
Concurrency And Races
In Classical Linear Logic

Zesen Qian

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark

ii

Concurrency And Races
In Classical Linear Logic

A Dissertation
Presented to the Faculty of Natural Sciences

of Aarhus University
in Partial Fulfillment of the Requirements

for the PhD Degree

by
Zesen Qian

August 30, 2022

iv

Abstract

Recent works have extended the successful Proposition-As-Types correspon-
dence to concurrent computing in the form of a tight correspondence between
linear logic and process calculus. In particular, linear logic propositions are
equated with session types. Process calculi based on the tight correspon-
dence derive from linear logic good properties such as deadlock-freedom and
session fidelity. On the other hand, however, those calculi are usually poor
in expressivity. They are usually deterministic and lack common concur-
rency features such as threads and shared states, and can thus barely model
real-world concurrency. Following works proposed systems with stronger
expressivity but usually at the cost of deviating from the correspondence
and introducing bad behaviors. The present thesis, on the other hand, seeks
non-determinism within the framework of linear logic, which can be intro-
duced to the system without compromising the logical structure and thus
the good properties. We found two such examples of non-determinism of in-
terest. One is between clients and a server, where clients race to be accepted
by the server. The other one is between effectful computations and an effect
handler, where multiple computations race to emit effects to be dealt with
by the handler. We formulate two extensions based on the two examples.
Our extensions are further strengthened by least and greatest fixed points
so that variable quantities can be supported, including variable numbers
of clients, variable numbers of effects in a computation, and variable num-
bers of racing computations. Good properties such as deadlock-freedom are
proved, and several examples are given to demonstrate the expressivity of
our extensions.

i

ii

Resumé

I denne afhandling foreslår og studerer vi en ny korrespondence mellem
lineær logik og nye type systemer for process kalkuler, der modellerer pro-
grammeringssprog med parallelle beregninger. De nye type systemer ind-
fanger flere vigtige features i process kalkuler, herunder ikke-determinisme
og effekter, og den tætte korrespondence med liner logik betyder, at type
systemerne giver nogle gode garantier for hvorledes veltypede process udtryk
opfører sig, når de bliver evalueret. For eksempel garanteres det at evaluer-
ing ikke vil lede til deadlock.

iii

iv

Acknowledgments

First and foremost, I want to thank my supervisor Lars Birkedal for his
guidance on not only research but also soft skills throughout my PhD stud-
ies, skills that will be of great value whether in academia or industry. I
also want to extend a big thanks to Alex Kavvos for a long and fruitful
collaboration. Although Alex did not officially supervise me, he provided
numerous advice and guidance, and deeply influenced my PhD studies. I
also want to thank Fabrizio Montesi and Marco Peressotti for hosting me at
SDU and the successful collaboration.

I also want to extend my gratitude to the people that helped and encour-
aged me during my early studies. In particular, I want to thank Yubin Xia
for introducing me into computer systems, and Steve Awodey and Anders
Mörtberg for introducing me into the mathematical side of type theory.

Finally, a big thanks goes to my friends and family who have supported
me during my studies. I thank you all for the casual chats we had over
lunch, coffee and zoom — they were vital distractions to ride out difficult
times.

Zesen Qian,
Aarhus, August 30, 2022.

v

vi

Contents

Abstract i

Resumé iii

Acknowledgments v

1 Overview 1
1.1 A Brief History of Proofs as Processes 1
1.2 Proposals . 6
1.3 Related Works . 8
1.4 Future works . 11

2 Client-Server Sessions in Linear Logic 13
2.1 Introduction . 13

2.1.1 The Problem . 13
2.1.2 Roadmap . 17

2.2 Exponentials, Fixed Points, and Coexponentials 17
2.2.1 Exponentials as Fixed Points 17
2.2.2 Deriving Coexponentials 19
2.2.3 Exponentials vs. Coexponentials under Mix and Bi-

nary Cuts . 20
2.3 Processes . 21

2.3.1 ¿ Means Client, ¡ Means Server 21
2.3.2 Design Decision #1: Server State and The Strong Rules 22
2.3.3 Design Decision #2: Replacing Trees with Lists 22
2.3.4 Design Decision #3: Nondeterminism through Per-

mutation . 23
2.3.5 Introducing CS:: . 24
2.3.6 Operational Semantics and Metatheory 27

2.4 An example: Compare-and-Set 31
2.5 A session-typed language for client-server programming . . . 35

2.5.1 Source Language and the Translation 35
2.5.2 Functional Data Structure Server 40
2.5.3 Nondeterminism . 41

vii

viii CONTENTS

2.5.4 Fork–Join Parallelism 42
2.5.5 Keynes’ Beauty Contest 43

2.6 Related work . 46

Appendices 49
2.A Coexponentials and Logical equivalences 49
2.B Translation of CSGV to CSLL: Omitted rules 50
2.C CSLL: Metatheoretic Proofs 53
2.D More Examples . 62

2.D.1 Compare-And-Set . 62
2.D.2 List Shuffling . 63
2.D.3 Merge Sort . 64
2.D.4 Map-Reduce . 64
2.D.5 Interleaving clients . 65
2.D.6 Symbol Generator . 66

3 Concurrent Effects in Linear Logic 67
3.1 Introduction . 67
3.2 Base system . 70
3.3 Classical Effects . 76
3.4 Races . 83

3.4.1 Deterministic Sharing 83
3.4.2 Non-deterministic Sharing 84

3.5 Synchronization . 87
3.6 Metatheory . 89
3.7 Concurrent Effectful GV . 90
3.8 Related and future Work . 100

Appendices 103
3.A πLL, full specification . 103
3.B Omitted content of CELL . 107
3.C Omitted metatheoretic proofs 114
3.D Omitted content of CEGV . 123

Chapter 1

Overview

1.1 A Brief History of Proofs as Processes
The Early Days Ever since its inception, linear logic [Girard, 1987a] was
believed to have deep connections with concurrency. This was motivated
by the comparison with intuitionistic logic. Recall that in the latter, judge-
ments have the form

Γ ` A

where Γ is the set of assumptions and A is the conclusion; they are not
symmetric and are obviously directional: the information flows from the
assumptions to the conclusion. As a result, in usual computational inter-
pretations, a proof of Γ ` A is interpreted as a program where Γ is inputs
and A is output. In addition, the cut rule

Γ ` A ∆, A ` B

Γ,∆ ` B

is interpreted as using the output of the first program as the input of the
second program.

In contrast, judgements in linear logic has the form

` A0, · · · , An

which is single sided, and all formulas Ai are symmetric, in the sense that
there is no distinguished member. The corresponding cut rule is

` Γ, A ` ∆, A⊥

` Γ,∆

Note that in linear logic we have A⊥⊥
= A, and thus A and A⊥ are sym-

metric; therefore, the two premises are symmetric. One can still rewrite the
two premises to

` Γ⊥ ⊸ A ` A ⊸ ∆

1

2 CHAPTER 1. OVERVIEW

and interpret the first as a program converting Γ⊥ to A, and the second
as a program converting A to ∆. However, this is certainly less than ideal
as it ruins the nice symmetry of linear logic. A natural interpretation that
reflects the symmetry is to be found.

Girard [1987b, 1989] suggested a connection between linear logic and
concurrency in the same style of the hugely successful connection between
intuitionistic logic and functional programming (i.e. Proposition-As-Types).
The idea was made concrete by Abramsky [1994] and Bellin and Scott
[1994], who established the first interpretation of proofs as processes in the
π-calculus [Milner et al., 1992]. The details are as follows. First of all,
formulas in sequents are given names:

` x0 : A0, · · · , xn : An

which induces named versions of proof rules. For example the named cut
rule would be

` Γ, x : A ` ∆, y : A⊥

` Γ,∆

The names are useful for the next step, which is to inductively intrepret
each linear logic (named) proof as a π-calculus term, where the free names
of the proof matches the free names of the term. Therefore, propositions
map to sessions, and derivations of proofs map to construction of processes.
In particular, the above named cut rule is interpreted as putting P and Q in
parallel and connecting x and y, where P and Q are the processes of the two
premises. Note that the free names of a π-process term are symmetric: there
is no ‘distinguished’ port for ‘output’; also note that when interpreting the
cut rule P and Q are treated equally. The new interpretation seems to reflect
the most distinctive feature of linear logic in comparison to intuitionistic
logic.

The new interpretation, however, only uses a significantly small subset
of π-calculus terms. In particular, A⊗B maps to sending a pair of types A
and B, and AOB maps to receiving. This is a severe restriction on canonical
π-calculus, where processes can send and receive any terms. Moreover, this
restriction can hardly be motivated from a logical perspective. In summary,
the correspondence is not as tight as desired.

The Twist An attempt at the previous problem came sixteen years later
when Caires and Pfenning [2010] discovered that intuitionistic linear propo-
sitions can be interpreted as session types [Honda, 1993, Honda et al., 1998].
A⊗B is interpreted as sending A and continuing as B, while A O B as re-
ceiving A and continuing as B. The system (called πDILL) is based on
internal π-calculus [Sangiorgi, 1996] which is though just as expressive [Bo-
reale, 1998] as canonical π-calculus. In internal π-calculus, processes cannot
send any names freely, but only freshly generated ones. In some sense, the

1.1. A BRIEF HISTORY OF PROOFS AS PROCESSES 3

sending operation is the binder of the fresh name whose scope is the continu-
ation. To understand, consider the reduction rules for sending and receiving
in canonical π-calculus and in internal π-calculus respectively:

νz (z(x). P | z[y]. Q)→ νz (P [y/x] |Q) (canonical)
νz (z(x). P | z[y]. Q)→ νz νy (P [y/x] |Q) (internal)

In canonical π-calculus, z[y] sends exising y over z, which is then received by
z(x). In particular, y is free on both sides. In internal π-calculus, z[y] binds
the name y and sends it over x which is received by z(x). In particular, y
is bound on both sides: on the left by z[y] and on the right by νy . The
restriction of sending and receiving pairs are apparantly removed at the cost
of deviation from canonical π-calculus.

The work has still some shortcomings. First of all, while connections
to session types is made, the system is based on intuitionistic linear logic
which is a constrained version of classical linear logic and lacks duality; it
is similar to the relation between intuitionistic logic an classical logic. As
a result, the duality between session types has no correspondence in their
system. Duality is a central element of session types, and the lack of it
severely undermines the attempts to relate session types.

Wadler [2014] solves the issue by adapting the correspondence to classi-
cal linear logic. With the duality recovered, linear logic types now tightly
corresponds to session types, and also the system is more concice and sym-
metric. The system is called Classical Process (CP) and will be the base for
most following works. The system (and its derivatives) is so minimalistic,
however, that the user is left to code the basic building blocks, which be-
comes cumbersome quickly. To remedy, the author introduced a higher-level
language inspired by Gay and Vasconcelos [2010]. Its semantics is given as
translations to CP, from which nice properties would be easily inherited.
In addition to common building blocks such as functional programming, it
also contains explicit session programming backed by the interpretation of
linear logic types as session types. For example, one can send and receive
over sessions:

` send : A ⊸ (!A.B) ⊸ B ` recv : ?A.B ⊸ A⊗B

send takes two arguments, the datum to send typed A, and the session over
which the datum will be send. The seesion is typed !A.B the session can be
used to send A and will continue as B; indeed, B is the return type of send.
recv takes a session which is typed ?A.B meaning the session can be used
to receive a datum typed A and will continue as B, which is confirmed by
the return type of recv which is a pair of the newly received datum and the
rest of the session.

CP is also more tightly connected to linear logic compared to previous
works. Both Bellin and Scott [1994] and Caires and Pfenning [2010] translate

4 CHAPTER 1. OVERVIEW

linear logic to π-calculus, and correspondingly cut-elimination to reduction.
However, as Wadler [2014] observed this is achieved at costs. The first
issue is about the axiom rule, which is intuitively a bidirectional forwarder
between two sessions of dual types. Bellin and Scott [1994] restricted the
type to be atoms, because forwarding composite sessions would require an
ad-hoc complex processes. Indeed, this was implemented in Caires and
Pfenning [2010, prop 4.2]. Wadler [2014] solved this issue by giving the
axiom rule a special and uniform semantics: if a session x of process P
communicates with the session y of the forwarder y↔ z, then all occurances
of x in P are replaced by z.

Another issue is that of commuting conversions. In canonical π-calculus,
a process is understood as a sequence of actions that need to fire in order.
However, cut elimination of linear logic when translated to π-calculus in-
volves sometimes earlier actions in a process firing later. Caires and Pfen-
ning [2010] forbids those commuting conversions to stay close to π-calculus
while deviates from linear logic; Wadler [2014] on the other hand ‘let linear
logic guide the design of process calculus’, and adopted those commuting
conversions. For example consider the following rule:

νz (x[y]. (P |Q) |R)→ x[y]. (νz (P |R) |Q)

where P and R communicates via z. In canonical π-calculus, the left hand
side would just block, because there does not exist another process that
receives on x. This is however not acceptable in CP, because the term
corresponds to a proof with top-level cut, and proofs should satisfy cut-
elimination. Therefore, we must make the left hand side reduce, and in the
way that corresponds to how cuts are eliminated. To that end, the above
rule is introduced to CP corresponding to a rule in linear logic.

The reason why commuting conversion is needed in linear logic, is that
all reduction rules have a form where the reacting actions are immediately
under the restriction. In the above rule we see on the left hand side P clearly
blocked by x[y], and thus cannot use the reduction rules. The rule solves the
issue by moving the cut lower so that it restricts both and only P and R.
Note that the first actions of P and R might still not be on z, in which case
more commuting conversions will be performed. This happens repeatedly
until they meet the requirement of a reduction rule, upon which two dual
actions on z will react. Note that the action x[y] stays put and not fired,
giving the impression that this action, while appears earlier in the process,
fires later. This might seem strange for π-calculus people; however, Wadler
[2014] pointed out that the close connections to linear logic immediately
gives progress and termination of CP, just like how that of simply typed
lambda calculus follows immediately from intuitionistic logic.

A New Era In addition to actions firing out-of-order, there were a few
other important mismatches between processes and linear logic remaining in

1.1. A BRIEF HISTORY OF PROOFS AS PROCESSES 5

the syntax and semantics. Most notably, parallel composition had no direct
correspondence to a rule in the sequent calculus of linear logic. Carbone
et al. [2018] proposed that parallel composition corresponds to composing
hypersequents [Avron, 1991] which are collections of sequents. In contrast
to previous works, in this setting each process might have multiple disjoint
components, corresponding to the multiple sequents in its hypersequents.
As a result, composing processes corresponds to composing hypersequents:

P ` G Q ` H
P |Q ` G | H 0 ` ∅

The rule on the right is the nullary version giving the empty process typed by
empty hypersequents just for completeness. Some rules such as cut can be
thought as having parallel composition baked-in, and can now be decoupled
using hypersequents:

P ` Γ, x : A | ∆, y : A⊥

νxy P ` Γ,∆

Hypersequents further enabled the reconstruction of the expected la-
belled transition system (LTS) semantics [Montesi and Peressotti, 2018],
an explanation of the hypersequent-based approach in linear logic [Kokke
et al., 2019a, 2018], and the expected metatheoretical results of session types
(session fidelity) and bisimilarity [Montesi and Peressotti, 2021].

LTS can be thought as a decomposition of reduction semantics. One ob-
serves that reduction always happens between two dual actions. For example
we have the following reduction rule in CP:

νxy (x(x′). P | y[y′]. Q)→ νxy νx′y′ (P |Q)

which specifies the reaction between sending (y[y′]) and receiving (x(x′)).
LTS decomposes it into three rules:

x(x′). P
x(x′)−−−→ P y[y′]. Q

y[y′]−−→ Q
R

x(x′)|y[y′]−−−−−−→ R′

νxy R
τ−→ νxy νx′y′R′

where the first rule says that a process starting with the action x(x′) would
just signal the label x(x′) and transition into the continuation; similar for
y[y′]. The first two rules concerns only actions and are thus called action
rules, while the third rule bridge them together and are called communi-
cation rule, which we now explain. In the premise, we require a process R
to be able to simultanously signal both sending and receiving labels, which
means it must contain at least two processes ready to send and receive. One
such R would be x(x′). P | y[y′]. Q. The conclusion says that if we connect x

6 CHAPTER 1. OVERVIEW

and y of R, the two processes would be able to communicate; moreover, the
empty label τ indicates that the communication is not observable externally,
as the sending and receiving signal ‘offset’ each other. One can derive the
reduction semantics from the LTS semantics, if we think of τ−→ as reduction.

LTS has several benefits over reduction. First of all, of course, it makes
available the existing toolbox with regards to behaviours such as bisimi-
larity. Secondly, as a decomposition of reduction it is finer-grained and
better-behaved in many scenarios; for example, commuting conversion is no
longer needed. Recall the above process νz (x[y]. (P |Q) |R) which requires
commuting conversion; in LTS it can simply transition as

νz (x[y]. (P |Q) |R)
x[y]−−→ νz (P |Q |R)

Note that the x[y] action simply fires and signals a label, and does not block
the reaction between P and R. Similarly, LTS is capable of specifying the
semantics of primitve effects whereas reduction cannot (chapter 3).

Another benefit of LTS is that it gives a natural notion of well-behaved
programs. Recall that a program that reduces infinitely is considered bad-
behaved; however, there are also programs such as servers that reduces
infinitely but produces information for each step, which is considered well-
behaved. The distinction is usually hard to formulate, but in LTS well-
behaved processes can simply be formulated as those that keep signaling
labels until it becomes the empty process 0, with one exception: it should
not keep signaling τ -labels infinitely as that produces no information.

The problem The deep connections with linear logic ensure that the re-
sulting concurrent systems enjoy good properties such as deadlock-freedom,
session-fidelity and livelock-freedom. However, all the systems mentioned
are ‘too well-behaved’ to model the chaotic nature of real world concur-
rent systems. To be exact, they are deterministic and in particular missing
common concurrency features such as thread, shared states and locks.

1.2 Proposals

The present thesis attempts to increase the expressivity of Classical Process
systems without compromising their good behavioral properties derived from
the close connections to linear logic. To that end, we formulate concurrency
primitives in the framework of linear logic, so that concurrency-related tran-
sitions correspond to logical implications. To better understand the point,
we need to establish some intuition about linear logic connectives. Following

1.2. PROPOSALS 7

are (slightly modified) rules for ⊗ and O:

⊗
` Γ, A0 | ∆, A1

` Γ,∆, A0 ⊗A1

O
` Σ, A⊥

0 , A
⊥
1

` Σ, A⊥
0 O A⊥

1

For⊗, in the premise A0 and A1 come from two sequents; recall that sequents
in a hypersequent are disjoint from each other. For the dual rule, A⊥

0 and
A⊥

1 come from the same sequents and are thus connected.

Server/Client One could cut A0 ⊗ A1 and A⊥
0 O A⊥

1 . While A0 and
A1 are not connected directly, they are now respectively connected to A⊥

0

and A⊥
1 which are connected and are therefore connected indirectly now.

We find this phenomenon nicely models the interaction between a client
pool and a server. One can think A0 and A1 to be the interfaces of two
clients respectively, and A⊥

0 O A⊥
1 to be the interfaces of the corresponding

server that serves the two clients. Moreover, the analysis beforehand means
that the clients are connected not directly, but indirectly via the server;
this nicely fits our intuition about server/client interactions. Note that we
should think A0 and A1 to be the same type with the subscription only for
identification, which reflects that in real life server often provides the same
service to several clients. We now apply the server/client interpretation to
the logical implication:

A0 ⊗A1 → A1 ⊗A0

and find that it swaps the ordering of two clients. Moreover, the implication
is bidirectional, meaning the swapping is reversible. Note either ordering will
cut with A⊥

0 OA⊥
1 as A0 and A1 are the same type. This nicely models one

aspect of non-determinism of client/server interaction; namely, clients race
to get accepted by the server. The idea is developed in detail in chapter 2.

Effects Consider the two dual propositions (right associative):

A⊗B⊥ O C A⊥ O B ⊗ C⊥

In the first proposition, A is disjoint from both B⊥ and C, the two of
which are connected. Vice versa for the second proposition. We find this
nicely models the interaction between an effectful computation and a han-
dler, where A is a request, B is a response, and C is the return value of
the effectful computation. Most notably, the request A is disjoint from the
continuation B O C, as there is no causation between them; however, once
we cut the two together, the request A will be connected to the continu-
ation indirectly via the handler. That means there is causation between

8 CHAPTER 1. OVERVIEW

request and continuation only via the handler. Apply the interpretation to
the following logical implication:

(A0 ⊗B⊥
0 O C0)⊗ (A1 ⊗B⊥

1 O C1)→ A0 ⊗B⊥
0 O (C0 ⊗ (A1 ⊗B⊥

1 O C1))

and we find that it propagates the effect of the first computation out of two
parallel computations. There is a symmetric implication that propagates
the effects of the second computation. Together the two rules allow racing
for effects among two parallel computations. Moreover, both implications
are unidirectional, meaning that the outcome of the race cannot be reversed.
This idea is developed in detail in chapter 3.

Fixed Points In both server/client and effects, there are several desired
generalizations in regards to quantity. In the former, one hopes that a client
pool can contain any number of clients. In the latter, one hopes that an
effectful computation that can emit effects any number of times; moreover,
any number of effectful computations should be able to race in parallel. The
apparent infinite nature of the generalized settings leads us to the concept
of least and greatest fixed points, which is ubiquitous in functional program-
ming languages and corresponds to inductive and coinductive data. They
are introduced to Classical Process by Lindley and Morris [2016] and cor-
respond to inductive and coinductive sessions. Inductive sessions are finite,
while coinductive sessions are potentially infinite. The two are specified to
be dual and will communicate; moreover, the communication terminates be-
cause the inductive side is finite and terminates, forcing the coinductive side
to terminate as well. Our works are based on theirs, but with significant
alterations along the way. First, our extensions are based on hypersequents.
Second, our rules and their semantics are specialized to the particular func-
tors, and therefore simpler. Thirdly, our semantics allow non-determinism
to better model concurrency, while being logically equivalent to the original
fixed points and preserving nice properties of the base system.

1.3 Related Works
In this section we discuss related works in general; those more particular to
our work are discussed in the corresponding chapters.

Expressivity in Classical Processes Based on CP, GV Wadler [2014] as
well as later systems [Fowler et al., 2019, Lindley and Morris, 2015] allows
forking of processes. However, the child process runs in isolation with a
single channel connected to the parent. This is essentially a Cut and does
not increase expressivity.

Lindley and Morris [2016] introduces inductive and coinductive sessions
to CP. It is adapted from Baelde [2012], which introduces least and greatest

1.3. RELATED WORKS 9

fixed points to classical linear logic. A categorical semantics is given by
Ehrhard and Jafarrahmani [2021]. All mentioned works including ours on
least and greatest fixed point break the subformula property, as the greatest
fixed point requires an internal state which could be arbitrary type and
generally not a subformula of the greatest fixed point type. In another
strand of work, Toninho et al. [2014] introduces coinduction in a system
of session types based on Intuitionistic Linear Logic (ILL); see Lindley and
Morris [2016, §§1, 7] for a comparison. Derakhshan and Pfenning [2020]
gives a linear metalogic with least and greatest fixed point and proves strong
progress for binary session-typed processes in the metalogic.

In addition to least and greatest fixed points, there are other ways to
allow variable quantity when seeking extra expressivity. Most related works
to be discussed below introduced new types with their own rules for specific
use cases, and do not strictly correspond to any least and greatest fixed
points. Some of them are not well-behaved, but it is unclear to what degree
quantity variability contributes to that, as the systems are often coupled
with non-determinism which brings chaos. In any case, in our opinion,
quantity variability is not the central feature of concurrency, and we should
focus on other aspects in the following discussion of related works.

Atkey et al. [2016] explores obtaining more power in CP by conflating
dual connectives. Conflating N and ⊕ gives local non-deterministic choices
which however cannot induce the racy behavior normally exhibited in the
π-calculus [Kokke et al., 2019b, §2]. Conflating ? and ! gives to the notion
of access point, a dynamic match-making communication service on a sin-
gle endpoint. The rules look eerily close to the list-like formulation of our
servers. Access points prove too powerful: they introduce stateful nondeter-
minism, racy communication, and general recursion. This impairs the safety
of CP by introducing deadlock and livelock. Our works show that we can
still safely obtain the former two features without introducing the third.

Carbone et al. [2017] introduces the standard local non-determinism into
linear logic. Caires and Pérez [2017] presents a dual-context system based
on CLL+Mix in which the same kind of nondeterministic local choice is
expressed through a new set of modalities, ⊕ and N.1 These bear a similarity
to the coexponential modalities presented in chapter 2, but they are used
for nondeterminism instead. Their N modality has a monadic flavor, and
hence can be used to encapsulate nondeterminism ‘in the monad’ in the
usual manner in which we isolate effects.

Carbone et al. [2017] approaches multiparty session types through coher-
ence proofs. The authors develop Multiparty Classical Processes, a version
of CP with role annotations and the MCut rule. The latter is a version of the
MultiCut rule annotated with a coherence judgment derived from Honda
et al. [2016], which generalizes duality and ensures that roles match appro-

1This is an intentional clash with external and internal choice in Linear Logic.

10 CHAPTER 1. OVERVIEW

priately. MCP does not allow dynamic sessions with arbitrary numbers of
participants and hence cannot model client-server interactions. MCP was
later refined into the system of Globally-governed Classical Processes (GCP)
by Carbone et al. [2016]. Unlike these calculi, our works do not require any
consideration of coherence or local vs. global types.

Manifest sharing Closely related to our work is the notion of manifest
sharing [Balzer and Pfenning, 2017]. Their system is stratified into two
layers, linear and shared, where the former behaves as ILL and the latter as
IL. The sharing manifests in the types, in that one can tell the layer from
the look of each type. Two modalities shift between the two layers [Reed,
2009] and are computationally interpreted as acquire and release. Similar to
the common notion of locking, the two operations are blocking and might
cause deadlocks, in particular when there are circular dependencies. Balzer
et al. [2019] adds priorities to types to prevent circularity and thus recover
deadlock-freedom.

Among the two extensions of ours, manifest sharing is probably closer to
effects, as both allow multiple sequential accesses to the shared state. Our
works attempt to solve the expressivity problem of LL-based session types
beginning from Curry-Howard: we seek the minimal extension to linear logic
that models client/server and effects. Unlike manifest sharing, we remain
committed to CLL and its duality. As a result, our systems have simpler
rules, avoid the notions of linear and shared channels, and avoid the lock-
like primitives used to introduce modalities by Balzer and Pfenning [2017].
Moreover, we have remained committed to the goal of retaining the good
properties ensured by cut elimination in CLL (e.g. deadlock freedom). A
drawback of this approach is that our system inherits the linearity constraint
from linear logic, and is thus unable to express circular structures (such as
Dijkstra’s dining philosophers) without unsafe extension.

Type systems for the π-calculus There are many ways to equip the
π-calculus with a type system. A large class of such systems is based on
Kobayashi’s notion of channel usage Kobayashi [2003, 2002, 2006]. That
work proceeds in the opposite direction: it begins with the π-calculus and
tries to tame its expressive power through types that control the use of
channels, thereby guaranteeing deadlock-freedom, lock-freedom, and so on.
These systems can express some of the expected properties of client-server
interaction, see e.g. Kobayashi [2003, Example 8]. Comparing these fam-
ilies of type systems for concurrent behavior is a difficult task, which has
been undertaken by Dardha and Pérez [2015]. The main difference seems to
be that our work tries to stick as closely as possible to the foundations of
session types in linear logic. In addition, the usage-based type systems take
a ‘channel-first’ approach, where all channels may be shared between pro-

1.4. FUTURE WORKS 11

cesses; this is in sharp contrast to session types [Kobayashi, 2003, §10].
Dardha and Gay [2018] have attempted to merge these two approaches
through the formulation of Priority-based CP, a new calculus based on CLL
which allows a controlled form of cyclic dependencies.

Session Types There is a nontrivial connection between our work and
Multiparty Session Types [Honda et al., 2008, 2016, Coppo et al., 2016],
which comprise a π-calculus and a behavioral type system specifying in-
teraction between multiple agents. The kinds of protocols expressed by
multiparty session types are ‘fully’ choreographed, and involve a fixed num-
ber of participants. As such, they cannot model interactions with an ar-
bitrary number of clients; nor can they introduce a controlled amount of
non-determinism. Some of these expressive limitations have been remedied
in systems of Dynamic Multirole Session Types [Deniélou and Yoshida, 2011],
which come at the price of introducing roles that parties can dynamically
join or leave, and a notion of quantification over participants with a role.
Our systems capture certain use-cases of roles using only tools from linear
logic, with little additional complexity.

1.4 Future works
Termination and Readiness It would be interesting to establish a ter-
mination result for CSLL (chapter 2). This would prove that the resulting
calculi do not generate livelock. We expect this proof to be somewhat in-
volved, which is why most work on Linear Logic and session types either
fails to produce proof or defers to Girard’s proof for CLL Wadler [2014], As-
chieri and Genco [2019]. Similarly, we want to establish readiness for CELL
(chapter 3) without retry (section 3.5) by extending the proof in Montesi
and Peressotti [2021]. Readiness can be understood as productivity and is
more general than termination. This should not be hard, considering that
the difficult part which is the quantity variability already exists in their
system (namely, the exponentials).

Syntax The weak ¡ rule listed in section 2.2.2 is expressed by folding
⊗ over the set of formulas. It is less ‘native’ than the weak exponential
rule where folding O can be simply represented as commas. And indeed,
this big ⊗ obstructs a particular commuting conversion in cut elimination.
Similarly, the presentation of the strong exponential and its computational
interpretation is omitted due to its unsatisfactory rules. There are several
other occurrences where sequent calculus syntax obstructs.

We believe these issues are due to the limitation of sequent calculus; in
particular, a sequent is understood as a collection of formulas O-together,
and a hypersequent is understood as a collection of sequent ⊗-together. ⊗

12 CHAPTER 1. OVERVIEW

and O are not treated equally, although they should be dual. New syntax
frameworks such as deep inference [Tubella and Straßburger, 2019] promised
a better formulation, but our preliminary trials demand a deeper investiga-
tion.

Additive Units All languages in the CP family omit the additive units (0
and >); we believe they can model crashes (unrecoverable errors). Consider
the rule for >:

Top

>,Γ

Or more intuitively: 0 ⊸ Γ. One can view the above process as superficially
exposing Γ,> while being void internally. What happens when one tries
to communicate to the Γ? This is given by the commutative case of cut
elimination:

>, A,Γ A⊥,∆

Γ,∆,> → Γ,∆,>

We see that the crash propagates: ∆, A⊥ which used to have real content,
is not voided as well. We have an empty process still but with bigger types.

The fault > once introduced cannot be hidden away: there is no rule for
0 to cut with >; the only way to acquire 0 is to use Ax rule, in which case
we will just introduce another >. In terms of programming, that means one
can ‘handle faults’, but the handler cannot suppress the faults: it has to be
propagated. For example, we can have a type of term (> ⊕ 2) ⊸ (> ⊕ 2)
which takes a possibly faulty boolean, and negate it; the result is again a
possibly faulty boolean. However, we can not have a term of type (>⊕2) ⊸
2 which suppresses the fault.

Guarded Recursion Greatest fixed points are potentially infinite but
do not compromise readiness because they are always ready to produce
a labeled transition. (Co)induction is however a rather regulated form of
recursion, and one sometimes needs a more liberated one similar to general
recursion (self-reference) in functional programming. Recursive types, as
well as recursive processes, are formulated in Montesi and Peressotti [2021],
while unsurprisingly breaking readiness. A possible future exploration is to
borrow ideas from guarded recursion in functional programming [Birkedal
et al., 2017] to linear logic, so one can define a wider range of programs with
recursion while preserving readiness.

Chapter 2

Client-Server Sessions in
Linear Logic

This chapter is based on Qian et al. [2021], but I removed part of sec-
tion 2.1 that is general to classical processes, which has been incorporated
into section 1.1. I also removed part of section 2.6 that is general to classical
processes, which has been incorporated into section 1.3. I also reformatted
the text to fit the new paper size.

2.1 Introduction
2.1.1 The Problem
Caires and Pfenning [2010] proposed a Curry-Howard correspondence in
which Intuitionistic Linear Logic is used as a type system for the π-calculus
Milner et al. [1992]. This correspondence allows one to interpret formulas
of linear logic as session types, i.e., as specifications of disciplined com-
munication over a named channel. A few years later Wadler [2014] ex-
tended this interpretation to Classical Linear Logic (CLL). Wadler’s system,
which is called Classical Processes (CP), perfectly corresponds to Girard’s
original one-sided sequent system for CLL [1987a]. Its typing judgments
are of the form P ` Γ, where P is a π-calculus process, and Γ is a list
x1 : A1, . . . , xn : An of name-session type pairs, with Ai a formula of Clas-
sical Linear Logic. The operational semantics of CP led Wadler to the
following interpretation of the connectives.

⊗ output O inputN offer a choice ⊕ make a choice
! server ? client

We follow a convention by which the multiplicative connectives ⊗, O asso-
ciate to the right. Thus a type like A ⊗ B O C is A ⊗ (B O C) and can be

13

14 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

read as: output a (channel of type) A, then input a (channel of type) B,
and proceed as C.

While the interpretation of the first four connectives is intuitive, some-
thing seems to have gone awry with the exponentials [Wadler, 2014, §3.4].
We claim that the computational behaviour of exponentials in CP does not
in fact accommodate what we would think of as client-server interaction. To
begin, we consider the following aspects to be the main characteristics of a
client-server architecture [van Steen and Tanenbaum, 2017, §§2.3, 3.4]:

(i) There is a server process, which repeatedly provides a service.

(ii) There is a pool of client processes, each of which requests the said
service.

(iii) There is a unique end point at which the clients may issue their requests
to the server.

(iv) The underlying network is inherently unreliable: clients may be served
out-of-order, i.e., in a nondeterministic manner.

While Wadler’s interpretation faithfully captures (i) and (iii), it does not
immediately enable the representation of (ii). Because of its deterministic
behaviour, CP is incapable of modelling (iv).

A CP term S ` x : !A can indeed ‘serve’ sessions of type A over the
channel x. However, the reading of a term C ` y : ?A as a process which
behaves as a pool of clients along channel y is not so crisp. Recall the three
rules of ?, namely weakening, dereliction, and contraction. In CP:

Q ` Γ

Q ` Γ, x : ?A
?w

Q ` Γ, y : A

x[use]. yQ ` Γ, x : ?A
?d

Q ` Γ, x : ?A, y : ?A
Q[x/y] ` Γ, x : ?A

?c

Wadler interprets these rules as client formation. Weakening stands for the
empty case of a pool of no clients. Dereliction represents a single client fol-
lowing session A. Given that Q[x/y] denotes the term obtained by renaming
all free occurrences of y in Q to x, contraction enables the aggregation of
two client pools: two sessions of type ?A can be collapsed into one.

We argue that, of those interpretations, only the one for dereliction is
tenable. In the case of weakening, we see that at least one process is in-
volved in the premise. Hence, the ‘pool’ formed has at least one client in it,
albeit one that does not communicate with the server. Likewise, contraction
does not combine different clients, but different sessions owned by the same
client. Beginning with a single process P ` x : A, y : A we can use dereliction
twice followed by contraction to obtain w[use]. xw[use]. yP ` w : ?A. This
process will ask for two channels that communicate with session A. Never-
theless, the result is still a single process, and not a pool of clients. Dually,
the type !A merely connotes a shared channel: a non-linearized, non-session

2.1. INTRODUCTION 15

channel which is used to spawn an arbitrary number of new sessions, each
one of type A [Caires and Pfenning, 2010, §3].

More alarmingly, there is no way to combine two distinct processes P `
z : A and Q ` w : A into a single process pool(x; z. P , w.Q) ` x : ?A
communicating along a shared channel. As a remedy, Wadler introduces
the Mix rule:

Mix
P ` Γ Q ` ∆

P |Q ` Γ,∆

Mix was carefully considered for inclusion in Linear Logic, but was rejected
[Girard, 1987a, §V.4]. Informally, it allows two completely independent,
non-intercommunicating processes to run ‘in parallel.’ We may then use
contraction to merge them into a single client pool:

P ` z : A

x[use]. zP ` x : ?A
?d

Q ` w : A

y[use]. wP ` y : ?A
?d

x[use]. zP | y[use]. wQ ` x : ?A, y : ?A
Mix

x[use]. zP | x[use]. wQ ` x : ?A
?c

The operational semantics of the Mix rule in CP are studied by Atkey et al.
[2016]. To formulate them correctly one needs also to add the rule

Mix0

0 ` ·

Mix0 has a flavour of inconsistency to it, but it is otherwise useful. On the
technical level, it lets us show that the operational semantics, which adds a
reaction P |Q −→ P ′ |Q whenever P −→ P ′, is well-behaved (terminating,
deadlock-free, and deterministic). In terms of computational interpreta-
tion, Mix0 represents a stopped process. This solves the second problem we
pointed out above, viz. the formation of a vacuously empty client pool:

0 ` ·
Mix0

0 ` x : ?A
?w

Nevertheless, Mix and Mix0 are unbecoming rules. To begin, they are
respectively equivalent to ⊥⊸ 1 and 1 ⊸ ⊥, and thereby conflate the two
units. Moreover, it is well-known Bellin [1997], Girard [1987a], Abramsky
et al. [1996], Wadler [2014], Atkey et al. [2016] that Mix is equivalent to

A⊗B ⊸ A O B (∗)

16 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

where C ⊸ D := C⊥ O D.

Admitting this implication is unwise. At first glance, (2.1) merely weak-
ens the separation between these connectives, and hence damages the inter-
pretation of O as input, and ⊗ as output. However, we argue that deeper
problems lurk just beneath the surface. Abramsky et al. [1996, §3.4.2] de-
scribe a perspective on CLL which reads A O B as connected concurrency
(information necessarily flows between A and B [Girard, 1987a, §V.4]) and
A⊗B as disjoint concurrency (no information flow between A and B what-
soever). The implication (2.1) makes ⊗ a special case of O. Hence, flow
between the components of A⊗ B is permitted, but not obligatory [Abram-
sky and Jagadeesan, 1994, §3.2]. Thus, (2.1) allows us to pretend that there
is flow of information between two clients.1

Nevertheless, generating the actual flow of information is seemingly im-
possible. Using Mix we can put together two clients Ci ` ci : A, and get a
single process C0 | C1 ` c0 : A, c1 : A. As the comma stands for O, we can
only cut this with a server S ` s : A⊥ ⊗A⊥. But, by the interpretation of
⊗ as disjoint concurrency, we see that the two client sessions will be served
by disjoint server components. In other words, the server will not allow
information to flow between clients, which does not conform to our usual
conception of a stateful server! To enable this kind of flow, a server must useO. As we cannot cut a O (in the server) with another O (in the client pool),
we are compelled to also accept the converse implication A O B ⊸ A ⊗ B
in order to convert one of the two O’s to ⊗. This forces ⊗ = O, which
inescapably leads to deadlock [Atkey et al., 2016, §4.2].

Requiring ⊗ = O, a.k.a. compact closure Barr [1991], Abramsky et al.
[1996], is often deemed necessary for concurrency. In fact, Atkey et al.
[2016] argue that this conflation of dual connectives (1 = ⊥, ⊗ = O, and so
on) is the source of all concurrency in Linear Logic. The objective of this
paper is to argue that there is another way: we aim to augment the Caires-
Pfenning interpretation of propositions-as-sessions with a certain degree of
concurrency without adding Mix. We also wish to introduce just enough
nondeterminism to convincingly model client-server interactions in a style
that satisfies points (i)–(iv).

