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Chapter 1

Introduction

Type theory is a general term for a wide variety of formal systems. It is closely related to
type systems in programming languages but it also has deep ties with category theory, and
it can even serve as a foundation of mathematics. The fundamental building blocks of type
theory are types and terms, with each term inhabiting exactly one type. In dependent type
theory one allows dependent types, which are types that depend on the terms of another
type. Categories with families are category theoretical models of dependent type theories,
which can be augmented with dependent right adjoints to model modal type theory (type
theory with modal operators). A particular such model is the topos of trees, in which it is
possible to solve certain equations of types, which allows the recursive definition of types.

In Chapter 2 we make a presentation of a dependent type theory mostly based on [6]
including type formers for function, product, Π-, and Σ-types, universes à la Tarski, and
modality (the last based on [4] and [3]).

In Chapter 3 we present categories with families as a model of dependent type theory[5]
and give two general constructions of them in the form of Giraud CwFs[3] and presheaf
CwFs[6]. We also show how to incorporate modality into CwFs making them categories with
dependent right adjoints[3].

In Chapter 4 we consider the categories of presheafs on ω, called the topos of trees, and
the later modality, both from [2], which makes it a CwDRA. We define contractive morphisms
in it, see how they give rise to fixpoints[2], and finish by giving an example of how to solve
guarded recursive domain equations.

This project was originally meant to be just 10-20 pages with models of dependent type
theory, dependent right adjoints, and the later modality each being supposed to have only a
"short explanation" according to the project description. However, as this project is intended
to be used by future students, and I do not believe a short explanation would likely leave a
future student better off than I have been reading the existing litterature, I have throughout
given considerably more than a short explanation, usually including all non-trivial calcula-
tions. My choice of this approach is heavily influenced by my own preference in learning
mathematics, as I personally feel I understand mathematics much better once I have seen the
details, either through reading them or figuring them out on my own. Naturally, these details
are accompanied by explanations of the useful intuitions I have acquired through my own
learning process. Due to the longer than planned nature of this project, several things that
I feel should have been included have not been for reasons of time. Of particular note is the
explicit construction of type formers in presheaf CwFs, an exploration of when endofunctors
on presheaf CwFs extend to weak CwF morphisms, and locally contractive functors and their
fixpoints, which allows a general method of solving equations like that in Section 4.4. I plan
on adding these at a later date for the further benefit of future students.
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Chapter 2

Type Theory

Type theory is at its core a foundation for mathematics, just like set theory, and just like
set theory the term covers many different versions. At the heart of any such foundation lies
judgements and rules. In set theory, we rarely consciously talk about judgements and rules,
but we actually do use them all the time. Set theory has one judgement, namely "P has a
proof", where P is a proposition1, and the rules are the rules of logic. Here are for example
the rules governing ∧:

P has a proof Q has a proof
P ∧Q has a proof

P ∧Q has a proof
P has a proof

P ∧Q has a proof
Q has a proof

These can be read as a form of implication with the judgement(s) above the line "implying"
the judgements below it. It is however not really implication as judgements do not have a
truth value; they are ether valid or they are not judgements at all.

In set theory we have sets (or classes), and the propositions come from first order logic,
whilst in type theory we have contexts, types, and terms, but we have no propositions.
Instead of propositions, we can in type theory interpret types as propositions, by saying that
a type is true if a term has it as its type.

The judgements of type theory can very quite a bit depending on the details, but we will
adopt the judgements of [6]:

` Γ ctxt Γ is a context
Γ ` A type A is a type in context Γ
Γ ` a : A a is a term of type A in context Γ
` Γ ≡ ∆ ctxt Γ and ∆ are judgementally equal contexts

Γ ` A ≡ B type A and B are judgementally equal types in context Γ
Γ ` a ≡ b : A a and b are judgementally equal terms of type A in context Γ

Note that some of these judgements involve some presuppositions, e.g. Γ ` A type presup-
poses that ` Γ ctxt, and Γ ` a ≡ b : A presupposes that ` Γ ctxt, Γ ` A type, Γ ` a : A,
and Γ ` b : A. The others are similar.

We will first consider the rules of formation of contexts. The first rule simply states, there
exists a context:

` � ctxt

1Here proposition means statement rather than proven statement.
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This reads: with no assumptions, � is a context. The next two rules deal with extension of
contexts and variables:

Γ ` A type
` Γ, x : A ctxt

` Γ, x : A,∆ ctxt
Γ, x : A,∆ ` x : A

The x above is called a variable. When working with variables, we need to be careful with
naming, as we should not have two variables with the same name. The rule on the left
therefore assumes that no other variable of Γ is called x, i.e. that x is a fresh variable. If we
combine these two rules, we get the following deduction

Γ ` A type
` Γ, x : A ctxt
Γ, x : A ` x : A

This highlights the importance of the context we are working in, as this tells us that given
any context Γ and any type A in this context, we can find a term x of type A in the context
Γ, x : A, but crucially not necessarily in the context Γ. Thus one can understand Γ, x : A
artificially adding a term of type A even if no such term actually exists in the context Γ.

We also have rules stating that if we replace on part of a judgement with an equal object,
nothing really changes:

` Γ ≡ ∆ ctxt Γ ` A type
∆ ` A type

` Γ ≡ ∆ ctxt Γ ` A ≡ B type Γ ` a : A
∆ ` a : B

` Γ ≡ ∆ ctxt Γ ` A ≡ B type
∆ ` A ≡ B type

` Γ ≡ ∆ ctxt Γ ` A ≡ B type Γ ` a ≡ b : A
∆ ` a ≡ b : B

` Γ ≡ ∆ ctxt Γ ` A ≡ B type
` Γ, x : A ≡ ∆, y : B ctxt

There are also rules stating that each of the equalities is reflexive, symmetric, and transitive,
but we leave this to the reader. Next we add the rule of weakening, which states that context
comprehension does not remove any types, terms, or equalities:

Γ,∆ ` J Γ ` A type
Γ, x : A,∆ ` J

Here J is either B type, B ≡ C type, b : B, or b ≡ c : B. This is a so-called admissible
rule, which means that without assuming the rule, if the premisses are deducible, then so is
the conclusion. In that sense, it is not strictly necessary to add as a rule, but on the other
hand it saves quite a bit of work and nothing is really lost, which is why we happily add it.

The last thing to tackle is substitution. Whilst we have not seen how to do so yet, terms
and types can be large expressions which include variables, and substitution is replacing that
variable with a term of the appropriate type. We actually do this all the time in set theory:
Consider the expression x + 1, where x ∈ Z. If we set x = 1, then x + 1 = 1 + 1, which is
exactly the same as just replacing all occurrences of x by 1. We denote the substitution of
the variable x : A by the term a : A by [a/x], e.g. (x+ 1)[1/x] = 1 + 1. This is encompassed
in the substitution rule

Γ, x : A,∆ ` J Γ ` a : A
Γ,∆[a/x] ` J [a/x]

Here J once again ranges over B type, B ≡ C type, b : B, or b ≡ c : B. With all the
fundamental rules covered, we will now move on the type formers.
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2.1 Function Types
A type former is a way to use terms and types to construct new types with certain properties.
In order to define a type former one (generally) needs to define 4-5 things:

• Formation rules, stating how to form the type.

• Introduction rules, stating how to make terms of the type.

• Elimination rules, stating how to use terms of the type.

• Computation rules, stating how the elimination rules act introduced terms.

• Uniqueness rules (optional), stating that every term is given by a particular form (usu-
ally the introduction rules applied to eliminated terms).

We will describe a number of types, starting with function types. Given two types A and B,
we wish to define a type A → B, whose terms behave like functions from A to B. We have
here already described the formation rule

Γ ` A,B type
Γ ` A→ B type

where Γ ` A,B type is shorthand for Γ ` A type and Γ ` B type. For the introduction
rule, we will need some way of making functions. In set theory, we would write something
along the lines of

f : A→ B

x 7→ b,

where b is some expression possibly depending on x taking values in B. An alternative
notation for this originating in computer science is λx.b, which means the function taking x
to b, and this will be our chosen notation in the introduction rule:

Γ ` A,B type Γ, x : A ` b : B
Γ ` λ(x : A).b : A→ B

For the elimination rule, we will need some way of turning a function into not a function,
which is exactly what function application does:

Γ ` A,B type Γ ` f : A→ B Γ ` a : A
Γ ` f(a) : B

For the computation rule, we need to describe how to apply the elimination rule to an
introduced term. We described earlier that λx.b takes x to b, and thus have our description
of how λ expressions act under function application:

Γ ` A,B type Γ, x : A ` b : B Γ ` a : A
Γ ` (λ(x : A).b)(a) ≡ b[a/x] : B

Finally for uniqueness, the equivalent statement for set theory is that f = g if and only
if f(x) = g(x) for all x. Traditionally, type theory uses a slightly different but equivalent
formulation, namely that f = λx.f(x)2:

Γ ` A,B type Γ ` f : A→ B

Γ ` f ≡ λ(x : A).f(x) : A→ B

2Why are these statements equivalent?
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2.2 Product Types
The product type is the type theoretic version of A×B, and it is thus clear that we have the
formation rule

Γ ` A,B type
Γ ` A×B type

In set theory an element of A × B is a pair (a, b), where a ∈ A and b ∈ B, and this will be
our introduction rule

Γ ` a : A Γ ` b : B
Γ ` (a, b) : A×B

In set theory, we can take either the first or the second coordinate of A×B to get elements
of A respectively B, and this will be our elimination rules

Γ ` A,B type Γ ` t : A×B
Γ ` p1(t) : A

Γ ` A,B type Γ ` t : A×B
Γ ` p2(t) : B

Note that p1 and p2 are thus far purely symbolic rather than representing functions, but one
can of course define functions p1 : A×B → A and p2 : A×B → B that do exactly as above.

For the computation rule, we need to see how elimination interacts with introduction, i.e.
what the first respectively second coordinate of (a, b) is, which should be obvious

Γ ` a : A Γ ` b : B
Γ ` p1(a, b) ≡ a : A

Γ ` a : A Γ ` b : B
Γ ` p2(a, b) ≡ b : B

The next step is to add a uniqueness rule, but it turns out that this is unnecessary, as one
can actually derive the rule. We will not go into this here, but it can be found in [8, Section
1.5].

2.3 Universes
We will now take a brief break from the type formers in order to consider universes. One
limitation that type theory has is that terms and types are fundamentally different things,
and they do not mix. In set theory it is unproblematic to define a function from a set A,
which can take values anywhere, but in type theory we have defined thus far there is no way
to define a function from a type whose values are types. This is the problem that universes
solve. There are several approaches to universes; we will here present universes à la Tarski
(of Banach-Tarski paradox fame).

No matter the version of the universes, the general idea is to have a "type of types".
In universes à la Tarski this is accomplished by having a type, whose terms in some way
corresponds to types. The setup with regards to rules is quite similar to earlier, but we only
have two rules, formation and elimination. These are

` Γ ctxt
Γ ` U type

Γ ` A : U
Γ ` El(A) type

These state that we have a universe in any context, and that we can convert a term of
a universe into a type, which is called the elements of the term. With only these rules,
universes are somewhat lacklustre, as they lack any of the structure that we have previously
given types with type formers. We therefore add additional rules to ensure that universes are
stable under type formers and El respects them. There are several ways of achieving this,
but we choose the following for its simplicity:
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Γ ` A,B : U
Γ ` A→ B : U

Γ ` A,B : U
Γ ` El(A→ B) ≡ El(A)→ El(B) type

Γ ` A,B : U
Γ ` A×B : U

Γ ` A,B : U
Γ ` El(A×B) ≡ El(A)× El(B) type

Because of this need to ensure that universes respect type formers, we will when introducing
new type formers need to also add rules like the above.

2.4 Dependent Functions
Dependent functions are a generalization of functions, which is quite common in set theory
though we only rarely think of it as a function. A normal function from A to B takes an
element of A to an element of B, but imagine now instead that B is a function from A that
takes as values any sets; then we can imagine a function from A to B, such that each a ∈ A
is mapped to an element of B(a). This is a dependent function.

One place where we actually meet functions like this in set theory, though we don’t call
it a dependent function, is the axiom of choice, which states that given any set of non-empty
sets, call it A, there exists a function from A, which takes each set to an element of itself; in
other words there exists a dependent function from A to IdA.

A more general case of dependent functions is indexed Cartesian products, i.e. things like∏
a∈A

B(a).

We rarely think of this set as consisting of functions, but consider what information an
element of it contains: for each a ∈ A, it knows of an element of B(a), which is exactly what
a dependent function is. We will actually be using the above notation for the set (and later,
type) of dependent functions.

Let us consider for a moment the case, where B is constantly equal to some set, which we
will call B′. In this case a dependent function from A to B is the same thing as a function
from A to B′. Using the above notation, the set of all dependent functions from A to B is∏

a∈A
B(a) =

∏
a∈A

B′,

and the set of all functions from A to B′ is usually denoted, B′A, and we thus see that the
two notations fit perfectly together as ∏a∈AB

′ should be the same as B′A.
Now on to the type theory. We will also here adopt the notation from above3. The reader

should contrast and compare the rules to the rules for function types. The formation rule is

Γ ` A type Γ, x : A ` B type
Γ ` Π(x:A)B type

Remember that Γ, x : A ` B type means that B may depend on the variable x, and we
thereby have the type theoretic version of a function from A that takes sets as values. At the
end of this section, we will see how to use universe to make Π-types with terms of function
types. The rest of the rules are

Γ ` A type Γ, x : A ` b : B
Γ ` λ(x : A).b : Π(x:A)B

Γ ` a : A Γ, x : A ` B Γ ` f : Π(x:A)B

Γ ` f(a) : B[a/x]

3Because of this notation, dependent function types are also called Π-types
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Γ ` a : A Γ, x : A ` b : B
Γ ` (λ(x : A).b)(a) ≡ b[a/x] : B[a/x]

Γ ` A type Γ, x : A ` B Γ ` f : Π(x:A)B

Γ ` f ≡ λ(x : A).f(x) : Π(x:A)B

The rules for universes are

Γ ` A : U Γ, x : El(A) ` B : U
Γ ` Π(x:A)B : U

Γ ` A : U Γ, x : El(A) ` B : U
Γ ` El(Π(x:A)B) ≡ Π(x:El(A)) El(B) type

In the above presentation of Π-types, B is not really a function as was the case in set theory
but rather a type, which depends on a variable of type A. Using universes, we can however
remedy this, as a function A→ U sends terms of A to terms of U , which through El can be
considered types. Intuitively, we should this have the following rule:

Γ ` A type Γ ` B : A→ U

Γ ` Π(x:A) El(B(x)) type

The reason we do not give this as the definition is that we have no guarantee that the universe
contains all types, and therefore not all Π-types are given by the above rule. This rule can
actually be derived quite easily. We have not really talked much about derivation yet, as it
is not of much relevancy to our goals, but briefly, a derivation is a successive application of
rules to some premisses until a conclusion is reached. The derivation of the above rule goes
as follows:

Γ ` A type

Γ ` A type
` Γ ctxt

Γ ` U type
Γ, x : A ` A,U type

Γ ` B : A→ U
Γ, x : A ` B : A→ U

Γ ` A type
` Γ, x : A ctxt
Γ, x : A ` x : A

Γ, x : A ` B(x) : U
Γ, x : A ` El(B(x)) type

Γ ` Π(x:A) El(B(x)) type

One can get similar rules corresponding to introduction, elimination, computation, and
uniqueness:

Γ ` A type Γ ` B : A→ U Γ, x : A ` b : El(B(x))
Γ ` λ(x : A).b : Π(x:A) El(B(x))

Γ ` a : A Γ ` B : A→ U Γ ` f : Π(x:A) El(B(x))
Γ ` f(a) : B(a)

Γ ` a : A Γ ` B : A→ U Γ, x : A ` b : El(B(x))
Γ ` (λ(x : A).b)(a) ≡ b[a/x] : B(a)

Γ ` A type Γ ` B : A→ U Γ ` f : Π(x:A) El(B(x))
Γ ` f ≡ λ(x : A).f(x) : Π(x:A) El(B(x))
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2.5 Dependent Pairs
In set theory, the graph of a function f : A→ B is a subset of A×B, but what is the graph
of a dependent function f ∈

∏
a∈AB(a) a subset of? Each element of it should be a pair

(a, b), where b ∈ B(a), and we thus have the idea a dependent pair, which gives rise to the
definition ∑

a∈A
B(a) =

⋃
a∈A

({a} ×B(a)).

