 </d>
</pair>

 <c> 5 </c>

<pair> <c> 5 </c>
<d> 6 </d>

</pair>

xnest -e /dblp/* -k year/text()

<dblp>
<group> <key> 2001 </key>

<book> . . . </book>
<inproceeding> . . . </inproceedings>
<inproceeding> . . . </inproceedings>
. . .

</group>
<group> <key> 2000 </key>

<inproceedings> . . . </inproceedings>
<article> . . . </article>
<article> . . . </article>
<book> . . . </book>
. . .

</group>
<group> <key> 2001 </key>

. . .
</group>
. . .

</dblp>

(a)

file2xml -s data > output.xml

<directory>
<name>data</name>
<file>

<name>file1</name>
<filelink xlink:type="simple"

xlink:href="file:/homes/june/suciu/data/file1">
</filelink>
<path>/homes/june/suciu/data/file1</path>
<size>33</size>
<permissions>-rw------</permissions>
<type>regular file</type>
<userid>13750</userid>
<groupid>330</groupid>
<lastAccess>Wed Nov 21 11:22:33 2001</lastAccess>
<lastModification>Wed Nov 21 11:22:23 2001</lastModification>

</file>
...

</directory>

(b)

Figure 8: Illustration of xnest and file2xml.

Heads or Tails? xhead and xtail select and out-
put the head or tail of a sequence of elements match-
ing one or several XPath expressions. For example:

xhead -c /dblp -e book -n 20 -e article

outputs only the first 20 book elements and the first
10 (default value) article elements under dblp.

File Directories to XML The file2xml gener-
ates an XML stream that describes a file directory
hierarchy. For example:

file2xml -s data > output.xml

traverses the data directory and all its subdirectories
and creates the output.xml document which has an
isomorphic structure to the directory hierarchy. The
output is shown in Fig. 8 (b).

As another example, the command below lists the
top ten largest files in a directory hierarchy:

6

file2xml -s . | xsort -b -c /directory

-e //file -k size/text():%i |

xhead -c /directory -e file

The %i option in xsort indicates that size is an
integer field.

2.4 Putting Them Together . . .

The power of the toolkit comes from pipelining sev-
eral simple tools, to do complex transformations. Since
each individual tool was designed to scale up to very
large XML documents, this programming style allows
programmers to do complex transformations on very
large XML streams, that go beyond the capabilities
of today’s XML engines.

Consider the following classical query: re-group
publications by author, rather than title. That is,
we want one element for each distinct author in the
database, followed by all titles she published. This
is achieved with:

xsort -c /dblp/* -e title -e author |

xpair -k /dblp/*/title -g /dblp/*/author |

xflatten -e /dblp/* |

xpair -c /dblp -e title -e author |

xflatten -c /dblp/* |

xsort -c /dblp -e pair -k author/text() |

xnest -e /dblp/pair -k author/text()

This is rather standard processing of nested collec-
tions. First, normalize all entries by listing the title
first, then the author(s). Next, pair each title with
all the authors, then flatten the collection: now we
have a flat list of (title, author) pairs. Next sort
on author, and finally nest on the author.

Viewed as a “language”, this is closer to a physical
algebra than to a declarative language like XQuery [5]
or a functional language like XDuce [11]. Our pur-
pose is not to supersede high-level languages, but
rather to allow sophisticated users to combine the
tools in order to process large XML streams.

2.5 . . . and Making it Run Even Faster

We have provided two mechanisms for further speed-
ing up the toolkit: a binary format for XML, and a
Stream IndeX (SIX).

The Binary Format Our binary XML format (1)
replaces tags and attributes with integers called to-
kens, and (2) recognizes some atomic data types like
integers, reals, and represents them in binary. While
other binary formats exist already [14, 8], ours was
designed specifically for XML data applications3. We

3We do not compress texts, and we have specialized binary
datatypes like integers.

also define the tokenized SAX (TSAX) events for XML
parser whose parameter is tokenized as above. For
example, startElement(‘book’) becomes in TSAX
startElement(5) with the value ‘5’ corresponding to
‘book’.

The TSAX offers a uniform interface to both stan-
dard XML and the binary XML. Each tool accepts
either standard XML or binary XML as input, and
can produce standard XML or binary XML as out-
put. The input is automatically recognized; for the
output, the user needs to specify a -b command ar-
gument, if she wants to emit binary XML as output.
The binary format reduces the size of the data by
roughly a factor of two, and this usually translates
into a speedup factor of two, less so for long pipelines.
For example, on a 98 MB input file, the following:

xcat dblp.xml | xcat | xcat | xcat >/dev/null

took 59 seconds to execute, while the same pipeline
using binary throughout

xcat -b dblp.bin | xcat -b | xcat -b |

xcat -b >/dev/null

took 37 seconds to execute. Introducing an additional
stage of xcat in the two pipelines increased the exe-
cution times by 14.39 and 9.59 seconds respectively,
or 1.5 times better for the binary format. Here xcat

is a tool used mainly for testing which simply parses
the XML input then outputs it.