We shall achieve both of these goals with the introduction of coexponen-
tials.2

1This is evident in the Abramsky-Jagadeesan game semantics for MLL+MIX: a play
in A ⊗ B projects to plays for A and B, but the Opponent can switch components at
will. The fully complete model consists of history-free strategies, so there can only be
non-stateful Opponent-mediated flow of information between A and B.

2The word ‘coexponential’ was used in Lafont and Streicher [1991, §6.4] to refer the ?
connective.

2.2. EXPONENTIALS, FIXED POINTS, AND COEXPONENTIALS 17

2.1.2 Roadmap

First, in section 2.2 we discuss the expression of the usual exponential modal-
ities of linear logic (!?) as least and greatest fixed points. This leads us to
a different definition of !, which we call the strong exponential. By taking
a ‘multiplicative dual’ of these fixed point expressions, we reach two novel
modalities, the strong coexponentials, for which we write ¡ and ¿. We refine
coexponentials back into a weak form that is similar to the usual exponen-
tials, and show that they coincide with weak exponentials in the presence
of Mix and the Binary Cut rule.

Following that, in section 2.3 we introduce a process calculus with strong
coexponentials, which we call CSLL (Client-Server Linear Logic). This new
system is in the style of Kokke et al. [2019a], which replaces the one-sided
sequents with hypersequents. It is argued that coexponentials enable the
collection of an arbitrary number of clients following session A into a client
pool, which communicates on a channel that follows session ¿A. Conversely,
the rules for ¡ express the formation of a server, which can be cut with a
client pool to serve its requests.

In section 2.4 we present an extended example that illustrates the com-
putational behaviour of coexponentials, namely an implementation of the
Compare-and-Set (CAS) synchronization primitive. Our system neatly en-
capsulates the racy yet atomic behaviour implicit in such operations.

In section 2.5 we explore the implications of coexponentials in a session-
typed functional language. We extend Wadler’s GV with constructs for
client-server interaction, and translate them to coexponentials in CSLL. We
take advantage of the higher-level notation to give several examples that
would be tedious to program directly in CSLL.

We survey related work in section 2.6.

2.2 Exponentials, Fixed Points, and Coexponen-
tials

2.2.1 Exponentials as Fixed Points

The exponential (‘of course’) modality of linear logic ! is used to mark a
replicable formula. While describing a combinatory presentation of linear
logic, Girard and Lafont [1987, §3.2] noticed that !A can potentially be
expressed as the fixed point

!A ∼= 1 N A N (!A⊗ !A)

The three additive conjuncts on the RHS correspond to the three rules of
the dual connective ?, namely weakening, dereliction, and contraction. As

18 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

N is a negative connective, the choice of conjunct rests on the ‘user’ of the
formula,3 who may pick one of the three conjuncts at will.

One may thus be led to believe that, were we to allow fixed points for all
functors, we could obtain !A as the fixed point of a functor. Baelde [2012,
§2.3] discusses this in the context of a system of higher-order CLL with least
and greatest fixed points. Using the functors

FA(X) := 1 N A N (X ⊗ X) GA(X) := ⊥⊕A⊕ (X O X)
one defines

!A := νFA ?A := µGA

where µ and ν stand for the least and greatest fixed point respectively.
Just by expanding the fixed point rules, one then obtains certain derivable
rules. While those for ? are the usual ones—weakening, dereliction, and
contraction—the rule for ! is radically different:

StrongExp
` Γ, B ` B⊥,1 ` B⊥, A ` B⊥, B ⊗B

` Γ, !A

As foreshadowed by the use of a greatest fixed point, this rule is coinductive.
To prove !A from context Γ one must use it to construct a ‘seed’ value (or
‘invariant’) of type B. Moreover, this value must be discardable (` B⊥,1),
derelictable (` B⊥, A), and copyable (` B⊥, B ⊗ B). This is eerily remi-
niscent of the free commutative comonoids used to build certain categorical
models of Linear Logic [Melliès, 2009, §7.2]. Because of the arbitrary choice
of ‘seed’ type B, the system using this rule does not produce good behaviour
under cut elimination: the normal forms do not satisfy the subformula prop-
erty [Baelde, 2012, §3]: not all detours are eliminated. We call the modality
introduced by StrongExp the strong exponential.

Baelde shows that the standard ! rule can be derived from StrongExp.
But while the strong exponential can simulate the standard exponential, it
also enables a host of other computational behaviours under cut elimination.
Put simply, the standard exponential ensures uniformity: each dereliction of
!A into an A must be reduced to the very same proof of A every time. This
makes sense in at least two ways. First, when we embed intuitionistic logic
into linear logic through the Girard translation, we expect that in a proof
of (A→ B)o := !Ao ⊸ Bo each use of the antecedent !A produces the same
proof of A. Second, we know that one way to construct the exponential in
many ‘degenerate’ models of linear logic Barr [1991], Melliès et al. [2018] is
through the formula

!A := N
n∈N

A⊗n/∼n

3Also known as external choice. In the language of game semantics, the opponent.

2.2. EXPONENTIALS, FIXED POINTS, AND COEXPONENTIALS 19

where A⊗n := A ⊗ · · · ⊗ A, and A⊗n/∼n stands for the equalizer of A⊗n

under its n! symmetries. Decoding the categorical language, this means
that we take one N component for each multiplicity n, and each component
consists of exactly n copies of the same proof of A.

In contrast, the ! rules derived from their fixed point presentation merely
create an infinite tree of occurrences of A, and not all of them need be proven
in the same way.

2.2.2 Deriving Coexponentials
Both exponentials (qua fixed points) are given by a tree where each fork is
marked with a connective (⊗ for !, O for ?). The leaves of the tree are either
marked with A, or with the corresponding unit. Turning this process on its
head leads to two dual modalities, which we call the coexponentials.

More concretely, we define two functors by dualising the connective that
adorns forks. We must not forget to change the units accordingly: we swap
1 (the unit for ⊗) with ⊥ (the unit for O). Let

HA(X) := ⊥N A N (X O X) KA(X) := 1⊕A⊕ (X ⊗ X)

The strong coexponentials are then defined by

¡A := νHA ¿A := µKA

We define (¿A)⊥ := ¡A⊥, and vice versa. This gives the following derived
rules.

` ¿A
¿w

` Γ, A

` Γ, ¿A
¿d

` Γ, ¿A ` ∆, ¿A
` Γ,∆, ¿A

¿c

` Γ, B ` B⊥,⊥ ` B⊥, A ` B⊥, B O B

` Γ, ¡A
¡

The rules for ¿ are distributed forms of the structural rules, while the ¡ rule
gives a strong coexponential, analogous to the strong version of ! described
in the previous section. The corresponding ‘weak’ coexponential is given by
replacing the above ¡ rule with

`
⊗

¿Γ, A

`
⊗

¿Γ, ¡A
¡

¿Γ stands for the context obtained by applying ¿ to every formula in Γ,
and

⊗
folds this context with a tensor. Unfortunately, the presence of this

folding operation means that this rule is not well-behaved in proof-theoretic
terms.

20 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

2.2.3 Exponentials vs. Coexponentials under Mix and Bi-
nary Cuts

In fact, we can show that, in the presence of additional rules, (weak) ex-
ponentials and (weak) coexponentials are interderivable up to provability.
This is not merely a theoretical result: it demonstrates that, under the
bonnet, Wadler’s use of Mix for the formation of a client pool (which we
sketched in section 2.1.1) secretly introduces the coexponential modalities
proposed here.

The requisite rules are Mix, and one of the binary cut or multicut rules:
BiCut
` Γ, A,B ` ∆, A⊥, B⊥

` Γ,∆

MultiCut
` Γ, A1, . . . , An ` ∆, A⊥

1 , . . . , A
⊥
n

` Γ,∆

BiCut cuts two formulas at once, and MultiCut an arbitrary number. These
rules were first proposed in the context of Linear Logic by Abramsky [1993a]
in the compact setting (⊗ = O). They are logically equivalent, but only the
second one satisfies cut elimination [Atkey et al., 2016, §4.2]. We recall
some folklore facts regarding the interderivability of certain formulas and
Mix-like inference rules. Recall that C ⊸ D := C⊥ O D. Some form of the
following lemma may be found across the relevant literature Girard [1987a],
Abramsky et al. [1996], Bellin [1997], Wadler [2014], Atkey et al. [2016].
Lemma 1. The following rules are logically interderivable.

(i) The axiom 1 ⊸ ⊥ and the Mix0 rule.

(ii) The axiom ⊥⊸ 1 and the Mix rule.

(iii) The axiom A⊗B ⊸ A O B and the Mix rule.

(iv) The axiom A O B ⊸ A⊗B and the BiCut rule.

(v) BiCut and MultiCut.
Moreover, Mix0 is derivable from the axiom rule ` A⊥, A and BiCut.

Armed with this, we can prove that:
Theorem 2. In CLL with Mix and BiCut, exponentials and coexponentials
coincide up to provability. That is: if we replace ? and ! in the rules for the
exponentials with ¿ and ¡ respectively, the resultant rule is provable using
the coexponential rules, and vice versa.

This theorem confirms that exponentials and coexponentials are indeed
symmetric with respect to multiplicativity. It also explains why exponentials
can represent client-server interactions after introducing Mix [Wadler, 2014,
Kokke et al., 2019a]. Finally, the theorem extends to strong exponentials vs.
strong coexponentials; the proof there is even simpler: under Mix and BiCut
we have ⊗ = O, so FA, HA and GA, KA are pairwise logically equivalent.

2.3. PROCESSES 21

2.3 Processes
In the rest of the paper we will argue that the logical observations we made in
section 2.2 have a computational interpretation as client-server interaction.
To this end we will introduce a process calculus for CLL equipped with a
bespoke form of strong coexponentials. Our system shall introduce a certain
amount of nondeterminism, yet it will remain Mix-free.

We first explain how the coexponentials capture the intuitive shape of
client pool formation (section 2.3.1). Following that, we briefly discuss three
technical design decisions that pertain to the coexponentials used in our
system (section 2.3.2,section 2.3.3,section 2.3.4). Finally, we introduce the
system in section 2.3.5, and its metatheory in section 2.3.6.

2.3.1 ¿ Means Client, ¡ Means Server
Recall the three rules for ¿, namely

` ¿A
¿w

` Γ, A

` Γ, ¿A
¿d

` Γ, ¿A ` ∆, ¿A
` Γ,∆, ¿A

¿c

We can read ¿A as the session type of a channel shared by a pool of clients.

• ¿w allows the vacuous formation of a empty client pool.

• ¿d allows the formation of a client pool consisting of exactly one client.

• ¿c can be used to aggregate two client pools together.

The last point requires some elaboration. Each premise of ¿c can be seen as a
client pool with an external interface (Γ and ∆ respectively). The rule allows
us to combine these into a single process. This new process still behaves as
a client pool, but it also retains both external interfaces. In contrast, the ?c
rule only allowed us to collapse two shared channels that belonged to a single
process. Moreover, it did not allow us to mix two external interfaces—one
had to use Mix for that.

Finally, the ‘weak’ ¡ rule, i.e.,

`
⊗

¿Γ, A

`
⊗

¿Γ, ¡A

can be read as the introduction rule for a dual server session type. It states
that a process serving A, and all of whose other interactions have a client
role (¿) with respect to a set of non-interacting (⊗) services, can itself be
‘co-promoted’ to a server ¡A.

Note that our intuitive explanations are almost identical to those of
Wadler [2014]; the difference is that our rules have the right branching struc-
ture to support the underlying intuition.

22 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

2.3.2 Design Decision #1: Server State and The Strong Rules

The first change with respect to the above is the switch to the strong rule,
namely

` Γ, B ` B⊥,⊥ ` B⊥, A ` B⊥, B O B

` Γ, ¡A

This rule evokes the structure of a ‘stateful’ server serving A’s, with external
interface Γ. Within the server there exists an internal server protocol B.
This comes with four ingredients: a process that provides a B, interacting
along Γ (initialization); a way to silently consume B (finalization); a way to
‘convert’ a B to an A (serving a client); and a way to fork one B into two
connected B’s (forking two subservers).

We use this strong rule in order to avoid the uniformity property that was
discussed in section 2.2.1: the weak coexponential rule gives trivial servers
providing identical A’s to all clients. In contrast, this rule will allow a server
to provide a different A each time it is called upon to do so.

2.3.3 Design Decision #2: Replacing Trees with Lists

The strong coexponential rule arose by taking the greatest fixed point of

HA(X) := ⊥N A N (X O X)
As discussed in section 2.2.1 and section 2.2.2, this rule represents a tree-like
structure. Nothing stops us from replacing it with a list-like structure.4 We
use the functors

H ′
A(X) := ⊥N (A O X) K ′

A(X) := 1⊕ (A⊗X)

and acquire the strong server rule derived from H ′
A, viz.

` Γ, B ` B⊥,⊥ ` B⊥, A O B

` Γ, ¡A

The main benefit is that the resulting system more closely reflects the
pattern of client-server interaction: clients form a queue rather than a tree,
and servers no longer have to fork subprocesses. This rule also requires fewer
ingredients: an initialization of the internal protocol, a finalization, and a
component that spawns a session to serve one additional client.

4It is worth noting that Girard considered list-like exponentials [1987a, §V.5(ii)], but
rejected them as they were not able to reproduce contraction. This is not a requirement
for modelling client-server interaction.

2.3. PROCESSES 23

To optimize this further, we make the O implicit, and replace ⊥ with a
general ∆ in the finalization:

Server
` Γ, B ` B⊥,∆ ` B⊥, A,B

` Γ,∆, ¡A

This second rule can be immediately derived from the first one:

` Γ, B ` B⊥,∆

` Γ,∆, B ⊗B⊥
` B⊥, B

` B⊥ O B,⊥

` B⊥, A,B ` B⊥, B

` B⊥, B,B ⊗B⊥, A

` B⊥ O B,A O (B ⊗B⊥)

` Γ,∆, ¡A

There is a surreptitious twist here: the ‘new’ internal server protocol is not
B, but B ⊗ B⊥. This leads to internal back-and-forth communication in
the server. Γ is consumed to produce a B. This is ‘passed’ to each process
serving each client. Finally, it is reflected back to the initilization process,
and ‘finalized’ into a ∆. The ⊥ rule is invertible, so instantiating ∆ := ⊥ in
Server gives back the preceding rule. Hence, these two rules are logically
equivalent.

2.3.4 Design Decision #3: Nondeterminism through Permu-
tation

Using list-shaped rules for ¡ forces us to revise the rules for ¿. To define a
cut elimination procedure the rules must now match the dual functor K ′

A,
and hence become

` ¿A
` Γ, ¿A ` ∆, A

` Γ,∆, ¿A

The cut elimination procedure for these rules leads to a confluent dynamics.
This is unsatisfactory from the perspective of client-server interaction: a
proper model requires some nondeterminism in the order in which clients
are served. There are many ways to introduce this kind of behaviour. We
choose the simplest one: we identify derivations up to permutation of client
formation in pools. That is, we quotient them under the least congruence
≡ generated from

` Γ, ¿A ` ∆, A

` Γ,∆, ¿A ` Σ, A

` Γ,∆,Σ, ¿A
≡

` Γ, ¿A ` Σ, A

` Γ,Σ, ¿A ` ∆, A

` Γ,∆,Σ, ¿A

This amounts to quotienting lists up to permutation. Thus, when a client
pool interacts with a server, the cut elimination procedure may silently
choose to serve any of the constituent clients.

24 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

Trees and nondeterminism The careful reader might notice that the
original, tree-like ‘distributed contraction’ rule ¿c inherently supported a
certain amount of nondeterminism: if we were to quotient derivations up
to permutation of the premises of ¿c, then the cut elimination procedure
would have some choice of whether to serve the left or right subtree first.
Switching to list-like functors forbids this move, and seemingly imposes a
much stricter discipline.

Nevertheless, the tree structure is awkward and rigid in another way. For
example, consider a client pool whose tree structure is informally [[c0, c1], [c2, c3]].
As nondetermistic choices are only made at each node, the clients cannot
be served in any order. For example, if c0 is served first then c1 must be
served next—as it is in the same subtree. From a conventional client-server
perspective this is arguably not a sufficient amount of nondeterminism. In
contrast, our formulation allows full permutations of the client pool.

2.3.5 Introducing CS::
Based on the above considerations, we introduce the system CSLL of Client-
Server Linear Logic.

Following recent presentation of CLL-based systems of session types
Kokke et al. [2019a], CSLL is structured around hyperenvironments. Thus
the logical system underlying CSLL is not one-sided sequent calculus like
CP, but a hypersequent system Avron [1991]. In this kind of presentation
process constructors are more finely decoupled. For example, the original
CP output/⊗ constructor x[y]. P |Q is a combination of a parallel compo-
sition with an output prefix. Hypersequent systems allow us to separately
type these two constructs, and bring the language closer to π-calculus.

One-sided sequent systems for CLL—such as Girard’s original presenta-
tion [1987a]—use sequents of the form ` Γ where Γ is an environment, i.e.,
an unordered list of formulas. We assign distinct names to each formula.
The environment Γ = x1 : A1, . . . , xn : An stands for A1 O . . . O An. Hence,
a comma stands for O. Environments are identical up to permutation. We
write · for the empty one.

A hyperenvironment adds another layer: it is an unordered list of envi-
ronments. We separate environments by vertical lines. If each environment
Γi stands for the formula Ai, the hyperenvironment G = Γ1 | · · · | Γn stands
for the formula A1 ⊗ · · · ⊗ An. Hence, | stands for ⊗. Hyperenvironments
are identical up to permutation, and we write ∅ for the empty one. We also
stipulate that variable names be distinct within and across environments.

The syntax and the type system of CSLL are defined in fig. 2.1. The
types are the formulas of CLL. Note that the choice between curly braces,
parantheses and brackets in the syntax of processes is merely typographi-
cal, and does not bear formal meaning. However, curly braces are meant
to evoke parameters, whereas parentheses and brackets evoke bindings in

2.3. PROCESSES 25

A,B, . . . ::= 1 | ⊥ | A O B | A⊗B | A⊕B | A N B | ¿A | ¡A | ?A | !A
Γ,∆, . . . ::= · | Γ, x : A (environments)
G,H, . . . ::= ∅ | G | Γ (hyperenvironments)
P ,Q, . . . ::= 0 (terminated process)

| x↔ y (link between x and y)
| νxy P (connect x and y)
| P |Q (parallel composition)
| y.case{l:P,r:Q} (receive choice over y)
| y[l]. P | y[r]. P (send choice over y)
| y(x). P | y[x]. P (receive/send x over y)
| y(). P | y[]. P (receive/send end-of-session at y)
| ¿x[]. P (create new client interface x)
| ¿x[y]. P (send client interface y over x)
| ¡y{z′, w′, y′. Q}(z, w). P (serve over y)
| x[disp]. P | x[use]. yP | x[dup](y0). y1P

(weakening, dereliction and contraction)
| !x{y⃗. P} (promotion)

HMix0

0 ` ∅

HMix2
P ` G Q ` H
P |Q ` G | H

Cut
P ` G | Γ, x : A | ∆, y : A⊥

νxy P ` G | Γ,∆

Ax

x↔ y ` x : A⊥, y : A

Par
P ` G | Γ, x : A, y : B

y(x). P ` G | Γ, y : A O B

Tensor
P ` G | Γ, x : A | ∆, y : B

y[x]. P ` G | Γ,∆, y : A⊗B

PlusL
P ` G | Γ, x : A

x[l]. P ` G | Γ, x : A⊕B

PlusR
Q ` G | Γ, y : B

y[r]. Q ` G | Γ, y : A⊕B

With
P ` Γ, x : A Q ` Γ, x : B

x.case{l:P,r:Q} ` Γ, x : A N B

M-False
P ` G | Γ

x(). P ` G | Γ, x : ⊥

M-True
P ` G

x[]. P ` G | x : 1

WhyNotW
P ` G | Γ

x[disp]. P ` G | Γ, x : ?A

WhyNotD
P ` G | Γ, y : A

x[use]. yP ` G | Γ, x : ?A

WhyNotC
P ` G | Γ, y0 : ?A, y1 : ?A

x[dup](y0). y1P ` G | Γ, x : ?A

OfCourse
P ` y⃗ : ?B⃗, x : A

!x{y⃗. P} ` y⃗ : ?B⃗, x : !A

QueW
P ` G

¿x[]. P ` G | x : ¿A

QueA
P ` G | Γ, x : ¿A | ∆, x′ : A

¿x[x′]. P ` G | Γ,∆, x : ¿A

Claro
P ` G | Γ, i : B | ∆, f : B⊥ Q ` z : B⊥, z′ : B, y′ : A

¡y{z, z′, y′. Q}(i, f). P ` G | Γ,∆, y : ¡A

Figure 2.1: The syntax and type system of CSLL.

26 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

continuations. A generic judgment of the type system has the shape P ` G
where P is a process, and G is a hyperenvironment.

Most typing rules are identical to HCP, and in the interest of brevity we
only discuss the important ones. Hyperenvironment components are intro-
duced by the nullary and binary hypermix rules, HMix0 and HMix2. These
are ‘Mix’ rules only in name. HMix2 forms the disjoint parallel composition
of two processes: their environments are joined with |, which stands for ⊗.5
HMix0 is the stopped process; its hyperenvironment is the empty one, which
stands for the unit of ⊗, namely 1.6

The Cut and Tensor rules eliminate hyperenvironment components.
The premises of Cut ensure that the two variables that are being connected—
viz. x and y—are in different ‘parallel components’ of P . Notice that the
external environments of these two components, namely Γ and ∆, are then
brought together in the conclusion. A similar pattern permeates the Tensor
and M-True rules. It is instructive to follow the derivation of the original
CP rules for ⊗ and 1, which we will silently use:

P ` Γ, y : A Q ` ∆, x : B

P |Q ` Γ, y : A | ∆, x : B

x[y]. P |Q ` Γ,∆, x : A⊗B

0 ` ∅
x[].0 ` x : 1

The exponential rules WhyNotW, WhyNotD, WhyNotC and OfCourse
are formulated in the style of Kokke et al. [2019a]. In OfCourse we use vec-
tor notation (−⃗) as a shorthand for lists of names and types. Note that—in
contrast to all previous systems—we notate P as a parameter rather than
as the continuation in the process !x{y⃗. P}. This because P does not be-
have like a continuation. For example, it has its own distinct commuting
conversion.

The coexponential rules QueW, QueA and Claro follow the patterns
described in section 2.3.1, section 2.3.2, section 2.3.3,section 2.3.4. The rule
QueW (W stands for ‘weaken’) constructs an empty client pool. The rule
QueA (A stands for ‘absorb’) combines a client and a pool into a slightly
larger pool. The interfaces of the client pool and the client are necessarily
disjoint, as they are separated by a | in the premise. All the processes in the
resultant pool race to communicate with a server at the single endpoint x.

Correspondingly, Claro constructs a process that offers a service at the
single endpoint y. Its continuation P functions as both the initialization and
the finalization of the server, over channels i and f respectively. This rule
is similar to the Server rule of section 2.3.3, but in the interest of brevity it
combines the premises ` Γ, B and ` B⊥,∆ into one process. However, these
functionalities continue to be logically disjoint components of P , as their

5Mix would join them with a comma, which would stand for a O.
6Mix0 would stand for the unit of O, namely ⊥.

2.3. PROCESSES 27

interfaces are separated by a | in the premise. The process Q is a ‘worker’
process which is spawned every time a client is to be served.

In all process constructs that involve a dot that is not within curly braces,
e.g. y(x). P , we call the part that precedes it the prefix of the process (y(x)
in this case), and the part that succeeds it the continuation (P in this case).

The bound names Bn(P) of a process P are defined as follows:

• x and y are bound in P within νxy P .

• x is bound in P within y(x). P and y[x]. P .

• Within ¡y{z, z′, y′. Q}(i, f). P we have that i and f are bound in P ,
while z, z′, and y′ are bound in Q. Note that y is not bound, but
rather ‘exported.’

• x is bound in P within ¿y[x]. P .

• x0 and x1 are bound in P within x[dup](x0). x1P .

• x is bound in P within x′[use]. xP .

In all other cases the set of bound names is empty. We define the free names
Fn(P) of a process P to be the set of sets corresponding to the names
occurring in the typing judgment of P . For example, the hyperenvironment
G := x : A, y : B | z : C,w : D determines the set of sets bGc = x, y |
z, w := {{x, y}, {z, w}}. Kokke et al. [2019a] call this the name partition
corresponding to a hyperenvironment. Thus, if P ` G we define Fn(P) :=
bGc. We will sometimes abusively write Fn(P) to mean the union of the
name partition, i.e. the complete set of free names that occur in it. As is
usual, processes are identified up to α-equivalence.

We write πy for an arbitrary prefix communicating on channel y, and
Bn(πy) for the variables that it binds in its continuation. For example, πy
could be y(x), and in this case Bn(πy) = {x}.

Finally, notice that the typing cannot be inferred from the terms alone.
For example, in M-False the term x(). P does not specify in which environ-
ment Γ within its hyperenvironment the unit ⊥ should be introduced. This
has an impact on the name partition Fn(P) of a process P .

2.3.6 Operational Semantics and Metatheory
Definition 1. Canonical terms are defined by the following clauses.

• πx. P is canonical whenever P is.

• P |Q is canonical if both P and Q are canonical.

• 0 and x↔ y are canonical.

28 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

P | 0 ≡ P (Par-Unit)
P |Q ≡ Q | P (Par-Comm)

P | (Q |R) ≡ (P |Q) |R (Par-Assoc)
x↔ y ≡ y↔ x (Link-Comm)

νxy (P |Q) ≡ P | νxy Q (x, y 6∈ Fn(P)) (Res-Par)
νxy νzw P ≡ νzw νxy P (Res-Res)
πx. (P |Q) ≡ P | πx. Q (Bn(πx) ∩ Fn(P) = ∅) (Pre-Par)
νxy πz. P ≡ πz. νxy P (z 6= x, y and πz and νxy not cross Fn(P))

(Res-Pre)
πx. πy. P ≡ πy. πx. P

(x 6= y,y 6∈ Bn(πx), x 6∈ Bn(πy), πx and πy not cross Fn(P))
(Pre-Pre)

extended with

¿x[x0]. ¿x[x1]. P ≡ ¿x[x1]. ¿x[x0]. P (Que-Que)

Figure 2.2: The structural equivalence of CSLL processes.

• y.case{l:P,r:Q} and !x{y⃗. P} are canonical.

In particular, νxy P is not canonical; it is a cut.
The above notion of canonicity is not definitive. For example, πx. P could

have been considered canonical regardless of the canonicity of P (similar to
weak head normal form for λ-calculus). However, we choose to react P
further to make the ‘final result’ of an interaction visible in later examples.
In addition, we could require terms such as P and Q in y.case{l:P,r:Q} be
canonical for the whole term to be canonical, but we choose not to so as to
reduce the number of reaction rules.

We define the notion of structural equivalence P ≡ Q to be the least con-
gruence between processes induced by the clauses in fig. 2.2. Furthermore,
we define the reaction relation P −→ Q between processes to be the least
relation induced by the clauses in fig. 2.3.

The structural equivalence and the reaction semantics largely mirror the
notions of the same name in the π-calculus Milner [1992, 1999]. Those that
differ are justified via linear logic. 2.3.6 and 2.3.6 can be seen as identifi-
cations arising from proof nets, in which the corresponding proofs would be
graphically identical. Note that the commuting prefixes are requried to not
‘cross’ the name partition in order to preserve typing. As a counterexample,
if P ` x : A, y : B | z : C,w : D, then x(w). y[z]. P ` x : A O D, y : B ⊗ C
while y[z]. x(w). P is ill-typed. To avoid this, we say that x(w) and y[z]

2.3. PROCESSES 29

ParL
P −→ P ′

P |Q −→ P ′ |Q

Res
P −→ P ′

νxy P −→ νxy P ′

Pre
P −→ P ′

πy. P −→ πy. P
′

Eq
P ≡ P ′ P −→ Q Q ≡ Q′

P ′ −→ Q′

νxy (z.case{l:P0,r:P1} |Q) −→ z.case{l:νxy (P0 |Q),r:νxy (P1 |Q)}
(With-Comm)

νxy (!z{xw⃗. P} | !y{v⃗. Q}) −→ !z{v⃗w⃗. νxy (P | !y{v⃗. Q})}
(OfCourse-Comm)

νxy (z↔ x |Q) −→ Q[z/y] (Link)
νxy (x[]. P | y(). Q) −→ P |Q (One-Bot)

νxy (x[z]. P | y(w). Q) −→ νxy νzw (P |Q) (Tensor-Par)
νxy (x[l]. P | y.case{l:Q0,r:Q1}) −→ νxy (P |Q0) (PlusL-With)
νxy (x[r]. P | y.case{l:Q0,r:Q1}) −→ νxy (P |Q1) (PlusR-With)

νxy (¿x[]. C | ¡y{z, z′, y′. Q}(i, f). P) −→ C | νif P (Claro-QueW)
νxy (¿x[x′]. C | ¡y{z, z′, y′. Q}(i, f). P) −→ νxy νx′y′ (C |R)

whereR := ¡y{z, z′, y′. Q}(z′, f). (νiz (P |Q))
(Claro-QueA)

νxy (x[disp]. P | !y{z⃗. Q}) −→ z⃗[disp]. P (ExpW)
νxy (x[use]. x′P | !y{z⃗. Q}) −→ νx′y (P |Q) (ExpD)

νxy (x[dup](x0). x1P | !y{z⃗. Q}) −→ z⃗[dup](z⃗0). z⃗1νx0y0 νx1y1 (P |R)

where R := !y1{z⃗1. Q[z⃗1y1/z⃗y]} | !y0{z⃗0. Q[z⃗0y0/z⃗y]}
(ExpC)

Figure 2.3: The operational semantics of CSLL processes.

30 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

cross the name partition Fn(P) = x, y | z, w, and hence that this commuta-
tion is forbidden. Formally, ‘crossing’ is defined as follows.

Definition 2. We first define two sets of names Xπx and Yπy indexed by
prefixes. Note they are defined for only some prefixes.

Xx(x′) := {x, x′} Xx[dup](x0). x1
:= {x0, x1}

Yy[y′] := {y, y′} Y¿y[y′]. := {y, y′}
Y¡y{z′,w′,y′. Q}(z,w). := {z, w}

Now, πx and πy cross the name partition bGc just if any of the following
cases apply.

• In the binary case, we require the following: Xπx and Yπy is defined
for πx and πy respectively; write Xπx = {x0, x1} and Yπy = {y0, y1};
there are Γ,∆ ∈ bGc such that x0, y0 ∈ Γ and x1, y1 ∈ ∆.

• In the nullary case, we require all the following to hold:

– πx is x() or x[disp]
– πy is y[] or ¿x[].
– bGc is ∅

Moreover, πx and νy0y1 cross the name partition bGc if the following holds:
Xπx is defined for πx; write X = {x0, x1} and there is Γ,∆ ∈ bGc such that
x0, y0 ∈ Γ and x1, y1 ∈ ∆.

The structural equivalence 2.3.6 allows us to commute the position of two
clients in the pool, thereby imitating racing—as discussed in section 2.3.4. In
order fully exploit the nondeterminism induced by 2.3.6 the other structural
equivalences are necessary. For example, the two clients in ¿x[x0]. y(y′). ¿x[x1]. P
cannot be permuted without using 2.3.6 first. Indeed, this is the major mo-
tivation for 2.3.6, as the latter is not needed for our metatheoretic results.
Note that 2.3.6 is the one and only source of nondeterminism in the system.

Some commuting conversions appear as structural equivalences, and
some as reaction rules. 2.3.6 and 2.3.6 are commuting conversions for
OfCourse and With respectively. 2.3.6 with 2.3.6 combine into a kind of
commuting conversion for prefixes. We take the former as reaction rules, and
the latter as structural equivalences. This choice makes structural equiva-
lence preserve canonicity. For example, in 2.3.6 the LHS is not canonical,
but the RHS is.

The overwhelming majority of these commuting conversions is used in
previous works on the relationship between linear logic and π-calculus to
obtain cut elimination [Wadler, 2014, §3.6] [Bellin and Scott, 1994, §3].
Perhaps the only exception is 2.3.6, which allows us to swap any two non-
interfering prefixes. It can be justified computationally as an observational

2.4. AN EXAMPLE: COMPARE-AND-SET 31

equivalence arising from the semantics of Atkey [2017, §5]. Finally, Kokke
et al. [2019a] view it as a session-theoretic version of delayed actions Merro
and Sangiorgi [2004].

Pre corresponds to eliminating non-top-level cuts in Linear Logic; it is
not standard in either π-calculus or CP. Nevertheless, we choose to include
it in order to strengthen our notion of canonical form, which in turn elu-
cidates the examples in section 2.4. In contrast, the reaction rules for the
exponentials are standard; see Kokke et al. [2019a].

Finally, we have a number of novel reaction rules for coexponentials.
The rule 2.3.6 corresponds to serving an empty client pool. In this case we
simply connect the initialization and finalization channels of P . Likewise,
the rule 2.3.6 is the reaction caused by a nonempty pool of clients. The pool
offers a fresh channel x′ on which the new client expects to be served. The
server then spawns a worker process Q, and the channel y′ on which it will
serve the new client which is connected to x′, as expected. The initialization
channel i of the server continuation is connected to the z channel, on which
the worker process expects to receive the ‘current state’ of the server. Once
Q serves the client, it will send the ‘next state’ of the server on z′. Thus, we
re-instantiate the server with z′ as the new initialization channel. Note that
the ‘server state’ we discuss here does not conform to the usual intuition of
an immutable value; it could be a session type itself, as demonstrated by
the example in section 2.5.5.

We have the following metatheoretic results.

Lemma 3. If P ≡ Q, then P ` G if and only if Q ` G.

Theorem 4 (Preservation). If P ` G and P −→ Q, then Q ` G.

Theorem 5 (Progress). If R ` G then either R is canonical, or there exists
R′ such that R −→ R′.

2.4 An example: Compare-and-Set
We now wish to demonstrate the client-server features of CSLL. To do so we
produce an implementation of the quintessential example of a synchroniza-
tion primitive, the Compare-and-Set operation (CAS) [Herlihy and Shavit,
2012, §5.8]. Higher-level examples are given in section 2.5.

A register that supports compare-and-set comes with an operation Cas(e, d)
which takes two values: the expected value e, and the desirable value d. The
function compares the expected value e with the register. If the two differ,
the value of the register remains put, and Cas(e, d) returns false. But if
they are found equal, the register is updated with the desirable value d, and
Cas(e, d) returns true. When multiple clients are trying to perform CAS
operations on the same register they must be performed atomically. The

32 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

CAS operation is very powerful: an asynchronous machine that supports it
can implement all concurrent objects in a wait-free manner.

We follow previous work Girard [1987a], Abramsky [1993b], Atkey et al.
[2016], Kokke et al. [2019a] and define the type of Boolean sessions to be
2 := 1⊕ 1. We have the following derivable constants:

ttz := z[l]. z[].0 ` z : 2 ffz := z[r]. z[].0 ` z : 2

Moreover, we obtain the following derivable ‘elimination’ rule (we write
derivable rules in blue):

P ` Γ

z(). P ` z : ⊥,Γ
Q ` Γ

z(). Q ` z : ⊥,Γ
if(z; P ; Q) := z.case{l:z(). P ,r:z(). Q} ` z : 2⊥,Γ

Hence, we can eliminate a Boolean channel in any environment Γ. The
induced reactions are

νxy (ttx | if(y; P ; Q)) −→∗ 0 | P ≡ P νxy (ffx | if(y; P ; Q)) −→∗ 0 |Q ≡ P

We can now implement a register with a CAS operation. To begin, each
client communicates with the register along a channel of type

A := 2⊗ 2⊗ 2⊥ O 1

Thus, a client outputs three channels. On the first two it shall send the ex-
pected and desirable values. On the third it will input a boolean, namely the
success flag of the CAS operation. Following that, it will accept an end-of-
session signal. Curiously, this last step is necessary for our implementation
to type-check.

As a minimal example we will construct a pool of two racing clients, one
performing Cas(ff, tt), and the other one Cas(tt,ff). Initially x1 is ahead in
the client pool.

C0 := x0[xe]. x0[xd]. (ffxe | ttxd
| x0↔ r0) ` x0 : 2⊗ 2⊗ 2⊥ O 1, r0 : 2⊗⊥

C1 := x1[xe]. x1[xd]. (ttxe | ffxd
| x1↔ r1) ` x1 : 2⊗ 2⊗ 2⊥ O 1, r1 : 2⊗⊥

clients := ¿x[x1]. ¿x[x0]. ¿x[]. (C0 | C1)

` x : ¿
(
2⊗ 2⊗ 2⊥ O 1

)
, r0 : 2⊗⊥, r1 : 2⊗⊥

Note that each client forwards the result it receives to an individual channel
ri. By the QueA rule these two channels are preserved in the final interface
of the pool.

Next we define the CAS register process, for which we use the ¡ con-
nective. This requires two components: the initialization and finalization

2.4. AN EXAMPLE: COMPARE-AND-SET 33

process P , and the worker process Q that serves one client. To begin, we
pick the internal server state to be B := 2. We initialize the register to false,
and forward the final state of the register to u.

P := (ffi | f ↔ u) ` i : 2 | f : 2⊥, u : 2

Finally, we define Q. We begin by receiving the input and output channels
from a client, and do a case analysis on the current state of the register:

Q := y′(ye). y
′(yd). if(z; R1; R0) ` z : 2⊥, y′ : 2⊥ O 2⊥ O 2⊗⊥, z′ : 2

We have carefully named the channels so that ye : 2
⊥ and yd : 2⊥ carry the

expected and desirable values. z′ and w′ carry the internal register, before
and after the operation. The continuations R0 and R1 do a case analysis on
the expected and desired value:

R1 := if(ye; if(yd; S111; S110); if(yd; S101; S100))

`ye : 2⊥, yd : 2⊥, y′ : 2⊗⊥, z′ : 2
R0 := if(ye; if(yd; S011; S010); if(yd; S001; S000))

`ye : 2⊥, yd : 2⊥, y′ : 2⊗⊥, z′ : 2

Two further case analyses lead to an exhaustive eight cases, each of which is
handled by a separate process Sijk. We only give S110 here, the rest being
analogous:

S110 := y′[yr]. (ttyr | y′().ffz′) ` y′ : 2⊗⊥, z′ : 2

In this case, the expected value (true) matches the register state (true),
so the process outputs true to the result channel yr (the CAS operation
succeeds), and the register is set to the desired value (false). We must not
forget to receive an end-of-session signal on y, as required by the session
type. We let server := ¡y{z, z′, y′. Q}(i, f). P ` y : ¡(2⊥ O 2⊥ O 2⊗⊥), u : 2,

34 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

and cut:

νxy (clients | server)
= νxy (¿x[x1]. ¿x[x0]. ¿x[]. (C0 | C1) | server)
≡ νxy (¿x[x0]. ¿x[x1]. ¿x[]. (C0 | C1) | server)

(x0 preempts x1 using 2.3.6)
−→ νxy νx0y

′ (C0 | ¿x[x1]. ¿x[]. C1 | ¡y{z, z′, y′. Q}(z′, f). (νiz (P |Q)))
(C0 is accepted)

−→∗ r0[yr]. (ttyr | r0(). νxy (¿x[x1]. ¿x[]. C1 | ¡y{z, z′, y′. Q}(z′′, f). P ′))
(C0 performs CAS)

−→ r0[yr]. (ttyr | r0(). νxy νx1y′ (C1 | ¿x[].0 | ¡y{z, z′, y′. Q}(z′, f). (νz′′z (P ′ |Q))))
(C1 is accepted)

−→∗ r0[yr]. (ttyr | r0(). r1[yr]. (ttyr | r1(). νxy (¿x[].0 | ¡y{z, z′, y′. Q}(z′′′, f). P ′′)))
(C1 performs CAS)

−→ r0[yr]. (ttyr | r0(). r1[yr]. (ttyr | r1(). (0 | νz′′′f P ′′)))
(server starts to finalize)

−→∗ r0[yr]. (ttyr | r0(). r1[yr]. (ttyr | r1().ffu)) ` r0 : 2⊗⊥, r1 : 2⊗⊥, u : 2
(server finalizes)

where P ′ = ttz′′ | f ↔ u and P ′′ = ffz′′′ | f ↔ u. This corresponds to the
scenario where C0 wins the first race, and hence the CAS operation of both
clients suceeds. There is another reaction sequence: if C1 wins the first race,
we end up with r1[yr]. (ffyr | r1(). r0[yr]. (ttyr | r0(). ttu)).

server

ffi

↔

Q

Q

C0

C1

i z
B

z′

z
B

z′f
B

y′ x0
A

y′ x1
A

u
2

r0
2⊗⊥

r1
2⊗⊥

Figure 2.4: Topology of Compare-and-Set
protocol, after two server acceptances. Boxes
represent processes. Cuts are represented by
edges connecting two channels. The dual of
each session type is omitted for simplicity.