Much like Π-types were a generalization of function types, dependent pair types4 are a gen-
eralization of product types. We will here simply state the rules, but we invite the reader to
compare them to the rules of product types.

Γ ` A type Γ, x : A ` B type
Γ ` Σ(x:A)B type

Γ ` a : A Γ, x : A ` B type Γ ` b : B[a/x]
Γ ` (a, b) : Σ(x:A)B

Γ ` A type Γ, x : A ` B type Γ ` t : Σ(x:A)B

Γ ` p1(t) : A

Γ ` A type Γ, x : A ` B type Γ ` t : Σ(x:A)B

Γ ` p2(t) : B[a/x]

Γ ` a : A Γ, x : A ` B type Γ ` b : B[a/x]
Γ ` p1(a, b) ≡ a : A

Γ ` a : A Γ, x : A ` B type Γ ` b : B[a/x]
Γ ` p2(a, b) ≡ b : B[a/x]

Γ ` A : U Γ, x : El(A) ` B : U
Γ ` Σ(x:A)B : U

Γ ` A : U Γ, x : El(A) ` B : U
Γ ` El(Σ(x:A)B) ≡ Σ(x:El(A) El(B) type

2.6 Modality
The concept of modality stems from linguistics, where it allows the expression of intensions
as well as belief of propositions. In English this is done via the modal verbs, e.g. "I will finish
this tonight" and "It might rain tomorrow". From this linguistic notation we get the related
notion in logic of modal operators, which are operators on propositions, modelling things like
necessity and possibility. These modal operators are usually written � and � respectively.

In 1994 Borghuis presented in his ph.d. thesis[4] various type theories modelling modal
logic by using a propositions-as-types interpretation, i.e. having types correspond to propos-
itions. Because of this correspondence, we must have some operator on types �, though its
rules will be established later. As part of the proof system of the logic used is the concept of
a strict subordinate proof. Usually, one is allowed in a subordinate proof to use any previ-
ously established propositions, but in a strict subordinate proof one is only allowed to use a
proposition P if �P has previously been established, and conversely if P is proven in a strict
subordinate proof �P may be used in the main proof. In the type theory this is handled
by letting the context contain the previously established information, and then applying an
operator to the context, which locks away any information not of the form �P . Using the
notation of [3], where µ5 is the operator on contexts, we thus have the rules

4Also called Σ-types due to the notation
5This symbol is written with the \faLock command in the fontawesome package.
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` Γ ctxt
` Γ,µ ctxt

Γ,µ ` A type
Γ ` �A type

We mention also the admissible rule6

Γ ` �A type
Γ,µ ` A type

and thus if we view these as the rules of a context former, we have respectively formation,
elimination, and introduction, though we can also view the second rule as the formation
tuel for �. In order to deal with terms, we introduce shut and open with the following
introduction and elimination rules for �

Γ,µ ` a : A
Γ ` shut a : �A

Γ ` a : �A ` Γ,µ,∆ ctxt
Γ,µ,∆ ` open a : A

where we in the second rule suppose that µ does not appear in ∆. Finally, we also have
computation and uniqueness rules

Γ ` open shut a : A
Γ ` open shut a ≡ a : A

Γ ` a : �A
Γ ` a ≡ shut open a : �A

Note that was this set theory, we would say that the last four rules state that shut and open
are mutually inverse bijections between the terms of A and the terms of �A.

6Recall that a rule is admissible if, whenever the premisses are deducible, so is the conclusion
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Chapter 3

Categories with Families

3.1 The Category of Elements
Before we can introduce categories with families, we must acquaint ourselves with the category
of elements of a presheaf.

Definition 3.1. Let C be a locally small category, and let P : Cop → Set be a presheaf on
C. We then define the category of elements of P , denoted

∫
C(P ), as follows:

• The objects are tuples (X, a), where X ∈ C0 and a ∈ P (X), i.e.∫
C

(P )0 =
∑
X∈C0

P (X).

• The morphisms from (X, a) to (Y, b) are pairs (f, b), where f : X → Y is a morphism
with P (f)(b) = a, i.e.

Hom∫
C(P )((X, a), (Y, b)) = {(f, b) : f ∈ HomC(X,Y ), P (f)(b) = a}.

• Composition of (f, b) : (X, a)→ (Y, b) and (g, c) : (Y, b)→ (Z, c) is given by

(g, c) ◦ (f, b) = (g ◦ f, c).

• The identity morphism on (X, a) is (IdX , a).

We here use the nomenclature of [7] taking the category of elements of a contravariant functor,
whereas others take the category of elements of covariant functors in a completely parallel
definition.

We can also use functors on the base categories along with natural transformation to
induce functors between the categories of elements:

Definition 3.2. Let C and D be locally small categories, let F : C → D, P : Cop → Set,
and Q : Dop → Set be functors, and let σ : P → Q ◦ F op be a natural transformation. We

11



then define the functor ∫
F

(σ) :
∫

C
(P )→

∫
D

(Q)

(X, a) 7→ (F (X), σX(a))
(f, b) 7→ (F (f), σCodC(f)(b)).

In the above definition, the starting situation is the diagram

Cop Dop

Set

F op

P
Q

σ

,

which after application of
∫
becomes a functor from

∫
C(P ) to

∫
D(Q).

Consider the following category:

• The objects are tuples (C, P ), where C is a small category, and P is a presheaf on C.

• A morphism from (C, P ) to (D, Q) is a pair (F, σ), where F : C → D, and σ : P →
Q ◦ F op.

• Composition of (F, σ) : (C, P )→ (D, Q) and (G, τ) : (D, Q)→ (E, R) is defined as

(G, τ) ◦ (F, σ) = (G ◦ F, (τ ∗ IdF ) ◦ σ),

where ∗ denotes horizontal composition of natural transformations.

• The identity morphism of (C, P ) is (IdC, IdP ).

A simple calculation then shows that
∫
− defines a functor from this category to Cat.

3.2 Categories with Families
A category with families is a categorical model of type theory. We define it as follows:

Definition 3.3. A category with families is a tuple (C, 1,Ty,Tm,−·−,Φ−,−)1, where C is
a locally small category, 1 ∈ C0 is a terminal object, Ty: Cop → Set, Tm:

∫
C(Ty)op → Set,

− · − :
∫

C(Ty)0 → C0, and for all (Γ, A) ∈
∫

C(Ty)0 ΦΓ,A is a natural isomorphism from
HomC(−,Γ ·A) to

SΓ,A : Cop → Set

∆ 7→
∑

γ∈HomC(∆,Γ)
Tm(∆,Ty(γ)(A))

δ 7→ ((γ, a) 7→ (γ ◦ δ,Tm(δ,Ty(γ)(A))(a)).

12



The name "category with families" may seem a bit strange; where are the families? The
name comes from the original definition, which is equivalent to the above, which uses so
called families of sets. The original definition can be found in [5, Definition 1]2.

When writing a category with families, we will just write C rather than the full tuple and
let the rest be implicit. We also introduce the following notation.

Notation 3.4. Let C be a category with families, let Γ,∆ ∈ C0, γ ∈ HomC(∆,Γ), A ∈
Ty(Γ), and a ∈ Tm(Γ, A). We will then use the notation

A[γ] := Ty(γ)(A), a[γ] := Tm(γ,A)(a).

In this new notation, the functor in Definition 3.3 becomes for each (Γ, A) ∈
∫

C(Ty)0

SΓ,A : Cop → Set

∆ 7→
∑

γ∈HomC(∆,Γ)
Tm(∆, A[γ])

δ 7→ ((γ, a) 7→ (γ ◦ δ, a[γ]).

There is technically the possibility of ambiguity with this notation if either Tm(Γ, A) ∩
Tm(Γ, B) 6= ∅ for some distinct A,B ∈ Ty(Γ) or Ty(Γ)∩Tm(Γ, A) 6= ∅ for some A ∈ Ty(Γ),
since for some a ∈ Tm(Γ, A)∩Tm(Γ, B), a[γ] could mean either Tm(γ,A)(a) or Tm(γ,B)(a),
and for some a ∈ Ty(Γ) ∩ Tm(Γ, A), a[γ] could mean either Ty(γ)(a) or Tm(γ,A)(a). How-
ever, as long as we work in the abstract, we know of at most one valid interpretation, and
thus the ambiguity becomes irrelevant.3

Each part of a category with families can be interpreted as a part of type theory:

• The objects of C are contexts.

• 1 is the empty context.

• For Γ ∈ C0, the elements of Ty(Γ) are the types in the context Γ.

• For Γ ∈ C0 and A ∈ Ty(Γ), the elements of Tm(Γ, A) are the terms of type A in the
context Γ.

• For Γ ∈ C0 and A ∈ Ty(Γ), Γ ·A corresponds to the context Γ, x : A.

• For Γ,∆ ∈ C0, γ ∈ HomC(∆,Γ), A ∈ Ty(Γ), and a ∈ Tm(Γ, A), A[γ] ∈ Ty(∆) are
a[γ] ∈ Tm(∆, A[γ]) correspond to substitutions.

The only part we have not explained yet is the natural isomorphism, but we will postpone
its explanation until we have some more results about it.

Definition 3.5. Let C be a category with families, and let (Γ, A) ∈
∫

C(Ty)0. We then
define

(pΓ,A, qΓ,A) = (ΦΓ,A)Γ·A(IdΓ·A).

1Technically, if C is large, we cannot put it in a tuple, but in that case we instead define it as a disjoint
union.

2They made an error in their definition; can you spot it?
3This similar to how for an arbitrary function f : A → B, f(∅) could be either the image of ∅ under f or

f applied to ∅, if ∅ ∈ A, but if ∅ ∈ A is not known, the first interpretation is surely correct, as the latter
interpretation is not known to be defined.
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Note that in the above definition, we have pΓ,A ∈ HomC(Γ·A,Γ) and qΓ,A ∈ Tm(Γ·A,A[pΓ,A]).
This typing makes the interpretation of pΓ,A and qΓ,A clear, namely pΓ,A corresponds to
weakning doing no substitution, and qΓ,A is the variable of type A introduced in the context
comprehension.

Definition 3.6. Let C be a category with families, (Γ, A) ∈
∫

C(Ty)0, ∆ ∈ C0, γ ∈
HomC(∆,Γ), and a ∈ Tm(∆, A[γ]). We then define

〈γ, a〉 = (Φ−1
Γ,A)∆(γ, a) ∈ HomC(∆,Γ ·A)

and call it the comprehension of γ and a.

If we let x : A be the variable introduced by the context comprehension Γ ·A, we can interpret
〈γ, a〉 as the substitution that substitutes a for x and acts as γ everywhere else. Note that
since ΦΓ,A is an isomorphism, this implies that a substitution δ : ∆→ Γ · A is characterized
by its action on x and its action on everything else, which in a CwF is the following result.

Proposition 3.7. Let C be a category with families, (Γ, A) ∈
∫

C(Ty)0, ∆ ∈ C0, γ ∈
HomC(∆,Γ), and a ∈ Tm(∆, A[γ]). Then 〈γ, a〉 is the uniquely determined δ ∈ HomC(∆,Γ·
a) such that

pΓ,A ◦ δ = γ, qΓ,A[δ] = a.

Proof. Let

〈γ, a〉 = (Φ−1
Γ,A)∆(γ, a).

It then holds that

(pΓ,A ◦ 〈γ, a〉, qΓ,A[〈γ, a〉]) = SΓ,A(〈γ, a〉)(pΓ,A, qΓ,A)
= (SΓ,A(〈γ, a〉) ◦ (ΦΓ,A)Γ·A)(IdΓ·A)
= ((ΦΓ,A)∆ ◦HomC(〈γ, a〉,Γ ·A))(IdΓ·A)
= (ΦΓ,A)∆(〈γ, a〉)
= (γ, a),

implying the equalities. Conversely, if δ ∈ HomC(∆,Γ ·A) satifies the equalities, then

(γ, a) = (pΓ,A ◦ δ, qΓ,A[δ])
= SΓ,A(δ)(pΓ,A, qΓ,A)
= (SΓ,A(δ) ◦ (ΦΓ,A)Γ·A)(IdΓ·A)
= ((ΦΓ,A)∆ ◦HomC(δ,Γ ·A))(IdΓ·A)
= (ΦΓ,A)∆(δ),

implying that δ = 〈γ, a〉.
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Is with the notation in Notation 3.4, 〈γ, a〉 is possibly ambiguous, as a could be a term of
several distinct types, but by the same reasoning, it will never be relevant whilst working in
the abstract.

The above characterization allows us to work with comprehension in two different ways
as demonstrated in the following example.

Example 3.8. Let C be a category with families, and let (Γ, A) ∈
∫

C(Ty)0. We now wish to
calculate 〈pΓ,A, qΓ,A〉. It is by Proposition 3.7 the unique δ ∈ HomC(Γ ·A,Γ ·A) such that

pΓ,A ◦ δ = pΓ,A, qΓ,A[δ] = qΓ,A,

but clearly

pΓ,A ◦ IdΓ·A = pΓ,A, qΓ,A[IdΓ·A] = qΓ,A,

and thus 〈pΓ,A, qΓ,A〉 = IdΓ·A.
Alternatively, we can note that by the proof of Proposition 3.7

〈pΓ,A, qΓ,A〉 = (Φ−1
Γ,A)Γ·A(pΓ,A, qΓ,A) = (Φ−1

Γ,A)Γ·A((ΦΓ,A)Γ·A(IdΓ·A)) = IdΓ·A . (3.1)

Comprehension is well-behaved under precomposition.