The Stream IndeX (SIX) Given an XML stream,
a SIX is a binary stream consisting of pairs of the
form (beginOffset, endOffset). There is one pair
for each XML element. Here beginOffset is the byte
offset of the begin tag, and endOffset of the end
tag. The SIX is sorted by beginOffset, allowing it
to synchronized with the XML stream. The XPath
processor matches SIX entries with the tags in the
input XML stream and, if it decides that the current
XML element is not needed then it uses endOffset to
skip characters in the XML stream without ever pars-
ing the content. The larger the portion in the XML
document that it skips, the greater the performance
it gains. It follows that SIX entries corresponding
to small XML elements offer little benefits, and can
be deleted: this reduces the size of the SIX, further
increasing the performance.

To illustrate, a SIX is created as in the following
example:

createSindex -t 100 dblp.xml > dblp.six

This creates a binary file dblp.six that is the SIX
for the XML file dblp.xml and whose SIX entry is
only for element larger than 100bytes. Consider now
a simple command, like:

7

xagg -c /dblp -a count text book dblp.xml

that counts the total number of book elements. If
the system finds the corresponding SIX file, called
dblp.six, then it uses it to skip portions of the XML
file. In this particular example it can skip the content
of all bibliographic entries, hence only the first two
levels of the XML tree need to be parsed. On the
entire 98MB dblp database this command ran in 14.7
seconds without a SIX, in 2.4 seconds with a full SIX
(a factor of 6.125), and in 2.0 seconds with a 100byte
element deleted SIX (a factor of 7.35). This is because
the size of the full SIX was about 20% that of the
data, while the reduced SIX was only 2% that of the
data. Note that the SIX is only useful in the first
stage of the pipeline. In principle, a SIX could be
produced incrementally at each stage and interleaved
with the output XML, but we did not implement such
a scheme.

3 The XPath Processor

We describe now the second component of the XML
Toolkit: the XPath processor for stream-based XML
applications. The processor is designed to evaluate
large sets of XPath expressions on an input XML
stream, and has a C-based API. The architecture is
shown in Fig. 10. All tools described in Sec. 2 use
this API to evaluate the XPath expressions in their
command line.

The stream API defines a simple event-based XML
processing model that extends the tokenized SAX
parsing model. A “query” is given by a tree, called
the query tree, with nodes labeled with variables and
edges labeled with XPath expressions. We illustrate
with an example using xsort:

xsort -c /dblp/* -e title

-e author -k text() -e publisher

The query tree that will be registered with the API
is shown in Fig. 9 (a) and (b).

The XPath processor’s role is to identify when a
match of the variable with the input XML stream
occurs. TSAX events, plus the new variable match
events are then forwarded to the application. For
illustration, a possible sequence of TSAX and context
events sent to the application is shown in Fig. 9 (c).

3.1 The Tokenized SAX

We have modified the SAX interface in a few ways.
First, all tag and attributes are translated into inte-
gers, as explained in Sec. 2.5. This is consistent with
our binary XML format, and results in slight per-
formance improvements for applications that need to

$c in $root/dblp/*
$e1 in $c/title
$e2 in $c/author
$k in $e2/text()
$e3 in $c/publisher

(a)

$c

$k

dbpl/*

title author
publisher

text()

$root

$e3$e2$e1

(b)

startVariable($root)
startDocument()

startVariable($c)
startElement(’book’)

startVariable($e2)
startElement(’author’)

startVariable($k)
characters(’Elliotte Rusty Harold’)
endVariable($k)

endElement(’author’)
endVariable($e2)
startVariable($e2)
startElement(’author’)
...
endElement(’author’)
endVariable($e2)
startVariable($e1)
startElement(’title’)

characters(’XML in a Nutshell’)
endElement(’title’)
endVariable($e1)
startVariable($e3)
startElement(’publisher’)

characters(’O’Reilly’)
endElement(’publisher’)
endVariable($e1)

endElement(’book’)
endVariable($c)

endDocument()
endVariable($root)

(c)

Figure 9: A query tree in XPath notation (a) and in
graphical representation (b), and a sequence of SAX
and variable-match events for this tree (c).

perform many comparisons between tags. For the
XPath processor only, however, it results in a small
performance penalty when the input is a plain XML
file, since the additional tokenization step involves
one extra hash-table lookup.

Second, we have defined in TSAX an event for ev-
ery individual attribute. This is a change from the
standard SAX specification in which the startElement
event includes its all attributes.