The coexponentials play
a central rôle here: ¡ is
used to represent the fact
that this register provides a
server session at a unique
end point, and ¿ is used
to collect requests for a
CAS operation to this sin-
gle end point. We see
that every feature of client-
server interaction, as de-
scribed in points (i)–(iv) of
section 2.1.1, is modelled.

The fact we are able
to implement a synchro-
nization primitive like CAS
shows that the client-server
rules also provide an additional safeguard, namely that server acceptance is
atomic. While the actual CAS is not an atomic operation—as many things

2.5. A SESSION-TYPED LANGUAGE FOR CLIENT-SERVER PROGRAMMING35

are happening in parallel—the causal flow of information ensures that the
state implicitly remains atomic.

To illustrate the type of atomicity we have, consider an alternative re-
action sequence where the two clients are immediately accepted before any
other reaction. fig. 2.4 shows the process topology of the scenario where C0

is accepted immediately before C1. Each client is connected to the one of
the two worker processes Q with client protocol A, and the worker processes
are connected to each other and P with internal server protocol B. Which
specific worker process a client connects to is determined by the client’s po-
sition in the queue, before the coexponential reaction 2.3.6 takes place. The
clients’ positions in the layout also determine the final result of the reaction
up to structural equivalence, even before the computation of the output
takes place.

2.5 A session-typed language for client-server pro-
gramming

As the example of the previous section shows, CSLL is a particularly low-
level language. This is a feature of essentially all variants of linear logic as
used for session typing, including Kokke et al.’s HCP [2019a, Example 2.1],
and Wadler’s CP [Atkey, 2017, §2.1] [Atkey et al., 2016, §3.1]. Consequently,
the need for higher-level notation to help us write richer examples arises.
These in turn will help us illustrate the degree of channel sharing allowed by
CSLL. We follow the lead of Wadler [2014, §4] and introduce a higher-level,
session-typed functional language, which we call CSGV.

CSGV is a linear λ-calculus augmented with session types and communi-
cation primitives. It is based on the influential work of Gay and Vasconcelos
[2010]. Over the past decade many variations of this language have been
proposed; see e.g. Lindley and Morris [2015, 2016, 2017] and Fowler et al.
[2019]. CSGV extends Wadler’s version with primitives for client-server in-
teraction. Like the approach in loc. cit. we do not directly endow CSGV
with a semantics. Instead, we formulate a type-preserving translation into
CSLL, which indirectly provides an execution mechanism. Naturally, the
client-server primitives translate to the coexponential rules of CSLL.

2.5.1 Source Language and the Translation

Types The types of CSGV consist of standard functional types and session
types. While the former are used to classify values, the latter are used to
describe the behaviour of channels. Compared to Wadler [2014] we have

36 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

added sum types, and session types for client-server shared channels.

T, . . . ::= T ⊸ T | T → T | T + T | T ⊗ T | Unit | TS

TS , . . . ::= !T.TS (output value of type T , then behave as TS)
| ?T.TS (input value of type T , then behave as TS)
| TS ⊕ TS (select from options)
| TS N TS (offer choice)
| end? | end! (end-of-session)
| ¿TS (request TS session)
| ¡TS (serve TS session)

Both the functional types and the session types of CSGV are translated
to the linear types of CSLL. The functional part closely follows Wadler in
using the ‘call-by-value’ embedding of intuitionistic logic into linear logic
Benton and Wadler [1996], Maraist et al. [1995, 1999]. The session types
are translated as follows:

J!T.TSK := JT K⊥ O JTSK JTS N ULK := JTSK⊕ JULK Jend!K := ⊥J?T.TSK := JT K⊗ JTSK JTS ⊕ ULK := JTSK N JULK Jend?K := 1J¿TSK := ¡JTSK J¡TSK := ¿JTSK
As noted by Wadler [2014, §4.1], the connectives translate to the dual of
what one might expect. The reason is that channels are used in the opposite
way. Consider the session type !T.S: sending a value in CSGV is translated
as inputting a channel on which you can send it in CSLL. Similarly, ¡S does
not represent a channel that the server provides, but rather a channel that
the server consumes. It is therefore a channel that the client pool provides,
and hence it is translated to a client in CSLL.

Duality We define duality on session types in the standard way; it is
obviously an involution.

!T.TS := ?T.TS !T.TS := ?T.TS TS ⊕ UL := TS N UL

TS N UL := TS ⊕ UL ¿TS := ¡TS ¡TS := ¿TS

The translation is a homomorphism of involutions:

Lemma 6. JTSK = JTSK⊥.

Thus, connecting channels in CSGV will be translated to cuts in linear logic.

Definition 3. The set of unlimited types is defined inductively as follows.

• 1 and T → U are unlimited.

2.5. A SESSION-TYPED LANGUAGE FOR CLIENT-SERVER PROGRAMMING37

• T + U and T ⊗ U are unlimited whenever T and U are.

All other types are linear.

Values of unlimited types can be discarded and duplicated, because they
are translated to CSLL types that admit weakening and contraction. Cate-
gorical considerations [Melliès, 2009, §6.5] lead us to consider T⊗U unlimited
whenever T and U are, which is finer-grained than loc. cit.

Terms CSGV is a linear λ-calculus, extended with constructs for sending
and receiving messages.

L,M,N ::= x | ⋆ | λx.N |M N | (M,N) | let (x, y) = M in N

| inl M | inr M | match L with x.{M,N}
(functional fragment)

| send M N | recv M (send and receive)
| selectL M | selectR M | case L of x.{M,N} (select options)
| terminate M (terminate M)
| connect(x.M ; y.N) (connect x of M to y of N)
| eofx (end client pool)
| forkx x′.M (extract client interface)
| serve y{L, z.M, f.N} (server construction)

Typing rules The environments of CSGV are given by Γ, . . . ::= • | Γ, x :
T . The translation of types is extended to environments pointwise.

Selected typing rules of CSGV are given in fig. 2.5 and fig. 2.6. Most
rules follow Wadler [2014, §4.1] to the letter, and are therefore omitted. In
the interest of economy we also give the translation to CSLL at the same
time. The translation is defined by induction on the typing derivations of
CSGV. As the purpose of a CSGV program is the computation of a value of
a distinguished type, the translation must privilege a single name over which
this value will be returned. Thus, given a choice of name z and a typing
derivation Γ `M : T , we write JΓ `M : T K[z] for its translation into CSLL.
Somewhat abusively we will sometimes also write JMKz ` JΓK⊥, z : JT K for
the translated term. This slight abuse of notation also reveals the intended
typing.

The novelty here is in the CSGV rules for client-server interaction, and
their translation into CSLL. A name of shared client type ¿TS can be seen as
a form of ‘capability’ for talking to the server. ReqW discards this capability,
signalling the end of the client pool. ReqA uses it to spawn a fresh channel
x′ on which a client M will talk to a server, and returns the capability back
to the caller. The client M itself has type end!: it does not return valuable
information, but uses values and channels found in Γ.

38 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

uwv
Recv

Γ `M : ?T.TS

Γ ` recv M : T ⊗ TS

}�~
[

z] := JMKz ` JΓK⊥, z : JT K⊗ JTSK
uwv

Send
Γ `M : T ∆ ` N : !T.TS

Γ,∆ ` send M N : TS

}�~
[

z] :=

JMKy ` JΓK⊥, y : JT K x′↔ z ` x′ : JTSK⊥, z : JTSK
x′[y]. (JMKy | x′↔ z) ` JΓK⊥, x′ : JT K⊗ JTSK⊥, z : JTSK ⊗JNKx ` J∆K⊥, x : JT K⊥ O JTSK
νxx′ (x′[y]. (JMKy | x′↔ z) | JNKx) ` JΓK⊥, J∆K⊥, z : JTSKuwv

Conn
Γ, x : TS `M : end! ∆, y : TS ` N : T

Γ,∆ ` connect(x.M ; y.N) : T

}�~
[

z] :=

JMKy ` JΓK⊥, x : JTSK⊥, y : ⊥ z[].0 ` z : 1

νyz (JMKy | z[].0) ` JΓK⊥, x : JTSK⊥ Cut

JNKz ` J∆K⊥, y : JTSK, z : JT K
νxy (νyz (JMKy | z[].0) | JNKz) ` JΓK⊥, J∆K⊥, z : JT K Cut

Figure 2.5: CSGV Typing Rules and Translation to CSLL: linear session
part

2.5. A SESSION-TYPED LANGUAGE FOR CLIENT-SERVER PROGRAMMING39

uwwv
ReqW

x : ¿TS ` eofx : end!

}��~
[

z] :=

0 ` ∅
¿x[].0 ` x : ¿JTSK⊥

z(). ¿x[].0 ` x : ¿JTSK⊥, z : ⊥

uwwv
ReqA

Γ, x′ : TS `M : end!
Γ, x : ¿TS ` forkx x′.M : ¿TS

}��~
[

z] :=

JMKu ` JΓK⊥, x′ : JTSK⊥, u : ⊥ v[].0 ` v : 1

νuv (JMKz | v[].0) ` JΓK⊥, x′ : JTSK⊥
x↔ z ` x : ¿JTSK⊥, z : ¡JTSK

¿x[x′]. (νuv (z[].0 | JMKu) | x↔ z) ` JΓK⊥, x : ¿JTSK⊥, z : ¡JTSK HMix2+QueA

uwv
Serv
∆ ` L : T z : T, y : TS `M : T Σ, f : T ` N : U

∆,Σ, y : ¡TS ` serve y{L, z.M, f.N} : U

}�~
[

u] :=

JLKi ` J∆K⊥, i : JT K JNKu ` JΣK⊥, f : JT K⊥, u : JUKJLKi | JNKu ` J∆K⊥, i : JT K | JΣK⊥, f : JT K⊥, u : JUKJMKz′ ` z : JT K⊥, y : JTSK⊥, z′ : JT K
¡y{z, z′, y. JMKz′}(i, f). (JLKi | JNKu) ` J∆K⊥, y : ¡JTSK⊥, JΣK⊥, u : JUK Claro

Figure 2.6: CSGV Typing Rules and Translation to CSLL: shared session
part

40 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

Dually, ¡TS is the type of a server channel. Serv constructs a server
from three components. L computes the initial state of the server. Given
the current state in z, and a client channel y, M serves the client listening
on y, and then returns the next state of the server. N finalizes the server.
Note that the so-called server ‘state’ here could well be a channel itself,
enabling bidirectional interleaving communication—a design we will explore
in section 2.5.5.

The Serv typing rule is quite restrictive, in that it does not allow any-
thing from the environments ∆ and Σ to be used in the term M which
computes the next state of the server. Fortunately, the following derivable
rule allows us to weave some non-linear values of types V⃗ in the server.

∆ ` L : T v⃗ : V⃗ , z : T, y : TS `M : T Σ, f : T ` N : U

V⃗ unlimited
v⃗ : V⃗ ,∆,Σ, y : ¡TS `

serve y{(v⃗, L), z′. let (v⃗, z) = z′ in (v⃗,M), f ′. let (v⃗, f) = f ′ in N}︸ ︷︷ ︸
serve’ y{L, z.M, f.N}

: U

We will make crucial use of this derivable rule in a couple of our examples.
We also also adopt the common shorthands let x = M in N := (λx.N)M
and let _ = M in N := (λz.N)M for fresh z : ⋆.

2.5.2 Functional Data Structure Server

Our primitives can be used to protect a shared functional data structure.
Without loss of generality, we consider a server whose state is a purely
functional queue T with operations

enq : T ⊗A→ T deq : T → T ⊗ (Unit+A) empty : T

In particular, deq could return Unit if the queue is empty. The server will
talk to a client via a channel of type TS := (?A.end?) N (!(Unit + A).end?).
One client receives an A along r0, and enqueues it. The other one dequeues
an element, and sends it along r1.

2.5. A SESSION-TYPED LANGUAGE FOR CLIENT-SERVER PROGRAMMING41

L := empty
Menq := let (v, y′′) = recv y′ in

let _ = terminate y′′ in enq(z, v)
Mdeq := let (v, z′) = deq z in

let _ = terminate (send v y′) in z′

M := case y of y′.{Menq,Mdeq}

C0 := let (v, r′0) = recv r0 in
let _ = terminate r′0 in
let x′0 = send v (selectL x0) in x′0

C1 := let (v, x′1) = recv (selectR x0) in
let _ = terminate (send v r1) in x′1

clients := let x = forkx x0. C0 in
let x = forkx x1. C1 in eofx

We then define server := serve y{L, z.M, f. f}, and see that

r0 : ?A.end?, r1 : !(Unit+A).end? ` connect(x. clients; y. server) : T

2.5.3 Nondeterminism
Unsurprisingly, the races in our system suffice to implement nondetermin-
istic choice. We define B := Unit + Unit. We implement tt and ff by the
obvious injections, and the conditional by

Γ ` B : B ∆ `M : V ∆ ` N : V

Γ,∆ ` if B then M else N := match B with x.{M,N} : V
+E

(for x fresh). The clients C0, C1 respectively send ff and tt over a channel.
We also define a server with a pair of Booleans as internal state. The first
component records whether the server has ever received a value. When a
value is received it is stored in the second component, and any further values
received are discarded.

C0 := send ff x0

C1 := send tt x1
clients := let x = forkx x0. C0 in

let x = forkx x1. C1 in
eofx

M := let (z0, z1) = z in
let (v, y′) = recv y in
let _ = terminate y′ in
if z0 then z else (tt, v)

N := let (f0, f1) = f in f1

42 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

We define a server := serve y{(ff,ff), z.M, f.N} beginning from (ff,ff). We
then have that

` flip := connect(x. clients; y. server) : B

This program is translated to JflipKy ` y : 2, with reactions JflipKy −→∗ ffy

and JflipKy −→∗ tty. We can use this to implement a nondeterministic choice
operator:

P ` Γ Q ` Γ

choose(P ,Q) := νxy (JflipKy | if(x; P ; Q)) ` Γ

such that choose(P ,Q) −→∗ P and choose(P ,Q) −→∗ Q.

2.5.4 Fork–Join Parallelism
Fork-join parallelism [Conway, 1963] is a common model of parallelism in
which child processes are forked to perform computation simultanously.
Once they have finished, they are joined by the parent process, which col-
lects their work and produces the final result. We assume a ‘heavyweight’
function h : A → B that will run on forked processes, and a relatively less
expensive function g : B → B → B that will combine their answers. We
also assume an initial value g0 : B, and a list of ‘tasks’ xs : [A] to process.
Of course, [A] is the type of lists of A, and is supported by the operations:

nil : [A] cons : A→ [A]→ [A] foldC : C → (C → A→ C)→ [A]→ C

Let

clients := let y = fold¿TS
c (λx. λv. forkx x′. (let v′ = h v in send v′ x′)) xs in

eofy
M := let (v, y′) = recv y in let _ = terminate y′ in g z v

The client protocol is TS := !B.end!. To form the client pool, we begin with
a shared client channel c : ¿TS . We fold over the list xs : [A], adding a forked
process for each ‘task’ v : A to the client pool. Each one of these forked
processes will compute h v : B, and send it over its fresh channel x′ : TS .
We have c : ¿TS ` clients : end!.

We let server := serve’ y{g0, z.M, f. f}. The server begins with internal
state g0 : B. It nondeterministically receives the result of a computation of h
from each client, and ‘merges’ it into its state using g. In the end, it returns
the result. We have z : B, y : TS `M : B, and thus y : ¡TS ` server : B. We
use serve’ to pass unlimited parameters to the server internals.

Putting this system together, we get

` fork-join(h, g0, g, xs) := connect(x. clients; y. server) : B

2.5. A SESSION-TYPED LANGUAGE FOR CLIENT-SERVER PROGRAMMING43

The fork-join paradigm is often used in industrial parallelization frame-
works [Dagum and Menon, 1998, Reinders, 2007, Blumofe et al., 1995, Leijen
et al., 2009]. The background languages and type systems usually do not use
any logical devices for concurrency. In particular, concurrent behaviour is
not controlled by the type system, as it is here. Note that fork-join requires
each spawned process to be independent of each other and only communi-
cate with the parent process, which is precisely caputured by the linearity
restriction of our system.

Another parallel computation model is that of async-finish. It is more
expressive than fork-join, as it allows spawned processes to spawn further
processes. The whole tree is then joined at the root process, with no regard
to the spawning thread of each child. Our system(s) does not support that:
in the ReqA rule, the spawned process M is only given a channel x′ : TS ,
which cannot be used to spawn further processes in the same pool. However,
it is well-known is that nested parallelism is still possible, but each child
has to spawn its own instance of a fork-join computation, which does not
interfere with the root process.

An even more expressive model is that of futures [Halstead, 1984]. A
future is a first-class value that represents a computation running in parallel
to the current process. At any point it can be forced to obtain its result; if
it has not finished an error may be returned, or the process forcing it may
block. While fork-join or async-finish spawned processes are independent of
each other, futures may be passed around freely (in any reasonably expres-
sive language) and introduce rich interactions. This seems to be in violation
of the linearity restriction of our system(s), and thus cannot be expressed.
Nevertheless, the Conn rule can be seen as a very restricted form of future,
where the spawned process can only communicate with the parent process.
More discussions about the difference between these models is given by Acar
[2016].

2.5.5 Keynes’ Beauty Contest

Until this point we have seen only relatively simple examples of client-server
interaction. In all cases, the ‘internal server protocol’ we have used has con-
sisted of an unlimited type, the values of which we can replicate or discard.
This leads to the false impression that clients access the server one-by-one
in a sequential manner, so that clients that connect later are unable to influ-
ence the information observed by the earlier ones. In this section we present
an example that shows this to be untrue. In particular, if the ‘internal server
protocol’ consists of a session type itself, then we witness bidirectional, in-
terleaving behaviour. This distinguishes our systems from those based on
manifest sharing Balzer and Pfenning [2017].

We present a server implementing the umpire in a Keynesian beauty
contest [Keynes, 1936, §12]. Keynes’ beauty contest works as follows. A

44 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

newspaper runs a beauty contest in which readers have to pick the prettiest
faces from a set of photographs. The competitors are not those pictured,
but the readers themselves: if they pick the faces which are judged to be
the prettiest by the majority, they will win a prize. Thus, the readers are
incentivized to estimate the aesthetics of the majority.

We will implement a restricted version of this scenario, where a pool
of clients votes for a Boolean value. The server then counts the votes,
and awards a payoff of 0 or 1 (represented by ff and tt respectively) to
each client, indicating whether they voted for the winner. This is obviously
impossible if the server handles requests sequentially. In fact, the server will
be implemented by spawning a network of interconnected processes, each of
which will handle one vote.

We first define the following derived rule. Informally, this rule expresses
that a process that uses a channel of type TS is also exposing a channel of
dual type TS .

Γ, x : TS `M : end! y : TS ` y : TS

Γ ` invx(M) := connect(x.M ; y. y) : TS

The client session type is CS := !B.?B.end!, and the internal server pro-
tocol is TS := ?(N⊗N).!B.end?, where N is the type of natural numbers. We
assume a bunch of standard functions:

zero : N succ : N→ N ≤ : N→ N→ B eq : B→ B→ B

2.5. A SESSION-TYPED LANGUAGE FOR CLIENT-SERVER PROGRAMMING45

where eq checks Boolean values for equality. We let

L := let w′ = send (zero, zero) w in (send initial state)
let (_, w′′) = recv w′ in w′′ (receive final value)

N := let (s, f ′) = recv f in (receive final count)
let (n0, n1) = s in (unpack state)
let f ′′ = send (n0 ≤ n1) f

′ in
(compute winner and notify the last worker process)

terminate f ′′ (close channel)
M := let (s, z′) = recv z in (get state)

let (nt, nf) = s in (unpack state)
let (b, y′) = recv y in (receive a vote)
let s′ = if b then (succ nt, nf) else (nt, succ nf) in

(increment the right counter)
let w′ = send s′ w in (pass new state to next worker process)
let (b′, w′′) = recv w′ in (receive winner from next worker process)
let _ = terminate (send (eq b b′) y′) in

(tell competitor if they won, close channel)
let _ = terminate (send b′ z′) in

(forward winner on, close channel)
w′′

We define server := serve y{invw(L), z. invw(M), f .N}. The components are
typed as

w : TS `L : end!
w : TS , z : TS , y : CS `M : end!

f : TS `N : 1

y : ¡TS `server : 1

The details of this protocol are subtle. The construct invx(−) allows us
to use programs which only have side-effects as internal server state, by
inverting the polarity of one of the channels. The server is initialized by
L, which sets the state to be (0, 0). It then listens on the same channel to
receive the winner, which it promptly discards. The server finalization N
receives the final tally of the votes, computes the winner, sends back the
result, and closes the channel.

The component M is used to communicate with each competitor. It
receives the state of the server, the competitor’s vote, and increments the
appropriate tally. It then passes on this new state to the next worker process
M , which will communicate with the next competitor. This sets up an entire
network of worker processes M , one to serve each competitor. When the
competitors have all cast their votes, N computes the winner, and sends

46 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

it back to the last worker process. This process then tells the competitor
whether they won, closes the channel to the competitor, and passes on the
result to the worker process serving the previous competitor, and so on. At
the very end, the winner is passed to the initialization process L.

We can then define a number of competitors xi : !B.?B.end! ` Ci : end!
who will cast their votes by sending a Boolean value and receive a payoff
along xi. These can be combined into a client pool, much in the same way
as in previous examples.

server

L

N

M

M

C0

C1

i

N⊗ N
z

B z′

N⊗ N
z

z′

B
z

z′
N⊗ N

f z′

B
f

y
B

x0y
B

x0

y
B

x1y
B

x1

Figure 2.7: Layout of the Keyne-
sian beauty contest, after coexponen-
tial reactions but before other re-
actions. Boxes represents processes
whose names are at the center of the
boxes. Arrows represents directed
mesages between processes with types
of the data annotated. Labels on
edges of boxes are the names of the
channels to the processes.

If we have two such competi-
tors C0 and C1 merged in a pool,
and we connect them to server, we
will obtain a process topology of the
form illustrated in the schematic di-
agram of fig. 2.7. Compared with
fig. 2.4 this diagram is intuitive but
loose on accuracy. Details such as
end? and end! are left out. We have
also spelled out the protocols inter-
nals. For example, the server inter-
nal protocol TS is indicated by a for-
ward arrow N ⊗ N and a backward
arrow B.

2.6 Related work
In addition to the general related
works as discussed in chapter 1, fol-
lowing are ones more particular to
the present extension.

Clients and Servers in Linear
Logic Typing client-server inter-
action has been a thorn in the side of session types and Linear Logic. All
previous attempts rely on some version of the Mix rule. Both Wadler [2014,
§3.4] and Caires and Pérez [2017, Ex. 2.4] use Mix to combine clients into
client pools. Kokke et al. implicitly use Mix to type an otherwise untypable
client pool in HCP [Kokke et al., 2019a, Ex. 3.7].7 Remarkably, none of
these calculi demonstrate stateful server behaviour, as we predicted using a
semantic argument in section 2.1.1.

The present extension centers around the idea that client pool should
be represented as a collection of disjoint processes, while the corresponding
server internally connected. The same idea was independently developed

7This has been confirmed to us by the authors.

2.6. RELATED WORK 47

by Kokke et al. [2019b]. They drew inspiration from Bounded Linear Logic
[Girard et al., 1992] to formulate a system for nondeterministic client-server
interaction. They use types of the form ?nA (standing for n copies of A
delimited by O) and !nA (standing for n copies of A delimited by ⊗). !nA
represents a pool of n disjoint clients with protocol A, and ?nA a server
that can serve exactly n clients with protocol A. While this is consistent
with disjoint-vs.-connected concurrency, their system is limited to serving a
specific number of clients in each session. Thus, it fails to satisfy criterion
(i) in section 2.1.1, and does not form a satisfactory model.

Differential Linear Logic The rules for ¿ given in §2.2.2 are almost
the same as the coweakening, codereliction and cocontraction rules for ! in
Differential Linear Logic (DiLL) [Ehrhard, 2018]. DiLL is equipped with
nondeterministic reduction and formal sums, and is believed to have some-
thing to do with concurrency. Ehrhard and Laurent [2010] have produced
an embedding of the finitary π-calculus into DiLL, though that encoding has
been criticized [Mazza, 2018]. A type of client-server interactions—namely
the encoding of ML-style reference cells into session types—has been en-
coded by Castellan et al. [2020] in a system based on the rules of DiLL.
This work relies on both the costructural rules and Mix, so it is not clear
which device primarily augments expressive power. Our work shows that
something akin to the costructural rules of DiLL arises from the wish to
form client pools. The exact relationship between coexponentials and DiLL
remains to be determined.

48 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

Appendices

2.A Coexponentials and Logical equivalences

We may derive the following logical equivalences about coexponentials, which
are dual to similar laws for the exponentials.

¡¡A ≡ ¡A ¡A ≡ ¡A O ¡A ¡⊥ ≡ ⊥ ¡(A N B) ≡ ¡A O ¡B ¡0 ≡ ⊥

¿¿A ≡ ¿A ¿A ≡ ¿A⊗ ¿A ¿1 ≡ 1 ¿(A⊕B) ≡ ¿A⊗ ¿B ¿> ≡ 1

Theorem 7. In CLL with Mix and BiCut, exponentials and coexponentials
coincide up to provability. That is: if we replace ? and ! in the rules for the
exponentials with ¿ and ¡ respectively, the resultant rule is provable using
the coexponential rules, and vice versa.

Proof. We first show that the exponential rules are derivable using coexpo-

nential rules under the substitution ? 7→ ¿. The weakening rule
` Γ

` Γ, ?A
?w

is mapped to the derivation
` Γ ` ¿A

¿w

` Γ, ¿A
Mix

. The dereliction rule ?d

is just ¿d, and the contraction rule
` Γ, ?A, ?A
` Γ, ?A

?c
is mapped to

` Γ, ¿A, ¿A
` ¡A⊥, ¿A

Ax
` ¡A⊥, ¿A

Ax

` ¡A⊥, ¡A⊥, ¿A
¿c

Γ, ¿A
BiCut

This leaves promotion. The forklores (iii–v) can be generalised to a bi-
implication

A1 O . . . O An ⊸ A1 ⊗ · · · ⊗ An A1 ⊗ · · · ⊗ An ⊸ A1 O . . . O An

49

50 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

and hence sequents `
⊗

∆⊥,
⊗

∆ and `O∆⊥,∆ for any ∆. With these

in hand, we can interpret the promotion rule
` ?Γ, A
` ?Γ, !A

!
by the derivation

` ¿Γ,O ¡Γ⊥

`
⊗

¿Γ,
⊗

¡Γ⊥

` ¿Γ, A

`O ¿Γ, A
===========O

`
⊗

¿Γ, A
Cut

`
⊗

¿Γ, ¡A
¡

` ¿Γ, ¡A
Cut

In the opposite direction, we show that the coexponentials rules are
derivable using exponentials rules under the substitution ¿ 7→ ?. As the
folklores ensure Mix0 is derivable in this system, we can interpret the weak-

ening rule ` ¿A
¿w

by
` ·

Mix0

` ?A
?w

. The dereliction rule ¿d is simply

?d, and the contraction rule
` Γ, ¿A ` ∆, ¿A

` Γ,∆, ¿A
¿c

is interpreted by the
derivation

` Γ, ?A ` ∆, ?A
` Γ,∆, ?A, ?A

Mix

` Γ,∆, ?A
?c

Finally, the rule
` ⊗¿Γ, A
` ⊗¿Γ, ¡A

¡
is interpreted in a way similar to promotion,

but with the cuts replacing ⊗ with O happening in the opposite order.

2.B Translation of CSGV to CSLL: Omitted rules
Of the functional fragment of CSGV the types are translated to CSLL:

JT ⊸ UK := JT K⊥ O JUKJT → UK := !(JT K⊥ O JUK)
JT + UK := JT K⊕ JUKJT ⊗ UK := JT K⊗ JUKJUnitK := 1

Omitted rules of CSGV with their translation into CSLL are shown in
fig. 2.B.1, fig. 2.B.2 and fig. 2.B.3. Note that some translations use lemma 16.

2.B. TRANSLATION OF CSGV TO CSLL: OMITTED RULES 51

uwv⊸ I
Γ, x : T ` L : U

Γ ` λx.L : T ⊸ U

}�~
[

z] :=
JLKz ` JΓK⊥, x : JT K⊥, z : JUK

z(x). JLKz ` JΓK⊥, z : JT K⊥ O JUK
uwv⊸ E
Γ `M : T ⊸ U ∆ ` N : T

Γ,∆ `M N : U

}�~
[

x] :=

JMKz ` JΓK⊥, z : JT K⊥ O JUKJNKz′ ` J∆K⊥, z′ : JT K x↔ y ` x : JUK, y : JUK⊥
y[z′]. (JNKz′ | x↔ y) ` J∆K⊥, x : JUK, y : JT K⊗ JUK⊥ ⊗
νzy (JMKz | y[z′]. (JNKz′ | x↔ y)) ` JΓK⊥, J∆K⊥, x : JUKuwwv

→ I
v⃗ : V⃗ ` L : T ⊸ U V⃗ unlimited

v⃗ : V⃗ ` L : T → U

}��~
[

z] :=

JLKz ` v⃗ : JV⃗ K⊥, z : JT K⊥ O JUK
v⃗′[use]. v⃗JLKz ` v⃗′ : ?JV⃗ K⊥, z : JT K⊥ O JUK

!z{v⃗′. v⃗′[use]. v⃗JLKz} ` v⃗′ : ?JV⃗ K⊥, z : !(JT K⊥ O JUK)
?v⃗[v⃗′].!z{v⃗. v⃗′[use]. v⃗JLKz} ` v⃗ : JV⃗ K⊥, z : !(JT K⊥ O JUK)
uwv→ E
Γ ` L : T → U

Γ ` L : T ⊸ U

}�~
[

x] :=

JLKz ` JΓK⊥, z : !(JT K⊥ O JUK)
x↔ y ` x : JT K⊥ O JUK, y : JT K⊗ JUK⊥

y′[use]. yx↔ y ` x : JT K⊥ O JUK, y′ : ?(JT K⊗ JUK⊥)
νzy′ (JLKz | y′[use]. yx↔ y) ` JΓK⊥x : JT K⊥ O JUK

uvw
Γ ` L : T U unlimited

Γ, x : U ` L : T

}~
[

z] :=

JLKz ` JΓK⊥, z : JT K
x′[disp]. JLKz ` JΓK⊥, x′ : ?JUK⊥, z : JT K

?x[x′].x[disp]. JLKz ` JΓK⊥, x : JUK⊥, z : JT K
Figure 2.B.1: Translation from CSGV to CSLL, functional fragments, Part
one

52 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

uvc
Γ, x0 : U, x1 : U ` L : T U unlimited

Γ, x : U ` L[x/x0][x/x1] : T

}~
[

z] :=

JLKz ` JΓK⊥, x0 : JUK⊥, x1 : JUK⊥, z : JT K
x′0[use]. x0x′1[use]. x1JLKz ` JΓK⊥, x′0 : ?JUK⊥, x′1 : ?JUK⊥, z : JT K
x′[dup](x′0). x′1x′0[use]. x0x′1[use]. x1JLKz ` JΓK⊥, x′ : ?JUK⊥, z : JT K

?x[x′].x′[dup](x′0). x′1x′0[use]. x0x′1[use]. x1JLKz ` JΓK⊥, x : JUK⊥, z : JT Kuwv
⊗I
Γ `M : T ∆ ` N : U

Γ,∆ ` (M,N) : T ⊗ U

}�~
[

z′] :=

JMKz ` JΓK⊥, z : JT K JNKz′ ` J∆K⊥, z′ : JUK
z′[z]. (JMKz | JNKz′) ` JΓK⊥, J∆K⊥, z′ : JT K⊗ JUKuwv
⊗E
Γ `M : T ⊗ U ∆, x : T, y : U ` N : V

Γ,∆ ` let (x, y) = M in N : V

}�~
[

z] :=

JMKz′ ` JΓK⊥, z′ : JT K⊗ JUKJNKz ` J∆K⊥, x : JT K⊥, y : JUK⊥, z : JV K
y(x). JNKz ` J∆K⊥, y : JT K⊥ O JUK⊥, z : JV K O
νz′y (JMKz′ | y(x). JNKz) ` JΓK⊥, J∆K⊥, z : JV Kuwwv

+IL
Γ `M : T

Γ ` inl M : T + U

}��~
[

z] :=
JMKz ` JΓK⊥, z : JT K

z[l]. JMKz ` JΓK⊥, z : JT K⊕ JUK
uwv
+E

Γ ` L : T + U ∆, x : T `M : V ∆, x : U ` N : V

Γ,∆ ` match L with x.{M,N} : V

}�~
[

z] :=

JLKy ` JΓK⊥, y : JT K⊕ JUKJMKz ` J∆K⊥, x : JT K⊥, z : JV K JNKz ` J∆K⊥, x : JUK⊥, z : JV K
x.case{l:JMKz,r:JNKz} ` J∆K⊥, x : JT K⊥ N JUK⊥, z : V

N
νxy (JLKy | x.case{l:JMKz,r:JNKz}) ` JΓK⊥, J∆K⊥, z : JV K

Figure 2.B.2: Translation from CSGV to CSLL, functional fragments, Part
two

2.C. CSLL: METATHEORETIC PROOFS 53

uwv
SelectL
Γ `M : TS ⊕ US

Γ ` selectL M : TS

}�~
[

y] :=

JMKz ` JΓK⊥, z : JTSK N JUSK x↔ y ` x : JTSK⊥, y : JTSK
x[l]. x↔ y ` x : JTSK⊥ ⊕ JUSK⊥, y : JTSK ⊕

νxz (JMKz | x[l]. x↔ y) ` JΓK⊥, y : JTSKuwv
Case
Γ ` L : TS N US ∆, x : TS `M : V ∆, x : US ` N : V

Γ,∆ ` case L of x.{M,N} : V

}�~
[

z] :=

JLKy ` JΓK⊥, y : JTSK⊕ JUSKJMKz ` J∆K⊥, x : JTSK⊥, z : JV K JNKz ` J∆K⊥, x : JUSK⊥, z : JV K
x.case{l:JMKz,r:JNKz} ` J∆K⊥, x : JTSK⊥ N JUSK⊥, z : JV K N

νxy (JLKy | x.case{l:JMKz,r:JNKz}) ` JΓK⊥, J∆K⊥, z : JV K Cut

Figure 2.B.3: Translation from CSGV to CSLL, omitted rules of linear frag-
ments

2.C CSLL: Metatheoretic Proofs

Proof of lemma 3. By induction on P ≡ Q. We prove one direction, the
other one being entirely analogous. Moreover, the congruence cases are
trivial. P | 0 ≡ P , commutativity, and associativity follow from the struc-
ture of hyperenvironments. Link-commutativity follows from the involutive
property of (−)⊥.

Case(Res-Par).

Then P = νxy (R | S) and Q = R | νxy S where x, y /∈ Fn(R). We
must then have that R ` H where x, y 6∈ H (using lemma 12) and S `
I | Γ, x : A | ∆, y : A⊥, where G = H | I | Γ,∆. Hence, we can derive that
Q = R | νxy S ` G.

Case(Res-Res).

Then P = νxy νzwR and Q = νzw νxy R for some R. We must invert
P ` G. This generates many cases: for example, it could be that R `
G′ | Γ, x : A, z : B | ∆, y : A⊥ | Σ, w : B⊥ where G = G′ | Γ,∆,Σ, whence
Q = νzw νxy R ` G. The other cases are similar.

Case(Res-Pre). We show the case for νxy z[w]. P ≡ z[w]. νxy P , with that

54 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

of other prefixes being similar. We have

P ` G | Σ, y : C⊥ | Γ, z : A, x : C | ∆, w : B

z[w]. P ` G | Σ, y : C⊥ | Γ, z : B ⊗A, x : C,∆

νxy z[w]. P ` G | Σ,Γ, z : B ⊗A,∆

and therefore

P ` G | Σ, y : C⊥ | Γ, z : A, x : C | ∆, w : B

νxy P ` G | Σ,Γ, z : A | ∆, w : B

z[w]. νxy P ` G | Σ,Γ, z : B ⊗A,∆

the other case has x, y, z, w in separate environments and are simpler.

Case(Pre-Par). We show the case for x[y]. (P |Q) ≡ P | x[y]. Q, with that
of other prefixes being similar. We have

P ` G Q ` H | Γ, x : A | ∆, y : B

P |Q ` G | H | Γ, x : A | ∆, y : B

x[y]. (P |Q) ` G | H | Γ,∆, x : B ⊗A

and therefore

P ` G
Q ` H | Γ, x : A | ∆, y : B

x[y]. Q ` H | Γ,∆, x : B ⊗A

P | x[y]. Q ` G | H | Γ,∆, x : B ⊗A

Lemma 8. If P ≡ Q, then P is canonical if and only if Q is canonical.

Proof. Straightforward by induction on P ≡ Q.

Lemma 9 (Separation). If T ` Γ0 | · · · | Γn−1, then there exist Ti ` Γi for
0 ≤ i < n such that T ≡ T0 | · · · | Tn−1. Moreover, if T is canonical, then
every Ti is canonical.

Proof. We prove the first claim by induction on T ` Γ0 | · · · | Γn−1. We
show only the following cases; all other cases are either trivial or similar.

Case(HMix2). Then T = P |Q, and after appropriately reordering the
hyperenvironment we have P ` Γ0 | · · · | Γm−1 and Q ` Γm | · · · | Γn−1 with
m ≤ n. By the IH we have Ti ` Γi for 0 ≤ i < n, with P ≡ T0 | · · · | Tm−1,
and Q ≡ Tm | · · · | Tn−1. We then have P |Q ≡ T0 | · · · | Tn−1 ≡ T , as ≡
is a congruence.

2.C. CSLL: METATHEORETIC PROOFS 55

Case(Cut). Then T = νxy P , and after appropriately reordering the hy-
perenvironment we have

P ` Γ0 | · · · | Γn−2 | ∆0, x : A | ∆1, y : A⊥

where Γn−1 = ∆0,∆1. By the IH we have Pi ` Γi for 0 ≤ i < n − 1,
Pn−1 ` ∆0, x : A, and Pn ` ∆1, y : A⊥, with P ≡ P0 | · · · | Pn. The result
follows, as νxy (Pn−1 | Pn) ` Γn−1. and by (Res-Par)

νxy P ≡ νxy (P0 | · · · | Pn−1 | Pn) ≡ P0 | · · · | νxy (Pn−1 | Pn)

Case(Tensor). Then T = x[y]. P , and after appropriately reordering the
hyperenvironment we have

P ` Γ0 | . . .Γn−2 | ∆0, x : A | ∆1, y : B

where Γn−1 = ∆0,∆1. By the IH we have Pi ` Γi for 0 ≤ i < n − 1,
Pn−1 ` ∆0, x : A and Pn ` ∆1, y : B with P ≡ P0 | · · · | Pn. The result
follows, as x[y]. (Pn−1 | Pn) ` Γn−1, x : B ⊗A, and by ()

The second claim follows by lemma 8, and the fact subterms of canonical
terms are canonical.