Lemma 3.9. Let C be a category with families, and let Γ,∆, Lambda ∈ C0, γ ∈
HomC(∆,Γ), δ ∈ HomC(Λ,∆), A ∈ Ty(Γ), and a ∈ Tm(Γ, A). It then holds that

〈γ, a〉 ◦ δ = 〈γ ◦ δ, a[δ]〉.

Proof. It holds that

pΓ,A ◦ 〈γ, a〉 ◦ δ = γ ◦ δ,

and

qγ,A[〈γ, a〉 ◦ δ] = qγ,A[〈γ, a〉][δ] = a[δ],

and thus by Proposition 3.7, it holds that

〈γ, a〉 ◦ δ = 〈γ ◦ δ, a[δ]〉.

Using the comprehension we can extend context comprehension to a functor.

Proposition 3.10. Let C be a category with families. Then − · − :
∫

C(Ty)0 → C0 can be
extended to a functor − · − :

∫
C(Ty)→ C.
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Proof. Define for each (Γ, A), (∆, B) ∈
∫

C(Ty)0 and (γ,A) ∈ Hom∫
C(Ty)((∆, B), (Γ, A)) (i.e.

A[γ] = B)

γ ·A = 〈γ ◦ p∆,B, q∆,B〉.

To verify that 〈γ ◦ p∆,B, q∆,B〉 is sensible, note that γ ◦ p∆,B ∈ HomC(∆ ·B,Γ), and thus we
need that q∆,B ∈ Tm(∆ ·B,A[γ ◦ p∆,B]), but since

A[γ ◦ p∆,B] = A[γ][p∆,B] = B[p∆,B],

this is the case, implying that the expression is sensible. It holds for each (Γ, A), (∆, B), (Λ, C) ∈∫
C(Ty)0, (γ,A) ∈ Hom∫

C(Ty)((∆, B), (Γ, A)), and (δ,B) ∈ Hom∫
C(Ty)((Λ, C), (∆, B)) that

pΓ,A ◦ (γ ·A) ◦ (δ ·B) = pΓ,A ◦ 〈γ ◦ p∆,B, q∆,B〉 ◦ 〈δ ◦ pΛ,C , qΛ,C〉
= γ ◦ p∆,B ◦ 〈δ ◦ pΛ,C , qΛ,C〉
= γ ◦ δ ◦ pΛ,C

and that

qΓ,A[(γ ·A) ◦ (δ ·B)] = qΓ,A[γ ·A][δ ·B]
= qΓ,A[〈γ ◦ p∆,B, q∆,B〉][〈δ ◦ pΛ,C , qΛ,C〉]
= q∆,B[〈δ ◦ pΛ,C , qΛ,C〉]
= qΛ,C ,

and thus by the uniqueness of Proposition 3.7, it holds that

(γ ·A) ◦ (δ ·B) = 〈γ ◦ δ ◦ pΛ,C , qΛ,C〉 = (γ ◦ δ) ·A.

Finally, Example 3.8 implies that

IdΓ ·A = 〈pΓ,A, qΓ,A〉 = IdΓ·A,

and thus − · − is a functor.

Question for the reader: What is the type theoretic interpretation of γ ·A ∈ HomC(∆·A[γ],Γ·
A)?

As we have now seen, a category with families corresponds to type theory with simultan-
eous substitution, and we will now see how to add type formers to this in correspondence
with the type formers in type theory. We will only present the type former for Π-types; other
type formers can be found in [5].

Definition 3.11. Let C be a category with families. A Π-structure on C consists of for
each Γ ∈ C0, A ∈ Ty(Γ), and B ∈ Ty(Γ ·A) a type ΠΓ(A,B) ∈ Ty(Γ) and functions

λΓ,A,B : Tm(Γ ·A,B)→ Tm(Γ,ΠΓ(A,B))
apΓ,A,B : Tm(Γ,ΠΓ(A,B))→

∏
a∈Tm(Γ,A)

Tm(Γ, B[〈Idγ , a〉])

such that for all a ∈ Tm(Γ, A), b ∈ Tm(Γ·A,B), f ∈ Tm(Γ,ΠΓ(A,B)), and γ ∈ HomC(∆,Γ)
it holds that

λΓ,A,B(b)[γ] = λ∆,A[γ],B[γ](b[γ ·A[γ]]),
apΓ,A,B(f)(a)[γ] = ap∆,A[γ],B[γ](f [γ])(a[γ]),

apΓ,A,B(λΓ,A,B(b))(a) = b[〈IdΓ, a〉],
λΓ,A,B(apΓ·A,A[pΓ,A],B[pΓ,A](f [pΓ,A])(qΓ,A)) = f,

ΠΓ(A,B)[γ] = ΠΓ(A[γ], B[〈γ ◦ pΓ,A, qΓ,A〉]).
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The various parts of this definition can be understood in terms of type theory as follows:

• The existence of ΠΓ(A,B) is the formation rule.

• λΓ,A,B is the introduction rule (λ-expression).

• apΓ,A,B is the elimination rule (application).

• The first equation states that introduction commutes with substitution.

• The second equation states that application commutes with substitution.

• The third equation is the computation rule (β-reduction).

• The fourth equation is the uniqueness rule (η-expansion).

• The fifth equation states that type formation commutes with substitution.

3.3 Morphisms of CwFs
As is so often the case, we can define morphisms between CwFs in order to form a category.
There is however a slight hitch in that this can be done in several different ways. The question
is to what extend a morphism must preserve the structure, i.e either up to equality or up to
isomorphism. [5] presents the choices of either strict morphisms which preserve everything
exactly and pseudo morphisms which preserve everything up to isomorphism with some
coherence conditions, whilst [3] uses weak morphisms which preserve some things exactly and
some things up to isomorphism. For our purposes weak morphisms are the more appropriate
choice and will thus spend no more time on the others. The interested student can look at
[5, Definition 4 and Definition 23] for more information on strict and psuedo morphisms of
CwFs.

Definition 3.12. Let (C, 1C,TyC,TmC,− ·C −,ΦC
−,−) and (D, 1D,TyD,TmD,− ·D

−,ΦD
−,−) be categories with families. A weak CwF morphism from the former to the latter

is a tuple (F, σ, τ), where F : C→ D is a functor, and σ : TyC → TyD ◦F op and τ : TmC →
TmD ◦

∫
F (σ)op are natural transformation, such that F (1C) is a terminal object, and for all

(Γ, A) ∈
∫

C(Ty)0 it holds that 〈F (pΓ,A), τ(Γ·A,A[pΓ,A])(qΓ,A)〉 : F (Γ ·A)→ F (Γ) · σΓ(A) is an
isomorphism. We will denote the inverse as νΓ,A : F (Γ) · σΓ(A)→ F (Γ ·A).

Note that when F op means the functor from Cop to Dop which acts like F , and that this
is necessary when composing but otherwise not. Let us verify that the above definition is
well-typed:

• C and D are categories, and thus F being a functor makes sense.

• TyC is a functor from Cop to Set, and TyD ◦F op is a functor from Cop through Dop

to Set, and thus σ being a natural transformation makes sense.

• TmC is a functor from
∫

C(TyC)op to Set, and TmD ◦
∫
F (σ)op is a functor from

∫
C(TyC)op

through
∫

D(TyD)op to Set, and thus σ being a natural transformation makes sense.

• We have pΓ,A : Γ ·A→ Γ, and thus F (pΓ,A) : F (Γ ·A)→ F (Γ). We also have

qΓ,A ∈ TmC(Γ ·A,A[pΓ,A]) = TmC(Γ ·A,TyC(pΓ,A)(A))
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and thus

τ(Γ·A,A[pΓ,A])(qΓ,A) ∈
(

TmD ◦
∫
F

(σ)op
)

(Γ ·A,TyC(pΓ,A)(A))

= TmD(F (Γ ·A), (σΓ·A ◦ TyC(pΓ,A))(A))
= TmD(F (Γ ·A), ((TyD ◦F op)(pΓ,A) ◦ σΓ)(A))
= TmD(F (Γ ·A),TyD(F (pΓ,A))(σΓ(A)))
= TmD(F (Γ ·A), σΓ(A)[F (pΓ,A)]).

Combining these gives that 〈F (pΓ,A), τ(Γ·A,A[pΓ,A])(qΓ,A)〉 : F (Γ · A) → F (Γ) · σΓ(A) as
promised.

Notation 3.13. Let C and D be categories with families, and let (F, σ, τ) : C → D be a
weak CwF morphism. We will then for all Γ ∈ C0 let FΓ = σΓ, and for all (Γ, A) ∈

∫
C(Ty)0

let FΓ,A = τ(Γ,A). We will also refer to (F, σ, τ) simply as F .

Lemma 3.14. Let C and D be categories with families, and let F : C→ D be a weak CwF
morphism. It then holds for all ∆,Γ ∈ C0, γ ∈ HomC(∆,Γ), A ∈ Ty(Γ), a ∈ Tm(Γ, A),
and b ∈ Tm(∆, A[γ]) that

(i) F∆(A[γ]) = FΓ(A)[F (γ)].

(ii) F∆,A[γ](a[γ]) = FΓ,A(a)[F (γ)].

(iii) F (pΓ,A) = pF (Γ),FΓ(A) ◦ 〈F (pΓ,A), FΓ·A,A[pΓ,A](qΓ,A)〉.

(iv) FΓ·A,A[pΓ,A](qΓ,A) = qF (Γ),FΓ(A)[〈F (pΓ,A), FΓ·A,A[pΓ,A](qΓ,A)〉].

(v) F (〈γ, b〉) = νΓ,A ◦ 〈F (γ), F∆,A[γ](b)〉.

Proof. (i): It holds that

F∆(A[γ]) = F∆(TyC(γ)(A))
= (F∆ ◦ TyC(γ))(A)
= ((TyD ◦F op)(γ) ◦ FΓ)(A)
= TyD(F (γ))(FΓ(A))
= FΓ(A)[F (γ)].

(ii): It holds that

F∆,A[γ](a[γ]) = F∆,A[γ](TmC(γ,A)(a))
= (F∆,A[γ] ◦ TmC(γ,A))(a)

=
((

TmD ◦
∫
F

(F−)op
)

(γ,A) ◦ FΓ,A

)
(a)

= TmD(F (γ), FΓ(A))(FΓ,A(a))
= FΓ,A(a)[F (γ)].
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(iii): This follows directly from the definition of comprehension.
(iv): This follows directly from the definition of comprehension.
(v): It holds by Lemma 3.9 and (ii) that

〈F (pΓ,A), FΓ·A,A[pΓ,A](qΓ,A)〉 ◦ F (〈γ, b〉) = 〈F (pΓ,A) ◦ F (〈γ, b〉), FΓ·A,A[pΓ,A](qΓ,A)[F (〈γ, b〉)]〉
= 〈F (pΓ,A ◦ 〈γ, b〉), F∆,A[pΓ,A][〈γ,b〉](qΓ,A[〈γ, b〉])〉
= 〈F (γ), F∆,A[γ](b)〉,

and thus

F (〈γ, b〉) = νΓ,A ◦ 〈F (γ), F∆,A[γ](b)〉.

We see now that weak CwF morphisms preserve substitution exactly, and preserve projections
and comprehension up to a canonical isomorphism.

3.4 Giraud CwFs
We will now introduce one general construction of CwFs, which by [3] is called Giraud CwFs.

Definition 3.15. Let C be a small finitely complete category

• Let

Ty: Cop → Set
Γ 7→ {(u, v) ∈ C2

1 : DomC(u) = Γ,CodC(u) = CodC(v)}
γ 7→ ((u, v) 7→ (u ◦ γ, v)),

i.e. for Γ ∈ C0, let Ty(Γ) be the set of all diagrams of the form

E

Γ U

v

u

,

and for γ ∈ HomC(∆,Γ), Ty(γ) takes the above diagram to

E

Γ U

v

u◦γ

.

• Let

Tm:
∫

C
(Ty)→ Set

(Γ, (u, v)) 7→ {a ∈ HomC(Γ,DomC(v)) : u = v ◦ a}
(γ, (u, v)) 7→ (a 7→ a ◦ γ),

i.e. for (Γ, (u, v)) ∈
∫

C(Ty)0 let Tm(Γ, (u, v)) be the set of commutative diagrams of
the form
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E

Γ U

va

u

,

and for γ ∈ HomC(∆,Γ) and (u, v) ∈ Ty(Γ), Tm(γ, (u, v)) takes the above diagram
to

E

Γ U

v
a◦γ

u◦γ

.

• For (Γ, (u, v)) ∈
∫

C(Ty)0, let Γ · (u, v) be the pullback of (u, v), i.e.

Γ · (u, v) E

Γ U

q

p v

u

is a pullback.

• For ∆ ∈ C0 and (Γ, (u, v)) ∈
∫

C(Ty)0, let

(ΦΓ,(u,v))∆ : HomC(∆,Γ · (u, v))→ SΓ,(u,v)(∆)
γ 7→ (p ◦ γ, q ◦ γ),

where p and q are as in the above pullback diagram.

Note that both smallness and finite completeness are necessary in order to do the construction,
as

• If C were not locally small, we could not define a presheaf on C.

• If C had a proper class of objects, then for any Γ ∈ C0 the class of types would be
large, as (!Γ, !E) is a type of Γ for any E ∈ C0.

• We need a terminal object in order to satisfy the definition of a CwF, and we use
pullbacks, and thus C must be finitely complete.

Proposition 3.16. Let C be a small finitely complete category. Then GC is a well-defined
category with families.
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Proof. Functoriality of Ty and Tm is clear, and thus we need only verify that ΦΓ,(u,v) is a
natural isomorphism for all (Γ, (u, v)) ∈

∫
C(Ty)0. Let p and q be as in the definition, and let

δ ∈ HomC(∆′,∆). Note first that for γ ∈ HomC(∆,Γ ·A), we have p ◦ γ ∈ HomC(∆,Γ) and

v ◦ (q ◦ γ) = (v ◦ q) ◦ γ = (u ◦ p) ◦ γ = u ◦ (p ◦ γ), (3.2)

so q◦γ ∈ Tm(∆,Ty(p◦γ)(u, v)), and thus (p◦γ, q◦γ) ∈ SΓ,(u,v)(∆), implying that (ΦΓ,(u,v))∆
is well-defined. It holds for any γ ∈ HomC(∆,Γ · (u, v)) that

((ΦΓ,(u,v))∆′ ◦HomC(δ,Γ · (u, v))(γ) = (ΦΓ,(u,v))∆′(δ ◦ γ)
= (p ◦ δ ◦ γ, q ◦ δ ◦ γ)
= (p ◦ γ ◦ δ, q ◦ γ ◦ δ)
= (p ◦ γ ◦ δ,Tm(δ, (u ◦ γ, v))(q ◦ γ))
= (p ◦ γ ◦ δ,Tm(δ,Ty(γ)(u, v))(q ◦ γ))
= SΓ,(u,v)(δ)(p ◦ γ, q ◦ γ)
= (SΓ,(u,v)(δ) ◦ (ΦΓ,(u,v))∆)(γ),

and thus ΦΓ,(u,v) is a natural transformation.
For a γ ∈ HomC(∆,Γ), it holds that

Tm(∆,Ty(γ)(u, v)) = Tm(∆, (u ◦ γ, v)) = {a ∈ HomC(Γ, E) : u ◦ γ = v ◦ a},

and thus SΓ,(u,v)(∆) is the set of all pairs (γ, a) ∈ HomC(∆,Γ)×HomC(∆, E) such that the
square

∆ E

Γ U

a

γ v

u

commutes. Since (p, q) is a pullback, for any such pair there exists a unique ρ ∈ HomC(∆, γ ·
(u, v)) such that p ◦ ρ = γ and q ◦ ρ = δ, i.e. (ΦΓ,(u,v))∆(ρ) = (γ, a). This proves that ΦΓ,(u,v)
is a natural isomorphism, and thus GC is a category with families.