Finally, the TSAX API recognizes certain atomic
data types. Currently we support the extendedint

data type, which means an integer possibly preceded
and/or followed by a known string, in notation PREFIX

%iSUFFIX. For example the application can register
the extended integer USD%i with the TSAX parser,
and TSAX will translate text values like USD 99, USD
1045 into 99, 1045 respectively.

8

3.2 The XPath Processor

The XPath processor takes the query tree and a stream
of TSAX events generated by the parser and iden-
tifies the new variable events. While the tools de-
scribed in Sec. 2 rarely use more than a dozen or so
XPath expressions, other applications, such as pub-
lish/subscribe systems or XML packet routing often
need to evaluate tens or hundreds of thousands of
XPath expressions on the XML stream. Our goal was
to design the processor to scale to very large numbers
of XPath expressions. We only sketch here our ap-
proach, and refer the reader to [10] for details.

The processor converts the entire query tree into
one single nondeterministic finite automaton (NFA),
then computes the corresponding deterministic finite
automaton (DFA). Assuming the DFA has already
been constructed, the processor simply keeps a pointer
to the current state. On a startElement event, the
processor looks up the next current state in the DFA,
and pushes the old state on a stack. On a endElement
event, the processor pops a state from the stack and
set the popped state as the current state. Terminal
DFA states have an associated set of variables, and
whenever such state is reached, one variable match
event is generated for each variable in the set. The
stack gets only as deep as the maximum depth of the
XML document4. We preallocate a stack of depth
1024, and grow it automatically (by doubling the
size) if needed. In practice, the initial depth of 1024
is easily deep enough for typical documents, and no
additional memory management is necessary. As a
consequence, the XPath processor achieves constant
throughput, independent of the number of XPath ex-
pressions. The experiments in [10] show that the
XML input stream can be processed at constant through-
put of about 5.4MB/s, independent of the number of
XPath expressions (we stopped our experiments at
106 XPath expressions).

The main obstacle in using a DFA is construct-
ing it, since, in general, its number of states is ex-
ponential in the size of the NFA. Our solution is to
construct the DFA lazily. Real XML data tends to
nest elements in a predictable fashion, for example
as imposed by a DTD or an XML Schema, and the
consequence is that the number of states that ever
need to be expanded in the lazy DFA is very small.
This statement is made precise theoretically, then val-
idated experimentally in [10]. Hence, we construct
the DFA lazily. Initially, there is a warm-up phase,
when most of the lazy DFA states are expanded, dur-
ing which the throughput is significantly lower: the
length of this phase depends both on the number of

4The depth is a sum of the number of element and its at-
tributes

the XPath expressions and the complexity of the in-
put XML data. After the warm-up, the throughput
reaches its maximum speed.

Currently we support some limited XPath filters:
position predicate and any predicate expressions only
with an attribute location step. For example, we sup-
port:

//article[@year>1998]

[contains(@type,’proceedings’)]/title

but not support

//article[booktitle/text()=’ACM SIGMOD’]

We don’t implemented some output buffering scheme
in the lazy DFA, so the tail location step can not have
a predicate.

The XPath processor has two additional features,
that we discuss next.

Echo control The application can indicate that it
doesn’t need the TSAX events in a certain part of
the query tree. This is called echo control. Of course,
applications could filter the unwanted TSAX events
by themselves, but it is important to let the XPath
processor know this in order to use a SIX: if all TSAX
events need to be forwarded to the application, then
no portion of the XML file can ever be skipped and
the SIX is useless.

Precedence If several variables match the same
XML element, then the XPath generates all corre-
sponding events. Some applications, however, require
a different semantics, in which variables are evaluated
“in order”. As a feature, the XPath processor accepts
an optional precedence parameter for each variable in
the query tree, and only generates events correspond-
ing to the highest matched variable(s). Most tools
described in Sec. 2 uses this feature. For example the
following xsort command:

xsort -c /dblp/book -e author -k text()

-e * dblp.xml

matches subelements of book with the -e author ex-
pression first, and only if there is no match tries to
match them with -e *. When the xsort module reg-
isters these two expressions with the XPath processor
it will specify that the former has a higher precedence
than the latter.

3.3 The SIX Manager

If a SIX is present, then portions of the XML stream
can be skipped using the offsets in the SIX. This
is handled by the SIX manager, see Fig. 10, which

9

SIX Manager

XML

Stream

XML

Stream

TSAX Parser Application

SIX

Stream

Tree Pattern

skip(k)

skip(k)

TSAX Events Application Events

(Lazy DFA)

Query Processor

Figure 10: The System Architecture

exposes a single function in its interface: skip(k),
meaning “skip the input stream to the end of the k’s
open tag”. For example, skip(0) means skip to the
end of the current open tag, skip(1) means skip to
the end of the parent tag, etc. The XPath query pro-
cessor uses the SIX as follows. When a startElement
is received from the SAX parser for which there is
no transition from the current DFA state, then it is-
sues a skip(0) command. Applications can also issue
skip(k) commands, if they can determine that k of
the currently open elements are no longer needed. For
example, if it looks for books published after 1977,
then, after seeing a book element, then a year el-
ement whose value is 1950 it may issue a skip(1)

command if it “knows” that the book has at most
one year subelement. Such information is readily
available from a DTD, for example.