Lemma 10 (Local Progress). If P ` Γ, x : A and Q ` ∆, y : A⊥ and both
P and Q are canonical, then there exists an R such that νxy (P |Q) −→ R.

Proof. By induction on P and Q. Note the two are symmetric which we
will exploit to omit some cases. The type judgment implies neither P nor
Q can be 0. They cannot be of the form νxy S either, for they would not
be canonical.

• If P = P0 | P1, then it must be that P1 = 0 without loss of generality.
We have that P0 | 0 ≡ P0 by Par-Unit. Apply induction hypothesis
on P0 we get νxy (P0 |Q) −→ R. Use Eq we have νxy (P |Q) −→ R.
Similar when Q = Q0 |Q1.

• If P = a↔ b, it must be that x = b, so we can reduce by Link. Similar
for Q.

• The remaining scenarios are where P = πz. P
′, or P = z.case{l:P0,r:P1}

or P = !z{z⃗′. P ′}, and similarly Q = πw. Q
′, or Q = w.case{l:Q0,r:Q1}

or Q = !w{w⃗′. Q′}. If z = x and w = y, then one of the reaction ax-
ioms apply; otherwise we can assume WLOG that z 6= x (and of course
z 6= y), and take cases of P .

– If P = πz. P
′, we have that νxy (πz. P

′ |Q) ≡ νxy πz. (P
′ |Q) ≡

πz. νxy (P
′ |Q), given by Pre-Par and Res-Pre accordingly. Note

56 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

that in the second equivalence, πz and νxy do not cross Fn(P ′ |Q)
because the left hand side is well-typed. By induction hypothesis
we have νxy (P ′ |Q) −→ R, we therefore have νxy (P |Q) −→
πz. R by Pre and Eq.

– If P = z.case{l:P0,r:P1}, the commuting conversion Case-Comm
applies.

– If P = !z{z⃗′. P ′} where x ∈ z⃗′. We know x : A = ?B for some
B and thus y : A⊥ = !B⊥. We check if w = y. If so, we have
Q = !w{w⃗′. Q′} and thus OfCourse-Comm applies; otherwise,
we know that Q cannot be of the form !w{w⃗′. Q′} where y ∈ w⃗′

(because y : !B⊥ breaks OfCourse requirement that w⃗′ : ?B⃗),
which means Q = πwQ

′ or Q = w.case{l:Q0,r:Q1} and can be
handled similarly as the previous two cases.

Theorem 11 (Progress). If R ` G then either R is canonical, or there exists
R′ such that R −→ R′.

Proof. By induction on R ` G.

• If R = 0 or x↔ y, then it is canonical.

• Suppose R = P |Q. If both P and Q are canonical, then so is R.
Otherwise, if P is not canonical, then by the IH we have P −→ P ′ for
some R′, and thus P |Q −→ P ′ |Q by ParL. Similarly for Q.

• Suppose R = πy. P . If P is canonical then so is R. Otherwise P is
not canonical, and by the IH P −→ P ′, and thus πy. P −→ πy. P

′ for
some P ′ by Pre.

• Suppose R = y.case{l:P,r:Q} or R = !y{w⃗. P}, then it is canonical.

• Suppose R = νxy P , with P ` G | Γ, x : A | ∆, y : A⊥. If P is not
canonical then by the IH we have P −→ P ′ for some P ′, and thus
νxy P −→ νxy P ′ by Res. If P is canonical, by lemma 9 we have
that P ≡ P0 | · · · | Pn | Pn+1 where Pn ` Γ, x : A and Pn+1 `
∆, y : A⊥. Note that both Pn and Pn+1 are canonical. Hence we
have R ≡ νxy (P0 | · · · | Pn+1). By Res-Par and lemma 12 we obtain
R ≡ P0 | · · · | Pn−1 | νxy (Pn | Pn+1). Local progress (lemma 10)
yields νxy (Pn | Pn+1) −→ R′, which gives R −→ P0 | · · · | Pn−1 | R′

by ParL.

Lemma 12. If P ` G, then Fn(P) = Fn(G).

2.C. CSLL: METATHEORETIC PROOFS 57

Proof. Straightforward by induction on P ` G.

Lemma 13. If P ` G | Γ, y : A and x /∈ G,Γ, then P [x/y] ` G | Γ, x : A.

Proof. Straightforward by induction on P ` G | Γ, y : A.

Theorem 14 (Preservation). If P ` G and P −→ Q, then Q ` G.

Proof. By induction on P −→ Q. We show the nontrivial cases of top-level
cuts, and the commuting conversions.

Case(Eq). Suppose P ≡ P ′ −→ Q′ ≡ Q. Then the result follows by the
IH and two applications of lemma 3.

Case(Case-Comm). The redex is νxy (z.case{l:P0,r:P1} |Q) and typed.

P0 ` Γ, x : C, z : A P1 ` Γ, x : C, z : B

z.case{l:P0,r:P1} ` Γ, x : C, z : A N B Q ` ∆, y : C⊥

νxy (z.case{l:P0,r:P1} |Q) ` Γ,∆, z : A N B

and therefore

νxy (P0 |Q) ` Γ,∆, z : A νxy (P1 |Q) ` Γ,∆, z : B

z.case{l:νxy (P0 |Q),r:νxy (P1 |Q)} ` Γ,∆, z : A N B

Case(OfCourse-Comm). The redex is νxy (!z{xw⃗. P} | !y{v⃗. Q}) and typed.

P ` w⃗ : ?B⃗, z : A, x : ?C
!z{xw⃗. P} ` w⃗ : ?B⃗, z : !A, x : ?C

Q ` v⃗ : ?D⃗, y : !C⊥

!y{v⃗. Q} ` v⃗ : ?D⃗, y : !C⊥

νxy (!z{xw⃗. P} | !y{v⃗. Q}) ` w⃗ : ?B⃗, z : ?A, v⃗ : ?D⃗

and therefore

P ` w⃗ : ?B⃗, z : A, x : ?C !y{v⃗. Q} ` v⃗ : ?D⃗, y : !C⊥

νxy (P | !y{v⃗. Q}) ` w⃗ : ?B⃗, z : A, v⃗ : ?D⃗
!z{v⃗w⃗. νxy (P | !y{v⃗. Q})} ` w⃗ : ?B⃗, z : !A, v⃗ : ?D⃗

Case(Link). Then the redex is νxy (z↔ x | P) and the last steps of the
typing derivation must have been

z↔ x ` z : A⊥, x : A P ` G | Γ, y : A⊥

z↔ x | P ` z : A⊥, x : A | G | Γ, y : A⊥

νxy (z↔ x | P) ` G | Γ, z : A⊥

and therefore P [z/y] ` G | Γ, z : A⊥ by lemma 13 because z /∈ Fn(P).
(otherwise the redex would not be well-typed)

58 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

Case(One-Bot). Then the redex is νxy (x(). P | y[]. Q) and the last steps
of the typing derivation must have been

P ` G | Γ
x(). P ` G | Γ, x : ⊥

Q ` H
y[]. Q ` H | y : 1

νxy (x(). P | y[]. Q) ` G | H | Γ

Hence, we have

P ` G | Γ Q ` H
P |Q ` G | H | Γ

Case(Tensor-Par). Then the redex is νxy x[z]. P | y(w). Q, and the last
steps of the typing derivation must have been

P ` G | Γ, z : A | ∆, x : B

x[z]. P ` G | Γ,∆, x : A⊗B

Q ` H | Σ, w : A⊥, y : B⊥

y(w). Q ` H | Σ, y : A⊥ O B⊥

νxy (x[z]. P | y(w). Q) ` G | H | Γ,∆,Σ

so that G = Γ,∆,Σ. Therefore, we can infer that

P ` G | Γ, z : A | ∆, x : B Q ` H | Σ, w : A⊥, y : B⊥

νxy νzw (P |Q) ` G | H | Γ,∆,Σ

Case(PlusL-With). Then the redex is νxy (x[l]. P | y.case{l:Ql,r:Qr}),
and the last steps of the typing derivation must have been

P ` G | Γ, x : A

x[l]. P ` G | Γ, x : A⊕B

Ql ` ∆, y : A⊥ Qr ` ∆, y : B⊥

y.case{l:Ql,r:Qr} ` ∆, y : A⊥ N B⊥

νxy (x[l]. P | y.case{l:Ql,r:Qr}) ` G | Γ,∆

Hence,

P ` G | Γ, x : A Ql ` ∆, y : A⊥

νxy (P |Ql) ` G | Γ,∆

Case(Claro-QueW). This is the case of an empty client pool. The redex
must be

νxy (¿x[]. S | ¡y{z, z′, y′. Q}(i, f). P)

and the last steps in the typing derivation must have been

D ` G | x : ¿A
P ` H | ∆, i : B | Σ, f : B⊥ Q ` z : B⊥, z′ : B, y′ : A⊥

¡y{z, z′, y′. Q}(i, f). P ` H | ∆, y : ¡A⊥,Σ
Claro

νxy (D | ¡y{z, z′, y′. Q}(i, f). P) ` G | H | ∆,Σ
Cut

2.C. CSLL: METATHEORETIC PROOFS 59

where D :=
S ` G

¿x[]. S ` G | x : ¡A
. Hence,

S ` G
P ` H | ∆, i : B | Σ, f : B⊥

νif P ` H | ∆,Σ

S | νif P ` G | H | ∆,Σ

Case(Claro-QueA). Then the redex is

νxy (¿x[x′]. S | ¡y{z, z′, y′. Q}(i, f). P)

The last few steps in the typing derivation must have been

D ` G | Γ,Γ′, x : ¿A
P ` H | ∆, i : B | Σ, f : B⊥ Q ` z : B⊥, z′ : B, y′ : A⊥

¡y{z, z′, y′. Q}(i, f). P ` H | ∆, y : ¡A⊥,Σ
Claro

νxy (D | ¡y{z, z′, y′. Q}(i, f). P) ` G | H | Γ,Γ′,∆,Σ
Cut

where

D :=
S ` G | Γ, x : ¿A | Γ′, x′ : A

¿x[x′]. S ` G | Γ,Γ′, x : ¿A

Therefore,

S ` G | Γ, x : ¿A | Γ′, x′ : A D ` H | ∆, y′ : A,Σ, y : ¡A⊥

νxy νx′y′ (S | D) ` G | H | Γ,Γ′,∆,Σ

where D is

νiz (P |Q) ` H | ∆, z′ : B, y′ : A⊥ | Σ, f : B⊥

Q ` z : B⊥, z′ : B, y′ : A⊥

¡y{z, z′, y′. Q}(z′, f). (νiz (P |Q)) ` H | ∆, y′ : A⊥,Σ, y : ¡A⊥

Case(OfCource-WhyNotW).

P ` G | Γ
x[disp]. P ` G | Γ, x : ?A

Q ` z⃗ : ?B⃗, y : A⊥

!y{z⃗. Q} ` z⃗ : ?B⃗, y : !A⊥

νxy (x[disp]. P | !y{z⃗. Q}) ` G | Γ, z⃗ : ?B⃗

and therefore

P ` G | Γ
z⃗[disp]. P ` G | Γ, z⃗ : ?B⃗

60 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

Case(OfCourse-WhyNotD).

P ` G | Γ, x′ : A
x[use]. x′P ` G | Γ, x : ?A

Q ` z⃗ : ?B⃗, y : A⊥

!y{z⃗. Q} ` z⃗ : ?B⃗, y : ¡A⊥

νxy (x[use]. x′P | !y{z⃗. Q}) ` G | Γ, z⃗ : ?B⃗

and therefore

P ` G | Γ, x′ : A Q ` z⃗ : ?B⃗, y : A⊥

νx′y (P |Q) ` G | Γ, z⃗ : ?B⃗

Case(OfCourse-WhyNotC).

P ` G | Γ, x0 : ?A, x1 : ?A
x[dup](x0). x1P ` G | Γ, x : ?A

Q ` z⃗ : ?B⃗, y : A⊥

!y{z⃗. Q} ` z⃗ : ?B⃗, y : !A⊥

νxy (x[dup](x0). x1P | !y{z⃗. Q}) ` G | Γ, z⃗ : ?B⃗

and therefore

D ` G | Γ, z⃗0 : ?B⃗, z⃗1 : ?B⃗
z⃗[dup](z⃗0). z⃗1D ` G | Γ, z⃗ : ?B⃗

where D is

P ` G | Γ, x0 : ?A, x1 : ?A
Q[z0/z][y0/y] ` z⃗0 : ?B⃗, y0 : A

⊥

!y0{z⃗0. Q[z0/z][y0/y]} ` z⃗0 : ?B⃗, y0 : !A⊥

Q[z1/z][y1/y] ` z⃗1 : ?B⃗, y1 : A
⊥

!y1{z⃗1. Q[z1/z][y1/y]} ` z⃗1 : ?B⃗, y1 : !A⊥

νx0y0 νx1y1 (P | !y1{z⃗1. Q[z1/z][y1/y]} | !y0{z⃗0. Q[z0/z][y0/y]})
` G | Γ, z⃗0 : ?B⃗, z1 : ?B⃗

Lemma 15. JTSK = JTSK⊥.

Proof. By simple induction.

Lemma 16. If T is unlimited, we have the following derivable rule in CSLL.

Positive
P ` G | Γ, x′ : ?JT K⊥

?x[x′].P ` G | Γ, x : JT K⊥

2.C. CSLL: METATHEORETIC PROOFS 61

The above lemma means that all unlimited types enjoy contraction and
weakening. Some session types, such as end?, also enjoy such properties: see
e.g. [Gay and Vasconcelos, 2010, §5]. However, in order to retain the good
properties of termination and deadlock-freedom, we insist that all channels
are used linearly, and carefully closed at the end.

Proof. It is given by the well-known fact that !A, 1 and 0 are always positive,
that⊗, ⊕ preserve positivity, and that our system (without server and client)
is equivalent to linear logic in terms of expressivity [Kokke et al., 2019a, §2.3].
More concretely, we derive the rule by induction on T .

• If T is Unit we have
y[].0 ` y : 1

!y{. y[].0} ` y : !1
x(). !y{. y[].0} ` y : !1, x : ⊥

Cut y of this with x′ of P and we are done.

• If T is U → V , we have
y↔ x ` y : !(JUK⊗ JV K⊥), x : ?(JUK⊥ O JV K)

!y{x. y↔ x} ` y : !!(JUK⊗ JV K⊥), x : ?(JUK⊥ O JV K)
Cut y of this with x′ of P and we are done.

• If T is U+V , and both U and V are unlimited. First we apply lemma 9
on P and acquire P0 ` G and P1 ` Γ, x : ?(JUK⊥ N JV K⊥), and we have
DU defined as

y↔ x ` y : JUK, x : JUK⊥
y[l]. y↔ x ` y : JUK⊕ JV K, x : JUK⊥

x′[use]. xy[l]. y↔ x ` y : JUK⊕ JV K, x′ : ?JUK⊥
?x[x′].!y{x′. x′[use]. xy[l]. y↔ x} ` y : !(JUK⊕ JV K), x : JUK⊥

and similarly for DV . Finally we have
DU ` y : !(JUK⊕ JV K), x : JUK⊥ DV ` y : !(JUK⊕ JV K), x : JV K⊥

x.case{l:DU ,r:DV } ` y : !(JUK⊕ JV K), x : JUK⊥ N JV K⊥
Cut y of this with x′ of P1 then combine with P0 and we are done.

• If T is U ⊗ V , and both U and V are unlimited, we have
v↔ v′ ` v′ : JV K, v : JV K⊥ u↔ u′ ` u′ : JUK, u : JUK⊥
v′[u′]. (v↔ v′ | u↔ u′) ` v′ : JUK⊗ JV K, u : JUK⊥, v : JV K⊥

u′′[use]. uv′′[use]. vv′[u′]. (v↔ v′ | u↔ u′)

` v′ : JUK⊗ JV K, u′′ : ?JUK⊥, v′′ : ?JV K⊥
v(u). ?u[u′′].?v[v′′].!v′{u, v. u′′[use]. uv′′[use]. vv′[u′]. (v↔ v′ | u↔ u′)}

` v′ : !(JUK⊗ JV K), v : JUK⊥ O JV K⊥

62 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

Cut v′ of this with x of P , rename v to x and we are done.

2.D More Examples

2.D.1 Compare-And-Set

We now recover the example of CAS server/client in CSGV. We define the
server-client protocol to be TS := !B.!B.?B.end!. The choice of end? vs. end!
is purely driven by well-typedness.

C0 := let xd = send ff x0 in
let xr = send tt xd in
let (r, x′) = recv xr in
let _ = terminate (send r r0) in
x′

C1 := . . .

clients := let x = forkx x0. C0 in
let x = forkx x1. C1 in
eofx

L := ff
M := let (exp, y′) = recv y in

let (des, y′′) = recv y′ in
if exp = w then
let _ = terminate (send tt y′′) in des

else
let _ = terminate (send ff y′′) in w

N := z

server := serve y{L,w.M, z.N}

2.D. MORE EXAMPLES 63

typed as:
x0 : TS , r0 : !B.end? `C0 : end!
x1 : TS , r1 : !B.end? `C1 : end!

x : ¿TS , r0 : !B.end?, r1 : !B.end? `clients : end!

`L : B
w : B, y : ?B.?B.?B.end? `M : B

z : B `N : B
y : ¡TS `server : B

where TS = ?B.?B.!B.end?. Finally we have
r0 : !B.end?, r1 : !B.end? ` connect(x. clients; y. server) : B

2.D.2 List Shuffling
We use the racing behaviour of clients to shuffle a list. We define server/client
protocol to be TS := !A.end!, meaning each client sends a value of A and
ends the session. Each clients are defined the same way: they simply take
the value A from the environment and send it over the channel. Clients are
forked by folding the list. The server simply receives values from clients and
reforms the list.

C := send v x′

clients := let y = fold¿TS
x λx. λv. (forkx x′. C) l in

eofy

L := nil
M := let (v, y′) = recv y in

let _ = terminate y′ in
cons v z′

N := z

server := serve y{L, z′.M, z.N}

and we have the following typing
v : A, x′ : TS `C : end!

l : [A], x : ¿TS `clients : end!
`L : [A]

z′ : [A], y : TS `M : [A]

z : [A] `N : [A]

y : ¡TS `server : [A]

and finally we define shuffling as
l : [A] ` connect(x. clients; y. server) : [A]

64 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

2.D.3 Merge Sort
Using fork-join, we can define parallel merge sort. We first have to assume
general recursion (and therefore not expressible in the vanilla CSGV), and
two functions on lists of A. split splits a list of A into several (supposedly
two) lists, and merge merges several sorted lists into one list. isend returns
tt if the list is empty or singleton.

` split : [A]→ [[A]] ` merge : [[A]]→ [A] ` isend : [A]→ B

And we define merge sort as follows. We first check if the list l is too short to
sort; if not we split the list and sort each of the sub-lists. The sorted sub-lists
are collected into l′ which we will merge. Note that the racing behaviour
of client/server means l′ could be any ordering, which does not matter for
merge sort. For scnerios where it does matter, each sub-result should be
accompanied by its index to get re-ordered.

sort l := if isend l then l

else
let l′ = fork-join(sort, cons, nil, (split l)) in
merge l′

which gives us

` sort : [A]→ [A]

2.D.4 Map-Reduce
The purpose of the map-reduce model is to transform input of type [A]
into output of type [D] using two functions (using the functorial formula-
tion given by Hinrichsen et al. [2019]). Take the example of counting the
frequency of each word in an article which contains several paragraphs [A].
The map function f counts the frequency C of each word B in a paragraph.
The reduce function g takes a word B and its frequency [C] in all paragraphs
and simply returns the word with the sum frequency D := B ⊗ C. In the
end we hope to get [D].

f : A→ [B ⊗ C] g : B ⊗ [C]→ D

We first define parallelized flatMap with fork-join:

` flatMapA,B := λf. λl. fork-join(f, nil, concat, l) : (A→ [B])→ [A]→ [B]

where concat is the standard function that concatenate two lists. Based on
this we define map-reduce:

f, g `map-reduce := (flatMapB⊗[C],D g) ◦ groupB,C ◦ (flatMapA,B⊗C f)

:[A]→ [D]

2.D. MORE EXAMPLES 65

where ` groupB,C : [B ⊗ C]→ [B ⊗ [C]] is the standard function that
groups list of pairs by their keys.

There is a notable difference between our version of map-reduce and the
version in Hinrichsen et al. [2019] (and other related literatures). Usually
a fixed number of threads (that usually corresponds to the number of cpu
cores/nodes) are spawned, who will then repeatedly retrieve tasks from and
send result to the main thread. In our version, however, the number of
threads is the number of tasks, and each thread will handle one task only.
The former approach seems lower-level, allowing optimizing the number of
threads according to the hardware reality. Our language is higher-level,
and it is up to the implementation to coordinate threads with cores/nodes.
Implementing it at a lower-level seems to be difficult because of the linearity
constraints.

2.D.5 Interleaving clients

Another interleaving clients example (but simpler than the beauty contest
example) is one where each client submits a boolean to the server, who
calculates the XOR of all the submissions and sends the result back to all
clients. The internal protocol of the server, as well as the server interface,
will be TS := ?B.!B.end?. We define

L :=let w′ = send ff w in (send initial value)
let (_, w′′) = recv w′ in (recv the final value)
w′′

M :=let (s, z′′) = recv z′ in (recv the last value)
let (b, y′) = recv y in (recv the boolean from client)
let s′ = xor(s, b) in (calculate the xor)
let w′ = send s′ w in (send to next worker process)
let (f, w′′) = recv w′ in (recv the final boolean)
let _ = terminate (send f z′′) in

(send the final to previous worker process)
let _ = terminate (send f y′) in (send the final to client)
w′′

N :=let (f, z′) = recv z in (recv the final value)
let z′′ = send f z′ in (simply send it back)
terminate z′′

server :=serve y{invw(L), z′. invw(M), z.N}

66 CHAPTER 2. CLIENT-SERVER SESSIONS IN LINEAR LOGIC

where ` xor : B⊗ B→ B is the standard xor function on booleans.

w : TS ` L : end! w : TS , z
′ : TS , y : TS `M : end! z : TS ` N : Unit

xor, y : ¡TS ` server : Unit

We omit defining the clients as they will be very similar to the ones in
previous examples.

2.D.6 Symbol Generator
Another simple scenario is where server acts like a generator of unique sym-
bols (essentially natural numbers N) and clients race to acquire those sym-
bols. The server protocol is !N.end?, meaning the server simply sends an
number to the client and ends the session; the server internal state is N.

L := zero (starts with zero)
M := let _ = terminate (send z′ y) in (send the counter to client)

succ z′ (increase the counter)
N := z (output the final counter)

server :=serve y{L, z′.M, z.N}

typed as

` L : N z′ : N, y : !N.end? `M : N z : N ` N : N

y : ¡(!N.end?) ` server : N

We omit defining the clients as they would be similar to previous ones;
but we note that it is impossible for a process to act as multiple clients
and aggregate two symbols. The reason is that informally speaking, in
our system clients are not allowed to communicate with each other be-
sides via the server as indicated by the functor. More concretely, supposed
we are to define a process acting as multiple clients, it would be typed as
Γ, x0 : ?N.end?, x1 : ?N.end? ` K : T ; but there is no way in CSGV to com-
bine x0 and x1.

Chapter 3

Concurrent Effects in Linear
Logic

This chapter is based on Qian et al. [2022], but I removed part of sec-
tion 3.1 that is general to classical processes, which has been incorporated
into section 1.1. I also removed part of section 3.8 that is general to classical
processes, which has been incorporated into section 1.3. I also reformatted
the text to fit the new paper size.

Qian et al. [2022] requires a small but fundamental change on top of
Montesi and Peressotti [2021]. It was omitted in Qian et al. [2022] due to
oversight. In this chapter, we describe this change in section 3.2. Most
meta-theoretic results still hold and are proved from scratch in section 3.6.

3.1 Introduction
Among concurrency features missing in Classical Process, the arguably most
recognizable one is probably that of shared effects, which can be character-
ized as follows. Each process emits effects in sequence, in the sense that
emissions of later effects depend on the results of earlier effects; moreover,
multiple processes can emit effects in a sharing manner.

Many have tried to model shared effects, each with their shortcomings.
Balzer and Pfenning [2017] formulates a type system stratified into linear
and non-linear layers, which are bridged by locks: processes race to acquire
locks guarding the linear layer where actual accesses are performed. Unfor-
tunately, the system introduces deadlocks unless one adopts a more complex
type system [Balzer et al., 2019] that is not logically justified. Rocha and
Caires [2021] extends Wadler [2014] with cells that can be shared among
racing processes. However, they can only store positive values, which is a
severe constraint in the context of session-based concurrency: they cannot
store sessions. Also, their typing rules are ad-hoc for positive cells instead
of driven by logic.

67

68 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

Towards concurrent classical effects
This paper is the first attempt to model concurrent classical effects based on
classical linear logic, in the hope of finding a theory that is general, simple,
and logical. We now outline some of the key ideas of our approach.

First recall that ⊗ represents disjointness while O represents connect-
edness. We start with some simple candidates of modelling (sequences of)
effects. Let E be the type of an effect. First we consider E⊗E⊗· · · , which
cannot work because ⊗ means effect emissions of effects are disjoint from
each other. Consequently, results of previous effects cannot be passed to the
emissions of following effects, which breaks sequentiality. We then consider
E O E O · · · , which cannot work either, because the state on the dual side
would have type E⊥ ⊗ E⊥ ⊗ · · · , which means effect handlings are disjoint
from each other. Consequently, handling of earlier effects cannot influence
the handling of later effects, which means the handling is stateless.

With the two simple candidates ruled out, we move to more complex
ones. Consider

A⊗ (B⊥ O (A⊗ (B⊥ O (· · ·

where an effect E is decomposed into two parts: sending request A and
receiving response B (and thus negated). Only the response is connected to
the rest of the emitting via O, which is sufficient for sequentiality. Dually,
the handling would have type

A⊥ O (B ⊗ (A⊥ O (B ⊗ (· · ·

where the response is disjoint from the rest of the handling via ⊗. This is
fine, because we do not expect either of them to influence the other. Note
that the received request A can influence both the response B to be sent
and the rest of the handling.

The above definition also admits sharing by the simple linear logic im-
plication (subscripts only for identification):

(A0 ⊗B⊥
0 O · · ·O C)⊗ (A1 ⊗B⊥

1 O · · ·O D)

→A0 ⊗B⊥
0 O ((· · ·O C)⊗ (A1 ⊗B⊥

1 O · · ·O D))

where the lhs (left-hand side) has two disjoint emission sequences each ready
to emit an effect, while the right-hand side (rhs) has an effect already prop-
agated outside of the first sequence. Intuitively, the first sequence won the
race. There is a symmetric version where the second sequence wins. Note
that the implication is one-directional—the outcome of the race cannot be
reversed.

The above informal definition leads to a formal one based on least and
greatest fixed point in linear logic [Baelde, 2012, Lindley and Morris, 2016],

3.1. INTRODUCTION 69

from which typing rules and a transition semantics can be derived. We call
the resulting system CELL. Good properties such as deadlock freedom and
session fidelity follow. In particular, the handling of effects requires an inter-
nal state type S and a process of type (subscripts are only for identification):

(A⊗ Sold) ⊸ (B ⊗ Snew) (3.1)

We can also let Tnew = S⊥
old and Told = S⊥

new and rewrite the above as

A ⊸ (B ⊸ Told) ⊸ Tnew (3.2)

The formulas remind one of algebraic effects [Pretnar, 2015], where sec-
tion 3.1 reminds one of runners [Uustalu, 2015] and section 3.1 of handlers
[Pretnar and Plotkin, 2013]. The two are well-known to be dual [Plotkin
and Power, 2008, Power and Shkaravska, 2004], and thus not suprising
[Hasegawa, 2002, §8] to collide in linear logic. We can utilize this fact and
express both in our system.

Contributions

• We extend πLL[Montesi and Peressotti, 2021] with effects and obtain
CELL: a process calculus with linear logic types and effects. Processes
can emit effects in sequence and multiple processes can race for ef-
fects. Effects are handled by another (dual) process. In addition, we
introduce a primitive for inter-process synchronization via effects at
the cost of livelocks.

• We give a labeled transition system semantics for effects and prove
meta-theoretic results such as erasure, session fidelity, deadlock-freedom,
and the partial diamond property.

• We introduce CEGV a functional language with session-typed commu-
nication primitives and effects, based on GV [Wadler, 2014]. Both
handlers and runners are available in the system, and the duality is
made explicit. Thin translations to CELL are given. We give exam-
ples such as effect translation and escaping instances. Racing is also
lifted to CEGV, which is used to express concurrency examples such as
worker-pool servers and dining philosophers.

• Based on our LTS, we prove several desired bisimilarity results. For
example, that handling of different effects does not interfere; that the
monadic interface for effectful computation is indeed monadic; and
that spawned processes race with their continuation.

70 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

3.2 Base system
In this section we briefly recall the basics of πLL Montesi and Peressotti
[2021]. For conciseness, we omit from this sections features related to replica-
ble processes/exponentials and polymorphism/logical quantifiers since these
are orthogonal to the developments of this work and can be readily incor-
porated.

Processes Programs in πLL are processes (P ,Q,R). Processes communi-
cate over binary sessions using names (x,y,z) representing session endpoints.
The process terms of πLL are given by the following grammar.

P ,Q,R := x[y]. P output y on x and continue as P
| x(y). P input y on x and continue as P
| x[]. P output (empty message) on x and continue as P
| x(). P input (empty message) on x and continue as P
| x[l]. P select left (output label l) on x and continue as P
| x[r]. P select right (output label r) on x and continue as P
| y.case{l:P,r:Q} offer on x a choice to continue as P and Q
| 0 terminated process
| P |Q parallel composition of P and Q
| νxy P session with endpoints x and y in P
| x↔ y forwarding of x and y

Term x[y]. P allocates a new endpoint with fresh name y (bound in the con-
tinuation P), outputs a connection request for y over x, and then proceeds
as P . Dually, x(y). P allocates a new endpoint y (bound in P) and awaits
for a connection request on x before continuing as P . The result of syn-
chronising these actions is the creation of a new session. Terms x[]. P and
x(). P respectively output and input messages with no content—essentially
a handshake. Terms x[l]. P , x[r]. P , and x.case{l:P,r:Q} represent the se-
lection and offering of a binary choice: x[l]. P and x[r]. P output over x the
labels l and r before continuing as P ; dually, x.case{l:P,r:Q} continues as
P when the it receives l over x and as Q when it receives r.

In the reminder, we use π to range over term prefixes x(y), x[y], x(), x[],
x(l), x(r). We write Fn(P), Bn(P), and N(P) for the set of free, bound,
and all endpoint names in P , respectively, and likewise for prefixes. We
write P =α Q if P and Q are α-equivalent.

Types and environments Types in πLL (A, B, …) are propositions in
classical linear logic and are interpreted as protocols for single endpoints.

A,B := A⊗B send A, continue as B | A O B receive A, continue as B
| 1 send close, unit for ⊗ | ⊥ receive close, unit for O
| A⊕B select A or B | A N B offer A or B

3.2. BASE SYSTEM 71

HMix0

0 ` ∅

HMix
P ` G Q ` H
P |Q ` G | H

Cut
P ` G | Γ, x : A | ∆, y : A⊥

νxy P ` G | Γ,∆

Ax

x↔ y ` x : A⊥, y : A

Tensor
P ` Γ, y : A | ∆, x : B

x[y]. P ` Γ,∆, x : A⊗B

One
P ` ∅

x[]. P ` x : 1

Par
P ` Γ, y : A, x : B

x(y). P ` Γ, x : A O B

Bot
P ` Γ

x(). P ` Γ, x : ⊥

PlusL
P ` Γ, x : A

x[l]. P ` Γ, x : A⊕B

PlusR
P ` Γ, x : B

x[r]. P ` Γ, x : A⊕B

With
P ` Γ, x : A Q ` Γ, x : B

x.case{l:P,r:Q} ` Γ, x : A N B

Figure 1: πLL, typing rules (multiplicative and additive fragment) Montesi
and Peressotti [2021].

Types on the left-hand column are for output actions and types on the right-
hand for inputs. Under this interpretation, the notion of duality of linear
logic relates the matching input/output actions of two endpoints interacting
over a shared session (connectives on the same row are respective duals,
e.g.,⊗ and O). We write A⊥ for the dual of A.

Typing environments (Γ,∆,…) associate endpoint names to types and
hyperenvironments (G, H, …) are unordered collections of environments that
do not share endpoint names:

Γ,∆ := x1 : A1, . . . , xn : An G,H := Γ1 | · · · | Γn.

Intuitively, endpoints within the same environment can have sequential or
concurrent implementations whereas endpoints from different environments
are guaranteed to have parallel, independent implementations. We write ·
and 1 for the empty environment and the empty hyperenvironments, respec-
tively; N(Γ) and N(G) for the set of endpoint names in Γ and G, respectively.

Typing Typing judgements have form P ` G and indicate that the pro-
cess uses its endpoints as specified by the hyperenvironment. The rules for
deriving these judgements are reported in fig. 1. These rules associate types
to endpoint names by looking at how they are used in process terms. We
refer the interested reader to Montesi and Peressotti [2021] for more details
on these rules.

We range over typing derivations with letters D, E . We write proc(D)
and envD for the process and typing environment in the conclusion of D,
respectively.

72 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

Like the internal π-calculus, πLL recovers the π-calculus primitive for
outputting free names as syntactic sugar x〈y〉. P := x[z]. (y↔ z | P). In the
remainder we use also abbreviate 0x := x[].0 and P ⊗x w

y v Q := w(x). v[y]. (P |Q).
This syntactic sugar induces the (derivable) typing rules.

P ` Γ, x : B

x〈y〉. P ` Γ, x : A⊥ ⊗B, y : A 0x ` x : 1

P ` x : A, y : B Q ` w : C, v : D

P ⊗x w
y v Q ` w : A O C, v : B ⊗D

Operational Semantics The dynamics of πLLprocesses is specified as a
labelled transition system (lts) for typing derivations following the applica-
tion of the Structural Operational Semantics (SOS) style to typing deriva-
tions as originally proposed by Montesi and Peressotti [2018]. Under this
approach, we view:

1. typing rules as operations of a (sorted) signature;

2. typing derivations as terms generated by this signature;

3. transformations of derivations as transitions;

4. and a specifications of rules for deriving these transformations as an
SOS specification.

As an example consider a derivation terminating with an application of
Bot, like the one displayed below on the left of the transition. Under this
approach, rule Bot is regarded as a unary operator applied to the derivation
D. This operator corresponds to x(). (−) in the syntax of processes which,
in this example, takes P as its continuation (the proof term of D). In the
π-calculus, the semantics of terms of this form is given by transitions where
the target (or derivative) is the operation argument (the continuation) and
the transition label is the prefix representing the action. This translates to
the following transition rule for Bot.

D
P ` Γ

x(). P ` Γ, x : ⊥
Bot x()−−→

D
P ` Γ

In the sequel, we will omit names of derivations in the presentation of tran-
sition rules to save space.

Following the same methodology, Montesi and Peressotti [2021] define an
SOS specification for πLL–which we include in section 3.A. From this SOS
specification and lts of derivations, they systematically derive two additional

3.2. BASE SYSTEM 73

SOS specifications and transition systems: one for process terms and one for
type environments. The first is obtained by erasing all information about
types and the second by erasing process terms. Applying this procedure is
applied to the transition rule for Bot yields the following rules for processes
and typing environments.

x(). P
x()−−→ P Γ, x : ⊥ x()−−→ Γ

We report the SOS specification for the lts of processes and environments
in fig. 2, fig. 3—we denote that sets S and S′ are disjoint by writing S#S′.

We make one small but fundamental change over Montesi and Peressotti
[2021]. In the original work, labels could be τ , an action, or two actions in
parallel. In our system, labels are generalized to multisets of parallel actions,
where τ stands for the empty set. This allows three or more parallel actions
in a label, and enables the rule BoCW in section 3.4. The change preserves
most properties including erasure and session fidelity, which are proved from
scratch again in section 3.C. Some properties such as serialization might still
hold after reformulation, which we leave to future works.

Coherence between these systems is captured by properties of erasure
and session fidelity. Erasure states that the semantics of processes does not
rely on runtime information about their types.

Theorem 17 (Erasure). For any derivation D and label l:
• if D l−→ D′, then proc(D) l−→ proc(D′);

• if proc(D) l−→ P ′, then D l−→ D′ for some proc(D′) = P ′.

Session fidelity states that processes perform only actions allowed by their
typing environment.

Theorem 18 (Session Fidelity). If P ` G and P
l−→ P ′, then P ′ ` G′ and

G l−→ G′ for some G′.

πLL supports the expected notion of bisimulation.

Definition 4. A relation R ⊆ S × T is a strong bisimulation for two lts
(S,L,−→) and (T,L,−→) when s R t implies that:

• if s l−→ s′ then t
l−→ t′ for some t′ such that s′ R t′;

• if t l−→ t′ then s
l−→ s′ for some s′ such that s′ R t′.

Strong bisimilarity is the largest relation ∼ ⊆ S × T that is a strong bisim-
ulation. The saturation of an lts (S,L,−→) is the (S,L,=⇒) where =⇒ is the

smallest relation such that: s
τ
=⇒ s for all s ∈ S and if s1

τ
=⇒ s2, s2

l−→ s3,

74 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

π.P
π−→ P x.case{l:P,r:Q} x(l)−−→ P x.case{l:P,r:Q} x(r)−−−→ Q

x↔ y
x↔y−−−→ 0 x↔ y

y↔x−−−→ 0

Par0
P

l−→ P ′ Bn(l) # Fn(Q)

P |Q l−→ P ′ |Q

Par1
Q

l−→ Q′ Bn(l) # Fn(Q)

P |Q l−→ P |Q′

Syn
P

l−→ P ′ Q
l′−→ Q′ Bn(l | l′) # Fn(P | Q)

P |Q l|l′−−→ P ′ |Q′

AEQ
P =α Q Q

l−→ Q′

P
l−→ Q′

Res
P

l−→ P ′ x, y /∈ N(l)

νxy P
l−→ νxy P

Link
P

y↔z−−−→ P ′

νxy P
τ−→ P ′{x/z}

Tensor-Par
P

x[x′]|y(y′)−−−−−−→ P ′

νxy P
τ−→ νxy νx′y′ P ′

One-Bot
P

x[]|y()−−−−→ P ′

νxy P
τ−→ P ′

Com
P

x[µ]|y(µ)−−−−−−→ P ′ µ ∈ {l,r}

νxy P
τ−→ νxy P ′

Figure 2: πLL, transition rules for processes Montesi and Peressotti [2021].

3.2. BASE SYSTEM 75

x : 1
x[]−→ ∅ Γ, x : ⊥ x()−−→ Γ Γ,∆, x : A⊗B

x[x′]−−−→ Γ, x : B | ∆, x′ : A

Γ, x : A O B
x(x′)−−−→ Γ, x : B, x′ : A

Γ, x : A⊕B
x[l]−−→ Γ, x : A Γ, x : A N B

x(l)−−→ Γ, x : A

Γ, x : A⊕B
x[r]−−→ Γ, x : A Γ, x : A N B

x(r)−−→ Γ, x : A

x : A⊥, y : A
x↔y−−−→ ∅

G | Γ τ−→ G | Γ

Par0
G l−→ G′

G | H l−→ G′ | H

Par1
H l−→ H′

G | H l−→ G | H′

Syn
G l−→ G′ H l′−→ H′

G | H l|l′−→ G′ | H′

Figure 3: πLL, transition rules for typing environments Montesi and Peres-
sotti [2021].