Corollary 3.17. Let C be a small finitely complete category. Then for any (Γ, (u, v)) ∈∫
C(Ty)0

Γ · (u, v) E

Γ U

qΓ,(u,v)

pΓ,(u,v) v

u

is a pullback square, and for any ∆ ∈ C0, γ ∈ HomC(∆,Γ), and a ∈ HomC(∆, E) such
that u ◦ γ = v ◦ a, 〈γ, a〉 ∈ HomC(∆,Γ · (u, v)) is the mediating morphism of γ and a in the
pullback.
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Proof. Let p and q be as in Definition 3.15. It then holds that

(pΓ,(u,v), qΓ,(u,v)) = (ΦΓ,(u,v))Γ·(u,v)(IdΓ·(u,v)) = (p ◦ IdΓ·(u,v), q ◦ ◦ IdΓ·(u,v)) = (p, q),

and thus since p and q form a pullback square, so do pΓ,(u,v) and qΓ,(u,v). Let ρ ∈ HomC(∆,Γ ·
(u, v)) be the mediating morphism of γ and a in the pullback. It then holds that

(ΦΓ,(u,v))∆(ρ) = (p ◦ ρ, q ◦ ρ) = (γ, a),

and thus by the construction of 〈γ, a〉 in the proof of Proposition 3.7, we have that 〈γ, a〉 = ρ.

Definition 3.18. Let C be a category with families. Then C is said to be democratic if
for every Γ ∈ C0 there exists Γ ∈ Ty(1) such that 1 · Γ ∼= Γ.

Lemma 3.19. Let C be a small finitely complete category. Then GC is democratic.

Proof. Let Γ = (Id1, !Γ), where !Γ is the unique element of HomC(Γ, 1). This gives us the
pullback square

1 · Γ Γ

1 1

q1,Γ

p1,Γ !Γ

Id1

and since the pullback of an isomorphism is an iomorphism, q1,Γ ∈ HomC(1 · Γ,Γ) is an
isomorphism, implying that 1 · Γ ∼= Γ, and thus GC is democratic.

Proposition 3.20. Let C and D be small finitely complete categories, and let F : C → D
be a finitely continuous functor. Then by defining

FΓ(u, v) = (F (u), F (v)), FΓ,(u,v)(a) = F (a)

for Γ ∈ C0, (u, v) ∈ TyC(Γ), and a ∈ TmC(Γ, (u, v)), we get a weak CwF morphism
GF = (F, F−, F−,−) : GC→ GD.

Proof. It is clear for Γ ∈ C0 and (u, v) ∈ TyC(Γ) that (F (u), F (v)) ∈ TyC(F (Γ)), and thus
FΓ ∈ HomSet(TyC(Γ),TyD(F (Γ))) is well-typed. It holds for all Γ,∆ ∈ C0, γ ∈ HomC(∆,Γ),
and (u, v) ∈ Ty(Γ) that

(F∆ ◦ TyC(γ))(u, v) = F∆(u ◦ γ, v)
= (F (u ◦ γ), F (v))
= (F (u) ◦ F (γ), F (v))
= (TyD ◦F op)(γ)(F (u), F (v))
= ((TyD ◦F op)(γ) ◦ FΓ)(u, v),
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and thus F− : TyC → TyD ◦F is a well-defined natural transformation.
It is clear for Γ ∈ C0, (u, v) ∈ TyC(Γ) and a ∈ TmC(Γ, (u, v)) that F (a) ∈ TmC(F (Γ), FΓ(u, v)),

and thus FΓ,(u,v) ∈ HomSet(TmC(Γ, (u, v)) → TmD(F (Γ);FΓ(u, v))) is well-typed. It holds
for all Γ,∆ ∈ C0, γ ∈ HomC(∆,Γ), (u, v) ∈ Ty(Γ), and a ∈ Tm(Γ, (u, v)) that

(F∆,(u◦γ,v) ◦ TmC(γ, (u, v)))(a) = F∆,(u◦γ,v)(a ◦ γ)
= F (a ◦ γ)
= F (a) ◦ F (γ)
= TmD(F (γ), FΓ(u, v))(F (a))

=
(

TmD ◦
∫
F

(F−)op
)

(γ, (u, v))(F (a))

=
((

TmD ◦
∫
F

(F−)op
)

(γ, (u, v)) ◦ FΓ,(u,v)

)
(a),

and thus F−,− : TmC → TmD ◦
∫
F (F−)op is a well-defined natural transformation.

Let Γ ∈ C0 and (u, v) ∈ TyC(Γ), and consider

〈F (pΓ,(u,v)), FΓ·(u,v),(u◦pΓ,(u,v),v)(qΓ,(u,v))〉 ∈ HomD(F (Γ · (u, v)), F (Γ) · FΓ(u, v)).

If we call it w, Corollary 3.17 gives us the commutative diagram

F (Γ · (u, v))

F (Γ) · (F (u), F (v)) F (E)

F (Γ) F (U)

F (qΓ,(u,v))
w

F (pΓ,(u,v)) qF (Γ),(F (u),F (v))

pF (Γ),(F (u),F (v)) F (v)

F (u)

,

where the inner square is a pullback and w is the mediating morphism. However since F is
finitely continuous, the outer square is also a pullback, and thus w is an isomorphism.

Corollary 3.21. G defines a functor from the category of finitely complete categories and
finitely continuous functors to the category of (democratic) categories with families and weak
CwF morphisms.

Proof. Since the definitions on Proposition 3.20 are clearly functorial, G becomes a functor.

3.5 Presheaf CwFs
Another example of categories with families is any presheaf category, i.e. if C is a small
category, we will define a CwF structure on Ĉ. In order to do this properly, we need to
introduce the concept of a Grothendieck universe.

Definition 3.22. A Grothendieck universe is a set U such that
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(i) For all u ∈ U and for all v ∈ u it holds that v ∈ U .

(ii) For all u ∈ U it holds that P(u) ∈ U .

(iii) For all I ∈ U and for all f : I → U it holds that ⋃i∈I f(i) ∈ U .

To understand Grothendieck universes along with their motivation, imagine the following
’game’: You are given a collection of sets, and you must now, using only these sets, attempt
to construct a set that was not given to you. A Grothendieck universe is a collection of
sets, such that this task is impossible. In other words, if the only sets that existed were the
elements of a Grothendieck universe, this would be consistent with ZFC, possibly minus the
axiom of infinity.

There are two immediate examples of Grothendieck universes: the empty set and the
set of hereditarily finite sets (a set is hereditarily finite if it is finite and all its elements are
hereditarily finite). It turns out that these two examples are the only examples that ZFC
guarantees the existence of. The (informal) argument goes as follows: If a Grothendieck
universe contains any hereditarily finite set, it must contain them all (this requires a proof,
which we will not give here), and thus any Grothendieck universe but the above two, must
contain an infinite set. This however implies that its elements satisfy all the axioms of ZFC,
and thus ZFC cannot imply the existence of any set not an element of the Grothendieck
universe, including the universe. On the other hand, it not known that ZFC excludes the
existence of additional Grothendieck universes, and it is therefore often taken as an axiom
when using Grothendieck universes that at least one uncountable Grothendieck universe exists
if not infinitely many. We will however for now work with an arbitrary Grothendieck universe
and accept that if it is trivial, the theory becomes quite basic (though in Chapter 4, we will
not uncountable universes).

The interested reader may find more information on Grothendieck universes at45, but
here we will just state the following closure results:

Proposition 3.23. Let U be a Grothendieck universe. It then holds that

(i) If u ∈ U , and v ⊆ u, then u ∈ U .

(ii) If u, v ∈ U , then {u, v} ∈ U .

(iii) If I ∈ U , and f : I → U , then ⋂u∈I f(u) ∈ U .

(iv) If I ∈ U , and f : I → U , then ∑u∈I f(I) ∈ U .

(v) If I ∈ U , and f : I → U , then ∏u∈I f(u) ∈ U .

We will use the notation Set|U for the full subcategory of Set with objects in U . Using this,
we will impose a CwF structure in presheaf categories.

4https://ncatlab.org/nlab/show/Grothendieck+universe
5https://en.wikipedia.org/wiki/Grothendieck_universe
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Lemma 3.24. Let C be a small category, and let U be a Grothendieck universe. Then

Ty: Ĉop → Set

Γ 7→ HomCat

(∫
C

(Γ)op,Set|U
)

γ 7→ HomCat

(∫
IdC

(γ)op,Set|U
)

is a presheaf on Ĉ.

Proof. Since both
∫

C(Γ)op and Set|U are small, HomCat (
∫

C(Γ)op,Set|U ) is a set for all
Γ ∈ Ĉ0 (this is why we cannot use Set). Since functoriality is clear, the proof is complete.

Lemma 3.25. Let C be a small category, let U be a Grothendieck universe, and let Ty be
as in Lemma 3.24. Define for (Γ, A) ∈

∫
Ĉ(Ty)0 the set Tm(Γ, A) of all dependent functions

a ∈
∏

(X,x)∈
∫

C(Γ)0
A(X,x), where the first argument is written as a subscript, such that for

all X,Y ∈ C0, f ∈ HomC(Y,X), and x ∈ Γ(X) it holds that

(A(f, x) ◦ aX)(x) = (aY ◦ Γ(f))(x).

Define also for (Γ, A) ∈
∫

Ĉ(Ty)0, ∆ ∈ Ĉ0, γ ∈ HomĈ(∆,Γ), a ∈ Tm(Γ, A), and X ∈ C0

Tm(γ,A)(a)X = aX ◦ γX .

Then Tm is a presheaf on
∫

Ĉ(Ty).

Note that the first equation is almost the equation for a natural transformation, but because
x is also an argument for A, a cannot actually be realized as a natural transformation.

Proof. It holds for all (Γ, A) ∈
∫

Ĉ(Ty)0, ∆ ∈ Ĉ, γ ∈ HomĈ(∆,Γ), a ∈ Tm(Γ, A), andX ∈ C0
that

Tm(γ,A)(a)X = aX ◦ γX ∈
∏

x∈∆(X)
A(X, γX(x)) =

∏
x∈∆(X)

A[γ](X,x),

and furthermore for all Y ∈ C0, f ∈ HomC(Y,X), and x ∈ ∆(X) that

(A(f, x) ◦ Tm(γ,A)(a)X)(x) = (A(f, x) ◦ aX ◦ γX)(x)
= (aY ◦ Γ(f) ◦ γX)(x)
= (aY ◦ γY ◦∆(f))(x)
= (Tm(γ,A)(a)Y ◦∆(f))(x),

and thus Tm(γ,A)(a) ∈ Tm(∆, A[γ]). Since the action on morphisms is clearly functorial,
the proof is complete.
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Lemma 3.26. Let C be a small category, let U be a Grothendieck universe, and let Ty be
as in Lemma 3.24. Then for all (Γ, A) ∈

∫
Ĉ(Ty)0

Γ ·A : Cop → Set

X 7→
∑

x∈Γ(X)
A(X,x)

f 7→ ((x, r) 7→ (Γ(f)(x), A(f, x)(r))).

is a presheaf on C.

Proof. It holds for all X,Y ∈ C0, f : Y → X, and (x, r) ∈ (Γ · A)(X) that Γ(f)(x) ∈ Γ(Y )
and A(f, x)(r) ∈ A(Y,Γ(f)(x)), and thus (Γ · A)(f)(x, r) ∈ (Γ · A)(Y ). It holds for all
X,Y, Z ∈ C0, f : Y → X, g : Z → Y , and (x, r) ∈ (Γ ·A)(X) that

(Γ ·A)(f ◦ g)(x, r) = (Γ(f ◦ g)(x), A(f ◦ g, x)(r))
= ((Γ(g) ◦ Γ(f))(x), (A(g,Γ(f)(x)) ◦A(f, x))(r))
= (Γ ·A)(g)(Γ(f)(x), A(f, x)(r))
= ((Γ ·A)(g) ◦ (Γ ·A)(f))(x, r),

and that

(Γ ·A)(IdX)(x, r) = (Γ(IdX)(x), A(IdX , x)(r))
= (IdΓ(X)(x), IdA(X,x)(r))
= (x, r),

and thus Γ ·A is a fucntor.

Lemma 3.27. Let C be a small category, let U be a Grothendieck universe, let Ty be as
in Lemma 3.24, let Tm be as in Lemma 3.25, and let − · − be as in Lemma 3.26. For
(Γ, A) ∈

∫
Ĉ(Ty)0, ∆ ∈ Ĉ0, γ ∈ HomĈ(∆,Γ), a ∈ Tm(∆, A[γ]), and X ∈ C0 let

(Φ−1
Γ,A)∆(γ, a)X : ∆(X)→ (Γ ·A)(X)

x 7→ (γX(x), aX(x)),

where −1 is purely symbolic. Then Φ−1
Γ,A : SΓ,A → HomĈ(−,Γ ·A) is a natural isomorphism,

where SΓ,A is as in Definition 3.3.