4 Related Work

The work closest to our toolkit is LT XML, from
http://www.ltg.ed.ac.uk/software/xml/. It de-
fines a C-based API for processing XML files, and
builds a large number of tools using this API. Their
emphasis is on completeness, rather than scalability:
there is a rich set of tools for searching and trans-
forming XML files, including a small query proces-
sor. There exists a sort utility but with much more
restricted functionality than our xsort. No details
about the processing techniques are given.

Two XML stream processing techniques have been
proposed: XFilter [2] and XTrie [6]. Both are highly
optimized nondeterministic finite automata, and their
throughput decreases with the number of XPath ex-
pressions. Our lazy-DFA technique achieves through-
puts that are between 100 times and 10,000 times
faster than XFilter for large number of XPath ex-
pressions [10].

Binary XML formats are considered in [14, 8, 1].
To our best knowledge the SIX is the first attempt

to index streaming data. Related in spirit, but differ-
ent in means is “indexing on the air” [12], where the
issue is to allow receivers to save power when down-
loading data from a broadcast channel.

5 Conclusions

We have described a highly scalable toolkit for pro-
cessing XML data, which is now freely available soft-
ware in the public domain. Our main emphasis was
on techniques that achieve scalability: processing large
numbers of XPath expressions on XML streams, in-
dexing XML streams, and efficient sorting.
Acknowledgment This project was partially sup-
ported by Suciu’s NSF CAREER Grant 0092955, a
gift from Microsoft, and an Alfred P. Sloan Research
Fellowship.

References
[1] R. Agrawal, R. J. B. Jr., D. Gruhl, and S. Papadimitriou.

Vinci: a service-oriented architecture for rapid development
of web applications. In Proceedings of Word Wide Web Con-
ference, pages 385–365, 2001.

[2] M. Altinel and M. Franklin. Efficient filtering of XML docu-
ments for selective dissemination. In Proceedings of VLDB,
pages 53–64, Cairo, Egipt, September 2000.

[3] ANDIS/ISO. C++ Standard, 1998.

[4] P. Buneman, S. A. Naqvi, V. Tannen, and L. Wong. Principles
of programming with complex objects and collection types.
Theoretical Computer Science, 149(1):3–48, 1995.

[5] D. Chamberlin, D. Florescu, J. Robie, J. Simeon, and M. Ste-
fanescu. XQuery: a query language for XML, 2001. available
from the W3C, http://www.w3.org/TR/query.

[6] C. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Effi-
cient filtering of XML documents with XPath expressions. In
Proceedings of the International Conference on Data Engi-
neering, 2002.

[7] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database
System Implementation. Prentice Hall, Upper Saddle River,
New Jersey 07458, 2000.

[8] M. Girardot and N. Sundaresan. Millau: an encoding format
for efficient representation and exchange of XML over the
WWW. In International World Wide Web Conference, May
2000.

[9] G. Graefe. Query evaluation techniques for large databases.
ACM Computing Surveys, 25(2):73–170, June 1993.

[10] T. J. Green, G. Miklau, M. Onizuka, and D. Su-
ciu. Processing xml streams with deterministic
automata and stream indexes, 2002. manuscript.
http://www.cs.washington.edu/homes/suciu/files/ F2066943700.ps.

[11] H. Hosoya and B. C. Pierce. XDuce: An XML processing
language (preliminary report). In WebDB’2000, pages 226–
244, 2000. http://www.research.att.com/conf/webdb2000/.

[12] T. Imielinski, S. Viswanathan, and B. R. Badrinath. Energy
efficient indexing on air. In R. T. Snodgrass and M. Winslett,
editors, Proceedings of the 1994 ACM SIGMOD Interna-
tional Conference on Management of Data, Minneapolis,
Minnesota, May 24-27, 1994, pages 25–36. ACM Press,
1994.

[13] M. Ley. Computer science bibliography (dblp).
http://dblp.uni-trier.de.

[14] B. Martin and B. Jano. WAP binary XML content format,
1999. available from the W3C, http://www.w3.org/TR/wbxml.

[15] A. Snoeren, K. Conley, and D. Gifford. Mesh-based content
routing using XML. In Proceedings of the 18th Symposium
on Operating Systems Principles, 2001.

10