76 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

and s3
τ
=⇒ s4, then s1

l
=⇒ s4. A relation R ⊆ S × T is a bisimulation for

(S,L,−→) and (T,L,−→) when R is a strong bisimulation for their satura-
tions. Bisimilarity is the largest relation ≈ ⊆ S × T that is a bisimulation.

We write P
l−→≈ Q if P l−→ P ′ and P ′ ≈ Q for some P ′.

Interestingly, erasure establishes a strong bisimulation between deriva-
tions and processes, and session fidelity establishes a strong simulation from
processes to environments.

3.3 Classical Effects
This section extends the base system with effects. Since we work in classical
linear logic, effects have to conform to duality. Thus we introduce two dual
connectives � and �; the former represents an emitter that emits effects,
while the latter represents a coemitter that handles effects.

Recall that in the Introduction, the emitter was informally parameterized
by a pair: a request type A and response type B. It is natural to generalize
the emitter to support multiple kinds of effects. To this end, we introduce
the notion of an effect environment, which is a mapping from effect names
(such as i) to a pair of request and response types.

Effect environments are generated by the following grammar; • is empty
effect environment.

Θ ::= • | i : (A : B),Θ

The dual Θ⊥ of an effect environment Θ is defined by dualising each binding
i : (A : B) to i : (A⊥ : B⊥).

We now set out to capture formally the (co)inductive nature of the emit-
ter and the coemitter as informally exhibited in Introduction, by defining
some functors of which we will take the least and greatest fixed points
[Baelde, 2012]. For an effect environment Θ and some type C, we define
FΘ
C and GΘ

C by induction on Θ:

F •
C(X) := C F

i:(A:B),Θ
C (X) := FΘ

C (X)⊕ (A⊗B O X)

G•
C(X) := C G

i:(A:B),Θ
C (X) := GΘ

C(X) N (A O B ⊗X)

Note that FΘ
C is dual to GΘ⊥

C⊥ , in the sense that (FΘ
C (X))⊥ = GΘ⊥

C⊥(X
⊥). We

can now define

�ΘC := µFΘ
C (emitter) �ΘC := νGΘ

C (coemitter)

The intuition is that �ΘC is allowed to emit effects in Θ and returns C,
while �ΘC is capable of handling effects in Θ and returns C. We further
specify the duality

(�ΘC)⊥ = �Θ⊥
C⊥ (�ΘC)⊥ = �Θ⊥

C⊥

3.3. CLASSICAL EFFECTS 77

BoW
P ` Γ, x : C�x[]. P ` Γ, x : �ΘC

BoA
P ` ∆, a : A | Γ, x : B O �ΘC i : (A : B) ∈ Θ�xi[a]. P ` ∆,Γ, x : �ΘC

Di
P ` Γ, i : S

∀i : (A : B) ∈ Θ. Qi ` z : S⊥, a′ : A, z′ : B ⊗ S R ` f : S⊥, y : C�y{i. P, za′z′. Q, f.R} ` Γ, y : �ΘC

Figure 4: Effects, typing rules

The duality together with Cut means that an emitter and a coemitter can
interact if the former is allowed to emit only the effects that the latter is
capable of handling, a.k.a. effect safety. Note that they have dual views
of the effect environment, since whatever is ‘sent’ from the emitter will be
‘received’ by the coemitter, and vice versa. Similarly, their return types
must be dual as well.

The typing rules of effects are given in fig. 4, all of which directly derived
from the fixed point rules of Baelde [2012], Lindley and Morris [2016]. We
proceed to comment on each of the rules. Weakening BoW gives an emit-
ter without any effect. Absorption BoA gives an emitter with a i-effect of
request A and response B, and the continuing emitter �ΘC. Rule Di con-
structs a coemitter: given the internal state type S, process P provides the
initial internal state at i; for each effect i : (A : B) ∈ Θ we have Qi providing
a response and new internal state at z′ given old one at z and request at a′;
finally, R takes the final internal state at f and terminates the handler by
returning at y. Note the distinction between the session name i (in math
italics) and the effect name i (in sans serif) Also note that Qi corresponds
to section 3.1 and section 3.1 in the introduction.

The LTS of effect is given in fig. 5. For clarify we also list the LTS
projected to processes in fig. 6 and environments in fig. 3.B.1 in section 3.B.
We will comment on fig. 5. An emitter has internal choice as it knows
whether to end or to emit, depending on whether it is constructed by BoW
or BoA. In BoWW, the emitter signals the label �x[], indicating it will no
longer emit effects. In BoAA, the emitter signals the label �xi[a], indicating
an emission of i-effect and request at a. In both cases, it transitions into the
continuation P .

On the other hand, a coemitter relies on external choice, depending on
which it can either end or handle. In DiW, the coemitter signals the label�y(), indicating that it will no longer take effects, and transitions into the
return value C by connecting initialization and finalization. In DiA, the
coemitter signals the label �yi(a′), indicating handling of a i-effect and

78 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

�x[]. P ` Γ, x : �ΘC
�x[]−−−−→

BoWW
P ` Γ, x : C

�xi[a]. P ` ∆,Γ, x : �Θ,i:(A:B)C
�xi[a]−−−−→
BoAA

P ` ∆, a : A | Γ, x : B O �Θ,i:(A:B)C

�y{i. P, za′z′. Q, f.R} ` Γ, y : �Θ
C

�y()
−−−−→

DiW
νif (P |R) ` Γ, y : C

P ` Γ, i : S

∀i : (A : B) ∈ Θ. Qi ` z : S⊥, a′ : A, z′ : B ⊗ S

R ` f : S⊥, y : C�y{i. P, za′z′. Q, f.R} ` Γ, y : �Θ
C

�yi(a)
−−−−−→

DiA

P ` Γ, i : S

Qi ` z : S⊥, a′ : A, z′ : B ⊗ S

(b↔ b′) ⊗b
′ i′

b y T ` i′ : B⊥ O S⊥, y : B ⊗ �Θ
C

νi′z′ νiz (Qi | P | (b↔ b′) ⊗b
′ i′

b y T) ` Γ, a′ : A, y : B ⊗ �Θ
C

Cut

where T := �y{i. i′↔ i, za′z′. Q, f.R} ` i′ : S⊥, y : �Θ
C

BoW-DiW

P ` G | Γ, x : �ΘC | ∆, y : �Θ⊥
C⊥ �x[]| �y()
−−−−−−−→ P ′ ` G | Γ, x : C | ∆, y : C⊥

νxy P ` G | Γ,∆ τ−→ νxy P ′ ` G | Γ,∆

BoA-DiA

P ` G | Γ0,Γ1, x : �ΘC | ∆, y : �Θ⊥
C⊥ �xi[a]| �yi(a′)
−−−−−−−−−→

P ′ ` G | Γ0, a : A | Γ1, x : B O �ΘC | ∆, a′ : A⊥, y : B⊥ ⊗ �Θ⊥
C⊥

i : (A : B) ∈ Θ

νxy P ` G | Γ0,Γ1,∆
τ−→ νaa′ νxy P ′ ` G | Γ0,Γ1,∆

Figure 5: Effects, transition rules for derivations

3.3. CLASSICAL EFFECTS 79

�x[]. P
�x[]−−−−−−→

BoWW
P �xi[a]. P

�xi[a]−−−−−→
BoAA

P

�y{i. P, za′z′. Q, f.R} �y()
−−−−→
DiW

νif (P |R)

�y{i. P, za′z′. Q, f.R} �yi(a)
−−−−−→

DiA

νi′z′ νiz (Qi | P | (b↔ b′) ⊗b
′ i′

b y �y{i. i′↔ i, za′z′. Q, f.R})

BoW-DiW

P
�x[]| �y()
−−−−−−−→ P ′

νxy P
τ−→ νxy P ′

BoA-DiA

P
�xi[a]| �yi(a′)
−−−−−−−−−→ P ′

νxy P
τ−→ νaa′ νxy P ′

Figure 6: Effects, transition rules for processes

serving request at a′. It then transitions into a complex process which is
essentially as follows. We first feed the initial internal state i from P to Qi

as old internal state z′, and get back Γ, A,B⊗S where S is the new internal
state. Note we can construct a new coemitter with the same Q and R but
some given S as the initial internal state; this is exactly what T does. We
apply T to the aforementioned new S and replace it, and get Γ, A,B⊗ �ΘC.

Finally, the communication rules BoW-DiW and BoA-DiA specify the
interaction. BoW-DiW says if the emitter signals end, then the coemitter
will end. BoA-DiA says if the emitter emits an effect, the coemitter will
handle it.

Note that both Baelde [2012] and Lindley and Morris [2016] gave reduc-
tion semantics; the LTS semantics give here is new. A benefit of LTS is that
each side of communication transitions on their own. This is particularly
useful for primitive effects (whose coemitter are not expressed in the lan-
guage), because such an emitter would still signal effects by BoAA, upon
which the standard toolbox of bisimilarity can be applied. In comparison,
reduction semantics needs both sides to form a redex. Ahman and Bauer
[2020] attempted to solve it by defining in the language a top-level layer
(i.e. operating system) handling primitive effects; this is simply shifting the
issue, as the top-level layer would still need mechanisms to interact with
human or communicate over network.

Example 1 (Linear Cell). A linear cell is a simple buffer that is either
empty or contains a piece of datum X. It is linear in that it becomes empty

80 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

once read, and can only be written to when empty; the content is never
duplicated or discarded. As a result, X could be any session type and not
a positive one. However, for easier understanding, one can assume X to be
a positive type (such as integer) for now. We first define:

S := 1⊕X Θ := get : (1 : ⊥N X⊥), put : (X : X⊥ N⊥)
The internal state S is a buffer, a ⊕ where left means ‘empty’ and right
means ‘non-empty’ along with the content X. The effect environment Θ is
defined from the perspective of the emitter, and has two operations. In get,
the emitter will send a trivial request and it must then be prepared for two
possible outcomes in the response: left means the cell is empty, while right
allows for the reception of the content. In put, the emitter will send the
datum to be stored, and prepare for two possible outcomes in the response:
left means the cell is occupied already along with the datum bounced back,
right means the datum is successfully stored.

The initialization is an arbitrary process P supplied by the user; the
finalization process simply returns the buffer.

P ` Γ, i : S R := f ↔ y ` f : S⊥, y : S

We then define the effect handling. First note that the coemitter views the
effects dually to the emitter:

Θ⊥ = get : (⊥ : 1⊕X), put : (X⊥ : X ⊕ 1)

The following process handles get, where we terminate the request a′, output
a fresh session b′ for the response, and finally we do two things: we forward
the old buffer z to the response b′, and we set the new buffer z′ to be empty.

Qget ` z : S⊥, a′ : ⊥, z′ : (1⊕X)⊗ S

Qget := a′(). z′[b′]. (z↔ b′ | z′[l]. z′[].0)

The following process handles put; it checks the old buffer z, and proceeds
accordingly:

Qput := z.case{l:Qempty,r:Qfull} ` z : S⊥, a′ : X⊥, z′ : (X ⊕ 1)⊗ S

If the old buffer z is empty, we end the old buffer z, output a fresh session
b′ for the response, and do two things: we signal success on the response b′,
and we forward the datum from request a′ to the new buffer z′.

Qempty ` z : ⊥, a′ : X⊥, z′ : (X ⊕ 1)⊗ S
Qempty := z(). z′[b′]. (b′[l]. b′[].0 | z′[r]. a′↔ z′)

If the old buffer z is non-empty, we simply forward the request a′ to the
response b′, and forward the old buffer z to the new buffer z′.

Qfull ` z : X⊥, a′ : X⊥, z′ : (X ⊕ 1)⊗ S

Qfull := z′[b′]. (b′[r]. a′↔ b′ | z′[r]. z↔ z′)

3.3. CLASSICAL EFFECTS 81

Finally, we put everything together to define a linear cell:

cellXy (i. P) := �y{i. P, za′z′. Q, f.R} ` Γ, y : �Θ⊥
S

Bisimilarity results that portrays the cell’s behaviours are proved (see
theorem 40 in section 3.D). Positive cells [Rocha and Caires, 2021] can be
defined in a similar manner (see example 18 in section 3.D). Howerver, they
are less useful with sessions and we will not discuss about them further.

Example 2 (Sequential Access). We now demonstrate that our system
allows multiple sequential accesses in a single emitter. We first specialize
example 1 and obtain a linear cell of 1 starting out empty:

cell1y(i. i[l].0i) ` y : �Θ⊥
S

The emitter will get from the cell and then put to the cell, in that order.
Both responses will be of type 1⊕ 1, which will be discarded for simplicity
(recall that positive types can be discarded: given any P ` Γ, we have
del(x).P ` x : (1⊕ 1)⊥,Γ).

We now define the emitter. Note that the two 0a have different meanings:
the former is the trivial request of get, while the latter is the datum to put.
Also note that in the end we forward the returning value of the coemitter
(which is the buffer as defined in example 1) to s.

main :=�xget[a]. (0a | x(b). del(b).�xput[a]. (0a | x(b). del(b).�x[]. x↔ s))

`x : �ΘS⊥, s : S

Finally we connect main to cell. The first effect get will fail because the
cell was empty, and the second effect put will succeed, which also decides
the final internal state s : S. Note this is the only possible outcome - the
second request cannot run before the first. The process will transition as
follows. The first transition signals that the cell is non-empty, and the second
transition signals the trivial content.

νxy (main | cell1y(i. i[l].0i))
s[r]
==⇒ s[]

=⇒ 0

Example 3 (Merging Coemitters). Given two coemitters, we can merge
them into one, so that the merged coemitter is capable of handling effects
from both sub-coemitters. The trick is to use ⊗ on the sub-coemitters as
the internal state of the merged coemitter, and simply forward effects to the
corresponding sub-coemitter to get handled. Let S := �ΘC⊗ �ΩD. Given
P ` Γ, y : S, we define the following merge process

mergey(i.P) := �y{i. P, za′z′′. Q⃗, f . f ↔ y} ` Γ, y : �Θ,ΩS

82 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

where Q⃗ has, i : (A : B) ∈ Θ,

Qi
L :=z(z′).�z′

i
[a]. (a↔ a′ | z′(b). z′′〈b〉. z′′〈z′〉. z↔ z′′)

`z : S⊥, a′ : A, z′′ : B ⊗ S

and for each i : (A : B) ∈ Ω such that i is not in Θ,

Qi
R :=z(z′).�zi[a]. (a↔ a′ | z(b). z′′〈b〉. z′′〈z〉. z′↔ z′′)

`z : S⊥, a′ : A, z′′ : B ⊗ S

The the versions Qi
L and Qi

R differ only in the endpoint used for i and which
correspond to the left and right type in �ΘC and �ΩD, respectively. In
case of clashes of effect names in Θ and Ω our implementation prioritises the
first but one could prioritize the second by selecting substituting the corre-
sponding element in Q⃗ (this bias will be relevant later in example 11). The
resulting �Θ,ΩS can handle both Θ and Ω effects, and returns S which is the
left-over of both sub-coemitters. C⊗D can be derived from S and is in fact
enough for most scenarios, but returning S is needed if one wishes to use the
two sub-coemitters afterwards, as will be demonstrated later (example 9).
Finally, observe that requiring a premise P ` Γ, x : �ΘC | ∆, x′ : �ΩD
would be less general compared to the current P ` Γ,∆, x : �ΘC ⊗ �ΩD.

Remark 1 (Merging and Pairing). Merging is similar to pairing in Ahman
and Bauer [2020]. However, pairing does not provide modularity because
the definition of the paired runner requires the full internal knowledge of
the sub-runners. In particular, the internal state of the paired runner is
simply C0×C1 where C0, C1 are the internal states of the sub-runners. Our
merging requires only external knowledge of the coemitters such as Ω, Θ,
and therefore provides modularity.

By observing the derivation of merge, it appears that the sub-coemitters
do not interfere with each other in the handling of effects. The following
theorem formalizes this observation.

Theorem 19 (Independence of the sub-coemitters). For any

P ` Γ0, y0 : �ΘC | Γ1, y1 : �ΩD

if P �y0 i(a′)
−−−−−−→ P ′, then

• mergey(y1.y1[y0]. P)
�yi(a′)
−−−−−→ Z,

• Z ` y′1 : (�ΩD)⊥, y′0 : (B ⊗ �ΘC)⊥, y : B ⊗ �Θ,Ω(�ΘC ⊗ �ΩD), and
• Z ≈ νy1y

′
1 νy0y

′
0 (P

′ | y′0(b′). y〈b′〉.mergey(i.i〈y′0〉. i↔ y′1)).

3.4. RACES 83

Note that y′0(b′). y〈b′〉.mergey(i.i〈y′0〉. i↔ y′1) is a thin wrapper around merge
to allows for the extra B; the detour is needed because ⊗ is difficult in
sequent calculus. The intuition of the theorem is that if y0 handles effect i
and merges with y1, it will be equivalent to the process that merges y0 with
y1 and handles effect i. The equivalence has two parts: the handlings of
effect i are equivalent, and the remaining merged coemitters are equivalent.

3.4 Races
In the previous section we formulated the interaction between a single emit-
ter and a single coemitter, which supports sequentiality (sequencing of opera-
tions). Recalling the design criteria discussed in the Introduction, we wish to
allow multiple emitters to share accesses to a single coemitter. Suprisingly,
as we will show in section 3.4.1, our system already supports user-defined
deterministic sharing. To allow non-deterministic sharing (i.e., races), we
extend our system in section 3.4.2 with a primitive with the same type as
user-defined sharing but with non-deterministic semantics.

3.4.1 Deterministic Sharing
We show that users can define (deterministic) sharing of effects on their
own. We start by stating some propositions, whose proofs can be found in
the supplementary material. They are related to functoriality, (co)strength
in monoidal categories and multiplication of (co)monads, the details of which
we leave to future work.

In the following processes, the process lift ‘lifts’ C in or out of the return-
ing value of the emitter and coemitter, without changing the effects. There
is also an omitted right version that lifts D, as well as the special case lift*
when D = ⊥. The process flatten flattens an emitter that returns an emitter
by ‘compressing’ all effects in one go.

Proposition 20. We can derive the following; each row contains two im-
plications that are equivalent.

(C ⊸ D) ⊸ (�ΘC ⊸ �ΘD) (C ⊸ D) ⊸ (�ΘC ⊸ �ΘD) (fmap)

�Θ(C O D) ⊸ (C O �ΘD) (C ⊗�ΘD) ⊸ �Θ(C ⊗D) (left lift)�Θ �Θ C ⊸ �ΘC �ΘC ⊸ �Θ �ΘC (flatten)

Consequently, the following process terms exist:

T ` x : D, y : C ⇒ fmapxy(T) `x : �ΘD, y : �Θ⊥
C

liftxcy `c : C, y : �ΘD, x : �Θ⊥
(C⊥ ⊗D⊥)

flattenxy `x : �ΘC, y : �Θ⊥ �Θ⊥
C⊥

84 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

The following proposition is related to (op)lax monoidal functors (but
again we leave out a detailed exploration of this fact to future work).

Proposition 21 (Deterministic Sharing). There are processes of type �ΘC⊗�ΘD ⊸ �Θ(C ⊗D) or equivalently �Θ(C O D) ⊸ �ΘC O �ΘD.

Proof. We give two proofs. Each of them corresponds to a process which is
omitted.

�Θ C ⊗�ΘD

⊸ �Θ (C ⊗�ΘD) (right lift)
⊸ �Θ �Θ(C ⊗D)

(left fmap(lift))
⊸ �Θ (C ⊗D) (flatten)

�Θ C ⊗�ΘD

⊸ �Θ (�ΘC ⊗D) (left lift)
⊸ �Θ �Θ(C ⊗D)

(right fmap(lift))
⊸ �Θ (C ⊗D) (flatten)

The proofs carry computational meanings. In the left proof, lift first propa-
gates all effects in �ΘC, then another lift propagates all effects in �ΘD. We
can say that it represents a sharing policy that prioritizes the left subtree.
The right derivation is the symmetric policy, which prioritizes the right sub-
tree; one can also define one that alternates between left and right subtrees;
etc.. Sharing given this way is deterministic: if one Cut’s a policy with two
parallel emitters, then the outcome is completely decided by the policy.

3.4.2 Non-deterministic Sharing
To model real world concurrency, we introduce non-deterministic sharing
(i.e. races) by means of a new rule, BoC, in fig. 7, Note that BoC is derivable
by proposition 21, and thus does not change the logical aspects of our system.
What makes this rule special is the associated LTS semantics, given by the
other three rules in fig. 7. The LTS semantics allows effects from both left
and right subtrees to propagate non-deterministically. For clarify we also
list the LTS projected to processes in fig. 8 and environments in fig. 3.B.2
in section 3.B.

The LTS of BoC is unlike that of BoA or BoW. Recall that �xi[a]. P
simply signals the label �xi[a]. However, had we let �x[x0, x1]P signal the
label �x[x0, x1] , we would need extra LTS rules for the coemitter to react
to this; we want to avoid that since the concern of sharing emitters should
be kept separate from that of coemitters.

Instead, BoC is structural, similar to Cut. It does not signal labels by
itself, but propagates labels from P with modifications if necessary. BoCP
propagates labels unrelated to effects, which is similar to Res.

BoCA0 propagates an effect from the left emitter; the symmetric BoCA1
is omitted for space. BoCW collects two ending emitters and end. Both rules

3.4. RACES 85

BoC
P ` G | Γ, x0 : �ΘC0 | ∆, x1 : �ΘC1�x[x0, x1]P ` G | Γ,∆, x : �Θ(C0 ⊗ C1)

BoCP
x0, x1 /∈ Fn(l)

P ` G | Γ, x0 : �ΘC0 | ∆, x1 : �ΘC1
l−→ P ′ ` G′ | Γ′, x0 : �ΘC0 | ∆′, x1 : �ΘC1

�x[x0, x1]P ` G | Γ,∆, x : �Θ(C0 ⊗ C1)
l−→ �x[x0, x1]P

′ ` G′ | Γ′,∆′, x : �Θ(C0 ⊗ C1)

BoCA0
x0, x1 /∈ Fn(l) i : (A : B) ∈ Θ P ` G | Γ0,Γ1, x0 : �ΘC0 | ∆, x1 : �ΘC1

l|�x0
i[a]−−−−−→ P ′ ` G′ | Γ0, a : A | Γ1, x0 : B O �ΘC0 | ∆′, x1 : �ΘC1�x[x0, x1]P ` G | Γ0,Γ1,∆, x : �Θ(C0 ⊗ C1)

l|�xi[a]−−−−−→ νx0y0 νx1y1 (P
′ |Q) ` G | Γ0, a : A | Γ1,∆

′, x : B O �Θ(C0 ⊗ C1)

where Q := x(b). y0〈b〉.�x[x0, x1] (x0↔ y0 | x1↔ y1) `

y0 : (B O �ΘC0)
⊥, y1 : (�ΘC1)

⊥, x : B O �Θ(C0 ⊗ C1)

BoCW
x0, x1 /∈ Fn(l)

P ` G | Γ, x0 : �ΘC0 | ∆, x1 : �ΘC1
l|�x0[]|�x1[]−−−−−−−−→ P ′ ` G′ | Γ, x0 : C0 | ∆, x1 : C1

�x[x0, x1]P ` G | Γ,∆, x : �Θ(C0 ⊗ C1)
l|�x[]−−−→ νx0y0 νx1y1 (P

′ |Q) ` G′ | Γ,∆, x : C0 ⊗ C1

where Q := x〈y0〉. x↔ y1 ` y0 : C⊥
0 , y1 : C⊥

1 , x : C0 ⊗ C1

Figure 7: Races, typing rules and transition rules for derivations.

86 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

BoCP
x0, x1 /∈ Fn(l) P

l−→ P ′

�x[x0, x1]P
l−→ �x[x0, x1]P

′

BoCW
x0, x1 /∈ Fn(l) P

l|�x0[]|�x1[]−−−−−−−−→ P ′

�x[x0, x1]P
l|�x[]−−−→ νx0y0 νx1y1 (P

′ | x〈y0〉. x↔ y1)

BoCA0
x0, x1 /∈ Fn(l) P

l|�x0
i[a]−−−−−→ P ′

�x[x0, x1]P
l|�xi[a]−−−−−→ νx0y0 νx1y1 (P

′ | x(b). y0〈b〉.�x[x0, x1] (x0↔ y0 | x1↔ y1))

Figure 8: Races, transition rules for processes.

include a general l; this is to satisfy non-interference (see theorem 32). Both
rules rely on some auxiliary term Q to work around syntactic limitation of
sequent calculus.
Remark 2 (Parallelism and Concurrency). There are two kinds of computa-
tions in our system, managed by different mechanisms. Pure computations
are given by the base system πLL [Montesi and Peressotti, 2021]. It is pure
in the sense of satisfying the diamond property. In particular, it includes
HMix and its semantics which allows independent processes to run simulta-
neously by Syn. This corresponds to parallelism. On the other hand, effect-
ful computations are given by our novel extensions. Effectful computations
are not pure in the sense of the partial diamond property (see theorem 34
in section 3.B). They include BoC which allows racing between emitters,
and its semantics which decides the outcomes of races. This corresponds to
concurrency.

Example 4 (Parallel Access). Following example 2, we can now define two
parallel emitters each trying to access the linear cell:

main0 := �x0
get[a]. (0a | x0(b). del(b).�x0[].0x0) ` x0 : �Θ1

main1 := �x1
put[a]. (0a | x1(b). del(b).�x1[].0x1) ` x1 : �Θ1

we apply BoC on them and fmap the return value from 1⊗ 1 to 1:

main := �x[x0, x1] (main0 |main1) `x : �Θ(1⊗ 1)

F := fmapx′y′(y
′(y′′). y′(). y′′().0x′) `x′ �Θ 1, y′ : (�Θ(1⊗ 1))⊥

main’ := νxy′ (F |main) `x′ : �Θ1

3.5. SYNCHRONIZATION 87

BoR
Q ` e : E⊥, x : �ΘC, z : (E ⊕D)⊗ �Θ⊥

C⊥ P ` Γ, d : D⊥, x : �ΘC�x(e){z.Q}d. P ` Γ, e : E⊥, x : �ΘC

D := �x(e){z.Q}d. P ` Γ, e : E⊥, x : �ΘC
τ−−−−→

BoRR

Q ` e : E⊥, x : �ΘC, z : (E ⊕D)⊗ �Θ⊥
C⊥

D[d/e] ` Γ, d : E⊥, x : �ΘC P ` Γ, d : D⊥, x : �ΘC

E := x(d). d.case{l:D[d/e],r:P} ` Γ, d : (E⊥ N D⊥) O �ΘC

νdz (Q | E) ` Γ, e : E⊥, x : �ΘC

Figure 9: Do-Until, typing rule and transition rules for derivations

On the other side, we lift the return value of the coemitter:

cell’ := νxy (cell1y(i. i[l].0i) | lift∗xcy′) `c : S, y′ : �Θ⊥
⊥

Finally we can connect main’ to cell’ and get νx′y′ (main’ | cell’) ` c : S, where
c signals the final state of the cell. There are two possible outcomes. In the
first outcome, get fails followed by put succeeding, and the cell ends with
1. In the second outcome, put succeeds followed by get succeeding (because
there is content in the cell), and the cell ends up being empty. Transitions
are similar to those in example 2 and omitted.

The application of fmap and lift* makes the example somewhat cum-
bersome, we therefore postpone more examples until section 3.7, where we
consider a higher-level language.

3.5 Synchronization
In example 4 above, the emitters were forced to continue even when get
and put failed. In this section we introduce a do-until primitive, which
repeatedly performs an effectful computation until a certain condition is
met. This allows emitters to synchronize via shared effects. The cost is
that do-until introduces livelocks — there might be an infinite series of τ
transitions.

The do-until extension contains only one typing rule and one LTS rule,
shown in fig. 9. For clarity we also list the rules projected to processes in
fig. 10, and environments in fig. 3.B.3 in section 3.B. E is the type of the
iteration variable and D is the type of the result. Process Q has a complex
type: it takes the last iteration variable at e, and takes a coemitter at x

88 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

D := �x(e){z.Q}d. P τ−−−−−→
BoRR

νdz (Q | x(d). d.case{l:D[d/e],r:P})

Figure 10: Do-Until, transition rules for processes

(by exposing as an emitter), and produces E ⊕D with �Θ⊥
C⊥ at z. The

former has two options where left indicates continuing with a new iteration
variable and right indicates ending with a result. The latter is the ‘left-over’
of the handler at x. Both the result and the left-over are passed to the
continuation P .

In the LTS semantics, D is the derivation associated with �x(e){z.Q}d. P
and it simply unfolds. On the RHS, we first run Q, the outcome of which is
used to pick the branch to run. Left leads to the self-reference D[d/e], while
the right leads to P . Note that the self-reference is guarded by case, which
does not propagate deeper actions. Hence another recursive unfolding will
only happen after the outcome of Q reacts with case.

The new do-until primitive can be used to synchronize get and put op-
erations on a linear cell (see example 8). Here we only look at a few simple
examples to get some intuition.

Example 5 (Infinite Loop). The do-until primitive suffices for expressing
an infinite loop: For simplicity, let C := D := E := 1. Given a loop body
Q′ ` x : �Θ1, z : �Θ⊥

⊥, we define

Q := e(). z[c]. (Q′ | c[l].0c) `e : ⊥, x : �Θ1, z : (1⊕ 1)⊗ �Θ⊥
⊥

P := c().�x[].0x `c : ⊥, x : �Θ1

loop(xz.Q′) := νee′ (0e′ |�x(e){z.Q}c. P) `x : �Θ1

The use of the fixed expression c[l] makes the loop always continue. As a
result, process P , which ends the emitter, will never be executed.

Example 6 (Spawn Bomb). The simplest instance of the preceding example
is one where Q′ is given by x↔ z; this corresponds to an empty loop body.
We name such a loop dumb. If we repeatedly spawn dumb, we get more and
more of them, effectively creating a spawn bomb. How does spawn work?
The main emitter x forks by �x[x0, x1] . The child emitter x0 will then
be used by dumb, while the child emitter x1 is forwarded as the next loop
variable and thus becomes the next main emitter.

dumb := loop(x0z.x0↔ z) `x0 : �Θ1

bomb := loop(xz.�x[x0, x1] (dumb | x1↔ z)) `x : �Θ1

3.6. METATHEORY 89

3.6 Metatheory
CELL enjoys the same metatheoretic results that validate the design of πLL
especially, erasure (theorem 22), session fidelity (theorem 23), and progress
(theorem 25). The only exceptions are results that rely on the absence of
livelocks and races, notably CELL does not enjoy the readiness and diamond
properties. The first states that a process is ready to perform an action
on at least one endpoint for each environment in its type. This property
fails in CELL because of BoR which introduces busy-waiting that might
result in infinite sequences of τ -transitions. The second property states that
any interleaving of concurrent actions that do not share endpoints leads to
the same result. This property fails in CELL because of non-deterministic
sharing and the resolution of races by BoCA0 and BoCA1. However, a
similar property holds under a restricted usage of these rules (lemma 27,
theorem 34).

The transition systems of processes and environments we derived from
lts of derivations of CELL are coherent: the semantics of well-typed processes
does not depend from runtime information about their typing (erasure) and
is simulated by the semantics of types (session fidelity).

Theorem 22 (Erasure). For any derivation D and label l:
• if D l−→ D′, then proc(D) l−→ proc(D′);

• if proc(D) l−→ P ′, then D l−→ D′ for some proc(D′) = P ′.

Theorem 23 (Session Fidelity). If P ` G and P
l−→ P ′, then P ′ ` G′ and

G l−→ G′ for some G′.

It follows from theorem 22 that well-typed processes stay well-typed
under any transition.

Corollary 24 (Typability Preservation). If P is well-typed and P
l−→ P ′,

then P ′ is well-typed.

Processes that are typed under non-empty hyperenvironments are not
stuck.

Theorem 25 (Progress). If P ` G and G 6= ∅, then P −→.

Bisimilarity and strong bisimilarity are congruences for the lts of pro-
cesses, so they allow for local reasoning. In fact, for any context C[−],
P ≈ Q implies that C[P] ≈ C[Q] and likewise for ∼.

Theorem 26 (Congruence). ∼ and ≈ are congruences.

90 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

We call a transition derived without relying on BoCA0 or BoCA1 pure
and we denote pure transitions by −→

=
. Pure τ -transitions do not affect the

observable behaviour of processes and derivations.

Lemma 27. If D τ−→
=
E, then D ≈ E.

3.7 Concurrent Effectful GV
Similar to other languages [Montesi and Peressotti, 2021, Kokke et al., 2019a]
based on CP [Wadler, 2014], CELL can be cumbersome to write and read.
Wadler [2014] remedies this issue by introducing GV, a functional program-
ming language with session types, with thin translations to CP. Here we
extend GV with effects; the new language is called CEGV and translates to
CELL.

Terms The terms of CEGV are inductively generated by the following
grammar. We omit selection over sessions (⊕,N as in GV) because they are
not used in our examples.

P ,Q,R, · · · := λx. P | P Q | ⋆ | (P,Q) | let (x, y) = P in Q
(functions, units, product)

inl P | inr P | match P with x.{Q0, Q1} (coproduct)
send P Q | recv P | terminate P

(send and receive over and terminate P)
handler{i.P, a′z′.Q, y.R} (handler construction)
runner{P, za′.Q, f.R} (runner construction)
return(P) | x← P ; Q (monadic interface)
emiti(P) (emit effect named by i with request P)
doUntil e.P

(repeat effectful P until some condition are met)
using P (Q) (use the coemitter in P and run Q)

Effect Environment We lift the concept of effect environments from
CELL to CEGV, with the catch that request and response types translate to
opposite variances. This simplifies our rules, and the intuition is that from
an emitter’s perspective, A is outgoing request and B is incoming response.

Θ,Ω, · · · := • | Θ, i : (A : B) J • K := • JΘ, i : (A : B)K := JΘK, i : (JAK : JBK⊥)
Types Following Wadler [2014], we adopt the call-by-value translation
from intuitionistic logic to linear logic [Girard, 1987a]. We define CEGV

3.7. CONCURRENT EFFECTFUL GV 91

types and their translations to CELL types:

A,B,C,D, · · · := C ⊸ D | C → D | C +D | C ⊗D | 1
(functional types)

| !C.D | ?C.D
(output/input value of type C, then behave as D)
| end? | end! (end-of-session)
| �Θ C | �ΘC (emitter and handler)

JC ⊸ DK := JCK⊥ O JDK JC → DK := !(JCK⊥ O JDK)
JC +DK := JCK⊕ JDK JC ⊗DK := JCK⊗ JDK J1K := 1

J!C.DK := JCK⊥ O JDK J?C.DK := JCK⊗ JDK Jend!K := ⊥
Jend?K := 1 J �Θ CK := �JΘKJCK J �ΘCK := �JΘK⊥JCK

Note that the translations of C ⊸ D and !C.D (and other pairs of connec-
tives) collide in CELL; we still keep them separated in CEGV, just to avoid
confusion. Also note that Θ is negated in J �ΘCK — because in CEGV we
always view effects from the perspective of the emitter, in order to be more
comparable to existing effect systems.

Duality Session types CS is a subset of types characterized by duality CS ,
inductively defined as

!D.CS := ?D.CS ?D.CS := !D.CS end! := end? end? := end!

�ΘCS := �ΘCS �ΘCS := �ΘCS

We have a finer notion of session type than Wadler [2014]. For example,
their system allows !D.C only if C is a session type. Instead, our system
allows !D.C in general, but considers it as a session type when C is a session
type. Similarly, �ΘCS is a session type and thus enjoys some flexibility as
we will see, while �ΘC in general is still comparable to usual effect systems.
Also note that Θ is not negated when negating � and �, which echos the
point above that effect environments are always specified from the emitter’s
perspective to be more comparable to existing effect systems.

Unlimited Types Unlimited types CU is a subset of types that enjoys
weakening and contraction, inductively defined as:

CU , DU , · · · := 1 | C → D | CU +DU | CU ⊗DU

92 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

Send
Γ ` P : C ∆ ` Q : !C.D

Γ,∆ ` send P Q : D

Recv
Γ ` P : ?C.D

Γ ` recv P : C ⊗D

Term
Γ ` P : end?

Γ ` terminate P : 1

Pop
Γ, x : CS ` P : end!
Γ ` popx(P) : CS

Push
Γ ` P : CS

Γ, x : CS ` pushx(P) : end!

Figure 11: CEGV, typing rules of sessions

Pure Computation Following Wadler [2014], a pure computation trans-
lates to a process with a designated port for returning a value:

JΓ ` P : DKz := JP Kz ` JΓK⊥, z : JDK
The basic type system follows Wadler [2014]. The functional fragment is

omitted. The session fragment is in fig. 11. Send sends data P over session
Q and returns the rest of the session. Recv receives data over session P and
returns the data as well as the rest of the session. Pop and Push say that
consuming a session is equivalent to producing the dual session. They allow
us to connect dual processes by regular function applicaiton, and replace
the connect construct in Wadler [2014].

Effectful Computation The typing judgment for effectful computations
has the form Γ | Θ ` P : D. Here P is an effectful computation returning D
using values from Γ and effects from Θ. The translation to CELL is shown
in the display below and yields a process JP KxzC , which takes a coemitter
at x (by exposing as an emitter at x) and returns at z some D as well as
the ‘left-over’ of the coemitter. Note that it is parametric on C.

JΓ | Θ ` P : DKxzC := JP KxzC ` JΓK⊥, x : �JΘKC, z : JDK⊗ �JΘK⊥C⊥

The typing rules for effectful computations and their translations are
given in fig. 12. Return and Bind give the usual monadic interface (proved
by proposition 28). Emit emits effects. Spawn spawns P and immediately
gives 1; note that P will race for effects with what follows after the Spawn
clause. The translation in Spawn looks a bit complicated – the core part is�x[x0, x1] and x1↔ z, and uses the same trick as in example 6; the rest is
just to adapt types. LetE binds pure computations (and thus session com-
munications) in effectful computations; DoUntil repeatedly runs effectful
Q until it gives result D. RelaxE is a weakening rule for unused effects.