Proof. Fix (Γ, A) ∈
∫

Ĉ(Ty)0. It holds for all ∆ ∈ Ĉ0, γ ∈ HomĈ(∆,Γ), a ∈ Tm(∆, A[γ]),
and X ∈ C0 that γX(x) ∈ Γ(X), and aX(x) ∈ A[γ](X,x) = A(X, γX(x)), and thus
(Φ−1

Γ,A)∆(γ, a)X is well-typed. It holds for all ∆ ∈ Ĉ0, γ ∈ HomĈ(∆,Γ), a ∈ Tm(∆, A[γ]),
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X,Y ∈ C0, f ∈ HomC(Y,X), and x ∈ ∆(X) that

((Γ ·A)(f) ◦ (Φ−1
Γ,A)∆(γ, a)X)(x) = (Γ ·A)(f)(γX(x), aX(x))

= ((Γ(f) ◦ γX)(x), (A(f, γX(x)) ◦ aX)(x))
= ((Γ(f) ◦ γX)(x), (A[γ](f, x) ◦ aX)(x))
= ((γY ◦∆(f))(x), (aY ◦∆(f))(x))
= (Φ−1

Γ,A)∆(γ, a)Y (∆(f)(x))
= ((Φ−1

Γ,A)∆(γ, a)Y ◦∆(f))(x),

and thus (Φ−1
Γ,A)∆(γ, a) : ∆ → Γ · A is a natural transformation. It holds for all ∆′,∆ ∈ Ĉ0,

δ ∈ HomĈ(∆′,∆), γ ∈ HomĈ(∆,Γ), a ∈ Tm(∆, A[γ]), and X ∈ C0 that

(HomĈ(δ,Γ ·A) ◦ (Φ−1
Γ,A)∆)(γ, a)X = HomĈ(δ,Γ ·A)X(x 7→ (γX(x), aX(x)))

= (x 7→ (γX(δX(x)), aX(δX(x))))
= (x 7→ ((γ ◦ δ)X(x), a[δ]X(x)))
= (Φ−1

Γ,A)∆′(γ ◦ δ, a[γ])X
= ((Φ−1

Γ,A)∆′ ◦ SΓ,A(δ))(γ, a)X ,

and thus Φ−1
Γ,A : SΓ,A → HomĈ(−,Γ, A) is a natural transformation. It is clear from the

definition of Φ−1
Γ,A that all of its components are injective. To see that they are also surjective,

let ∆ ∈ Ĉ and η ∈ HomĈ(∆,Γ ·A), and let for each X ∈ C0 and x ∈ ∆(X) γX(x) and aX(x)
be respectively the first and second coordinate of ηX(x) ∈ (Γ ·A)(X) = ∑

x∈Γ(X)A(X,x). It
then holds for all X,Y ∈ C0, f ∈ HomC(Y,X), and x ∈ ∆(X) that

((Γ(f) ◦ γX)(x), (A(f, x) ◦ aX)(x)) = (Γ ·A)(f)(γX(x), aX(x))
= ((Γ ·A)(f) · ηX)(x)
= (ηY ◦∆(f))(x)
= ((γY ◦∆(f))(x), (aY ◦∆(f))(x)),

and thus γ : ∆→ Γ is a natural transformation and a ∈ Tm(∆, A[γ]) is a term, and since for
all X ∈ C0 and x ∈ ∆(X)

(Φ−1
Γ,A)∆(γ, a)X(x) = (γX(x), aX(x)) = ηX(x),

this proves that Φ−1
Γ,A has surjective components and is thus a natural isomorphism.

Theorem 3.28. Let C be a small category, let U be a Grothendieck universe, let Ty be
as in Lemma 3.24, let Tm be as in Lemma 3.25, let − · − be as in Lemma 3.26, let Φ−1

−,−
be as in Lemma 3.27, and let 1Ĉ be the presheaf on C that is constantly 1 = {∅}. Then
(Ĉ, 1Ĉ,Ty,Tm,− · −,Φ−,−) is a CwF.

Given the above use of presheafs on categories of elements, now seems an appropriate to
prove the following equivalence of categories.

Theorem 3.29. Let C be a small posetal category, let U be a class satisfying the axioms
of a Grothendieck universe, and let Γ ∈ HomC(Cop,Set|U ). Then

Fun(Cop,Set|U )�Γ ' Fun
(∫

C
(Γ)op,Set|U

)
.
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Proof. We will first define a functor L : Fun(Cop,Set|U )�Γ→ Fun(
∫

C(Γ)op,Set|U ). For each
∆ ∈ Fun(Cop,Set|U )0 and γ ∈ HomFun(Cop,Set|U )(∆,Γ), we define

L(γ) :
∫

C
(Γ)op → Set|U

(c, x) 7→ γ−1
c ({x})

(d ≤ c, x) 7→ (r 7→ ∆(d ≤ c)(r)).

Since for (x, c) ∈
∫

C(Γ)op, γ−1
c ({x}) ⊆ ∆(c) ∈ U , the action on objects is well-defined

by Proposition 3.23. The action on morphisms is well-defined since for any d ≤ c ∈ C1,
x ∈ Γ(c), and r ∈ γ−1

c ({x}) it holds that

γd(L(γ)(d ≤ c, x)(r)) = γd(∆(d ≤ c)(r)) = Γ(d ≤ c)(γc(r)) = Γ(d ≤ c)(x),

and thus

L(γ)(d ≤ c, x)(r) ∈ γ−1
d ({Γ(d ≤ c)(x)}) = L(γ)(d,Γ(d ≤ c)(x)).

Functoriality is clear. For all ∆,∆′ ∈ Fun(Cop,Set|U )0, γ′ ∈ HomFun(Cop,Set|U )(∆′,Γ), γ ∈
HomFun(Cop,Set|U )(∆,Γ), δ ∈ HomFun(Cop,Set|U )�Γ

(γ′, γ), and (c, x) ∈
∫

C(Γ)0, we define

L(δ)(c,x) : L(γ′)(c, x)→ L(γ)(c, x)
r 7→ δc(r).

This is well-defined since for any r ∈ L(γ′)(c, x)

γc(L(δ)(c,x)(r)) = γc(δc(r)) = γ′c(r) = x,

which implies that

L(δ)(c,x)(r) ∈ γ−1
c ({x}) = L(γ)(c, x).

This is a natural transformation since for any d ≤ c ∈ C1, it holds that

(L(γ)(d ≤ c, x) ◦ L(δ)(c,x))(r) = L(γ)(d ≤ c, x)(δc(r))
= ∆(d ≤ c)(δc(r))
= δd(∆′(d ≤ c)(r))
= L(δ)(d,Γ(d≤c)(x))(∆′(d ≤ c)(r))
= (L(δ)(d,Γ(d≤c)(x)) ◦ L(γ′)(d ≤ c, x))(r).

Functoriality of L is clear.
We will next define a functor R : Fun(

∫
C(Γ)op,Set|U ) → Fun(Cop,Set|U )�Γ, but be-

fore that we will define a functor Σ: Fun(
∫

C(Γ)op,Set|U ) → Fun(Cop,Set|U ). For A ∈
Fun(

∫
C(Γ)op,Set|U )0, let

Σ(A) : Cop → Set|U
c 7→

∑
x∈Γ(c)

A(c, x)

d ≤ c 7→ ((x, r) 7→ (Γ(d ≤ c)(x), A(d ≤ c, x)(r))).
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Note that this is just Γ · A from Lemma 3.26, and thus it is a functor, and by Proposition
3.23 it goes to Set|U . For A,B ∈ Fun(

∫
C(Γ)op,Set|U )0, ϕ ∈ HomFun(

∫
C(Γ)op,Set|U )(A,B), and

c ∈ C0, we define

Σ(ϕ)c : Σ(A)(c)→ Σ(B)(c)
(x, r) 7→ (x, ϕ(c,x)(r)),

which is well-defined since for (x, r) ∈ Σ(A)(c), we have ϕ(c,x)(r) ∈ B(c, x), and thus
Σ(ϕ)(c,x)(x, r) ∈ Σ(B)(c). it holds for allA,B ∈ Fun(

∫
C(Γ)op,Set|U )0, ϕ ∈ HomFun(

∫
C(Γ)op,Set|U )(A,B),

d ≤ c ∈ C1, and (x, r) ∈ Σ(A)(c) that

(Σ(B)(d ≤ c) ◦ Σ(ϕ)c)(x, r) = Σ(B)(d ≤ c)(x, ϕ(c,x)(r))
= (Γ(d ≤ c)(x), (B(d ≤ c, x) ◦ ϕ(c,x))(r))
= (Γ(d ≤ c)(x), (ϕ(d,Γ(d≤c)(x)) ◦A(d ≤ c, x))(r))
= Σ(ϕ)d(Γ(d ≤ c)(x), A(d ≤ c, x)(r))
= (Σ(ϕ)d ◦ Σ(A)(d ≤ c))(x, r),

and thus Σ(ϕ) : Σ(A)→ Σ(B) is a natural transformation, which implies, since Σ’s action on
morphisms is clearly functorial, that Σ is a functor.

For each A ∈ Fun(
∫

C(Γ)op,Set|U ) and c ∈ C, we define

R(A)c : Σ(A)(c)→ Γ(c)
(x, r) 7→ x.

This is clearly a natural transformation (and is in fact pΓ,A). Define for allA,B ∈ Fun(
∫

C(Γ)op,Set|U )0
and ϕ ∈ HomFun(

∫
C(Γ)op,Set|U )(A,B) that R(ϕ) = Σ(ϕ). Since

(R(B) ◦R(ϕ))c(x, r) = R(B)c(x, ϕ(c, x)(r)) = x = R(A)c(x, r)

for all for c ∈ C0 and (x, r) ∈ Σ(A)(c), and thus R(ϕ) : R(A)→ R(B), implying that R is a
well-defined functor.

We will define a natural transformation η′ : Σ ◦L→ UΓ, where UΓ : Fun(Cop,Set|U )�Γ→
Fun(Cop,Set|U ) is the forgetful functor. Note first that for ∆ ∈ Fun(Cop,Set|U )0, γ ∈
HomFun(Cop,Set|U )(∆,Γ), and c ∈ C0 it holds that

(Σ ◦ L)(γ)(c) =
∑

x∈Γ(c)
L(γ)(c, x) =

∑
x∈Γ(c)

γ−1
c ({x})

and

UΓ(γ)(c) = ∆(c),

and we may thus define

(η′γ)c : (Σ ◦ L)(γ)(c)→ UΓ(γ)(c)
(x, r) 7→ r,

which is an isomorphism with inverse r 7→ (γc(r), r). It holds for ∆ ∈ Fun(Cop,Set|U )0,
γ ∈ HomFun(Cop,Set|U )(∆,Γ), d ≤ c ∈ C0, and (x, r) ∈ (Σ ◦ L)(γ)(c) that

((η′γ)d ◦ (Σ ◦ L)(γ)(d ≤ c))(x, r) = (η′γ)d(Γ(d ≤ c)(x), L(γ)(d ≤ c, x)(r))
= (η′γ)d(Γ(d ≤ c)(x),∆(d ≤ c)(r))
= ∆(d ≤ c)(r)
= UΓ(γ)(d ≤ c)(r)
= (UΓ(γ)(d ≤ c) ◦ (η′γ)c)(x, r),
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and thus η′γ : (Σ◦L)(γ)→ UΓ(γ) is a natural isomorphism. It holds for all ∆,∆′ ∈ Fun(Cop,Set|U )0,
γ ∈ HomFun(Cop,Set|U )(∆,Γ), γ′ ∈ HomFun(Cop,Set|U )(∆′,Γ), δ ∈ HomFun(Cop,Set|U )�Γ

(γ′, γ),
c ∈ C0, and (x, r) ∈ (Σ ◦ L)(γ)(c) that

(η′γ ◦ (Σ ◦ L)(δ))c(x, r) = (η′γ)c(x, L(δ)(c,x)(r))
= L(δ)(c,x)(r)
= δc(r)
= UΓ(δ)c(r)
= (UΓ(δ) ◦ η′γ′)c(x, r),

and thus η′ : Σ ◦ L→ UΓ is a natural isomorphism.
It holds for all ∆ ∈ Fun(Cop,Set|U )0, γ ∈ HomFun(Cop,Set|U )(∆,Γ), c ∈ C, and (x, r) ∈

(Σ ◦ L)(γ)(c) that

(IdFun(Cop,Set|U )�Γ
(γ) ◦ η′γ)c(x, r) = IdFun(Cop,Set|U )�Γ

(γ)c(r)

= γc(r)
= x

= (R ◦ L)(γ)c(x, r),

where the penultimate equality follows from r ∈ L(γ)(c, x) = γ−1
c ({x}), and thus η′γ ∈

HomFun(Cop,Set|U )�Γ
((R◦L)(γ), IdFun(Cop,Set|U )�Γ

(γ)), which implies that we may define a nat-
ural isomorphism η : R ◦ L→ IdFun(Cop,Set|U )�Γ

by ηγ = η′γ .
It holds for A ∈ Fun(

∫
C(Γ)op,Set|U )0 and (c, x) ∈

∫
C(Γ)0

(L ◦R)(A)(c, x) = R(A)−1
c ({x})

=

 ∑
y∈Γ(c)

A(c, y) 3 (z, r) 7→ z ∈ Γ(c)

−1

({x})

= {x} ×A(c, x),

and thus we may define for A ∈ Fun(
∫

C(Γ)op,Set|U ) and (c, x) ∈
∫

C(Γ)0 the isomorphism

(εA)(c,x) : A(c, x)→ (L ◦R)(A)(c, x)
r 7→ (x, r).

It holds for A ∈ Fun(
∫

C(Γ)op,Set|U ), (d ≤ c, x) ∈
∫

C(Γ)1, and r ∈ A(c, x) that

((εA)(d,Γ(d≤c)(x)) ◦A(d ≤ c, x))(r) = (Γ(d ≤ c)(x), A(d ≤ c, x)(r))
= Σ(A)(d ≤ c)(x, r)
= (L ◦R)(A)(d ≤ c, x)(x, r)
= ((L ◦R)(A)(d ≤ c, x) ◦ (εA)(c,x))(r),

and thus εA : A→ (L◦R)(A) is a natural isomorphism. It holds for allA,B ∈ Fun(
∫

C(Γ)op,Set|U )0,
ϕ ∈ HomFun(

∫
C(Γ)op,Set|U )(A,B), (c, x) ∈

∫
C(Γ)0, and r ∈ A(c, x) that

(εB ◦ IdFun(
∫

C(Γ)op,Set|U )(ϕ))(c,x)(r) = (εB)(c,x)(ϕ(c,x)(r))

= (x, ϕ(c,x)(r))
= R(ϕ)c(x, r)
= (L ◦R)(ϕ)(c,x)(x, r)
= ((L ◦R)(ϕ) ◦ εA)(c,x)(r),
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and thus ε : IdFun(
∫

C(Γ)op,C|u) → L ◦R is a natural isomorphism.
Combining all of the above we see that L and R form an equivalence of categories.

Corollary 3.30. Let C be a small posetal category, let U be a Grothendieck universe, and
consider Ĉ as a CwF via Theorem 3.28. It then holds for any Γ ∈ Ĉ0 that there exists Γ ∈
Ty(1) such that Γ ∼= 1 · Γ if and only if Γ is isomorphic to an element of Fun(Cop,Set|U )0.

Proof. Assume there exists Γ ∈ Ty(1) such that Γ ∼= 1 ·Γ. Using the notation from the proof
of Theorem 3.29 with Γ = 1, it holds that

1 · Γ = Σ(Γ) ∈ Fun(Cop,Set|U ),

which proves the first implication.
Assume instead that Γ is isomorphic to an element of Fun(Cop,Set|U )0, call it ∆. It then

holds again using the notation form the proof of Theorem 3.29 with Γ = 1 that

Γ ∼= ∆ ' (Σ ◦ L)(!∆) = 1 · L(!∆),

which proves the second implication.

Corollary 3.31. Let C be a small posetal category, let U be a non-empty Grothendieck
universe, and consider Ĉ as a CwF via Theorem 3.28. Then Fun(Cop,Set|U ) is a small
full democratic sub-CwF of Ĉ.