Handlers and Runners To handle effectful computations, we provide
two paradigms, corresponding to handlers [Pretnar and Plotkin, 2013] and

3.7. CONCURRENT EFFECTFUL GV 93

uwv
Return

Γ ` P : D

Γ | • ` return(P) : D

}�~
xyC

:=

JP Kz ` JΓK⊥, z : JDK x↔ y ` x : �•C, y : �•
C⊥

y[z]. (JP Kz | x↔ y) ` JΓK⊥, x : �•C, y : JDK⊗ �•
C⊥

uwvBind
Γ | Θ ` P : A ∆, a : A | Θ ` Q : B

Γ,∆ | Θ ` a← P ; Q : B

}�~
x0z1C

:=

JP Kx0z0C ` JΓK⊥, x0 : �JΘKC, z0 : JAK⊗ �JΘK⊥
C⊥

JQKx1z1C ` J∆K⊥, a : JAK⊥, x1 : �JΘKC, z1 : JBK⊗ �JΘK⊥
C⊥

νz0x1 (JP Kx0z0C | x1(a). JQKx1z1C) ` JΓK⊥, J∆K⊥, x0 : �JΘKC, z1 : JBK⊗ �JΘK⊥
C⊥

uwvEmit
Γ ` P : A i : (A : B) ∈ Θ

Γ | Θ ` emiti(P) : B

}�~
xzC

:=

JP Ka ` JΓK⊥, a : JAK x↔ z ` x : JBK⊥ O �JΘKC, z : JBK⊗ �JΘK⊥
C⊥

�xi[a]. (JP Ka | x↔ z) ` JΓK⊥, x : �JΘKC, z : JBK⊗ �JΘK⊥
C⊥

uwv
Spawn

Γ ` P : �Θ1

Γ | Θ ` spawn(P) : 1

}�~
x′zC

:=

JP Kx0
` JΓK⊥, x0 : �JΘK1 x1↔ z ` x1 : �JΘKC, z : �JΘK⊥

C⊥

Q := fmapx′y(y(y
′). y′(). y↔ x′) ` y : (�JΘK(1⊗ C))⊥, x′ : �JΘKC

z[z′]. νxy�x[x0, x1] (JP Kx0
| x1↔ z |Q | 0z′) ` JΓK⊥, x′ : �JΘKC, z : 1⊗ �JΘK⊥

C⊥

LetE
Γ ` P : D ∆, d : D | Θ ` Q : E

Γ,∆ | Θ ` let d = P in Q : E

DoUntil
e : E | Θ ` Q : E +D

e : E | Θ ` doUntil e.Q : D

RelaxE
Γ | Θ ` P : D

Γ | Θ, i : (A : B) ` P : D

Figure 12: CEGV, typing rules of effectful computation

94 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

uwv
Inst

Γ | Θ ` P : D

Γ ` inst(P) : (D ⊸ �ΘC) ⊸ �ΘC

}�~
x

:=

JP KxzJCK ` JΓK⊥, x : �JΘKJCK, z : JDK⊗ �JΘK⊥JCK⊥
x(z). JP KxzJCK ` JΓK⊥, x : (JDK⊗ �JΘK⊥JCK⊥) O �JΘKJCKuwv

Unit

` unit : D ⊸ �ΘD

}�~
z

:=
�z[]. d↔ z ` d : JDK⊥, z : �JΘKJDK

z(d).�z[]. d↔ z ` z : JDK⊥ O �JΘKJDK
uwv

Handler
Γ, i : S ` P : C ∀i : (A : B) ∈ Θ, a′ : A, z′ : B ⊸ S ` Q : S y : D ` R : S

Γ ` handler{i.P, a′z′.Q, y.R} : �ΘD ⊸ C

}�~
c

:=

JP Kc ` JΓK⊥, i : JSK⊥, c : JCK
∀i : (JAK⊥ : JBK) ∈ JΘK⊥, JQKz ` z : JSK, a′ : JAK⊥, z′ : JBK⊗ JSK⊥JRKf ` f : JSK, y : JDK⊥

�y{i. JP Kc, za′z′. JQKz, f . JRKf} ` JΓK⊥, y : �JΘK⊥JDK⊥, c : JCK Di

c(y). · · · ` JΓK⊥, c : �JΘK⊥JDK⊥ O JCK Par

Close
Γ | Θ ` P : D

Γ ` close(P) : �ΘD

Open
Γ ` P : �ΘD

Γ | Θ ` open(P) : D

Figure 13: CEGV, typing rules of handler paradigm

3.7. CONCURRENT EFFECTFUL GV 95

uwv
CoInst

Γ | Θ ` P : D

Γ ` coinst(P) : �Θ
C ⊸ D ⊗ �Θ

C

}�~
z

:=

JP KxzJCK⊥ ` JΓK⊥, x : �JΘKJCK⊥, z : JDK⊗ �JΘK⊥JCK
z(x). JP KxzJCK⊥ ` JΓK⊥, z : �JΘKJCK⊥ O (JDK⊗ �JΘK⊥JCK)
uwv

CoUnit

` counit : �Θ
D ⊸ D

}�~
z

:=
�d[]. d↔ z ` d : �JΘKJDK⊥, z : JDK

z(d).�d[]. d↔ z ` z : �JΘKJDK⊥ O JDK
uwv

Runner
Γ ` P : S ∀i : (A : B) ∈ Θ, z : S, a′ : A ` Q : B ⊗ S f : S ` R : D

Γ ` runner{P, za′.Q, f.R} : �Θ
D

}�~
y

:=

JP Ki ` JΓK⊥, i : JSK
∀i : (JAK⊥ : JBK) ∈ JΘK⊥, JQKz′ ` z : JSK⊥, a′ : JAK⊥, z′ : JBK⊗ JSKJRKy ` f : JSK⊥, y : JDK

�y{i. JP Ki, za′z′. JQKz′ , f . JRKy} ` JΓK⊥, y : �JΘK⊥JDK Di

Figure 14: CEGV, typing rules of runner paradigm

uwwv
Using
Γ | Ω ` P : �Θ

E ∆ | Θ,Ω ` Q : D

Γ,∆ | Ω ` using P (Q) : D ⊗ �Θ
E

}��~
xwC

:=

D JQKx′z′S⊥ ` J∆K⊥, x′ : �JΘ,ΩKS⊥, z′ : JDK⊗ �JΘ,ΩK⊥
S E

νw′z′ νx′y (D | JQKx′z′S⊥ | E) ` JΓK⊥, J∆K⊥, x : �JΩKC,w : JDK⊗ S

where

S := �JΘK⊥JEK⊗ �JΩK⊥
C⊥ D :=JP KxiC ` JΓK⊥, x : �JΩKC, i : S

mergey(i.JP KxiC) ` JΓK⊥, x : �JΩKC, y : �JΘ,ΩK⊥
S

E :=
�w′[]. w↔ w′ ` w′ : �JΘ,ΩKS⊥, w : S

w′(d′). w〈d′〉.�w′[]. w↔ w′ ` w′ : JDK⊥ O �JΘ,ΩKS⊥, w : JDK⊗ S

Figure 15: CEGV, typing rule of dynamic coemitter

96 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

runners [Uustalu, 2015]. The two paradigms are well-known to be dual
[Plotkin and Power, 2008, Power and Shkaravska, 2004], and the duality
is made apparant in our system: the handler paradigm is about emitters,
while the runner paradigm is about coemitters.

In the handler paradigm (fig. 13), Inst instantiates an effectful compu-
tation P into a function which takes a continuation and returns an emitter
that runs P and the continuation in sequence. An empty emitter is given
by Unit. Handler constructs a function that handles an emitter. Close
converts an effectful computation to an emitter, and Open does the other
direction.

In the runner paradigm (fig. 14), CoInst instantiates an effectful com-
putation into a function that takes a coemitter and returns a result along
with the left-over of the coemitter. CoUnit terminates a coemitter. Runner
constructs a coemitter. Runner counterparts of Open and Close are absent,
because effectful computation is inherently closer to emitter.

To be more comparable with existing effect systems, we have carefully
designed both paradigms so that no session type is involved. If some of the
general types are session types, however, then the distinction will be blurred
in light of the Push and Pop rules, similar to the fact that they collide in
classical linear logic [Hasegawa, 2002, §8].

Note that in Handler, the continuation z′ is linear, meaning it cannot
be discarded or duplicated. As a result, we cannot model control effects
such as exceptions or non-determinism. A weaker form of exception (which
we call linear exception) is still possible (See example 13 in section 3.D). We
discuss this point more in section 3.8.

Dynamic coemitter Using (fig. 15) allows us to use dynamically allo-
cated coemitters. If P gives a Θ-coemitter using Ω-effects, we can add Θ
to Ω and run Q. The whole term returns the result of Q with the left-over
of the Θ-coemitter, while only using Ω-effects. The left-over is retained be-
cause merge returns S instead of just JEK ⊗ C⊥. At its core is the merge
(example 3) process, which also guarantees (theorem 19) that Θ and Ω will
not interfere with each other in Q.

In case of effect name clashes, Θ trumps Ω, because of how merge is de-
fined; correspondingly, effect environment merging Θ,Ω is defined to prior-
itize Θ. Note that Using matches the runner paradigm because the concept
of ‘state’ is inherently closer to coemitter.

Bisimilarity We extend bisimilarity to CEGV programs. We write Γ `
P ≈ Q : D if JP Kz ≈ JQKz and we write Γ | Θ ` P ≈ Q : D if JP KxzC ≈JQKxzC .

3.7. CONCURRENT EFFECTFUL GV 97

Proposition 28 (Monadic laws). Bind and Return give a monad in the
sense that

d← return(P); Q ≈ let d = P in Q (left identity)
d← P ; return(d) ≈ P (right identity)

d← P ; (e← Q; R) ≈ e← (d← P ; Q); R (associativity)

Example 7 (Translating effects). A coemitter might emit further effects
when handling effects. Here we consider buffered writes of X, where a
program can append a value to the buffer, commit what is already in the
buffer, or rollback the buffer and get back what is in the buffer.

Θ := append : (X : 1), commit : (1 : 1), rollback : (1 : [X])

We assume the list type ([X]), the empty list ([]) and list concatenation (::),
which are all definable (See example 15). The coemitter of these effects will
maintain a buffer [X] and emit effects for actual writing, which we assume
is a primitive effect and which will not be dealt with further in our example.

Ω := write : ([X] : 1)

We now define the Θ-coemitter. The trick is to include the Ω-coemitter in
the internal state of the Θ-coemitter. We can take S := �ΩE ⊗ [X] if we
use Runner; or, dually, take S′ := [X] ⊸ �ΩF if we use Handler. We will
use Runner for now. We first define:

z : S, a′ : X `Qappend := (⋆, let (y, l) = z in (y, a′ :: l)) : 1⊗ S

z : S, z′ : 1 `Qcommit :=

(⋆, (let (y, l) = z in let (_, y′) = coinst(emitwrite(l))(y) in y′, []))

:1⊗ S

z : S, z′ : 1 `Qrollback := let (y, l) = z in (l, (y, [])) : [X]⊗ S

Now we can define the coemitter. For simplicity, we let the Θ-coemitter
return its internal state S.

y : �ΩE ` L := runner{(y, []), za′.Q, f.f} : �ΘS

The above converts Ω-coemitters to Θ-coemitters. Had we used Handler,
we would have derived �ΘS′ ⊸ �ΩF , which converts Θ-emitters to Ω-
emitters. We would pick one of them depending on whether we have �ΩE
or �ΘS′. If E = F , the distinction blurs with Push and Pop.

Example 8 (Linear Cell in GV). Linear cells can be defined in CEGV, but
we simply translate them to the existing definitions (example 1) in CELL for
simplicity. For any X we have

Θ := put : (X : X + 1), get : (1 : 1+X) CellX := �Θ(1+X)

98 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGICt
Γ ` P : 1+X

Γ ` cellX(P) : CellX

|
y

:=
JP Ki ` JΓK⊥, i : 1⊕ JXK

cellXy (i. JP Ki) ` JΓK⊥, y : �JΘK⊥(1⊕ JXK)
On the other side, we define synchronized get and put using DoUntil.

| get : (1 : 1+X) `sget := let e = ⋆ in doUntil e.emitget(⋆) : X

e : X | put : (X : X + 1) `spute := doUntil e.emitput(e) : 1

Example 9 (Escaping Instances). Using example 8, we can write a program
that uses linear cells
in a rich way. We assume natural num-
bers N with literal constants and addi-
tion. Intuitively we should have M ≈
return((15, cellN(inr 10))), where the second
element is the left-over cell containing 10. The
cell seems to have ‘escaped’ the scope where
it is allocated and used, which is fine because
CellX is precisely the coemitter of the cell and
thus there is no danger for un-handled effects.
Indeed, one can invoke Using on the returned
CellN to access the 10 stored within. Note that
M has empty effect environment, because the
uses of sget and sput are encapsulated by Us-
ing.

| `M : N⊗ CellN

M :=let y = cellN(inr 5) in
using y(

m← sget;
let m′ = m+m in
sputm′ ;

return(m′ +m))

We have explored effects without sessions, but our effects work with
sessions seamlessly, as demonstrated by the next example.

Example 10 (Worker-Pool Server). We consider a server providing services
over sessions; each session is of type XS . Moreover, each serving will induce
effects Θ (such as database IO) on the server which are shared across ses-
sions. For simplicity, the service is to receive a number, increment it by one,
and send it back. Therefore, we define XS := ?N.!N.end?, and such a session
can be served by the following program. It does not use any effect, but we
write Θ for generality.

x : XS | Θ `serve : 1
serve :=let (n, x) = recv x in (receive number n)

let x = send (n+ 1) x in (send n+ 1)
return(terminate x) (terminate the session and return)

Moreover, we define
Ω := get : (1 : 1+XS)

which allows fetching new sessions to be served. Similar to CellX , the re-
sponse could be empty due to unavailability of new sessions.

3.7. CONCURRENT EFFECTFUL GV 99

We then define the worker, which repeatedly gets a new session and serve
it; note that the loop body always gives inl ⋆, indicating continuing the loop.

Γ | Θ,Ω `worker : 1
worker :=let e = ⋆ in

doUntil e.(x← sget; serve; return(inl ⋆))

Finally we define workers to spawn two (for simplicity) workers. Note that Γ
must be unlimited for the two workers to share; intuitively it contains some
global parameters of the server.

Γ | Θ,Ω `workers : 1
workers :=spawn worker; spawn worker

Note that the two workers race to get new sessions. For each session, it is
non-deterministic which worker will serve it.

The above example omits the handling of the get-effects. A natural
coemitter to consider is cellXS ; recall that cell is linear and can store sessions.
In this scenario, other effectful computations would have put in their effect
environments, so they can put sessions to be served to the cellXS .

Using allows us to add coemitters to an effect environment. This is,
however, problematic if those coemitters are instances of the same definition
(e.g. multiple instances of cell), because they would have same effect names.
By the current definition of Using, Θ (the new coemitter) would overshadow
Ω (the existing effect environment). The following example provides an
alternative if shadowing is not desired.

Example 11 (Multiple Instances). To avoid shadowing, the simplest solu-
tion is to rename the effect names, and the simplest renaming is prefixing.
We assume a monoidal structure on effect names where _ is the empty effect
name and . is effect name concatenation. Let S := �ΘD and define

∀i : (A : B) ∈ Θ, z : S, a′ : A `Qj.i := coinst(emiti(a′))(z) : B ⊗ S

`prefixj := λy. runner{y, za′.Q, f.f}

: �ΘD ⊸ �j.Θ �ΘD

where j.Θ is defined to be same as Θ but with all effect names prefixed with
j. The program prefixj takes a Θ-coemitter and gives a j.Θ-coemitter. The
latter notably still returns the left-over of Θ-coemitter to be used further,
which is vital for the following syntactic sugar:

Γ | Ω ` P : �ΘE ∆ | j.Θ,Ω ` Q : D

Γ,∆ | Ω ` using j.P (Q) :=

(d, y)← using prefixj(P)(Q); return((d, counit y)) : D ⊗ �ΘE

100 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

It is a prefixed version of Using, because Q accesses effects in Θ under the
prefix j specified by the user. Note that the returned left-over of the Θ-
coemitter is not prefixed, as it is good practice to keep the prefixing local
to Q. Also note the possibility of j.Θ still overshadowing Ω, in which case
we take it as the user’s intention to locally override.

With example 11 and example 8, we are able to express dining philoso-
phers (see example 19 in section 3.D), where each chopstick is represented
by a cell1.

3.8 Related and future Work
Shared States The work of Rocha and Caires [2021] introduces shared
state to CLL. This is accomplished by a rule akin to the co-contraction of
DiLL [Ehrhard, 2018], along with rules that manipulate shared memory cells
(allocation, deallocation, read, write). Races are resolved on a case-by-case
basis, using locks to protect critical sections, and collecting all the possible
outcomes into a formal sum, again in the style of DiLL. This system also
includes the Mix rule, but it is not clear if that is an essential feature of the
approach. Moreover, the system enjoys subject reduction, progress, weak
normalization, and—as nondeterminism is captured by formal sums—it is
also confluent.

Compared to that work our approach through fixed points is more parsi-
monious and follows Linear Logic more closely. Their state is a special case
(example 18) of our coemitter, and cannot store sessions, which is arguably
restrictive in the context of session-based concurrency.

Effects and Linearity Tranquilli [2010] extended simply typed lambda
calculus (STLC) with memory access as effects, which is translated to STLC
with products, where effectful computations are translated using a state
monad; STLC with products is then translated to linear logic proof nets.
Orchard and Yoshida [2016] established mutual translations betwee effectful
PCF and session-typed π-calculus; note that the latter is not motivated by
linear logic. Hasegawa [2002] gave a fully complete CPS translation from
computational lambda calculus to linear lambda calculus.

Moggi [1991] introduced a computational metalanguage where effectful
computations are interpreted as elements of a strong monad. It was later
shown [Benton and Wadler, 1996] that every model of intuitionistic linear
logic is also a model of effectful computation. However, such models are
too special, in that they disregard the ordering of effects. The Enriched
Effect Calculus [Egger et al., 2009] addressed this issue by extending Moggi
[1991] with linear connectives, in order to express linear paradigms such as
linear continuations and linear state. Later Egger et al. [2010], Møgelberg

3.8. RELATED AND FUTURE WORK 101

and Staton [2014] showed that every monad in EEC corresponds to a linear
state monad.

Linearity of Continuation In our Handler rule, the continuation z′ is
linear. One can change the functors in section 3.3 to

F •
C(X) := C F

i:(A:B),Θ
C (X) := FΘ

C (X)⊕ (A⊗ !(B O X))

and the exponential ! around B O X then allows for discarding and du-
plication. As a result, z′ in Handler would have a normal (non-linear)
continuation type B → S and thus one would be able to express excep-
tions and non-determinism. On the other hand, the returning value of Q in
Runner would be tricky, because ?(B ⊗ S) is not expressible in CEGV.

In summary, runners and normal handlers are not dual: the former is
linear while the latter is not. This is also observed by Ahman and Bauer
[2020], who argued that runners are more suitable to model resources, in-
cluding the external world. We also note that a non-linear handler is not a
generalization of our handler, since the user program in the former would
be required to provide non-linear continuations that are discardable and
duplicable, which would forbid the use of sessions in the continuation.

Another alternative to linear continuations are affine continuations, which
many have argued have benefits over normal continuations, including imple-
mentation efficiency [Dolan et al., 2015, 2017] and better reasoning about
system resources [de Vilhena and Pottier, 2021]. These benefits apply to
linear continuations as well. Note that op. cit. uses the word ‘linear’ or
‘one-shot’ to mean ‘affine’. The functor modifications sketched above can be
adapted to affine continuations as well.

Multiple Handlers In many effect systems [Pretnar, 2015, Convent et al.,
2020, Brachthäuser et al., 2020a], an effectful computation is handled by
being wrapped in multiple layers of handlers, each handling a subset of the
effects and eliminating them from the effectful computation type. Moreover,
inner handlers can emit effects to be handled by outer handlers.

The first feature is related to our merge (example 3). A notable difference
is that coemitters after merge are still independent (theorem 19), but layers
of handlers in existing effect systems might interfere with each other in the
presense of normal continuations (e.g., exceptions and non-determinisms).
Different orderings of handlers give different semantics, sometimes none of
which is the desired one. To solve this issue, scoped effects [Wu et al., 2014,
Piróg et al., 2018, Yang et al., 2022] decouple scopes from handlers. We note
that it is unclear how to derive a version of merge for normal continuations,
but might provide new perspectives on scoped effects.

The second feature is related to our effects translation (example 7). Fi-
nally, we note that both features are primitive in those effect systems, while
derived in our system.

102 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

Handler Instances Bauer and Pretnar [2015] introduces instances asso-
ciated with resources which are essentially runners. However, their handler
type does not describe effects, and thus is not intended for effect safety.
Leijen [2018] introduces references which can be created at runtime and re-
ferred to using variable names, but breaks effect-safety because the variable
names of cells might escape the handler. XIE et al. [2022] solves the escaping
issue by using rank-2 polymorphism to encapsulate cell variables. Biernacki
et al. [2019] assign names to the handle binder so that effects in scope can
specify the handle binder they intend; they still require special treatments to
prevent effects from escaping their scope. While the mentioned works focus
on preventing effects from escaping handlers and breaking effect safety, our
Using (and the prefixed version in example 11) rule allows for safe escaping
of the coemitter.

Appendices

3.A πLL, full specification

In this appendix we report the full specification of πLL with minor changes
to adapt it to the notation used in this paper. We refer the interested reader
to Montesi and Peressotti [2021] for more details.

Syntax and typing

P ,Q := x[y]. P output y on x and continue as P
| x(y). P input y on x and continue as P
| x[]. P output (empty message) on x and continue as P
| x(). P input (empty message) on x and continue as P
| x[l]. P select left on x and continue as P
| x[r]. P select right on x and continue as P
| y.case{l:P,r:Q} offer on x a choice to continue

as P (left) and Q (right)
| x[disp]. P request to dispose a replicable process

on x and continue as P
| x[dup](x′). P request to duplicate a replicable process

on x and bind the copy to x′ in P
| x[use]. P consume a replicable process and continue as P
| !x.{P} provider of replicas of process P
| x[X]. P output type A on x and continue as P
| x(A). P input a type on x as X and continue as P
| 0 terminated process
| P |Q parallel composition of P and Q
| νxy P session with endpoints x and y in P
| x↔ y forwarding of x and y

103

104 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

A,B := A⊗B send A, continue as B
| A O B receive A, continue as B
| 1 send close, unit for ⊗
| ⊥ receive close, unit for O
| A⊕B select A or B
| A N B offer A or B
| ?A request a replicable A
| !A provide a replicable A
| ∃X.A send a type and use it for X in A
| ∀X.A receive a type and use it for X in A
| X type variable
| X⊥ dual of a type variable

(A⊗B)⊥ = A⊥ O B⊥ (A O B)⊥ = A⊥ O B⊥ 1⊥ = ⊥ ⊥⊥ = 1

(A⊕B)⊥ = A⊥ N B⊥ (A N B)⊥ = A⊥ ⊕NB (?A)⊥ = !A⊥

(!A)⊥ = ?A⊥

(∃X.A)⊥ = ∀X.A⊥ (∀X.A)⊥ = ∃X.A⊥ (X)⊥ = X⊥ (X⊥)⊥ = X

HMix0

0 ` ∅

HMix
P ` G Q ` H
P |Q ` G | H

Cut
P ` G | Γ, x : A | ∆, y : A⊥

νxy P ` G | Γ,∆

Ax

x↔ y ` x : A⊥, y : A

Tensor
P ` Γ, y : A | ∆, x : B

x[y]. P ` Γ,∆, x : A⊗B

One
P ` ∅

x[]. P ` x : 1

Par
P ` Γ, y : A, x : B

x(y). P ` Γ, x : A O B

Bot
P ` Γ

x(). P ` Γ, x : ⊥

PlusL
P ` Γ, x : A

x[l]. P ` Γ, x : A⊕B

PlusR
P ` Γ, x : B

x[r]. P ` Γ, x : A⊕B

With
P ` Γ, x : A Q ` Γ, x : B

x.case{l:P,r:Q} ` Γ, x : A N B

WhyW
P ` Γ

x[disp]. P ` Γ, x : ?A

WhyD
P ` Γ, x : A

x[use]. P ` Γ, x : ?A

WhyC
P ` Γ, x : ?A, x′ : ?A

x[dup](x′). P ` Γ, x : ?A

OfC
P ` ?Γ, x : A

!x.{P} ` ?Γ, x : !A

Exists
P ` Γ, x : A{B/X}
x[B]. P ` Γ, x : ∃X.A

Forall
P ` Γ, x : A X /∈ Γ

x(X). P ` Γ, x : ∀X.A

3.A. πLL, FULL SPECIFICATION 105

SOS Specification for typing derivations

P ` ∅
x[]. P ` x : 1

x[]−→ P ` ∅
P ` Γ

x(). P ` Γ, x : ⊥
x()−−→ P ` Γ

P ` Γ, x : A | ∆, y : B

x[y]. P ` Γ,∆, x : B ⊗A

x[y]−−→ P ` Γ, x : A | ∆, y : B

P ` Γ, x : A, y : B

x(y). P ` Γ, x : B O A

x(y)−−−→ P ` Γ, x : A, y : B

P ` Γ, x : A

x[l]. P ` Γ, x : A⊕B

x[l]−−→ P ` Γ, x : A

P ` Γ, x : B

x[r]. P ` Γ, x : A⊕B

x[r]−−→ P ` Γ, x : B

P ` Γ, x : A Q ` Γ, x : B

x.case{l:P,r:Q} ` Γ, x : A N B

x(l)−−→ P ` Γ, x : A

P ` Γ, x : A Q ` Γ, x : B

x.case{l:P,r:Q} ` Γ, x : A N B

x(r)−−−→ Q ` Γ, x : B

P ` Γ

x[disp]. P ` Γ, x : ?A
x[disp]−−−−→

P ` Γ

x(). P ` Γ, x : ⊥

P ` Γ, x : A

x[use]. P ` Γ, x : ?A
x[use]−−−−→ P ` Γ, x : A

P ` Γ, x : ?A, x′ : ?A
x[dup](x′). P ` Γ, x : ?A

x[dup]−−−−→
P ` Γ, x : ?A, x′ : ?A

x(x′). P ` Γ, x : ?A O ?A

P ` Γ, x : A

!x.{P} ` Γ, x : !A
x(use)−−−−→ P ` Γ, x : A

Fn(P) \ {x} = {z1, . . . , zn}

P ` ?Γ, x : A

!x.{P} ` ?Γ, x : !A
x(disp)−−−−→

0 ` ∅

x[].0 ` x : 1
−−−−−−−−−−−

z1[disp]. . . . zn[disp]. x[].0 ` ?Γ, x : 1
===================================

106 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

Fn(P) \ {x} = {z1, . . . , zn} Fn(Pσ) ∩ Fn(P) = ∅

P ` ?Γ, x : A

!x.{P} ` ?Γ, x : !A
x(dup)−−−−→

P ` ?Γ, x : A

!x.{P} ` ?Γ, x : !A
−−−−−−−−−−−−−−−−−

Pσ ` ?Γσ, xσ : A

!x.{P}σ ` ?Γσ, xσ : !A
−−−−−−−−−−−−−−−−−−−−−

!x.{P} | !x.{P}σ ` ?Γ, x : !A | ?Γσ, xσ : !A
−−−

x[xσ]. (!x.{P} | !x.{P}σ) ` ?Γ, ?Γσ, x : !A⊗ !A
−−

z1[dup](z1σ). . . . zn[dup](znσ). x[xσ]. (!x.{P} | !x.{P}σ) ` ?Γ, x : !A⊗ !A
==

Par0
P ` G l−→ P ′ ` G′ Bn(l) ∩ Fn(Q) = ∅

P ` G Q ` H
P |Q ` G | H

l−→
P ′ ` G′ Q ` H
P ′ |Q ` G′ | H

Par1
Q ` H l−→ Q′ ` H′ Bn(l) ∩ Fn(P) = ∅

P ` G Q ` H
P |Q ` G | H

l−→
P ` G Q ` H
P |Q′ ` G | H′

Syn
P ` G l−→ P ′ ` G′ Q ` H l−→ Q′ ` H′ Bn(l | l′) ∩ Fn(P |Q) = ∅

P ` G Q ` H
P |Q ` G | H

l−→
P ` G Q ` H
P |Q′ ` G | H′

AEQ
P =α Q Q ` G l−→ Q′ ` G′

P ` G l−→ Q′ ` G′

Res
P ` G | Γ, x : A | ∆, y : A⊥ l−→ P ′ ` G′ | Γ′, x : A | ∆′, y : A⊥ x, y /∈ N(l)

P ` G | Γ, x : A | ∆, y : A⊥

νxy P ` G | Γ,∆
l−→

P ′ ` G′ | Γ′, x : A | ∆′, y : A⊥

νxy P ′ ` G′ | Γ′,∆′

Link
P ` G | Γ, x : A | y : A⊥, z : A

y↔z−−−→ P ′ ` G | Γ, x : A

P ` G | Γ, x : A | y : A⊥, z : A

νxy P ` G | Γ
τ−→ P ′{x/z} ` G | Γ, x : A

One-Bot
P ` G | x : 1 | Γ, y : ⊥ x[]|y()−−−−→ P ′ ` G | Γ

P ` G | x : 1 | Γ, y : ⊥
νxy P ` G | Γ

τ−→ P ′ ` G | Γ

3.B. OMITTED CONTENT OF CELL 107

Tensor-Par
P ` G | Γ,∆x : A⊗B | Σ, y : A⊥ O B⊥ x[x′]|y(y′)−−−−−−→ P ′ ` G | Γ, x′ : A | ∆, x : B | Σ, y′ : A⊥, y : B⊥

P ` G | Γ,∆x : A⊗B | Σ, y : A⊥ O B⊥

νxy P ` G | Γ,∆,Σ

τ−→
P ` G | Γx′ : A | ∆, x : A | Σ, y′ : A⊥, y : B⊥

νx′y′ P ` G | Γ,∆x : B | Σ, y : B⊥

νxy νx′y′ P ′ ` G | Γ,∆,Σ

PlusL-With
P ` G | Γ, x : A⊕B | ∆, y : A⊥ N B⊥ x[l]|y(l)−−−−−→ P ′ ` G | Γ, x : A | ∆, y : A⊥

P ` G | Γ, x : A⊕B | ∆, y : A⊥ N B⊥

νxy P ` G | Γ,∆
τ−→

P ′ ` G | Γ, x : A | ∆, y : A⊥

νxy P ′ ` G | Γ,∆

PlusR-With
P ` G | Γ, x : A⊕B | ∆, y : A⊥ N B⊥ x[r]|y(r)−−−−−→ P ′ ` G | Γ, x : B | ∆, y : B⊥

P ` G | Γ, x : A⊕B | ∆, y : A⊥ N B⊥

νxy P ` G | Γ,∆
τ−→

P ′ ` G | Γ, x : B | ∆, y : B⊥

νxy P ′ ` G | Γ,∆

WhyD-OfC
P ` G | Γ, x : ?A | ∆, y : !A⊥ x[use]|y(use)−−−−−−−−→ P ′ ` G | Γ, x : A | ∆, y : A⊥

P ` G | Γ, x : ?A | ∆, y : !A⊥

νxy P ` G | Γ,∆
τ−→

P ′ ` G | Γ, x : A | ∆, y : A⊥

νxy P ′ ` G | Γ,∆

WhyC-OfC
P ` G | Γ, x : ?A | ∆, y : !A⊥ x[dup](). |y(dup)−−−−−−−−−−→ P ′ ` G | Γ, x : ?A O ?A | ∆, y : A⊥ ⊗A⊥

P ` G | Γ, x : ?A | ∆, y : !A⊥

νxy P ` G | Γ,∆
τ−→

P ′ ` G | Γ, x : ?A O ?A | ∆, y : A⊥ ⊗A⊥

νxy P ′ ` G | Γ,∆

WhyW-OfC
P ` G | Γ, x : ?A | ∆, y : !A⊥ x[disp]|y(disp)−−−−−−−−−→ P ′ ` G | Γ, x : ⊥ | ∆, y : 1

P ` G | Γ, x : ?A | ∆, y : !A⊥

νxy P ` G | Γ,∆
τ−→

P ′ ` G | Γ, x : ⊥ | ∆, y : 1

νxy P ′ ` G | Γ,∆

Exists-Forall
P ` G | Γ, x : ∃X.A | ∆, y : ∀X.A⊥ x[B]|y(B)−−−−−−→ P ′ ` G | Γ, x : A{B/X} | ∆, y : A{B/X}⊥

P ` G | Γ, x : ∃X.A | ∆, y : ∀X.A⊥

νxy P ` G | Γ,∆
τ−→

P ′ ` G | Γ, x : A{B/X} | ∆, y : A{B/X}⊥

νxy P ′ ` G | Γ,∆

3.B Omitted content of CELL

Omitted environment transition rules of CELL are in fig. 3.B.1,fig. 3.B.2,
fig. 3.B.3.

108 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

Γ, x : �ΘC
�x[]−−−−−−→

BoWW
Γ, x : C

∆,Γ, x : �Θ,i:(A:B)C
�xi[a]−−−−−→

BoAA
∆, a : A | Γ, x : B O �Θ,i:(A:B)C

Γ, y : �Θ
C

�y()
−−−−→
DiW

Γ, y : C Γ, y : �Θ
C

�yi(a)
−−−−−→

DiA
Γ, a′ : A, y : B ⊗ �Θ

C

BoW-DiW

G | Γ, x : �ΘC | ∆, y : �Θ⊥
C⊥ �x[]| �y()
−−−−−−−→ G | Γ, x : C | ∆, y : C⊥

G | Γ,∆ τ−→ G | Γ,∆

BoA-DiA

G | Γ0,Γ1, x : �ΘC | ∆, y : �Θ⊥
C⊥ �xi[a]| �yi(a′)
−−−−−−−−−→

G | Γ0, a : A | Γ1, x : B O �ΘC | ∆, a′ : A⊥, y : B⊥ ⊗ �Θ⊥
C⊥ i : (A : B) ∈ Θ

G | Γ0,Γ1,∆
τ−→ G | Γ0,Γ1,∆

Figure 3.B.1: Effects, transition rules for environments

The following process can be thought of as an internalized BoA: it ‘ab-
sorbs’ a request/response interaction into the effect type �ΘC.

Proposition 29 (Absorb). It is provable that (A ⊗ B O �ΘC) ⊸ �ΘC.
More concretely, we have absorba′yx ` a′ : A⊥, y : B⊥ ⊗ �Θ⊥

C⊥, x : �ΘC.

Proof.

a′↔ a | x↔ y ` a′ : A⊥, a : A | y : B⊥ ⊗ �Θ⊥
C⊥, x : B O �ΘC

absorba′yx := �xi[a]. a′↔ a | x↔ y ` a′ : A⊥, y : B⊥ ⊗ �Θ⊥
C⊥, x : �ΘC

BoA

Proposition 30 (Relaxing). It is derivable that �ΘC ⊸ �Θ,i:(A:B)C. More
concretely, there is a process relaxyx ` y : �Θ⊥

C⊥, x : �Θ′
C where Θ′ :=

Θ, i : (A : B).

3.B. OMITTED CONTENT OF CELL 109

BoCP
x0, x1 /∈ Fn(l)

G | Γ, x0 : �ΘC0 | ∆, x1 : �ΘC1
l−→ G′ | Γ′, x0 : �ΘC0 | ∆′, x1 : �ΘC1

G | Γ,∆, x : �Θ(C0 ⊗ C1)
l−→ G′ | Γ′,∆′, x : �Θ(C0 ⊗ C1)

BoCA0
x0, x1 /∈ Fn(l) i : (A : B) ∈ Θ

G | Γ0,Γ1, x0 : �ΘC0 | ∆, x1 : �ΘC1
l|�x0

i[a]−−−−−→ G′ | Γ0, a : A | Γ1, x0 : B O �ΘC0 | ∆′, x1 : �ΘC1

G | Γ0,Γ1,∆, x : �Θ(C0 ⊗ C1)
l|�xi[a]−−−−−→ G | Γ0, a : A | Γ1,∆

′, x : B O �Θ(C0 ⊗ C1)

BoCW
x0, x1 /∈ Fn(l)

G | Γ, x0 : �ΘC0 | ∆, x1 : �ΘC1
l|�x0[]|�x1[]−−−−−−−−→ G′ | Γ, x0 : C0 | ∆, x1 : C1

G | Γ,∆, x : �Θ(C0 ⊗ C1)
l|�x[]−−−→ G′ | Γ,∆, x : C0 ⊗ C1

Figure 3.B.2: Races, transition rules for environments

Γ, e : E⊥, x : �ΘC
τ−−−−−→

BoRR
Γ, e : E⊥, x : �ΘC

Figure 3.B.3: Do-Until, transition rules for environments

110 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

Proof. Let S := �Θ′⊥
C⊥.

P := x↔ i ` x : S⊥, i : S
Ax

i : (A : B) ∈ Θ ⊂ Θ′

Q := absorba′z′z ` z : S⊥, a′ : A⊥, z′ : B⊥ ⊗ S
proposition 29

f ↔ y ` f : C, y : C⊥ Ax

R := �f []. f ↔ y ` f : S⊥, y : C⊥ BoW

relaxyx := �y{i. P, za′z′. Q, f.R} ` y : �Θ⊥
C⊥, x : �Θ′

C
Di

Example 12 (Nullary handler). For the sake of completeness, we give the
nullary case of merge.

P ` Γ, i : 1 f ↔ y ` f : 1⊥, y : 1

merge0y(i.P) := �y{i. P, za′z′′._, f . f ↔ y} ` Γ, y : � • 1 Di

Proof of theorem 19. By rule DiA we have that

mergey(y1.y1[y0]. P) = �y{y1. y1[y0]. P , za′z′′. Q⃗, f . f ↔ y} �yi(a′)
−−−−−→ Z

where

Z = νi′z′′ νy1z (z(z
′).�z′

i
[a]. (a↔ a′ | z′(b). z′′〈b〉. z′′〈z′〉. z↔ z′′) | y1[y0]. P |

| i′(b′). y〈b′〉. �y{i. i↔ i′, za′z′′. Q⃗, f . f ↔ y}).

Let X be νy1y
′
1 νy0y

′
0 (P

′ | y′0(b′). y〈b′〉.mergey(i.i〈y′0〉. i↔ y′1)). We need to
prove that Z ≈ X. The interleaved execution of the various parallel com-
ponents of X and Z leads to an explosion of cases. To keep the proof
manageable, we establish a correspondence between traces that subsume
the remaining ones by theorem 34, theorem 26, lemma 27. For each transi-
tion, we report the most significant rules omitting rules AEQ, Par0, Par1,
and Res where their use is clear from the context. Consider the following

3.B. OMITTED CONTENT OF CELL 111

trace for Z.

Z = νi′z′′ νy1z (z(z
′).�z′

i
[a]. (a↔ a′ | z′(b). z′′〈b〉. z′′〈z′〉. z↔ z′′) | y1[y0]. P |

| i′(b′). y〈b′〉. �y{i. i↔ i′, za′z′′. Q⃗, f . f ↔ y})
↓τ By Tensor-Par for y1, z

νi′z′′ νy1z νy0z
′ (�z′

i
[a]. (a↔ a′ | z′(b). z′′〈b〉. z′′〈z′〉. z↔ z′′) | P |

| i′(b′). y〈b′〉. �y{i. i↔ i′, za′z′′. Q⃗, f . f ↔ y})

↓τ By BoA-DiA for y0, z
′ and P

�y0
i(a′′)

−−−−−−→ P ′

νi′z′′ νy1z νaa
′′ νy0z

′ (a↔ a′ | z′(b). z′′〈b〉. z′′〈z′〉. z↔ z′′ | P ′ |

| i′(b′). y〈b′〉. �y{i. i↔ i′, za′z′′. Q⃗, f . f ↔ y})
↓τ By Link for a, a′′

Z1 = νi′z′′ νy1z νy0z
′ (z′(b). z′′〈b〉. z′′〈z′〉. z↔ z′′ | P ′ | i′(b′). y〈b′〉. �y{i. i↔ i′, za′z′′. Q⃗, f . f ↔ y})

Next, we need to synchronise over y0 which might depend on other endpoints in P ′

before it is ready.

Z1

↓l1 By rule Res if P ′ l1−→ P ′
1 and y0, y1 /∈ N(l1)

νi′z′′ νy1z νy0z
′ (z′(b). z′′〈b〉. z′′〈z′〉. z↔ z′′ | P ′

1 | i′(b′). y〈b′〉. �y{i. i↔ i′, za′z′′. Q⃗, f . f ↔ y})
...