Proof. It holds that Fun(Cop,Set|U ) is a small full subcategory of Ĉ. It holds for any
Γ ∈ Fun(Cop,Set|U )0 and A ∈ Ty(Γ) using the notation of the proof of Theorem 3.29 that

Γ ·A = Σ(A) ∈ Fun(Cop,Set|U ),

and thus Fun(Cop,Set|U ) is a sub-CwF. It follows from Corollary 3.30 that it is democratic

It is worth noting that whilst we never used any properties of U other than it being a set
in the proof of Theorem 3.28, it is essential in the above corollaries that it be closed under
subsets and dependent pairs as this is used in Theorem 3.29. It is possible to add both Π-
types and Σ-types to presheaf CwFs, which also requires that U be a Grothendieck universe.
Details can be found at [6, Section 4.2].

3.6 Categories with Dependent Right Adjoints
We will now see how to add modal operators to CwFs.

Definition 3.32. A category with dependent right adjoints is a tuple (C, L,R,Ψ), where
C is a category with families, L : C → C is a functor, R : Ty ◦Lop → Ty is a natural
transformation, and Ψ: Tm ◦

∫
L(IdTy ◦Lop)op → Tm ◦

∫
IdCop (R)op is a natural isomorphism.
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Let us verify that Ψ is well-typed:
∫
takes the diagram

Cop Cop

Set

Lop

Ty ◦Lop Ty

IdTy ◦Lop

to the functor
∫
L(IdTy ◦Lop), which goes from

∫
C(Ty ◦Lop) to

∫
C(Ty), and thus Tm ◦

∫
L(IdTy ◦Lop)op

goes from
∫

C(Ty ◦Lop)op through
∫

C(Ty)op to Set.
∫
also takes the diagram

Cop Cop

Set

IdCop

Ty ◦Lop Ty

R

to the functor
∫

IdCop (R), which goes from
∫

C(Ty ◦Lop) to
∫

C(Ty), and thus Tm ◦
∫

IdCop (R)op

goes from
∫

C(Ty ◦Lop)op through
∫

C(Ty)op to Set. Since these two functors go from the
same category to the same category, Ψ is well-typed.

If we try to unpack the two isomorphic functors, we get for all Γ ∈ C0 and A ∈ Ty(L(Γ))(
Tm ◦

∫
L

(IdTy ◦Lop)op
)

(Γ, A) = Tm(L(Γ), A) (3.3)

and (
Tm ◦

∫
IdCop

(R)op
)

(Γ, A) = Tm(Γ, RΓ(A)), (3.4)

and thus Ψ(Γ,A) gives that

Tm(L(Γ), A) ∼= Tm(Γ, RΓ(A)).

Note that this looks at lot like the usual definition of adjoints, which is the reason behind
the name.

With regards to interpretation in terms of type theory, L and R model respectively µ and
�, since L acts on contexts like µ and R takes a type of L(Γ) to a type of Γ like �. Note
further the above isomorphism, which models the bijection between the terms of A in Γ,µ
and the terms of �A in Γ.

Theorem 3.33. Let C be a category with families, and let L a R be adjoint endofunctors
on C such that R can be extended to a weak CwF morphism. Then C can be made into a
category with dependent right adjoints with L as the endofunctor.
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Proof. Let η : IdC → R ◦ L be the unit of the adjunction, and let ε : L ◦ R → IdC be the
counit of the adjunction. We define the natural transformation R∗ : Ty ◦Lop → Ty as

R∗Γ : Ty(L(Γ))→ Ty(Γ)
A 7→ RL(Γ)(A)[ηΓ]

for Γ ∈ C0. Let us verify that this is well-typed: We have A ∈ Ty(L(Γ)), and since R− : Ty→
Ty ◦Rop, we have RL(Γ) : Ty(L(Γ))→ Ty(R(L(Γ))), implying that RL(Γ)(A) ∈ Ty(R(L(Γ))).
We have η : IdC → R◦L, and thus ηΓ : Γ→ R(L(Γ)), implying that Ty(ηΓ) : Ty(R(L(Γ)))→
Ty(Γ), which finally gives us that RL(Γ)[ηΓ] ∈ Ty(Γ).

Let Γ,∆ ∈ C0, and let γ ∈ HomC(∆,Γ). It then holds for all A ∈ Ty(L(Γ)) by Lemma
3.14(1) that

(Ty(γ) ◦R∗Γ)(A) = Ty(γ)(RL(Γ)(A)[ηΓ])
= RL(Γ)(A)[ηΓ][γ]
= RL(Γ)(A)[ηΓ ◦ γ]
= RL(Γ)(A)[R(L(γ)) ◦ η∆]
= RL(Γ)(A)[R(L(γ))][η∆]
= RL(∆)(A[L(γ)])[η∆]
= R∗∆(A[L(γ)])
= (R∗∆ ◦ Ty(L(γ)))(A),

and thus R∗ is natural.
We define the natural transformation

Ψ(Γ,A) : Tm
(∫

L
(IdTy ◦Lop)(Γ, A)

)
→ Tm

(∫
IdCop

(R∗)(Γ, A)
)

a 7→ RL(Γ),A(a)[ηΓ]

for (Γ, A) ∈
∫

C(Ty ◦Lop)0. Note that by equation (3.3) and (3.4), Ψ(Γ,A) actually goes from
Tm(L(Γ), A) to Tm(Γ, R∗Γ(A)), and by the same arguments as for R∗ the above definition is
well-typed.

Let (Γ, A), (∆, B) ∈
∫

C(Ty ◦Lop)0, and let (γ,A) ∈ Hom∫
C(Ty ◦Lop)((∆, B), (Γ, A)) (note

that A[γ] = B). It then holds for all a ∈ Tm(L(Γ), A) by Lemma 3.14(2) that((
Tm ◦

∫
IdCop

(R∗)op
)

(γ,A) ◦Ψ(Γ,A)

)
(a) = Tm(γ,RΓ(A))(RL(Γ),A(a)[ηΓ])

= RL(Γ),A(a)[ηΓ][γ]
= RL(Γ),A(a)[ηΓ ◦ γ]
= RL(Γ),A(a)[R(L(γ)) ◦ η∆]
= RL(Γ),A(a)[R(L(γ))][η∆]
= RL(∆),B(a[L(γ)])[η∆]
= Ψ(∆,B)(a[L(γ)])
= (Ψ(∆,B))(Tm(L(γ), A)(a))

=
(

Ψ(∆,B) ◦
(

Tm ◦
∫
L

(IdTy ◦Lop)
)

(γ,A)
)

(a)

and thus Ψ is natural.
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Let νΓ,A : R(Γ) ·RΓ(A)→ R(Γ ·A) be the inverse of 〈R(pΓ,A), RΓ·A,A[pΓ,A](qΓ,A)〉 for each
(Γ, A) ∈

∫
C(Ty)0. We define for each (Γ, A) ∈

∫
C(Ty ◦Lop)0

Ω(Γ,A) : Tm
(∫

IdCop
(R∗)(Γ, A)

)
→ Tm

(∫
L

(IdTy ◦Lop)(Γ, A)
)

b 7→ qL(Γ),A[εL(Γ)·A ◦ L(νL(Γ),A ◦ 〈ηΓ, b〉)].

As with Ψ, equations (3.3) and (3.4) give that Ω(Γ,A) goes from Tm(Γ, R∗Γ(A)) to Tm(L(Γ), A).
We have that ηΓ : Γ → R(L(Γ)) and b ∈ Tm(Γ, R∗Γ(A)) = Tm(Γ, RL(Γ)(A)[ηΓ]), and thus
〈ηΓ, b〉 : Γ→ R(L(Γ)) ·RL(Γ)(A) is well-defined. Since νL(Γ),A : R(L(Γ)) ·RL(Γ)(A)→ R(L(Γ) ·
A), we have νL(Γ),A ◦ 〈ηΓ, b〉 : Γ → R(L(Γ) · A), implying that L(νL(Γ),A ◦ 〈ηΓ, b〉) : L(Γ) →
L(R(L(Γ ·A)). Since εL(Γ)·A : L(R(L(Γ) ·A))→ L(Γ) ·A, this gives that εL(Γ)·A ◦L(νL(Γ),A ◦
〈ηΓ, b〉) : L(Γ) → L(Γ) · A, and thus since qL(Γ),A ∈ Tm(L(Γ) · A,A[pL(Γ),A]), we have
qL(Γ),A[εL(Γ)·A ◦ L(νL(Γ),A ◦ 〈ηΓ, b〉)] ∈ Tm(L(Γ), A[pL(Γ),A][εL(Γ)·A ◦ L(νL(Γ),A ◦ 〈ηΓ, b〉)]). It
holds by Lemma 3.14(3) that

pL(Γ),A ◦ εL(Γ)·A ◦ L(νL(Γ),A ◦ 〈ηΓ, b〉) = εL(Γ) ◦ L(R(pL(Γ),A)) ◦ L(νL(Γ),A ◦ 〈ηΓ, b〉)
= εL(Γ) ◦ L(R(pL(Γ),A) ◦ νL(Γ),A ◦ 〈ηΓ, b〉)
= εL(Γ) ◦ L(pR(L(Γ)),RL(Γ)(A) ◦ 〈ηΓ, b〉)
= εL(Γ) ◦ L(ηΓ)
= IdL(Γ),

and thus qL(Γ),A[εL(Γ)·A◦L(νL(Γ),A◦〈ηΓ, b〉)] ∈ Tm(L(Γ), A) as intended, implying that Ω(Γ,A)
is well-typed.

It holds for all (Γ, A) ∈
∫

C(Ty ◦Lop)0, a ∈ Tm(L(Γ), A), and b ∈ Tm(Γ, R∗Γ(a)) by Lemma
3.9 and Lemma 3.14(4) that

(Ω(Γ,A) ◦Ψ(Γ,A))(a) = Ω(Γ,A)(RL(Γ),A(a)[ηΓ])
= qL(Γ),A[εL(Γ)·A ◦ L(νL(Γ),A ◦ 〈ηΓ, RL(Γ),A(a)[ηΓ]〉)]
= qL(Γ),A[εL(Γ)·A ◦ L(νL(Γ),A ◦ 〈IdR(L(Γ)), RL(Γ),A(a)〉 ◦ ηΓ)]
= qL(Γ),A[εL(Γ)·A ◦ L(νL(Γ),A ◦ 〈R(IdL(Γ)), RL(Γ),A(a)〉 ◦ ηΓ)]
= qL(Γ),A[εL(Γ)·A ◦ L(R(〈IdL(Γ), a〉) ◦ ηΓ)]
= qL(Γ),A[εL(Γ)·A ◦ L(R(〈IdL(Γ), a〉)) ◦ L(ηΓ)]
= qL(Γ),A[〈IdL(Γ), a〉 ◦ εL(Γ) ◦ L(ηΓ)]
= qL(Γ),A[〈IdL(Γ), a〉]
= a,
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and by Lemma 3.14(2,4), Lemma 3.9, and Examples 3.8 that

(Ψ(Γ,A) ◦ Ω(Γ,A))(b) = Ψ(Γ,A)(qL(Γ),A[εL(Γ)·A ◦ L(νL(Γ),A ◦ 〈ηΓ, b〉)])
= RL(Γ),A(qL(Γ),A[εL(Γ)·A ◦ L(νL(Γ),A ◦ 〈ηΓ, b〉)])[ηΓ]
= RL(Γ)·A,A[pL(Γ),A](qL(Γ),A)[R(εL(Γ)·A ◦ L(νL(Γ),A ◦ 〈ηΓ, b〉)) ◦ ηΓ]
= RL(Γ)·A,A[pL(Γ),A](qL(Γ),A)[R(εL(Γ)·A) ◦R(L(νL(Γ),A ◦ 〈ηΓ, b〉)) ◦ ηΓ]
= RL(Γ)·A,A[pL(Γ),A](qL(Γ),A)[R(εL(Γ)·A) ◦ ηR(L(Γ)·A) ◦ νL(Γ),A ◦ 〈ηΓ, b〉]
= RL(Γ)·A,A[pL(Γ),A](qL(Γ),A)[νL(Γ),A ◦ 〈ηΓ, b〉]
= qR(L(Γ)),RL(Γ)(A)[〈R(pL(Γ),A), RL(Γ)·A,A[pL(Γ),A](qL(Γ),A)〉][νL(Γ),A ◦ 〈ηΓ, b〉]
= qR(L(Γ)),RL(Γ)(A)[〈R(pL(Γ),A) ◦ νL(Γ),A, RL(Γ)·A,A[pL(Γ),A](qL(Γ),A) ◦ νL(Γ),A〉 ◦ 〈ηΓ, b〉]
= qR(L(Γ)),RL(Γ)(A)[〈pR(L(Γ)),RL(Γ)(A), qR(L(Γ)),RL(Γ)(A)〉 ◦ 〈ηΓ, b〉]
= qR(L(Γ)),RL(Γ)(A)[〈ηΓ, b〉]
= b,

and thus Ψ is a linear isomoprhism.

Corollary 3.34. Let C be a small finitely complete category, and let L a R be adjoint
endofunctors on C. Then C can be given the structure of a category with dependent right
adjoint with L as the endofunctor.

Proof. Since R is a right adjoint, it is continuous, and thus by Proposition 3.20 it extends
to a weak CwF morphism, implying by Theorem 3.33 that C can be given the structure of a
CwDRA.

Since we can most certainly find a small finitely complete category and an endoajunction on
it, this tells us that CwDRAs indeed do exist and are in fact quite plentiful. The simplest
example we can construct with the above corollary uses the adjunction IdC a IdC, but this
just makes the dependent right adjoint the identity, which we could probably have figured
out was an option by just looking at the definition. Instead we will consider a slightly more
interesting example:

Example 3.35. Let C be a small finitely complete category with exponentials, let Λ ∈ C, and
consider the adjunction Λ×− a −Λ. Since this notation does not work well with subscripts,
we will be sometimes using L and R instead. First, the extension of −Λ to a weak CwF
morphism using Proposition 3.20: We define for Γ ∈ C0 that

RΓ : Ty(Γ)→ Ty
(
ΓΛ
)

(u, v) 7→
(
uΛ, vΛ

)
and for (Γ, (u, v)) ∈

∫
C(Ty)0 that

RΓ,(u,v) : Tm(Γ, (u, v))→ Tm
(
ΓΛ,

(
uΛ, vΛ

))
a 7→ aΛ.
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For Γ ∈ C0, the component at Γ of the unit of the adjunction is the exponential transpose
ηΓ = ĨdΛ×Γ : Γ→ (Λ× Γ)Λ, i.e. we have the diagram

Λ× (Λ× Γ)Λ Λ× Γ

Λ× Γ

ε

IdΛ×ĨdΛ×Γ IdΛ×Γ

,

where ε is the evaluation morphism (and the component at Γ of the counit). Note the special
property of ĨdΛ×Γ that uΛ ◦ ĨdΛ×Γ = ũ for all u : Λ× Γ→ U . This leads to the definitions

R∗Γ : Ty(Λ× Γ)→ Ty(Γ)
(u, v) 7→ RL(Γ)(u, v)[ηΓ]

=
(
uΛ, vΛ

)
[ηΓ]

=
(
uΛ ◦ ηΓ, v

Λ
)

=
(
ũ, vΛ

)
for Γ ∈ C0 and

Ψ(Γ,(u,v)) : Tm(Λ× Γ, (u, v))→ Tm
(
Γ,
(
ũ, vΛ

))
a 7→ RL(Γ),(u,v)(a)[ηΓ]

= aΛ[ηΓ]
= aΛ ◦ ηΓ

= ã

for (Γ, (u, v)) ∈
∫

C(Ty ◦Lop)0.
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Chapter 4

The Topos of Trees

We will in this chapter focus our attention to the topos of trees. If we let ω denote the posetal
category constructed from the natural numbers (excluding 0) with the usual total order, we
can then define the topos of trees as S = ω̂ = Setωop . An object Γ ∈ S0 can be drawn as the
diagram

Γ(1) Γ(2) Γ(3) · · ·Γ(1≤2) Γ(2≤3) Γ(3≤4) ,

and for ∆ ∈ S0 a morphism γ ∈ HomS(∆,Γ) can be drawn as the commutative diagram

∆(1) ∆(2) ∆(3) · · ·

Γ(1) Γ(2) Γ(3) · · ·

γ1

∆(1≤2)

γ2

∆(2≤3)

γ3

∆(3≤4)

Γ(1≤2) Γ(2≤3) Γ(3≤4)

.