↓ln By rule Res if P ′
n−1

ln−→ P ′
n and y0, y1 /∈ N(ln)

Z2 = νi′z′′ νy1z νy0z
′ (z′(b). z′′〈b〉. z′′〈z′〉. z↔ z′′ | P ′

n | i′(b′). y〈b′〉. �y{i. i↔ i′, za′z′′. Q⃗, f . f ↔ y})

↓τ By Tensor-Par for y0, z
′, P ′

n

y0[b
′′]−−−−→ P ′′

νi′z′′ νy1z νy0z
′ νbb′′ (z′′〈b〉. z′′〈z′〉. z↔ z′′ | P ′′ | i′(b′). y〈b′〉. �y{i. i↔ i′, za′z′′. Q⃗, f . f ↔ y})

↓τ By Tensor-Par for i′, z′′

↓τ By Link for i′, z′′

νi′z′′ νb′b νy1z νy0z
′ (z′′〈z′〉. z↔ z′′ | P ′′{b/b′′} | y〈b′〉. �y{i. i↔ i′, za′z′′. Q⃗, f . f ↔ y})yy[b′′]

↓τ By Link for b′, b′′

Z3 = νi′z′′ νy1z νy0z
′ (z′′〈z′〉. z↔ z′′ | P ′′ | �y{i. i↔ i′, za′z′′. Q⃗, f . f ↔ y})

112 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

Next, we need to perform an action over y, any action, we select a general use of
an effect j.

Z3y �yj(a′)

νi′z′′ νy1z νy0z
′ (z′′〈z′〉. z↔ z′′ | P ′′ | νi′′z′′ νiz (Qj | i↔ i′ |

i′′(b′). y〈b〉. �y{i. i↔ i′′, za′z′′. Q⃗, f . f ↔ y})
↓τ By Link for i, i′

Z4 = νi′z′′ νy1z νy0z
′ (z′′〈z′〉. z↔ z′′ | P ′′ | νi′′z′′ (Qj{i′/z} | i′′(b′). y〈b〉. �y{i. i↔ i′′, za′z′′. Q⃗, f . f ↔ y})

= νi′z′′ νy1z νy0z
′ (z′′〈z′〉. z↔ z′′ | P ′′ | νi′′z′′ (Qj{i′/z} | i′′(b′). y〈b〉.mergey(i.i↔ i′′))

Then we build a matching trace for X to match the saturation of Z.

X = νy1y
′
1 νy0y

′
0 (P

′ | y′0(b′). y〈b′〉.mergey(i.i〈y′0〉. i↔ y′1))

Similarly to Z1, we need to synchronise over y0 which might depend on other
endpoints in P ′ before it is ready.

X

↓l1 By rule Res if P ′ l1−→ P ′
1 and y0, y1 /∈ N(l1)

νy1y
′
1 νy0y

′
0 (P

′
1 | y′0(b′). y〈b′〉.mergey(i.i〈y′0〉. i↔ y′1))

...

↓ln By rule Res if P ′
n−1

ln−→ P ′
n and y0, y1 /∈ N(ln)

X2 = νy1y
′
1 νy0y

′
0 (P

′
n | y′0(b′). y〈b′〉.mergey(i.i〈y′0〉. i↔ y′1))

↓τ By Tensor-Par for y0, y
′
0, P ′

n

y0[b
′]−−−→ P ′′

νy1y
′
1 νy0y

′
0 νbb

′ (P ′′ | y〈b′〉.mergey(i.i〈y′0〉. i↔ y′1))yy[b′′]
↓τ By Link for b′, b′′

X3 = νy1y
′
1 νy0y

′
0 (P

′′ |mergey(i.i〈y′0〉. i↔ y′1))y �yj(a′)

X4 = νy1y
′
1 νy0y

′
0 (P

′′ | νiz′′ νiz (Qj | i〈y′0〉. i↔ y′1 | i′(b′). y〈b〉.mergey(i.i↔ y′1)))

Observe that the processes Z4 and X5 differ only for the arrangement of
restrictions and thus Z4 ∼ X4 since νxy (P |Q) ∼ (νxy P | Q) for any P
and Q such that x, y /∈ Fn(Q). All transitions that lead us from Z to Z4

have a matching transition in (saturation of) the trace from X to X4 and
vice versa. In fact, following the same reasoning we can build the trace
for Z starting from the one for X. Other cases can only differ because of
interleaving of concurrent transitions and of the action on y selected for Z3,
which is immaterial.

3.B. OMITTED CONTENT OF CELL 113

Proof of proposition 20. Let S := �Θ⊥
D⊥ and we derive

x↔ i ` x : S⊥, i : S

absorba′z′z ` z : S⊥, a′ : A⊥, z′ : B⊥ ⊗ S

T ` x : D, y : C�x[]. T ` x : S⊥, y : C

fmapxy(T) := �y{i. x↔ i, za′z′. absorba′z′z, x.�x[]. T} ` x : �ΘD, y : �Θ⊥
C

Let S := �Θ(C O D)⊗ C⊥ and we derive

P := i↔ i′ ` i′ : S⊥, i : S

Q

...
y′[f ′]. (f ↔ f ′ | y↔ y′) ` f : C, y′ : C⊥ ⊗D⊥, y : D

R := f(y).�y′[]. · · · ` f : S⊥, y : D
BoW

�y{i. P, aa′z′. Q, f.R} ` i′ : S⊥, y : �ΘD
Di

i[y]. (x↔ y | i↔ c) ` i : S, x : �Θ⊥
C⊥ ⊗D⊥, c : C

liftxcy := νii′ · · · ` c : C, y : �ΘD, x : (�Θ(C O D))⊥
Cut

where Q is
z↔ z′ ` z : C, z′ : C⊥

i : (A : B) ∈ Θ

i : (A⊥ : B⊥) ∈ Θ⊥

absorba′yx ` x : �Θ⊥
(C⊥ ⊗D⊥), a′ : A, y : B ⊗ �Θ(C O D)

proposition 29

z(x). z′[y]. (z↔ z′ | absorba′yx) ` z : S⊥, a′ : A, z′ : B ⊗ S
Tensor

Let S := �Θ⊥
C⊥ and we derive

i↔ i′ ` i′ : S⊥, i : S

absorba′z′z ` z : S⊥, a′ : A⊥, z′ : B⊥ ⊗ S f ↔ y ` f : S⊥, y : S

flatyi′ := �y{i. P, za′z′. Q, f.R} ` i′ : S⊥, y : �Θ⊥
S

The following result is dual to lift; they are not used in our paper but
still worth mentioning.
Proposition 31.�Θ(C O D) ⊸ (C O �ΘD) C ⊗ �ΘD ⊸ �Θ(C ⊗D)

Proof. we derive:

C,�ΘD,C⊥ ⊗D⊥ Ax
D

C,D,C⊥ ⊗D⊥ Ax

C,�ΘD,C⊥ ⊗D⊥ BoW

(�Θ(C O D))⊥, C,�ΘD
Di

114 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

where D is

C,C⊥

i : (A : B) ∈ Θ�ΘD,A⊥, B⊥ ⊗ �Θ⊥
D⊥

proposition 29

C,�ΘD,A⊥, B⊥ ⊗ C⊥ ⊗ �Θ⊥
D⊥

Tensor

3.C Omitted metatheoretic proofs
We recall some notions from Montesi and Peressotti [2021], with our own
simplications.

• Recall that ltsd, ltsp and ltse refer respectively to the LTS of the
derivations Der, processes Proc and (hyper)environments Env.

• Recall that there is projection proc : Der → Proc and env : Der →
Env. We extend proc and env to the powersets of Der; e.g., proc(ltsd(D, l)) :=
{proc(E) | E ∈ ltsd(D, l)}.

• We extend proc and env to the typing rules. e.g., proc(BoCW) refers
to projection of BoCW in processes (ltdp), and env(BoCW) refers to
projection in environments (ltse).

• We use processes terms to represent derivations. For example, �x[x0, x1]D
refers to the derivation of applying BoC to D.

Proof of theorem 22. We need to show that {(proc(D),D) | D ∈ Der} is a
strong bisimulation for ltsp and ltsd, which is to prove proc(ltsd(D, l)) =
ltsp(proc(D), l) for any D, l ∈ Der × lbl. Prove this by induction on the
structure of D; we simply extend Montesi and Peressotti [2021] with extra
cases.

• If D is HMix0 or Ax, it is trivial.

• If D is HMix, then procD is proc(D0) | proc(D1), then we have

proc(ltsd(D, l))
=proc(ltsd(D0, l)) (by Par0)
∪proc(ltsd(D1, l)) (by Par1)
∪proc(ltsd(D0, l0)) | proc(ltsd(D1, l1)) (l = l0 | l1; by Syn)
=ltsp(proc(D0), l) (By I.H.)
∪ltsp(proc(D1), l) (By I.H.)
∪ltsp(proc(D0), l0) | ltsp(proc(D1), l1) (By I.H.)
=ltsp(proc(D), l) (By proc(Par0,Par1, Syn))

3.C. OMITTED METATHEORETIC PROOFS 115

• If D is some action rule R and therefore proc(D) = π.proc(D′) where
π is some prefix. Then the only non-trivial l is π and it follows easily.

• If D is BoA on E , then proc(D) is �xi[a]. proc(E). The only non-trivial
l is �xi[a] and

proc(ltsd(D, l))
=proc({E}) (by BoAA)
=ltsp(proc(D), l) (by proc(BoAA))

• If D is BoW on E , then proc(D) is �x[]. proc(E). The only non-trivial
l is �x[] and similar to last case.

• If D is BoR, the only non-trivial l is τ , and similar to last case.

• If D is Di, the only non-trivial l is either �x() or �xi(a); both cases
are similar to last case.

• If D is BoC on E , then proc(D) is �x[x0, x1] proc(E). The non-trivial
l could be:

– if l is l′ | �x[], then

proc(ltsd(D, l))
=νx0y0 νx1y1 (Q | proc(ltsd(E , l′ | �x0[] | �x1[]))) (by BoCW)
=νx0y0 νx1y1 (Q | ltsp(proc(E), l′ | �x0[] | �x1[])) (by I.H.)
=ltsp(proc(D), l) (by proc(BoCW))

– if l is l′ | �xi[a], then

proc(ltsd(D, l))
=νx0y0 νx1y1 (Q | proc(ltsd(E , l′ | �x0

i[a]) ∪ ltsd(E , l′ | �x1
i[a])))

(by BoCA0,BoCA1)
=νx0y0 νx1y1 (Q | proc(ltsd(E , l′ | �x0

i[a])) ∪ proc(ltsd(E , l′ | �x1
i[a])))

(by extended def. of proc)
=νx0y0 νx1y1 (Q | ltsp(proc(E), l′ | �x0

i[a]) ∪ ltsp(proc(E), l′ | �x1
i[a]))

(by I.H.)
=ltsp(proc(D), l) (by proc(BoCA0), proc(BoCA1))

– Otherwise, we have

proc(ltsd(D, l))
=�x[x0, x1] proc(ltsd(E , l)) (by BoCP)
=�x[x0, x1] ltsp(proc(E), l) (by I.H.)
=ltsp(proc(D), l) (by proc(BoCP))

116 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

• If D is Cut on E , the non-trivial l are:

– if l is not τ , we should have

proc(ltsd(D, l))
=νxy proc(ltsd(E , l)) (by Res)
=νxy ltsp(proc(E), l) (by I.H.)
=ltsp(proc(D), l) (by proc(Res))

– Othewise l is τ , then

proc(ltsd(D, τ))
= νxy.proc(ltsd(E , x() | y[])∪

ltsd(E , x(x′) | y[y′])∪
· · ·
ltsd(E ,�x[] | �y())∪
ltsd(E ,�xi[a] | �yi(a′)))

(by all communication rules)
= νxy.(ltsp(proc(E), x() | y[])∪

ltsp(proc(E), x(x′) | y[y′])∪
· · ·
ltsp(proc(E),�x[] | �y())∪
ltsp(proc(E),�xi[a] | �yi(a′))) (by I.H.)

=ltsp(proc(D), τ) (by proc(allcommrules))

Theorem 32 (Non-interference). If D l0−→ and D l1−→, where l0 # l1, then

D l0|l1−−→.

Proof. By induction on the derivation of D.

• If D is HMix0, it is trivial.

• If D is HMix on D0 and D1, then we take cases on D l0−→ and D l1−→.

– If both are by Par0, then we invoke I.H. on D0, then apply Par0.
– If one is by Par0 and the other by Par1, then we invoke Syn.

– If D l0−→ is by Par0 which means D0
l0−→, and D l1−→ is by Syn

which means D0
l10−→ and D1

l11−→, then we first invoke I.H. on D0,
then invoke Syn.

3.C. OMITTED METATHEORETIC PROOFS 117

– If both are by Syn, then we will invoke I.H. on D0 and D1 respec-
tively, then invoke Syn.

– All other cases are similar.

• If D is by Ax or some action rules, it vacuously holds because it cannot
be the case that l0 # l1.

• If D is by Cut, that means it is of the shape νxyD′. We take cases on
D l0−→ and D l1−→

– If D l0−→ is by some communication rule, which means l0 is τ , that
becomes trivial as τ | l1 is l1.

– If both are by Res, that means D′ l0−→ and D′ l1−→. Invoke I.H.
and apply Res.

• If D is BoW or BoA or Di on E , trivial because it cannot be the case
that l0 # l1.

• If D is BoR, trivial because can only be τ /∈ Act.

• If D is BoC to E , then proc(D) = �x[x0, x1] proc(E). Several cases:

– If both l0, l1 are by BoCP, then E l0−→ and E l1−→, then by I.H.

E l0|l1−−→, then apply BoCP and D
l0|l1−−→

– If l0 is by BoCP and l1 is by BoCA0. Say l1 is l′ | �xi[a], then
E l0−→ and E l′|�x0

i[a]−−−−−→, then by I.H. E l0|l′|�x0
i[a]−−−−−−−→, then apply

BoCA0 and D l0|l′|�xi[a]−−−−−−→.

– If l0 is by BoCP and l1 is by BoCW. Say l1 is l′ | �x[], then E l0−→

and E l′|�x0[]|�x1[]−−−−−−−−→. Then by I.H. E l0|l′|�x0[]|�x1[]−−−−−−−−−−→, then apply

BoCW and D l0|l′|�x[]−−−−−→.

– All other cases are similar or impossible.

Proof of theorem 23. We only need to prove env(ltsd(D, l)) ⊂ ltse(env(D), l)
for any derivation D and label l. Prove by induction on D.

• If D is by HMix0, it is trivial.

118 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

• If D is by HMix on D0 and D1, and thus env(D) = env(D0) | env(D1).
We consider the members of env(ltsd(D, l)); to do that, we consider
how D l−→ is derived.

– if by Par0, then for any

env(D′
0) | env(D1) ∈ env(ltsd(D, l))

env(D′
0) ∈ env(ltsd(D0, l)) (by Par0)

env(D′
0) ∈ ltse(env(D0), l) (by I.H.)

env(D′
0) | env(D1) ∈ ltse(env(D0) | env(D1), l) (by env(Par0))

– the case for Par1 is similar.
– If by Syn, then l = l0 | l1 and for any

env(D′
0) | env(D′

1) ∈ env(ltsd(D, l))
env(D′

0) ∈ env(ltsd(D0, l0)) and env(D′
1) ∈ env(ltsd(D1, l1))

(by Syn)
env(D′

0) ∈ ltse(env(D0), l0) and env(D′
1) ∈ ltse(env(D1), l1)

(by I.H.)
env(D′

0) | env(D′
1) ∈ ltse(env(D0) | env(D1), l)

(by env(Syn))

• If D is BoA on E , therefore env(E) is ∆, a : A | Γ, b : B, x : �ΘC and
env(D) is ∆,Γ, x : �ΘC where i : (A : B) ∈ Θ. The only non-trivial l
is �xi[a] and

env(ltsd(D, l))
=env(E) (by BoAA)
∈ltse(env(D), l) (by env(BoAA))

• If D is BoW or Di or BoR similar.

• If D is by Ax or other action rules, similar.

• If D is apply BoC on E , then env(E) is G | Γ, x0 : �ΘC | ∆, x1 : �ΘD
and env(D) is G | Γ,∆, x : �Θ(C ⊗D). Take cases:

– If x /∈ Fn(l), then for any

G′ | Γ′,∆′, x : �Θ(C ⊗D) ∈env(ltsd(D, l))
G′ | Γ′, x0 : �ΘC | ∆′, x1 : �ΘD ∈env(ltsd(E , l)) (by BoCP)

⊂ltse(env(E), l) (by I.H.)
G′ | Γ′,∆′, x : �Θ(C ⊗D) ∈ltse(env(D), l)

(by env(BoCP))

3.C. OMITTED METATHEORETIC PROOFS 119

– If l is l′ | �x[], then for any

G′ | Γ,∆, x : C ⊗D ∈env(ltsd(D, l′ | �x[]))

G′ | Γ, x0 : C | ∆, x1 : D ∈env(ltsd(E , l′ | �x0[] | �x1[]))
(by BoCW)

⊂ltse(env(E), l′ | �x0[] | �x1[])
(by I.H.)

G′ | Γ,∆, x : C ⊗D ∈ltse(env(D), l′ | �x[])
(by env(BoCW))

– If l is of shape l′ | �xi[a], then for any

G | Γ0, a : A | Γ1,∆, x : B O �Θ(C ⊗D) ∈env(ltsd(D, l′ | �xi[a]))

G | Γ0, a : A | Γ1, x0 : B O �ΘC | ∆, x1 : �ΘD ∈env(ltsd(E , l′ | �x0
i[a]))

(by BoCA0)
⊂ltse(env(E), l′ | �x0

i[a])
(by I.H.)

G | Γ0, a : A | Γ1,∆, x : B O �Θ(C ⊗D) ∈ltse(env(D), l)
(by env(BoCA0))

There is also

G | ∆0, a : A | ∆1,Γ, x : BO�Θ(C⊗D) ∈ env(ltsd(D, l′ | �xi[a]))

but symmetric and thus omitted.
– other cases are similar or trivial.

• If D is Cut on E , then env(E) is G | Γ, x : A | ∆, y : A⊥ and env(D) is
G | Γ,∆. If l is not τ , it is trivial; otherwise we have

env(ltsd(D, τ))
= env(ltsd(E ,�xi[a] | �yi(a′))∪

ltsd(E ,�x[] | �y())∪
· · ·) (by all comm rules)
=env(ltsd(E ,�xi[a] | �yi(a′)))∪
env(ltsd(E ,�x[] | �y()))
· · · (by extended def of env)
⊂ltse(env(E),�xi[a] | �yi(a′))∪
ltse(env(E),�x[] | �x())∪

· · · (by I.H.)
= ltse(env(D), τ) (by env(all comm rules))

120 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

Lemma 33 (External choice of coemitter). If P ` G | Γ, y : �i,j,···C, then
the following are equivalent:

• P
�y()
−−−→

• P
�yi(a′)
−−−−−→

• P
�yj(a′)
−−−−−→

• · · ·

Proof. The only ways those labels can be emitted are by DiW or by DiA; and
the two have the same premises. Formally, one can prove this by induction
on P ` G | Γ, y : �i,j,···C.

Proof of theorem 25. We strengthen the statement to the following. Let
P ` Γ0 | · · · | Γn−1. For every i < n, we have P

li−→ where either li = τ or
Fn(li) ∩N(Γi) 6= ∅. This is so we can prove by induction on the derivaiton
of P ` G.

HMix0 Trivial.

HMix then P is P0 | P1 where

P0 `Γ0 | · · · | Γm−1

P1 `Γm | · · · | Γn−1

For i < m we apply I.H. on P0, and apply Par0. For m ≤ i < n we
apply I.H. on P1 and apply Par1.

BoC then P is �x[x0, x1]P
′ where

P ′ `Γ0 | · · · | Γn−1, x0 : �ΘC | Γn, x1 : �ΘD

P `Γ0 | · · · | Γn−1,Γn, x : �Θ(C ⊗D)

Apply I.H. on P ′ and we get a series of labels l0, · · · , ln. For i < n−1,
we apply BoCP on li and we are done. For i = n− 1, we look at ln−1

and ln:

– If Fn(ln−1) 6= x0, then we apply BoCP.
– If ln−1 is �x0

i[a], then we apply BoCA0.
– If Fn(ln) 6= x1, then apply BoCP.
– If ln is �x1

i[a], then we apply BoCA1.

3.C. OMITTED METATHEORETIC PROOFS 121

– Otherwise it must be that ln−1 is �x0[] and ln is �x1[], and
we first invoke theorem 32 to get P ′ �x0[]|�x1[]−−−−−−−→ and then apply

BoCW to get P
�x[]−−→.

Cut Then P is νxy P ′, where

P ′ `Γ0 | · · · | Γn−1, x : A | Γn, y : A⊥

P `Γ0 | · · · | Γn−1,Γn

Apply I.H. and we get a series of labels l0, · · · , ln. For i < n − 1, we
apply Res on li and we are done. For i = n − 1, we look at ln−1 and
ln:

– If Fn(ln−1) 6= x, then we apply Res.
– If Fn(ln) 6= y, then we apply Res.
– Otherwise we must have Fn(ln−1) = x and Fn(ln) = y. By the-

orem 23 we know the the two labels must be dual. In particular,
if A or A⊥ is � one has to invoke lemma 33 to ensure that �
emits actions matching with �.

o.w. then n = 1 and we have the corresponding action rule giving transition.

Theorem 34 (Partial Diamond Property). ltsd with restriction on BoCA0
and BoCA1 enjoys the diamond property. To be precise: if D l0−→

=
E (left

premise) and D l1−→ F (right premise) where l0#l1 and not E =α F , then

there exists G such that E l1−→ G and F l0−→
=
G. This generalizes the diamond

property in Montesi and Peressotti [2021].
Proof of theorem 34. By induction on the derivation of D. We first notice
that in most cases, l0 # l1 is false, and therefore trivial. We only consider
the following cases.

HMix D is D0 | D1. We take cases

– If D l0−→
=
E is Par0 on D0

l0−→
=
E0, and D l1−→ F is Par0 on D0

l1−→ F0,

then apply I.H. we get some G0 so that E0
l1−→ G0 and F0

l0−→
=
G0.

Let G := G0 | D1, and by Par0 we have E l1−→ G and F l0−→
=
G.

– If D l0−→
=
E is Par0 on D0

l0−→
=
E0, and D l1−→ F is Par1 on D1

l1−→ F1,

let G := E0 | F1, and (without I.H.) we will have E l1−→ G by Par1

and F l0−→
=
G by Par0.

122 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

– If D l00|l01−−−−→
=

E is Syn on D0
l00−→
=
E0 and D1

l01−→
=
E1, and D l1−→ F

is Par0 on D0
l1−→ F0. By I.H. we will have some G0 such that

E0
l1−→ G0 and F0

l00−→
=
G0. Let G := G0 | E1, we should have E l1−→ G

by Par0, and F l00|l01−−−−→
=

G by Syn.
– All other cases are similar.

BoC D is �x[x0, x1]D′. We take cases

– If D l0−→
=
E = �x[x0, x1] E ′ by BoCP and D l1−→ F = �x[x0, x1]F ′

by BoCP. Then D′ l0−→
=
E ′ and D′ l1−→ F ′, and by I.H. we have

some G′ such that E ′ l1−→ G′ and F ′ l0−→
=
G′. Let G := �x[x0, x1]G′

and we have E l1−→ G and F l0−→
=
G both by BoCP.

– IfD l0−→
=
E = �x[x0, x1] E ′ by BoCP andD l′1|�x[]

−−−−→ F = νx0y0 νx1y1 (Q | F ′)

by BoCW. Then D′ l0−→
=
E ′ and D′ l′1|�x0[]|�x1[]−−−−−−−−→ F ′. By I.H. there

exist some G′ such that E ′ l′1|�x0[]|�x1[]−−−−−−−−→ G ′ and F ′ l0−→
=
G′. Let

G := νx0y0 νx1y1 (Q | G′) and we have E l′1|�x[]
−−−−→ G by BoCW and

F l0−→
=
G by Par1 and Res.

– IfD l0−→
=
E = �x[x0, x1] E ′ by BoCP, andD l′1|�xi[a]

−−−−−→ F = νx0y0 νx1y1 (Q | F ′)

by BoCA0, that gives D′ l0−→
=
E ′ and D′ l′1|�x0

i[a]
−−−−−−→ F ′. By I.H.

we get some G′ such that F ′ l0−→
=
G′ and E ′ l′1|�x0

i[a]
−−−−−−→ G ′. Let

G := νx0y0 νx1y1 (Q | G′) and we have E l′1|�xi[a]
−−−−−→ G by BoCA0

and F l0−→
=
G and Par1 and Res.

– All other cases are similar or trivial (in the sense that l0 # l1 is
false).

Cut D is νxyD′. We take cases:

– Both premises are given by Res, then we have D′ l0−→
=
E ′ and

D′ l1−→ F ′ where E = νxy E ′ and F = νxyF ′. By I.H. we have

some G′ such that F ′ l0−→
=
G′ and E ′ l1−→ G′. Define G := νxy G′ and

by Res we have F l0−→
=
G and E l1−→ G.

3.D. OMITTED CONTENT OF CEGV 123

– Right premise by Res and therefore D′ l1−→ F ′ where F = νxyF ′.

Left premise by some communication rule R, and we have D′ l′0−→
=

E ′ for some l′0, where E ′ is E but with more or fewer cuts according
to R. By I.H. we get some G′ such that F ′ l′0−→

=
G′ and E ′ l1−→ G′.

Apply R on the first we get F l0−→
=
G, and apply Res several times

on the second we get E l1−→ G, where G is G′ with more or fewer
cuts according to R.

– Both premises are by some communication rule. This is impos-
sible because the only way E could be different from F is if one
side uses BoCA0 and the other BoCA1, which is preventd by the
requirement that D

l0−→
=

E.

– Other cases are similar.

Proof of lemma 27. The proof is similar to Montesi and Peressotti [2021].
Define R :=≈ ∪{(D, E) | D τ−→

=
E}, we show R to be a bisimulation, and

therefore part of ≈. For (D, E) ∈ R where D τ−→
=
E , we note:

• For any D l−→ D′. If D′ = E , then l has to be τ , and we easily have

E τ
=⇒ E and (E , E) ∈ R. Otherwise by theorem 34 there exists E ′ such

that E l−→ E ′ and D′ τ−→
=
E ′. That gives E l

=⇒ E ′ and (D′, E ′) ∈ R.

• For any E l−→ E ′, we have D l
=⇒ E ′ and (E ′, E ′) ∈ R.

3.D Omitted content of CEGV
The functional fragment of CEGV is given in fig. 3.D.1 and fig. 3.D.2. The
session fragment is in fig. 3.D.3. Omitted rules of the effect fragment is in
fig. 3.D.4.

Proposition 35. JCU K is positive.

Proof. By simple induction on unlimited types CU .

Proposition 36. J− K preserves duality. I.e., JCSK⊥ = JCSK
Proof. By simple induction on session types CS .

124 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

uwv
Contract
Γ, x0 : AU , x1 : AU ` P : B

Γ, x0 : AU ` P [x0/x1] : B

}�~
b

:=

JP Kb ` JΓK⊥, x0 : JAU K⊥, x1 : JAU K⊥, b : JBK
x0[dup](x1). JP Kb ` JΓK⊥, x0 : JAU K⊥, b : JBKuwv

Weaken
Γ ` P : B

Γ, x : AU ` P : B

}�~
b

:=
JP Kb ` JΓK⊥, b : JBK

x[disp]. JP Kb ` JΓK⊥, x : JAU K⊥, b : JBK
uwv

Tensor-I
Γ ` P : C ∆ ` Q : D

Γ,∆ ` (P,Q) : C ⊗D

}�~
d

:=

JP Kc ` JΓK⊥, c : JCK JQKd ` J∆K⊥, d : JDK
d[c]. (JP Kc | JQKd) ` JΓK⊥, J∆K⊥, d : JCK⊗ JDKuwv
Tensor-E
Γ ` P : C ⊗D ∆, c : C, d : D ` Q : E

Γ,∆ ` let (c, d) = P in Q : E

}�~
e

:=

JP Kz ` JΓK⊥, z : JCK⊗ JDKJQKe ` J∆K⊥, c : JCK⊥, d : JDK⊥, e : JEK
d(c). JQKe ` J∆K⊥, d : JCK⊥ O JDK⊥, e : JEK
νdz (JP Kz | d(c). JQKe) ` JΓK⊥, J∆K⊥, e : JEK

uwv
Star

` ⋆ : 1

}�~
z

:=
0z ` z : 1

Figure 3.D.1: CEGV, functional fragment, Part one

3.D. OMITTED CONTENT OF CEGV 125

uwv
Loli-I
Γ, c : C ` P : D

Γ ` λc. P : C ⊸ D

}�~
d

:=
JP Kd ` JΓK⊥, c : JCK⊥, d : JDK

d(c). JP Kd ` JΓK⊥, d : JCK⊥ O JDK
uwv

Loli-E
Γ ` P : C ⊸ D ∆ ` Q : C

Γ,∆ ` P Q : D

}�~
d

:=

JP Kz ` JΓK⊥, z : JCK⊥ O JDKJQKc ` J∆K⊥, c : JCK d↔ d′ ` d : JDK, d′ : JDK⊥
d′[c]. (JQKc | d↔ d′) ` J∆K⊥, d : JDK, d′ : JCK⊗ JDK⊥
νzd′ (JP Kz | d′[c]. (JQKc | d↔ d′)) ` JΓK⊥, J∆K⊥, d : JDKuwv

Arrow-I
ΓU ` P : C ⊸ D

ΓU ` P : C → D

}�~
z

:=
JP Kz ` JΓU K⊥, z : JCK⊥ O JDK

!z.{JP Kz} ` JΓU K⊥, z : !(JCK⊥ O JDK)
uwv

Arrow-E
Γ ` P : C → D

Γ ` P : C ⊸ D

}�~
w′

:=

JP Kz ` JΓK⊥, z : !(JCK⊥ O JDK)
w↔ w′ ` w : JCK⊗ JDK⊥, w′ : JCK⊥ O JDK

w[use]. w↔ w′ ` w : ?(JCK⊗ JDK⊥), w′ : JCK⊥ O JDK
νzw (JP Kz | w[use]. w↔ w′) ` JΓK⊥, w′ : JCK⊥ O JDK
Figure 3.D.2: CEGV, functional fragment, Part two

126 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

uwv
Send
∆ ` Q : C Γ ` P : !C.D

Γ,∆ ` send Q P : D

}�~ :=

JP Kz ` JΓK⊥, z : JCK⊥ O JDKJQKc ` J∆K⊥, c : JCK d↔ d′ ` d : JDK, d′ : JDK⊥
d′[c]. (JQKc | d↔ d′) ` J∆K⊥, d : JDK, d′ : JCK⊗ JDK⊥
νzd′ (JP Kz | d′[c]. (JQKc | d↔ d′)) ` JΓK⊥, J∆K⊥, d : JDKuwv

Recv
Γ ` P : ?C.D

Γ ` recv P : C ⊗D

}�~
z

:= JP Kz ` JΓK⊥, z : JCK⊗ JDK
uwv

Term
Γ ` P : end?

Γ ` terminate P : 1

}�~
z

:= JP Kz ` JΓK⊥, z : 1

uwv
Pop
Γ, x : CS ` P : end!
Γ ` popx(P) : CS

}�~
z

:=
JP Kz ` JΓK⊥, x : JCK⊥S , z : ⊥

νzz′ (JP Kz | 0z′) ` JΓK⊥, x : JCK⊥S
uwv

Push
Γ ` P : CS

Γ, x : CS ` pushx(P) : end!

}�~
z

:=
JP Kx ` JΓK⊥, x : JCSK

z(). JP Kx ` JΓK⊥, x : JCK⊥S , z : ⊥

Figure 3.D.3: CEGV, typing rules of sessions

3.D. OMITTED CONTENT OF CEGV 127

uwv
LetE
Γ ` P : D ∆, d : D | Θ ` Q : E

Γ,∆ | Θ ` let d = P in Q : E

}�~
xzC

:=

JP Kd ` JΓK⊥, d : JDKJQKxzC ` J∆K⊥, d′ : JDK⊥, x : �JΘKC, z : JEK⊗ �JΘK⊥C⊥

νdd′ (JP Kd | JQKxzC) ` JΓK⊥, J∆K⊥, x : �JΘKC, z : JEK⊗ �JΘK⊥C⊥

uwv
DoUntil

e : E | Θ ` Q : E +D

e : E | Θ ` doUntil e.Q : D

}�~
xz′C

:=

JQKxzD ` e : JEK⊥, x : �JΘKC, z : (JEK⊕ JDK)⊗ �JΘK⊥C⊥

x↔ z′ ` x : �JΘKC, z′ : �JΘK⊥C⊥

P := z′〈c〉. x↔ z′ ` c : JDK⊥, x : �JΘKC, z′ : JDK⊗ �JΘK⊥C⊥

�x(e){z. JQKxzD}c. P ` e : JEK⊥, x : �JΘKC, z′ : JDK⊗ �JΘK⊥C⊥
BoR

RelaxE
Γ | Θ ` P : D

Γ | Θ, i : (A : B) ` P := open(relax(close(P))) : D
proposition 30

Close
Γ | Θ ` P : D

Γ ` inst(P) : (D ⊸ �ΘD) ⊸ �ΘD ` unit : D ⊸ �ΘD

Γ ` close(P) := inst(P)(unit) : �ΘD

Open is derived by cutting x′ of JP Kx′ with y′ of the following, where S :=�Θ⊥
C⊥

R := y(z). z〈y〉. f ↔ z ` f : S⊥, y : (D ⊗ S) O D⊥

�y{i. i↔ i′, za′z′. absorba′z′z, f . R} ` y : �Θ⊥
((D ⊗ S) O D⊥), i′ : S⊥

liftxzy′ ` x : (�Θ⊥
((D ⊗ S) O D⊥))⊥, y′ : �Θ⊥

(D⊥), z : D ⊗ S

νxy · · · ` y′ : �Θ⊥
D⊥, z : D ⊗ S, i′ : S⊥

Figure 3.D.4: CEGV, omitted typing rules of effects

128 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

Proposition 37. The operation − is an involution; that is CS = CS.

Proof. By observing the definition of duality in CEGV.

The following implication states that an emitter that does not use any
effect can be converted into a pure value. They are not used in our paper
but still interesting.

Proposition 38 (Purify).

�•C ⊸ C C ⊸ �•C

Proof. We will derive them in CEGV instead of CELL for simplicity. The first
can be derived by Handler and the second by Runner (which we omit)

purify := ` handler{i.i, a′z′._, y.y} : �•C ⊸ C

Note that the other direction can be given by the Unit rule: ` unit :
C ⊸ �•C. They together form an equivalence, as stated by the next theo-
rem.

Proposition 39. • For any Γ ` P : C, we have purify(unit(P)) ≈ P

• For any Γ ` P : �•C, we have unit(purify(P)) ≈ P

Proof. We first translates unit and purify to CELL (unfolding O):

unit’ := �x[]. x↔ c′ `c′ : C⊥, x : �•C

purify’ := �y{i. i↔ c′′, zaz′._, f . y↔ f} `y : �•C⊥, c′′ : C

Now for the first bisimilarity, we need to prove that for any P ′ ` Γ⊥, c : C,
we have

νcc′ νxy (P ′ | unit’ | purify’) ≈ P ′[c′′/c]

which follows by lemma 27 and the fact that LHS would τ -transition to
RHS.

For the second bisimilarity, we need to prove that for any P ′ ` Γ⊥, x′ : �•C,
we have

νc′c′′ νx′y (P ′ | unit’ | purify’) ≈ P ′[x/x′]

Let R :=≈ ∪{(νc′c′′ νx′y (P ′ | unit’ | purify’), P ′[x/x′]) | P ′ ` Γ, x′ : �•C}.
We will prove R to be bisimulation and thus R ⊂≈.

• For labels l s.t. Fn(l) ∈ Γ, then for LHS it must be by Res and say
P ′ l−→ Q. That means LHS transitions to

νc′c′′ νx′y (Q | unit’ | purify’)

and RHS transitions to Q[x/x′]. Note that LHS and RHS after tran-
sition are still in R.

3.D. OMITTED CONTENT OF CEGV 129

• For label �x[], say RHS transitions to Q[x/x′], and LHS transitions
to

Q′ := νc′c′′ νx′y (P ′ | x↔ c′ | purify’)

, which further τ -transitions to Q[x/x′]. As a result, (Q′, Q[x/x′]) ∈ R
by lemma 27

Proof of proposition 28. We omit the types for simplicity

• (left identity) LHS translates to

νz0x1 (z0[d
′]. (JP Kd′ | x0↔ z0) | x1(d). JQKx1z1C)

RHS translates to
νdd′ (JP Kd′ | JQKx0z1C)

We easily have LHS τ -transition to RHS, and thus follows by lemma 27.

• (right identity) LHS translates to

νzx′ (JP KxzC | x′(d). z′[d′]. (d↔ d′ | x′↔ z′))

RHS translates to JP Kxz′C
Consider how JP Kxz′C will transition. First case is z′[c]−−→ Q, then we

should have JP KxzC z[c]−−→ Q[z/z′], and therefore LTS would τ -transition
into

νzx′ νcd (Q[z/z′] | z′[d′]. (d↔ d′ | x′↔ z′))

which then z′[d′].
====⇒ into Q[d′/c]. On the other hand, RHS simply z[c]−−→

Q. Therefore the two are bisimilar.
For any other cases, LHS will simulate RHS by Res.

• (commutativity) RHS translates to

νz0x1 (JP Kx0z0C | x1(d). νz1x2 (JQKx1z1C | x2(e). JRKx2z2C))

RHS translates to

νz1x2 (νz0x1 (JP Kx0z0C | x1(d). JQKx1z1C) | x2(e). JRKx2z2C)

which are trivially bisimilar.

130 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

We conjecture the following properties about Spawn, but did not prove
them due to the computational complexity.

• A spawned process and a continuation thereof are on an equal footing.
That is for any Γ | Θ ` P : 1 and ∆ | Θ ` Q : 1 we have

Γ,∆ | Θ ` spawn(close(P)); Q ≈ spawn(close(Q)); P : 1

• Spawning a trivial emitter does nothing:

Γ | Θ ` spawn(unit(⋆)) ≈ return(⋆) : 1

We can portray the behaviours of example 8 using bisimilarities, as fol-
lows.

Theorem 40 (One-sided Equality Theory). We have the following facts in
CEGV.

• Given Γ ` P : 1+X we have JcellX(P)Ky �y_(a′)
−−−−−→ a′(l)−−−→≈ J(P, cellX(inl ⋆))Ky,

which says getting from a cell containing P (which might be empty)
returns P and leaves the cell empty.

• JcellX(inl ⋆)Ky �y_(a′)
−−−−−→ a′(r)−−−→≈ J(inl ⋆, cellX(inr a′))Ky which says putting

to an empty cell will fill the cell and returns empty.

• Given Γ ` P ′ : X we have

JcellX(inr P ′)Ky �y_(a′)
−−−−−→ a′(r)−−−→≈

J(inr a′, cellX(inr P ′))Ky
which says putting P to a non-empty cell will not change the cell and
returns P

Proof. We first translate the statements into CELL:

• Given P ` Γ, i : SX , we have

cellXy (i.P)
�y_(a′)
−−−−−→ a′[l]−−→≈

a′(). y[i]. (P | cellXy) ` Γ, a′ : ⊥, y : SX ⊗ �Θ⊥
XSX

• we have

cellXy
�y_(a′)
−−−−−→ a′[r]−−−→≈

y[i]. (i[l].0i | cellXy (i.i[r]. a′↔ i)) ` Γ, a′ : X⊥, y : SX ⊗ �Θ⊥
XSX

3.D. OMITTED CONTENT OF CEGV 131

• Given P ′ ` Γ, i : X, we have

cellXy (i.i[r]. P ′)
�y_(a′)
−−−−−→ a′[r]−−−→≈

y[b]. (b[r]. a′↔ b | cellXy (i.i[r]. P ′)) ` Γ, a′ : X⊥, y : SX ⊗ �Θ⊥
XSX

And then we prove them one by one:

• We have LHS

cellXy (i.P)
�y_(a′)
−−−−−→ a′[l]−−→ νi′z′ νiz (Qget | D | P)

whose only possible further transition (by tedious computation) is (im-
plicitly using some alpha-renaming)

a′()−−→ τ
=⇒ y[i]−−→ νi′z′ (P | z′[l].0z′ | cellXy (i.i↔ i′))

note that the only possible transition of RHS a(). y[i]. P | cellXy is

a()−−→ y[i]−−→ P | cellXy

We therefore only need to further prove

νi′z′ (z′[l].0z′ | cellXy (i.i↔ i′)) ≈ cellXy (i.i[l].0i)

which is easy, because on both sides, the only possible transition is�y_(a′), which on LHS gives (using some alpha-renaming)

νi′z′ (z′[l].0z′ | νiz νi′′z′′Q[z′′/z′] | D[i′′/i′] | i↔ i′)
τ−→νiz νi′′z′′ (Q[z′′/z′] | D[i′′/i′] | i[l].0i)

which is same as RHS after the �y_(a′) transition. Citing lemma 27
and we are finished.