Notation 4.1. Let Γ ∈ S0, let i, j ∈ ω0 with j ≤ i, and let x ∈ X(i). We then define

x|j = X(j ≤ i)(x).

This notation is potentially ambiguous, as x might be an element of Γ(i) for several different
i’s, but the meaning should be clear from context in most situations, and if it is not, we will
default back to Γ(j ≤ i)(x).

4.1 Subobjects
Since S is a presheaf category, it is cartesian closed (with pointwise limits), cocomplete (with
pointwise colimits) and has subobject classifier. Before we describe the subobject classifier,
we will give a description of the subobjects in S.

Lemma 4.2. Let Γ,∆ ∈ S0, and let µ : ∆→ Γ. Then µ is monic if and only if µi is monic
for all i ∈ ω0, and in the confirming case there exist uniquely determined subsets Λ(i) ⊆ Γ(i)
for i ∈ ω0 with Γ(j ≤ i)(Λ(i)) ⊆ Λ(j) for all (j ≤ i) ∈ ω1, such that the inclusion morphism
of
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Λ(1) Λ(2) Λ(3) · · ·Γ(1≤2) Γ(2≤3) Γ(3≤4)

into Γ is isomorphic to µ.

Proof. The first statement is known since ωop has pullbacks. Let Λ(i) = µi(∆(i)) for i ∈ ωi.
It holds for i, j ∈ ωi with j ≤ i, x ∈ Λ(i), and y ∈ µ−1

i (a) that

Γ(j ≤ i)(x) = (Γ(j ≤ i) ◦ µi)(y) = (µj ◦∆(j ≤ i))(y) ∈ Λ(j),

and thus Γ(j ≤ i)(Λ(i)) ⊆ Λ(j). The definition of Λ gives the diagram

Γ

∆ Λ

µ

µ

ι ,

where ι is the inclusion morphism, and µ : ∆ → Λ is the corestriction of µ to Λ. Since the
components of µ : ∆ → Λ are monic (i.e. injective) by the first statement, and they are
surjective by the definition of Λ, µ : ∆→ Λ is an isomorphism, proving that µ : ∆→ Γ and ι
are isomorphic.

Let ιΛ : Λ→ Γ and ιB : B → Γ be inclusion morphisms isomorphic via f : Λ→ B. It then
holds for all i ∈ ω0 and x ∈ Λ(i) that

a = (ιΛ)i(x) = ((ιB)i ◦ fi)(x) = fi(x),

implying that f is the identity, and thus ιΛ = ιB, proving the uniqueness of Λ.

From now on we will, when we speak of subobjects, we will assume they are inclusion morph-
isms, and we will consider appropriate subsets as subobjects via their inclusion morphism.

Proposition 4.3. Let Ω ∈ S0 be

{0, 1} {0, 1, 2} {0, 1, 2, 3} · · ·min(1,−) min(2,−) min(3,−) ,

let true : 1→ Ω, where 1 is the terminal object, be

1 1 1 · · ·

{0, 1} {0, 1, 2} {0, 1, 2, 3} · · ·

1

!

2

!

3

!

min(1,−) min(2,−) min(3,−)
,
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and define for each subobject of Γ ∈ S0, Λ, the morphism χΛ : Γ → Ω with components
defined as

(χΛ)i : Γ(i)→ Ω(i)

x 7→
{

max{j ∈ Ω(i) \{0} : x|j ∈ Λ(j)} ∃j ∈ Ω(i) \{0}(x|j ∈ Λ(j))
0 ∀j ∈ Ω(i) \{0}(x|j /∈ Λ(j))

for i ∈ ω0. This defines a subobject classifier in S.

Proof. It is clear that true is a natural transformation. Let i, j ∈ ω0 with j ≤ i, and
let x ∈ Γ(i). In order to prove that χΛ is a natural transformation, we must prove that
(χΛ)j(x|j) = (χΛ)i(x)|j . Assume first that (χΛ)i(x) = 0. Then (χΛ)i(x)|j = 0, and x|k /∈ Λ(k)
for all k ∈ Ω(k) \{0}, and thus (χΛ)j(x|j) = 0, implying the equality. Assume next that
(χΛ)i(x) ∈ Ω(j) \{0}. This implies that (χΛ)i(x)|j = (χΛ)i(x), x|(χΛ)i(x) ∈ Λ((χΛ)i(x)),
and x|k /∈ Λ(k) for all k ∈ Ω(i) \Ω((χΛ)i(x)), and thus (χΛ)j(x|j) = (χΛ)i(x), implying the
equality. Assume last that (χΛ)i(x) ∈ Ω(i) \Ω(j). This implies that (χΛ)i(x)|j = j, and
x|j ∈ Λ(j) by the naturality of the inclusion morphism, and thus (χΛ)j(x|j) = j, implying
the equality. This proves that χΛ is a natural transformation.

In order to prove that this is a subobject classifier, we must prove that the diagram

Λ 1

Γ Ω

!Λ

ι true

χΛ

is a pullback diagram. It holds for all i ∈ ω0 and a ∈ Λ(i) that (true ◦!Λ)i(a) = i and
that (χΛ ◦ ι)i(a) = (χΛ)i(a) = i, and thus the above diagram commutes. Let ∆ ∈ S0, let
γ : ∆ → Γ, and assume that χΛ ◦ γ = true ◦!∆. Since for any i ∈ ω0 and y ∈ ∆(i), we
have (true ◦!∆)i(y) = i, we also have (χΛ ◦ γ)i(y) = i, and thus γi(y) ∈ Γ(i). This implies
that γ factors through ι with some δ : ∆ → Λ, and since ι is monic, this δ is unique. By
the uniqueness of !∆, we also have that !Λ ◦ δ =!∆, and thus δ is the mediating morphism,
implying that the diagram is indeed a pullback diagram.

There is an important endomorphism . : Ω→ Ω

{0, 1} {0, 1, 2} {0, 1, 2, 3} · · ·

{0, 1} {0, 1, 2} {0, 1, 2, 3} · · ·

min(0,−)+1

min(1,−)

min(1,−)+1

min(2,−)

min(2,−)+1

min(3,−)

min(1,−) min(2,−) min(3,−)

.

Since Ω is a subobject classifier, there exists a natural isomorphism θ : SubSub → HomS(−,Ω),
and we may thus define the natural transformation . = θ−1 ◦HomS(−, .) ◦ θ : SubS → SubS
(different from . : Ω → Ω), where SubS : Sop → Set is the subobject functor using the rep-
resentatives from Lemma 4.2. We thus have for each Γ ∈ S0 and Λ ∈ SubS(Γ) the pullback
diagram
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.Γ(Λ) 1

Γ Ω

!.Γ(Λ)

ι true

.◦χΛ

Proposition 4.4. Let Γ ∈ S0, and let Λ ∈ SubS(Γ). Then

Γ(1) Γ(1 ≤ 2)−1(Λ(1)) Γ(2 ≤ 3)−1(Λ(2)) · · ·Γ(1≤2) Γ(2≤3) Γ(3≤4)

is equal to .Γ(Λ).

Proof. Call the subobject Λ′. It is sufficient to prove that χΛ′ = . ◦ χΛ. Fix i ∈ ω0 and
x ∈ Λ′(i), and let j = (χλ)i(x). If j = 0 we have x|1 ∈ Γ(1) = Λ′(1), and thus (χΛ′)i(x) ≥ 1.
If 0 < j < i we have (x|j+1)|j = x|j ∈ Λ(i), and thus x|j+1 ∈ Γ(j ≤ j+1)−1(Λ(j)) = Λ′(j+1),
and thus (χΛ′)i(x) ≥ j+1. If j+1 < i and (χΛ′)i(x) > j+1 we have x|j+2 ∈ Λ′(j+2) = Γ(j+
1 ≤ j+2)−1(Λ(j+1)), and thus x|j+1 = (x|j+2)|j+1 ∈ Λ(j+1), which is a contradiction, and
thus (χΛ′)(x) = j+1. If j+1 = i, then j+1 ≤ (χΛ′)i(x) ≤ i, implying that (χΛ′)i(x) = j+1.
If j = i = 1 we have x ∈ Γ(1) = Λ′(1), implying that (χΛ′)i(x) = i. If j = i > 1 we have
x ∈ Λ(i), implying x|i−1 ∈ Λ(i−1), and thus x ∈ Γ(i−1 ≤ i)−1(Λ(i−1)) = Λ′(i), implying that
(χΛ′)i(x) = i. Putting all of it together we see that (χΛ)i(x) = min(i−1, j)+1 = (.◦χΛ)i(x),
which completes the proof.

4.2 The Later Modality
Of particular interest in this context is a particular endofunctor on S, called the later modality,
which is denoted I. It takes Γ ∈ S to

1 Γ(1) Γ(2) · · ·
!Γ(1) Γ(1≤2) Γ(2≤3) ,

and for ∆ ∈ S it takes γ ∈ HomS(∆,Γ) to

1 ∆(1) ∆(2) · · ·

1 Γ(1) Γ(2) · · ·

!1

!∆(1)

γ1

∆(1≤2)

γ2

∆(2≤3)

!Γ(1) Γ(1≤2) Γ(2≤3)

.
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Proposition 4.5. Let U be a non-empty Grothendieck universe, and consider S as a cat-
egory with families via Theorem 3.28. Then I extends to a weak CwF morphism.

Proof. Note first that I(1) = 1.
For Γ ∈ S0 and A ∈ Ty(Γ), define

IΓ(A) :
∫
ω
(I(Γ))op → Set|U

(i, x) 7→
{
A(i− 1, x) i > 1
1 i = 1

(j ≤ i, x) 7→
{
A(j − 1 ≤ i− 1, x) j > 1
!IΓ(A)(i,x) j = 1

,

which is clearly a functor. It holds for all Γ,∆ ∈ S0, γ ∈ HomS(∆,Γ), A ∈ Ty(Γ), (i, x) ∈∫
ω(I(∆))0, and j ≤ i ∈ ω1 if i > 1 that

(I∆ ◦ Ty(γ))(A)(i, x) = Ty(γ)(A)(i− 1, x)
= A(i− 1, γi−1(x))
= A(i− 1,I(γ)i(x))
=IΓ(A)(i,I(γ)i(x))
= ((Ty ◦ I)(γ)◦ IΓ)(A)(i, x),

if j > 1 that

(I∆ ◦ Ty(γ))(A)(j ≤ i, x) = Ty(γ)(A)(j − 1 ≤ i− 1, x)
= A(j − 1 ≤ i− 1, γi−1(x))
= A(j − 1 ≤ i− 1,I(γ)i(x))
=IΓ(A)(j ≤ i,I(γ)i(x))
= ((Ty ◦ I)(γ)◦ IΓ)(A)(j ≤ i, x),

if i = 1 that

(I∆ ◦ Ty(γ))(A)(i, x) = 1
=IΓ(A)(i,I(γ)i(x))
= ((Ty ◦ I)(γ)◦ IΓ)(A)(i, x),

and if j = 1 that

(I∆ ◦ Ty(γ))(A)(j ≤ i, x) =!(I∆◦Ty(γ))(A)(i,x)

=!((Ty ◦I)(γ)◦IΓ)(A)(i,x)

=!(IΓ(A)(j≤i,I(γ)i(x)))

=IΓ(A)(j ≤ i,I(γ)i(x))
= ((Ty ◦ I)(γ)◦ IΓ)(A)(j ≤ i, x),

and thus I− : Ty→ Ty ◦ I is a natural transformation.
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For Γ ∈ S0, A ∈ Ty(Γ), a ∈ Tm(Γ, A), and i ∈ ω0, define

IΓ,A(a)i : I(Γ)(i)→IΓ(A)(i,−)

x 7→
{
ai−1(x) i > 1
0 i = 1

.

If i > 1, then x ∈I (Γ)(i) = Γ(i − 1), and thus ai−1(x) ∈ A(i − 1, x) =I Γ(A)(i, x) is well-
defined, and if instead i = 1 then 0 ∈ {0} = 1 =I Γ(A)(i, x), implying that I Γ,A(a)i is
well-defined. It holds for all Γ ∈ S0, A ∈ Ty(Γ), a ∈ Tm(Γ, A), j ≤ i, and x ∈I (Γ)(i) if
j > 1 that

(IΓ(A)(j ≤ i, x)◦ IΓ,A(a)i)(x) = (A(j − 1 ≤ i− 1, x) ◦ ai−1)(x))
= (aj−1 ◦ Γ(j − 1 ≤ i− 1))(x)
= (IΓ,A(a)j◦ I(Γ)(j ≤ i))(x),

and if j = 1 that

(IΓ(A)(j ≤ i, x)◦ IΓ,A(a)i)(x) =!IΓ(A)(i,x)(IΓ,A(a)i)(x)
= 0
= (IΓ,A(a)j◦ I(Γ)(j ≤ i))(x),

and thus I Γ,A(a) ∈ Tm(I (Γ),I Γ(A)). It holds for all Γ,∆ ∈ S0, A ∈ Ty(Γ), γ ∈
HomS(∆,Γ), a ∈ Tm(Γ, A), i ∈ ω0, and x ∈I(∆)(i) if i > 1 that

(I∆,A[γ] ◦ Tm(γ,A))(a)i(x) = Tm(γ,A)(a)i−1(x)
= (ai−1 ◦ γi−1)(x)
= (IΓ,A(a)i◦ I(γ)i)(x)
= (Tm(I(γ),IΓ(A))◦ IΓ,A)(a)i(x)

=
((

Tm ◦
∫
I
(I−)op

)
(γ,A)◦ IΓ,A

)
(a)i(x),

and if i = 1 that

(I∆,A[γ] ◦ Tm(γ,A))(a)i(x) = 0
= (IΓ,A(a)i◦ I(γ)i)(x)
= (Tm(I(γ),IΓ(A))◦ IΓ,A)(a)i(x)

=
((

Tm ◦
∫
I
(I−)op

)
(γ,A)◦ II,A

)
(a)i(x),

and thus I−,− : Tm→ Tm ◦
∫
I(I−)op is a natural transformation.