• We have LHS

cellXy
�y_(a′)
−−−−−→ a′[r]−−−→ νi′z′ νiz (Qput | D | i[l]. i[].0)

which further transitions
τ
=⇒ y[i]−−→ τ

=⇒ νi′z′ (cellXy (i.i↔ i′) | i[l].0i | z′[r]. a′↔ z′)

while the RHS transitions
y[i]−−→ (i[l].0i | cellXy (i.i[r]. a′↔ i))

132 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

thus only to show is

νi′z′ (cellXy (i.i↔ i′) | z′[r]. a′↔ z′) ≈ cellXy (i.i[r]. a′↔ i)

which is easy, because on both sides, the only possible transition is�y_(a′), which on LHS gives

νi′z′ (νiz νi′′z′′ (Q[z′′/z′] | D[i′′/i′] | i↔ i′) | z′[r]. a′↔ z′)
τ−→νiz νi′′z′′ (Q[z′′/z′] | D[i′′/i′] | i[r]. a′↔ i)

which is exactly as RHS after �y_(a′) transition. Citing lemma 27
and we are done.

• We have LHS

cellXy (i.i[r]. P ′)
�y_(a′)
−−−−−→ a′[r]−−−→ νi′z′ νiz (Qput | D | i[r]. P ′)

which further transitions
τ
=⇒ y[b]−−→ τ

=⇒ νi′z′ νiz (P ′ | z′[r]. z↔ z′ | b[r]. a′↔ b | cellXy (i.i↔ i′))

while the RHS transitions
y[b]−−→ (b[r]. a′↔ b | cellXy (i.i[r]. P ′))

thus only to show is

νi′z′ νiz (P ′ | z′[r]. z↔ z′ | cellXy (i.i↔ i′)) ≈ cellXy (i.i[r]. P ′)

which is easy, because the only possible transition on both sides is�y_(a′), which on LHS gives

νi′z′ νiz (P ′ | z′[r]. z↔ z′ | νi′′z′′ νi′′′z′′′ (D[i′′′/i′] | i′′↔ i′ | Q[z′′′/z′][z′′/z]))
τ−→νiz (P ′ | νi′′z′′ νi′′′z′′′ (D[i′′′/i′] | i′′[r]. z↔ i′′ | Q[z′′′/z′][z′′/z]))

≈νi′′z′′ νi′′′z′′′ (D[i′′′/i′] | νiz (P ′ | i′′[r]. z↔ i′′) | Q[z′′′/z′][z′′/z])

Compared to RHS after �y_(a′), we only need to show (after some
alpha-renaming)

i′′[r]. P ′[i′′/i] ≈ νiz (P ′ | i′′[r]. z↔ i′′)

which is trivial because the only possible transition on both sides is
i′′[r], after which LHS gives P ′[i′′/i], and RHS (via some τ transition)
also gives P ′[i′′/i].

3.D. OMITTED CONTENT OF CEGV 133

Example 13 (Linear Exception). Exception is a common example of typical
effect systems. This is however difficult in our system, because we are not
allowed to discard continuation which is central for exception handling. As
a result, we must use the continuation, which brings the second issue that
we are not able to provide absurdity to continuation. Recall that typically
continuation receives absuridty which can be casted to any type in need; this
is an important feature of exception. Absurdity in linear logic corresponds
to the additive units, which are always omitted from the CP intepretation
of linear logic; To amend this would worth a standalone paper and we leave
it to future work. Here we take the easy way where we pass B := 1 to the
continuation, and simply discard the returning value of the continuation.

S := E +X A := E B := 1 D := X Θ := raise : (A : B)

To handle exception at a′, we resume the continuation with ⋆ and dis-
gards the return value; instead we will use a′ as the return value. Note that
we require E+X to be a unlimited type (positive type) for silently dropping;
this is always the case in typical functional programming.

a′ : A, z′ : B ⊸ S `Q : S

Q :=let _ = z′ ⋆ in (silently drops the return value)
inl a′ (record error in result)

And we have

` catch := handler{i.i, a′z′.Q, y.inr y} : y : �ΘD ⊸ S

On the other hand, we define main program (assuming ` e0 : E and
` x0 : X) which raises exception before returning.

| Θ `M : D

M :=emitraise(e0); (discard the unit given by the handler)
return(x0)

If we run M inside catch:

` catch(close(M)) ≈ inl e0 : S

we get some S which will be bisimilar to inl e0; the bisimilarity can be easily
proved by lemma 27.

While we can somewhat express exception, non-determinism (which calls
continuation multiple times with different response) would be certainly not
possible. Linearity of continuation is discussed in section 3.8.

134 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

Example 14 (Effects as a Service (EaaS)). In example 10, instead of incre-
menting a number, we can allow client to perform effects directly by setting
XS := �Θend? and make serve simply forward all Θ-effects from the client
to the server.

x : XS | Θ ` serve := x← open(x); return(terminate x) : 1

Note in this case, cellXS stores �Θend?; i.e. we have effects whose re-
quest/response are effectful computations. This is only possible because
the latter are merely types.

Note that example 10 still lacks a program that put new sessions to cell.
Depending on the scenario we want to model, there are two approaches. If
we assume the client process to be some other emitter sharing the cell with
the server, it can simply put sessions itself, which is simple and omitted. If
we assume the client process to be isolated from the server and only talks to
the server via a channel, one tends to use coexponential [Qian et al., 2021],
but for simplicity we use list to model client queue. We could assume list as
primitive, but we will define it for self-containment.

Example 15 (Encoding List). We can think [X] a list of X as an emitter
that for many times emits X while expecting only trivial response. Define

Θ := _ : (X : 1) [X] := �Θ1

We now have:

` [] := unit(⋆) : [X]

Γ ` P : X ∆ ` Q : [X]

Γ,∆ ` P :: Q := inst(emit_(P))(λ_. Q) : [X]

Γ ` P : S z : S, a′ : X ` Q : S

Γ ` fold(P, za′.Q) := handler{i.P, a′z′.let z = z′(⋆) in Q, y.y} : [X] ⊸ S

Logically [X] ≡ ¿X, but semantically the latter allows clients permuta-
tion while the former does not, which is essential for racy client acception.
This is however not a problem for modeling most client/server, because
while the clients acception is deterministic, their interaction with the server
emits effects on the server and races with each other.

We are now at a position to define the process that accepts client sessions
XS and put them to the cellXS .

Example 16 (Accepting client connections). We want to fold the list such
that for each element (which is a connection X) we sput it to cell. Note
that the list operations looks pure and do not mention effects at all, which

3.D. OMITTED CONTENT OF CEGV 135

is however not a problem. We use a similar trick as in example 7 and let
S := �Ω1 and we define

`P := unit(⋆) : S
z : S, a′ : X `Q : S

Q :=inst(sputa′)(λ_. z)

`accepter := fold(P, za′.Q) : [X] ⊸ S

Note that in general the user of fold can pick any Ω they want, assuming
the user can pick any S they want. Effect polymorphism[Brachthäuser et al.,
2020b] is a heated area, and our approach of reducing it to type polymor-
phism has limitations; for example, the function map : (X ⊸ Y) ⊸ [X] ⊸
[Y] cannot support effects by simply instantiating X,Y to appropriate types.
We leave it to future works.

We now define (Recall that Θ represents database IO):

server :=using cellXS (inl ⋆)(
spawn(accepter(y));
workers)

Γ, y : [XS] | Θ `server : 1
Example 17 (Bidirectional Effects). Zhang et al. [2020] introduced bidi-
rectional effects which means handler might emits effects themselves. In
contrast to example 7 where the effects are handled by more primitive co-
emitter, here the effect are handled by the effectful computation that emit
effect in the first place. Our system can easily express this by setting the
effect response to be an emitter. Note this is only possible because the latter
is merely a type, which allows higher-order effects.

We consider a simple example where a main program would try to get
some value X. The effect will be handled and in fact cause some exception
E back to the main program who will handle the exception. We define

Ω := get : (1 : �ΘX) Θ := raise : (E : 1)

We first define the main program:

| Ω `main : E +X

main :=x← emitget(⋆);

return(catch(x))
where catch is defined in example 13. We then define the Ω-runner:

`P := ⋆ : S

z : S, a′ : 1 `Qget := (close(emitraise(e0); return(x0)), ⋆) : �ΘX ⊗ S

f : S `R := ⋆ : 1

`runner := runner{P, za′.Q, f.R} : �Ω1

136 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

And we connect runner with main:

`let (s, y) = coinst(main)(runner) in
let _ = counit(y) in s

:E +X

we further claim the above is bisimilar to inl e0.
Example 18 (Positive Cell). A more traditional cell would (in contrast
to linear cell through out the paper) allow overwriting (destruction) and
repeated reading (duplication), in which case the content has to be an un-
limited type XU . This was the case in Rocha and Caires [2021] and can be
reproduced in our system. We choose to implement it in CEGV, as unlim-
ited types are more natural in CEGV than in CELL. Assuming initial value
Γ ` P : XU supplied by the user. We first specify the effects:

Θ := read : (1 : XU),write : (XU : 1)

We then define the positive cell using Runner with internal state S :=
XU . For reading, we duplicate the old state z to two copies, one used as
new state, one given to user. For writing, we first discard the old state, and
forward the user input to the new state. However, both duplication and
discarding are implicit thanks to Weaken and Contract. In finalization
we simply return the internal state.

z : S, a′ : 1 `Qread := (z, z) : XU ⊗ S

z : S, a′ : XU `Qwrite := (⋆, a′) : 1⊗ S

Combining everything:

pcellXU (P) := runner{P, za′.Q, f.f} ` Γ, y : �ΘS

This example is less interesting than linear cell as it cannot store non-positive
types such as sessions.
Example 19 (Dining Philosophers). Dining philosophers has been difficult
to express in linear logic due to its cyclic nature. We will represent a chop-
stick as a linear cell of 1. Non-empty cell means the chopstick is occupied.
To allow each philosopher to access multiple cell1, we follow example 11 and
define the following prefixed version of sput and sget

| i.get : (1 : 1+X) `sgeti := let e = ⋆ in doUntil e.emiti.get(⋆) : X

e : X | i.put : (X : X + 1) `sputie := doUntil e.emiti.put(e) : 1

We first define a single philosopher; they would acquire the left and right
sticks in order, and then release them.

Ω := i.get : (1 : 1+ 1), i.put : (1 : 1+ 1), j.get : (1 : 1+ 1), j.put : (1 : 1+ 1)

| Ω `nerdij := let u = ⋆ in sputiu; sputju; sgeti; sgetj; return(⋆) : 1

3.D. OMITTED CONTENT OF CEGV 137

We first derive the following syntax sugar based on example 11 and Using
that silently discards the coemitter after using it, given that it returns an
unlimited value. This is to simplify the main program.

Γ | Ω ` P : �ΘEU ∆ | j.Θ,Ω ` Q : D

Γ,∆ | Ω ` using* j.P (Q) := (d, y)← using j.P (Q); let _ = coinst(y) in return(d) : D

We now write the main program; we start by allocating two cells prefixed
with i and j with empty initial state. We then spawn two philosophers with
different order of cells.

| `M : 1

M :=using* i.cell1(inl ⋆)((allocate empty cell and use it)
using* j.cell1(inl ⋆)((allocate empty cell and use it)
spawn(nerdij); spawn(nerdji)))

Here using* silently destroys (instead of returning) the cells after using
them. Note that M is an effectful computation with empty effect environ-
ment.

Remark 3 (Cell is not Reference). example 9 gives the impression that our
CellX is similar to references [Leroy et al., 2022]. However, CellX being a
coemitter is not a positive type, and thus cannot be refered to more or less
than once. This is why the above nerd is parameterized over i and j instead
of taking two Cell1 as arguments, since each Cell1 would be refered to by
both nerd.

138 CHAPTER 3. CONCURRENT EFFECTS IN LINEAR LOGIC

Bibliography

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101,
1987a. ISSN 03043975. doi: 10.1016/0304-3975(87)90045-4.

Jean-Yves Girard. Linear logic and parallelism. In Mathematical Models for
the Semantics of Parallelism, pages 166–182. Springer, 1987b.

Jean-Yves Girard. Towards a geometry of interaction. Contemporary Math-
ematics, 92(69-108):6, 1989.

Samson Abramsky. Proofs as processes. Theoretical Computer Science, 135
(1):5–9, 1994. doi: 10.1016/0304-3975(94)00103-0.

G. Bellin and P. J. Scott. On the π-calculus and linear logic. Theoretical
Computer Science, 135(1):11–65, 1994. ISSN 03043975. doi: 10.1016/
0304-3975(94)00104-9.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, i. Information and computation, 100(1):1–40, 1992. doi: 10.
1016/0890-5401(92)90008-4.

Luís Caires and Frank Pfenning. Session types as intuitionistic linear propo-
sitions. In Proceedings of the 21st International Conference on Con-
currency Theory, CONCUR’10, page 222–236, Berlin, Heidelberg, 2010.
Springer-Verlag. ISBN 3642153747. doi: 10.5555/1887654.1887670.

Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CONCUR
’93, volume 715 of Lecture Notes in Computer Science, pages 509–523.
Springer, Berlin, Heidelberg, 1993. doi: 10.1007/3-540-57208-2_35.

Kohei Honda, Vasco T Vasconcelos, and Makoto Kubo. Language primitives
and type discipline for structured communication-based programming. In
Programming Languages and Systems: Proceedings of the 7th European
Symposium on Programming (ESOP’98), volume 1381 of Lecture Notes
in Computer Science, pages 122–138. Springer, Berlin, Heidelberg, 1998.
doi: 10.1007/BFb0053567.

Davide Sangiorgi. π-calculus, internal mobility, and agent-passing calculi.
Theoretical Computer Science, 167(1-2):235–274, 1996.

139

140 BIBLIOGRAPHY

Michele Boreale. On the expressiveness of internal mobility in name-passing
calculi. Theoretical computer science, 195(2):205–226, 1998.

Philip Wadler. Propositions as sessions. Journal of Functional Program-
ming, 24(2-3):384–418, May 2014. ISSN 0956-7968. doi: 10.1017/
S095679681400001X. ISBN: 1581137567.

Simon J Gay and Vasco T Vasconcelos. Linear type theory for asynchronous
session types. Journal of Functional Programming, 20(1):19, 2010. doi:
10.1017/S0956796809990268.

Marco Carbone, Fabrizio Montesi, and Carsten Schürmann. Chore-
ographies, logically. Distributed Comput., 31(1):51–67, 2018.
doi: 10.1007/s00446-017-0295-1. URL https://doi.org/10.1007/
s00446-017-0295-1. Also: CONCUR 2014.

Arnon Avron. Hypersequents, logical consequence and intermediate logics
for concurrency. Annals of Mathematics and Artificial Intelligence, 4(3-4):
225–248, 1991. doi: 10.1007/BF01531058.

Fabrizio Montesi and Marco Peressotti. Classical transitions. 2018.

Wen Kokke, Fabrizio Montesi, and Marco Peressotti. Better late than never:
a fully-abstract semantics for classical processes. Proceedings of the ACM
on Programming Languages, 3(POPL):1–29, 2019a. doi: 10.1145/3290337.

Wen Kokke, Fabrizio Montesi, and Marco Peressotti. Taking linear logic
apart. In Thomas Ehrhard, Maribel Fernández, Valeria de Paiva, and
Lorenzo Tortora de Falco, editors, Proceedings Joint International Work-
shop on Linearity & Trends in Linear Logic and Applications, Linearity-
TLLA@FLoC 2018, Oxford, UK, 7-8 July 2018, volume 292 of EPTCS,
pages 90–103, 2018. doi: 10.4204/EPTCS.292.5. URL https://doi.org/
10.4204/EPTCS.292.5.

Fabrizio Montesi and Marco Peressotti. Linear logic, the π-calculus, and
their metatheory: A recipe for proofs as processes, 2021. URL https:
//arxiv.org/abs/2106.11818.

Sam Lindley and J. Garrett Morris. Talking bananas: structural recur-
sion for session types. In Proceedings of the 21st ACM SIGPLAN In-
ternational Conference on Functional Programming - ICFP 2016, pages
434–447, Nara, Japan, 2016. ACM Press. ISBN 978-1-4503-4219-3. doi:
10.1145/2951913.2951921.

Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. Exceptional
asynchronous session types: session types without tiers. Proceedings of the
ACM on Programming Languages, 3(POPL), 2019. doi: 10.1145/3290341.

https://doi.org/10.1007/s00446-017-0295-1
https://doi.org/10.1007/s00446-017-0295-1
https://doi.org/10.4204/EPTCS.292.5
https://doi.org/10.4204/EPTCS.292.5
https://arxiv.org/abs/2106.11818
https://arxiv.org/abs/2106.11818

BIBLIOGRAPHY 141

Sam Lindley and J Garrett Morris. A semantics for propositions as sessions.
In European Symposium on Programming Languages and Systems, pages
560–584. Springer, 2015. doi: 10.1007/978-3-662-46669-8_23.

David Baelde. Least and greatest fixed points in linear logic. ACM Trans-
actions on Computational Logic, 13(1):1–44, 2012. doi: 10.1145/2071368.
2071370.

Thomas Ehrhard and Farzad Jafarrahmani. Categorical models of linear
logic with fixed points of formulas, 2021. To appear in the proceedings of
LICS 2021.

Bernardo Toninho, Luís Caires, and Frank Pfenning. Corecursion and non-
divergence in session-typed processes. In International Symposium on
Trustworthy Global Computing, pages 159–175. Springer, 2014. doi: 10.
1007/978-3-662-45917-1_11.

Farzaneh Derakhshan and Frank Pfenning. Circular proofs in first-order
linear logic with least and greatest fixed points. 2020.

Robert Atkey, Sam Lindley, and J. Garrett Morris. Conflation Confers
Concurrency. In Sam Lindley, Conor McBride, Phil Trinder, and Don
Sannella, editors, A List of Successes That Can Change the World, vol-
ume 9600 of Lecture Notes in Computer Science, pages 32–55. Springer
International Publishing, 2016. ISBN 978-3-319-30935-4. doi: 10.1007/
978-3-319-30936-1_2.

Wen Kokke, J Garrett Morris, and Philip Wadler. Towards races in linear
logic. In International Conference on Coordination Languages and Models,
pages 37–53. Springer, 2019b. doi: 10.1007/978-3-030-22397-7_3.

Marco Carbone, Fabrizio Montesi, Carsten Schürmann, and Nobuko
Yoshida. Multiparty session types as coherence proofs. Acta Informat-
ica, 54:243–269, 2017. ISSN 0001-5903. doi: 10.1007/s00236-016-0285-y.
Also: CONCUR 2015.

Luís Caires and Jorge A. Pérez. Linearity, control effects, and behavioral
types. In Hongseok Yang, editor, Programming Languages and Systems.
ESOP 2017, pages 229–259, Berlin, Heidelberg, 2017. Springer Berlin Hei-
delberg. ISBN 978-3-662-54434-1. doi: 10.1007/978-3-662-54434-1_9.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asyn-
chronous Session Types. Journal of the ACM, 63(1):1–67, 2016. ISSN
0004-5411, 1557-735X. doi: 10.1145/2827695.

Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and
Philip Wadler. Coherence Generalises Duality: A Logical Explanation of

142 BIBLIOGRAPHY

Multiparty Session Types. In Josée Desharnais and Radha Jagadeesan,
editors, 27th International Conference on Concurrency Theory (CON-
CUR 2016), volume 59 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 33:1–33:15, Dagstuhl, Germany, 2016. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-017-0. doi:
10.4230/LIPIcs.CONCUR.2016.33. URL http://drops.dagstuhl.de/
opus/volltexte/2016/6181.

Stephanie Balzer and Frank Pfenning. Manifest sharing with session types.
Proceedings of the ACM on Programming Languages, 1(ICFP):1–29, 2017.
doi: 10.1145/3110281.

Jason Reed. A Judgmental Deconstruction of Modal Logic. 2009. URL
http://www.cs.cmu.edu/~jcreed/papers/jdml.pdf.

Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. Manifest
Deadlock-Freedom for Shared Session Types. In Luís Caires, editor, Pro-
gramming Languages and Systems, volume 11423, pages 611–639, Cham,
2019. Springer International Publishing. doi: 10.1007/978-3-030-17184-1\
_22.

Naoki Kobayashi. Type Systems for Concurrent Programs. In
Bernhard K. Aichernig and Tom Maibaum, editors, Formal Meth-
ods at the Crossroads. From Panacea to Foundational Support, vol-
ume 2757 of Lecture Notes in Computer Science, pages 439–453,
Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. doi: 10.1007/
978-3-540-40007-3_26. URL http://www-kb.is.s.u-tokyo.ac.jp/
~koba/papers/tutorial-type-extended.pdf. Extended version.

Naoki Kobayashi. A Type System for Lock-Free Processes. Information and
Computation, 177(2):122–159, 2002. doi: 10.1006/inco.2002.3171.

Naoki Kobayashi. A new type system for deadlock-free processes. In In-
ternational Conference on Concurrency Theory, pages 233–247. Springer,
2006. doi: 10.1007/11817949_16.

Ornela Dardha and Jorge A. Pérez. Comparing Deadlock-Free Session Typed
Processes. Electronic Proceedings in Theoretical Computer Science, 190,
2015. doi: 10.4204/EPTCS.190.1.

Ornela Dardha and Simon J. Gay. A New Linear Logic for Deadlock-Free
Session-Typed Processes. In Christel Baier and Ugo Dal Lago, editors,
Foundations of Software Science and Computation Structures, volume
10803 of Lecture Notes in Computer Science, pages 91–109, Cham, 2018.
Springer International Publishing. doi: 10.1007/978-3-319-89366-2{_}5.

http://drops.dagstuhl.de/opus/volltexte/2016/6181
http://drops.dagstuhl.de/opus/volltexte/2016/6181
http://www.cs.cmu.edu/~jcreed/papers/jdml.pdf
http://www-kb.is.s.u-tokyo.ac.jp/~koba/papers/tutorial-type-extended.pdf
http://www-kb.is.s.u-tokyo.ac.jp/~koba/papers/tutorial-type-extended.pdf

BIBLIOGRAPHY 143

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asyn-
chronous Session Types. In Proceedings of the 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. ACM Press, 2008. ISBN 978-1-59593-689-9. doi: 10.1145/1328438.
1328472.

Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca
Padovani. Global progress for dynamically interleaved multiparty sessions.
Mathematical Structures in Computer Science, 26(2):238–302, 2016. ISSN
0960-1295, 1469-8072. doi: 10.1017/S0960129514000188.

Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic Multirole Session
Types. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages - POPL ’11, page
435. ACM Press, 2011. ISBN 978-1-4503-0490-0. doi: 10.1145/1926385.
1926435.

Federico Aschieri and Francesco A. Genco. Par means parallel: Multiplica-
tive linear logic proofs as concurrent functional programs. Proc. ACM
Program. Lang., 4(POPL), December 2019. doi: 10.1145/3371086. URL
https://doi.org/10.1145/3371086.

Andrea Tubella and Lutz Straßburger. Introduction to deep inference. 2019.

Lars Birkedal, Hans Bugge Grathwohl, Aleš Bizjak, and Ranald Clouston.
The guarded lambda-calculus: Programming and reasoning with guarded
recursion for coinductive types. Logical Methods in Computer Science, 12,
2017.

Zesen Qian, G. A. Kavvos, and Lars Birkedal. Client-server sessions in
linear logic. Proc. ACM Program. Lang., 5(ICFP), aug 2021. doi: 10.
1145/3473567. URL https://doi.org/10.1145/3473567.

Maarten van Steen and Andrew S. Tanenbaum. Distributed Sys-
tems. distributed-systems.net, 3 edition, 2017. URL https://www.
distributed-systems.net/.

Gianluigi Bellin. Subnets of proof-nets in multiplicative linear logic with
MIX. Mathematical Structures in Computer Science, 7(6):663–669, 1997.
doi: 10.1017/S0960129597002326.

Samson Abramsky, Simon J Gay, and Rajagopal Nagarajan. Interaction cat-
egories and the foundations of typed concurrent programming. In Manfred
Broy, editor, Deductive Program Design, Nato ASI Subseries F, pages 35–
113. Springer-Verlag Berlin Heidelberg, 1996. ISBN 3-540-60947-4. URL
http://www.springer.com/us/book/9783540609476.

https://doi.org/10.1145/3371086
https://doi.org/10.1145/3473567
https://www.distributed-systems.net/
https://www.distributed-systems.net/
http://www.springer.com/us/book/9783540609476

144 BIBLIOGRAPHY

Samson Abramsky and Radha Jagadeesan. Games and Full Completeness
for Multiplicative Linear Logic. The Journal of Symbolic Logic, 59(2):543,
1994. ISSN 00224812. doi: 10.2307/2275407.

Michael Barr. ∗-Autonomous categories and linear logic. Mathematical
Structures in Computer Science, 1(2):159–178, 1991. ISSN 14698072. doi:
10.1017/S0960129500001274.

Yves Lafont and Thomas Streicher. Games semantics for linear logic. In
Proceedings 1991 Sixth Annual IEEE Symposium on Logic in Computer
Science, pages 43–44. IEEE Computer Society, 1991. doi: 10.1109/LICS.
1991.151629.

J. Y. Girard and Y. Lafont. Linear logic and lazy computation. In Hartmut
Ehrig, Robert Kowalski, Giorgio Levi, and Ugo Montanari, editors, TAP-
SOFT ’87, volume 250 of Lecture Notes in Computer Science, pages 52–66,
Berlin/Heidelberg, 1987. Springer-Verlag. ISBN 978-3-540-17611-4. doi:
10.1007/BFb0014972.

Paul-André Melliès. Categorical Semantics of Linear Logic. In Pierre-
Louis Curien, Hugo Herbelin, Jean-Louis Krivine, and Paul-André Mel-
liès, editors, Panoramas et synthèses 27: Interactive models of compu-
tation and program behaviour. Société Mathématique de France, 2009.
ISBN 978-2-85629-273-0. URL http://www.pps.univ-paris-diderot.
fr/~mellies/papers/panorama.pdf.

Paul-André Melliès, Nicolas Tabareau, and Christine Tasson. An explicit for-
mula for the free exponential modality of linear logic. Mathematical Struc-
tures in Computer Science, 28(7), 2018. ISSN 0960-1295, 1469-8072. doi:
10.1017/S0960129516000426. URL https://www.cambridge.org/core/
product/identifier/S0960129516000426/type/journal_article.

Samson Abramsky. Interaction categories. In Theory and Formal Methods
1993, pages 57–69. Springer, 1993a. doi: 10.1007/978-1-4471-3503-6_5.

Robin Milner. Functions as processes. Mathematical Structures in Computer
Science, 2(2):119–141, 1992. doi: 10.1017/S0960129500001407.

Robin Milner. Communicating and Mobile Systems: The π-calculus. Cam-
bridge University Press, New York, NY, USA, 1999. ISBN 0-521-65869-1.
doi: 10.5555/329902.

Robert Atkey. Observed communication semantics for classical processes.
In European Symposium on Programming, pages 56–82. Springer, 2017.
doi: 10.1007/978-3-662-54434-1_3.

http://www.pps.univ-paris-diderot.fr/~mellies/papers/panorama.pdf
http://www.pps.univ-paris-diderot.fr/~mellies/papers/panorama.pdf
https://www.cambridge.org/core/product/identifier/S0960129516000426/type/journal_article
https://www.cambridge.org/core/product/identifier/S0960129516000426/type/journal_article

BIBLIOGRAPHY 145

Massimo Merro and Davide Sangiorgi. On asynchrony in name-passing cal-
culi. Mathematical Structures in Computer Science, 14(5):715–767, 2004.
doi: 10.1017/S0960129504004323.

Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann, revised first edition, 2012. ISBN 978-0-12-397337-5.
doi: 10.5555/2385452.

Samson Abramsky. Computational interpretations of linear logic. Theo-
retical Computer Science, 111(1-2):3–57, 1993b. ISSN 03043975. doi:
10.1016/0304-3975(93)90181-R. ISBN: 0304-3975.

Sam Lindley and J. Garrett Morris. Lightweight Functional Session Types.
In Simon Gay and Antonio Ravara, editors, Behavioural Types: from
Theory to Tools, River Publishers Series in Automation, Control and
Robotics. River Publishers, 2017. doi: 10.13052/rp-9788793519817.

N Benton and P Wadler. Linear logic, monads and the lambda calculus. In
Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.
IEEE, 1996. doi: 10.1109/LICS.1996.561458.

John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. Call-
by-name, Call-by-value, Call-by-need, and the Linear Lambda Calculus.
Electronic Notes in Theoretical Computer Science, 1:370–392, 1995. ISSN
15710661. doi: 10.1016/S1571-0661(04)00022-2.

J. Maraist, M. Odersky, D.N. Turner, and P. Wadler. Call-by-name, call-by-
value, call-by-need and the linear lambda calculus. Theoretical Computer
Science, 228(1-2):175–210, 1999. doi: 10.1016/S0304-3975(98)00358-2.

Melvin E. Conway. A multiprocessor system design. AFIPS ’63 (Fall),
page 139–146, New York, NY, USA, 1963. Association for Computing
Machinery. ISBN 9781450378833. doi: 10.1145/1463822.1463838. URL
https://doi.org/10.1145/1463822.1463838.

L. Dagum and R. Menon. Openmp: an industry standard api for shared-
memory programming. IEEE Computational Science and Engineering, 5
(1):46–55, 1998. doi: 10.1109/99.660313.

James Reinders. Intel threading building blocks: outfitting C++ for multi-
core processor parallelism. ” O’Reilly Media, Inc.”, 2007.

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multi-
threaded runtime system. In Proceedings of the Fifth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPOPP

https://doi.org/10.1145/1463822.1463838

146 BIBLIOGRAPHY

’95, page 207–216, New York, NY, USA, 1995. Association for Comput-
ing Machinery. ISBN 0897917006. doi: 10.1145/209936.209958. URL
https://doi.org/10.1145/209936.209958.

Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. The design of
a task parallel library. Acm Sigplan Notices, 44(10):227–242, 2009. doi:
10.1145/1639949.1640106.

Robert H. Halstead. Implementation of multilisp: Lisp on a multiprocessor.
In Proceedings of the 1984 ACM Symposium on LISP and Functional Pro-
gramming, LFP ’84, page 9–17, New York, NY, USA, 1984. Association for
Computing Machinery. ISBN 0897911423. doi: 10.1145/800055.802017.
URL https://doi.org/10.1145/800055.802017.

Umut A Acar. Parallel computing: Theory and practice, 2016. URL http://
www.cs.cmu.edu/afs/cs/academic/class/15210-f15/www/tapp.html.

John Maynard Keynes. The General Theory of Employment, Interest and
Money. Macmillan & Co. Ltd., London, 1936.

Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. Bounded linear
logic: a modular approach to polynomial-time computability. The-
oretical Computer Science, 97(1):1–66, 1992. ISSN 03043975. doi:
10.1016/0304-3975(92)90386-T.

Thomas Ehrhard. An introduction to differential linear logic: proof-nets,
models and antiderivatives. Mathematical Structures in Computer Science,
28(7):995–1060, 2018. doi: 10.1017/S0960129516000372.

Thomas Ehrhard and Olivier Laurent. Interpreting a finitary pi-calculus
in differential interaction nets. Information and Computation, 208(6):
606–633, 2010. doi: 10.1016/j.ic.2009.06.005.

Damiano Mazza. The true concurrency of differential interaction nets. Math-
ematical Structures in Computer Science, 28(7):1097–1125, 2018. doi:
10.1017/S0960129516000402.

Simon Castellan, Léo Stefanesco, and Nobuko Yoshida. Game semantics:
Easy as pi. CoRR, abs/2011.05248, 2020.

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. Actris:
Session-type based reasoning in separation logic. Proceedings of the ACM
on Programming Languages, 4(POPL):1–30, 2019.

Zesen Qian, Marco Peressotti, Fabrizio Montesi, and Lars Birkedal. Cell:
Concurrent effects in classical linear logic. submitted, 2022.

https://doi.org/10.1145/209936.209958
https://doi.org/10.1145/800055.802017
http://www.cs.cmu.edu/afs/cs/academic/class/15210-f15/www/tapp.html
http://www.cs.cmu.edu/afs/cs/academic/class/15210-f15/www/tapp.html

BIBLIOGRAPHY 147

Pedro Rocha and Luís Caires. Propositions-as-types and shared state. Pro-
ceedings of the ACM on Programming Languages, 5(ICFP), 2021. doi:
10.1145/3473584.

Matija Pretnar. An introduction to algebraic effects and handlers. invited
tutorial paper. Electronic notes in theoretical computer science, 319:19–35,
2015.

Tarmo Uustalu. Stateful runners of effectful computations. Electronic Notes
in Theoretical Computer Science, 319:403–421, 2015.

Matija Pretnar and Gordon D Plotkin. Handling algebraic effects. Logical
methods in computer science, 9, 2013.

Gordon Plotkin and John Power. Tensors of comodels and models for op-
erational semantics. Electronic Notes in Theoretical Computer Science,
218:295–311, 2008.

John Power and Olha Shkaravska. From comodels to coalgebras: State and
arrays. Electronic Notes in Theoretical Computer Science, 106:297–314,
2004.

Masahito Hasegawa. Linearly Used Effects: Monadic and CPS Transfor-
mations into the Linear Lambda Calculus. In Zhenjiang Hu and Mario
Rodriguez-Artalejo, editors, Functional and Logic Programming. FLOPS
2002, volume 2441 of Lecture Notes in Computer Science, pages 167–182,
Berlin, Heidelberg, 2002. Springer Berlin Heidelberg. ISBN 978-3-540-
44233-2 978-3-540-45788-6. doi: 10.1007/3-540-45788-7_10.

Danel Ahman and Andrej Bauer. Runners in action. In ESOP, pages 29–55,
2020.

Paolo Tranquilli. Translating types and effects with state monads and linear
logic. 2010.

Dominic Orchard and Nobuko Yoshida. Effects as sessions, sessions as ef-
fects. ACM SIGPLAN Notices, 51(1):568–581, 2016.

Eugenio Moggi. Notions of computation and monads. Information and
computation, 93(1):55–92, 1991.

Jeff Egger, Rasmus Ejlers Møgelberg, and Alex Simpson. Enriching an
effect calculus with linear types. In International Workshop on Computer
Science Logic, pages 240–254. Springer, 2009.

Jeff Egger, Rasmus Ejlers Møgelberg, and Alex Simpson. Linearly-used
continuations in the enriched effect calculus. In International Conference
on Foundations of Software Science and Computational Structures, pages
18–32. Springer, 2010.

148 BIBLIOGRAPHY

Rasmus Møgelberg and Sam Staton. Linear usage of state. Logical Methods
in Computer Science, 10(1):17, March 2014. ISSN 18605974. doi: 10.
2168/LMCS-10(1:17)2014.

Stephen Dolan, Leo White, KC Sivaramakrishnan, Jeremy Yallop, and Anil
Madhavapeddy. Effective concurrency through algebraic effects. In OCaml
Workshop, page 13, 2015.

Stephen Dolan, Spiros Eliopoulos, Daniel Hillerström, Anil Madhavapeddy,
KC Sivaramakrishnan, and Leo White. Concurrent system programming
with effect handlers. In International Symposium on Trends in Functional
Programming, pages 98–117. Springer, 2017.

Paulo Emílio de Vilhena and François Pottier. A separation logic for effect
handlers. Proceedings of the ACM on Programming Languages, 5(POPL):
1–28, 2021.

Lukas Convent, Sam Lindley, Conor McBride, and Craig McLaughlin. Doo
bee doo bee doo. Journal of Functional Programming, 30, 2020.

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann.
Effekt: Lightweight effect polymorphism for handlers. Technical report,
Technical Report. University of Tübingen, Germany, 2020a.

Nicolas Wu, Tom Schrijvers, and Ralf Hinze. Effect handlers in scope. In
Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell, pages
1–12, 2014.

Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelioff. Syntax and
semantics for operations with scopes. In Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, pages 809–818,
2018.

Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg, and Tom
Schrijvers. Structured handling of scoped effects. In European Symposium
on Programming, pages 462–491. Springer, Cham, 2022.

Andrej Bauer and Matija Pretnar. Programming with algebraic effects and
handlers. Journal of logical and algebraic methods in programming, 84(1):
108–123, 2015.

Daan Leijen. First class dynamic effect handlers: Or, polymorphic heaps
with dynamic effect handlers. In Proceedings of the 3rd ACM SIGPLAN
International Workshop on Type-Driven Development, pages 51–64, 2018.

NINGNING XIE, YOUYOU CONG, and DAAN LEIJEN. First-class names
for effect handlers, 2022.

BIBLIOGRAPHY 149

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski.
Binders by day, labels by night: effect instances via lexically scoped han-
dlers. Proceedings of the ACM on Programming Languages, 4(POPL):
1–29, 2019.

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann.
Effects as capabilities: effect handlers and lightweight effect polymor-
phism. Proceedings of the ACM on Programming Languages, 4(OOPSLA):
1–30, 2020b.

Yizhou Zhang, Guido Salvaneschi, and Andrew C Myers. Handling bidirec-
tional control flow. Proceedings of the ACM on Programming Languages,
4(OOPSLA):1–30, 2020.

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy,
and Jérôme Vouillon. The ocaml system: Documentation and user’s man-
ual. INRIA, 3:42, 2022.

	Abstract
	Resumé
	Acknowledgments
	Overview
	A Brief History of Proofs as Processes
	Proposals
	Related Works
	Future works

	Client-Server Sessions in Linear Logic
	Introduction
	The Problem
	Roadmap

	Exponentials, Fixed Points, and Coexponentials
	Exponentials as Fixed Points
	Deriving Coexponentials
	Exponentials vs. Coexponentials under Mix and Binary Cuts

	Processes
	 Means Client, Means Server
	Design Decision #1: Server State and The Strong Rules
	Design Decision #2: Replacing Trees with Lists
	Design Decision #3: Nondeterminism through Permutation
	Introducing CS::
	Operational Semantics and Metatheory

	An example: Compare-and-Set
	A session-typed language for client-server programming
	Source Language and the Translation
	Functional Data Structure Server
	Nondeterminism
	Fork–Join Parallelism
	Keynes' Beauty Contest

	Related work

	Appendices
	Coexponentials and Logical equivalences
	Translation of CSGV to CSLL: Omitted rules
	CSLL: Metatheoretic Proofs
	More Examples
	Compare-And-Set
	List Shuffling
	Merge Sort
	Map-Reduce
	Interleaving clients
	Symbol Generator

	Concurrent Effects in Linear Logic
	Introduction
	Base system
	Classical Effects
	Races
	Deterministic Sharing
	Non-deterministic Sharing

	Synchronization
	Metatheory
	Concurrent Effectful GV
	Related and future Work

	Appendices
	piLL, full specification
	Omitted content of CELL
	Omitted metatheoretic proofs
	Omitted content of CEGV