Let (Γ, A) ∈
∫

S(Ty)0. We remind ourselves that

Γ ·A : ωop → Set

i 7→
∑
x∈Γ(i)

A(i, x)

j ≤ i 7→ ((x, r) 7→ (Γ(j ≤ i)(x), A(j ≤ i, x)(r))),

and that for ∆ ∈ S0, γ ∈ HomS(∆,Γ), a ∈ Tm(∆, A[γ]), and i ∈ ω0

(Φ−1
Γ,A)∆(γ, a)i : ∆(i)→ (Γ ·A)(i)

x 7→ (γi(x), ai(x)).
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By the proof of Lemma 3.27, it holds for i ∈ ω0 and (x, r) ∈ (Γ · A)(i) that (pΓ,A)i(x, r) and
(qΓ,A)i(x, r) are respectively the first and second coordinate of (IdΓ·A)i(x, r), i.e.

(pΓ,A)i : (Γ ·A)(i)→ Γ(i) (qΓ,A)i : (Γ ·A)(i)→ A[pΓ,A](i,−)
(x, r) 7→ x, (x, r) 7→ r,

where we note that A[pΓ,A](i, (x, r)) = A(i, pΓ,A(x, r)) = A(i, x). This implies for i ∈ ω0 that

I(pΓ,A)i : I(Γ ·A)(i)→I(Γ)(i) IΓ·A,A[pΓ,A](qΓ,A)i : I(Γ ·A)(i)→IΓ·A(A[pΓ,A])(i,−)
(x, r) 7→ x (x, r) 7→ r

0 7→ 0, 0 7→ 0,

where we note that by Lemma 3.14(i) that

IΓ·A(A[pΓ,A]) =IΓ(A)[I(pΓ,A)],

and thus it holds for i ∈ ω0 that

〈I(pΓ,A),IΓ·A,A[pΓ,A](qΓ,A)〉i : I(Γ ·A)(i)→ (I(Γ)· IΓ(A))(i)
(x, r) 7→ (I(pΓ,A)(x, r),IΓ·A,A[pΓ,A](x, r)) = (x, r)

0 7→ (I(pΓ,A)(0),IΓ·A,A[pΓ,A](0)) = (0, 0),

which is an isomorphism, and thus I extends to a weak CwF-morphism.

Proposition 4.6. Define the functor J : S → S by J (Γ)(i) = Γ(i + 1), J (Γ)(j ≤ i) =
Γ(j + 1 ≤ i+ 1), and J (γ)i = γi+1 for Γ,∆ ∈ S0, γ ∈ HomS(∆,Γ), and j ≤ i ∈ ω1. Then
JaI.

Proof. Define for Γ,∆ ∈ S0 ϕ∆,Γ : HomS(J (∆),Γ)→ HomS(∆,I(Γ)) by taking

∆(2) ∆(3) ∆(4) · · ·

Γ(1) Γ(2) Γ(3) · · ·

γ1

∆(2≤3)

γ2

∆(3≤4)

γ3

∆(4≤5)

Γ(1≤2) Γ(2≤3) Γ(3≤4)

.

to

∆(1) ∆(2) ∆(3) · · ·

1 Γ(1) Γ(2) · · ·

!1

∆(1≤2)

γ1

∆(2≤3)

γ2

∆(3≤4)

!Γ(1) Γ(1≤2) Γ(2≤3)

.

Since this is clearly both an isomorphism and natural in ∆ and Γ, we have a natural iso-
morphism, implying the adjunction.
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Corollary 4.7. Let U be a non-empty Grothendieck universe, and consider S as a cat-
egory with families via Theorem 3.28. Then the CwF-structure on S extends to a CwDRA-
structure with J as the endofunctor.

Proof. This follows from Proposition 4.5, Proposition 4.6, and Theorem 3.33.

Let us explore how this CwDRA looks by following the definitions in Theorem 3.33. If we let
ϕ : HomS(J (−),−)→ HomS(−,I(−)) as in Proposition 4.6, then the component at Γ ∈ S0
of the unit of the adjunction is given by

(ηΓ)i = ϕΓ,J(Γ)(IdJ(Γ))i : Γ(i)→I(J (Γ))(i)

x 7→
{
x i > 1
0 i = 1

.

We then get for Γ ∈ S0 that

I∗Γ : Ty(J (Γ))→ Ty(Γ)
A 7→IJ(Γ)(A)[ηΓ],

and thus it holds for A ∈ Ty(J (Γ)), j ≤ i ∈ ω1, and x ∈ Γ(i) that

I∗Γ(A)(i, x) =IJ(Γ)(A)[ηΓ](i, x)
=IJ(Γ)(A)(i, (ηΓ)i(x))

=
{
A(i− 1, x) i > 1
1 i = 1

and

I∗Γ(A)(j ≤ i, x) =IJ(Γ)(A)[ηΓ](j ≤ i, x)
=IJ(Γ)(A)(j ≤ i, (ηΓ)i(x))

=


A(j − 1 ≤ i− 1, x) j > 1
!A(i−1,x) i > j = 1
!1 i = 1

.

Of relation to Iwe also define for each Γ ∈ S0 the morphism nextΓ ∈ HomS(Γ,I(Γ)) by

Γ(1) Γ(2) Γ(3) · · ·

1 Γ(1) Γ(2) · · ·

!Γ(1)

Γ(1≤2)

Γ(1≤2)

Γ(2≤3)

Γ(2≤3)

Γ(3≤4)

!Γ(1) Γ(1≤2) Γ(2≤3)

,

which is trivially commutative.

Lemma 4.8. next : IdS →I is a natural transformation.
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Proof. It holds for all Γ,∆ ∈ S0, γ ∈ HomS(∆,Γ), i ∈ ω0, and x ∈ Γ(i) if i > 1 that

(nextΓ ◦ IdS(γ))i(Γ(i− 1 ≤ i) ◦ γi
= γi−1 ◦∆(i− 1 ≤ i)
= (I(γ) ◦ next∆)i,

and if i = 1 that

(nextΓ ◦ IdS(γ))i =!Γ(1) ◦ γ1

=!∆(1)

=!1◦!∆(1)

= (I(γ) ◦ next∆)i,

and thus next : IdS →I is a natural transformation.

4.3 Contractive Morphisms and Fixpoints
Banach’s fixed-pint theorem is an important theorem for metric spaces stating that any
contractive function on a complete metric space has a unique fixpoint. We will here see a
similar result in S, stating that any contractive morphism has a uniquely determined fixpoint.

Definition 4.9. Let Γ,∆ ∈ S0, and let γ ∈ HomS(∆,Γ). We will then say that γ is
contractive if there exists a δ ∈ HomS(I(∆),Γ) such that γ = δ ◦ next∆, and we will call δ
a witness of (the contractivity) of γ.

Definition 4.10. Let Γ,∆,Λ ∈ S0, and let γ ∈ HomS(∆ × Λ,Γ). We will then say that
γ is contractive in the first variable if there exists a δ ∈ HomS(I (∆) × Λ,Γ) such that
γ = δ ◦ (next∆× IdΛ), and we will cal δ a witness of(the contractivity) of γ.

There is in general no guarantee that witnesses be unique as nextΓ is not generally epic.
However, if Γ(i ≤ i + 1) is surjective for all i ∈ ω0 (Γ is then said to be total), nextΓ is an
epimorphism, and thus witnesses do become unique1.

Let us briefly remind ourselves about exponentials in SetCop for a small category C. It
holds by the Yoneda Lemma for any X,Y ∈ SetCop

0 and C ∈ C0 that

Y X(C) ∼= HomSetCop
(
HomC(−, C), Y X

)
∼= HomSetCop (HomC(−, C)×X,Y ),

and one therefore generally defines

Y X : Cop → Set
C 7→ HomSetCop (HomC(−, C)×X,Y )
f 7→ HomSetCop (HomC(−, f)× IdX , Y ),

1Interestingly, it can also be proven that each Γ(i ≤ i + 1) being injective also guarantess uniqueness of
witnesses. Given that the first i components of the witness are defined, can you determine the exact condition
for component i + 1 being uniquely defined?

45



which is indeed an exponential. ForX,Y,A ∈ SetCop the evaluation morphism ε ∈ HomSetCop (Y X×
X,Y ) has component at C ∈ C0

εC : HomSetCop (HomC(−, C)×X,Y )×X(C)→ Y (C)
(δ, x) 7→ δC(IdC , x),

and the exponential transpose of γ ∈ HomSetCop (A×X,Y ) has component at C ∈ C0

γ̃C : A(C)→ HomSetCop (HomC(−, C)×X,Y )

given for a ∈ A(C) and D ∈ C0 by

γ̃C(a)D : HomC(D,C)×X(D)→ Y (D)
(f, x) 7→ γD(A(f)(a), x).

Since S = Setωop this all holds in S, though we will use the notation ∆ → Γ for Γ,∆ ∈ S0
instead of Γ∆.

Lemma 4.11. Let Γ,Γ′,∆,∆′,Λ ∈ S0. It then holds that

(i) If γ ∈ HomS(∆,Γ), δ ∈ HomS(Λ,∆), and either is contractive then γ◦δ is contractive.

(ii) If γ ∈ HomS(∆,Γ) and γ′ ∈ HomS(∆′,Γ′) are both contractive then γ×γ′ is contract-
ive.

(iii) γ ∈ HomS(Λ ×∆,Γ) is contractive in the first variable if and only if the exponential
transpose γ̃ ∈ HomC(Λ,∆→ Γ) is contractive.

Proof. (i): Assume first that δ is contractive with witness λ ∈ HomS(I(Λ),∆). It then holds
that γ ◦ λ ∈ HomS(I(Λ),Γ) and

(γ ◦ λ) ◦ nextΛ = γ ◦ (λ ◦ nextΛ) = γ ◦ δ,

and thus γ ◦ δ is contractive. Assume instead that γ is contractive with witness λ ∈ HomS I
(∆),Γ). It then holds by Lemma 4.8 that λ◦ I(δ) ∈ HomS(I(Λ),Γ) and

(λ◦ I(δ)) ◦ nextΛ = λ ◦ (I(δ) ◦ nextΛ) = λ ◦ (next∆ ◦δ) = (λ ◦ next∆) ◦ δ = γ ◦ δ,

and thus γ ◦ δ is contractive.
(ii): Let λ ∈ HomS(I (∆),Γ) and λ′ ∈ HomS(I (∆′),Γ′) be witness of respectively

γ and γ′. We have an isomorphism ϕ ∈ HomS(I (∆ × ∆′),I (∆)× I (∆′)) given by ϕi =
Id∆(i−1)×∆′(i−1) for i ∈ ω0\{0} and ϕ1(0) = (0, 0). It holds for i ∈ ω0 and (x, x′) ∈ ∆(i)×∆′(i)
if i > 1 that

(ϕ ◦ next∆×∆′)i(x, x′) = (∆(i− 1 ≤ i)(x)×∆′(i− 1 ≤ i)(x′)) = (next∆×next∆′)i(x, x′)

and if i = 1 that

(ϕ ◦ next∆×∆′)i(x, x′) = ϕi(0) = (0, 0) = (next∆×next∆′)i(x, x′),

and thus ϕ ◦ next∆×∆′ = next∆× next∆′ , implying that

((λ× λ′) ◦ ϕ) ◦ next∆×∆′ = (λ× λ′) ◦ (ϕ ◦ next∆×∆′)
= (λ× λ′) ◦ (next∆×next∆′)
= (λ ◦ next∆)× (λ′ ◦ next∆′)
= γ × γ′,
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and thus γ × γ′ is contractive.
(iii): Assume first that γ is contractive in the first variable, with witness λ ∈ HomS(I

(Λ) × ∆,Γ). We then have the exponential transpose λ̃ ∈ HomS(I (Λ),∆ → Γ), which we
wish to prove satisfies λ̃◦nextΛ = γ̃. If ε ∈ HomS((∆→ Γ)×∆,Γ) is the evaluation morphism
of Γ∆, we get that

ε ◦
((
λ̃ ◦ nextΛ

)
× Id∆

)
= ε ◦

((
λ̃ ◦ nextΛ

)
× (Id∆ ◦ Id∆)

)
= ε ◦ (λ̃× Id∆) ◦ (nextΛ× Id∆)
= λ ◦ (nextΛ× Id∆)
= γ,

and thus by the uniqueness of the exponential transpose, we have that λ̃◦nextΛ = γ̃, implying
that γ̃ is contractive. Assume instead that γ̃ is contractive, and choose λ ∈ HomS(I(Λ),∆→
Γ) such that γ̃ = λ ◦nextΛ. Let λ = ε ◦ (λ× Id∆) ∈ HomSet(I(Λ)×∆,Γ). It then holds that

λ ◦ (nextΛ× Id∆) = ε ◦ (λ× Id∆) ◦ (nextΛ× Id∆)
= ε ◦ ((λ ◦ nextΛ)× (Id∆ ◦ Id∆))
= ε ◦ (γ̃ × Id∆)
= γ,

and thus γ is contractive in the first variable.

We will now show how contractive morphisms give rise to fixpoints. There are several equi-
valent ways to view fixpoints; we will start giving the intuition behind fixed global points,
and we will afterwards show how to use this to construct a fixpoint morphism.

Let Γ ∈ S0, let γ ∈ HomS(Γ,Γ) be contractive, and let δ ∈ HomS(I (Γ),Γ) such that
γ = δ ◦ nextΓ. We will find a $ ∈ HomS(1,Γ) such that γ ◦$ = $. This gives rise to the
diagram

1 1 1 · · ·

Γ(1) Γ(2) Γ(3) · · ·

1 Γ(1) Γ(2) · · ·

Γ(1) Γ(2) Γ(3) · · ·

$1

Id1

$2

Id1

$3

Id1

!Γ(1)

Γ(1≤2)

Γ(1≤2)

Γ(2≤3)

Γ(2≤3)

Γ(3≤4)

δ1

!Γ(1)

δ2

Γ(1≤2)

δ3

Γ(2≤3)

Γ(1≤2) Γ(3≤3) Γ(3≤4)

.

The key to constructing a fixpoint is to note that each set in the third row has a distinguished
point, which we can use to construct the fixpoint in the column by application of δ. In the
first column, I (Γ)(1) = 1 contains only the point 0, and we therefore define $1(0) = δ1(0).
If we have defined $i(0), this becomes a distinguished point in Γ(i) =I(Γ)(i+ 1), and thus
we may define $i+1(0) = δi+1($i(0)). A simple calculation now shows that these points are
indeed fixpoints, that $ is natural, and that $ is the unique fixed global point of f .

Since the point is unique, we can define this a function from the contractive endomorph-
isms on Γ to the global points of Γ, but since a contractive morphism γ ∈ HomS(Γ,Γ) is
uniquely determined by the corresponding δ ∈ HomS(I(Γ),Γ), we can also consider this fix-
point function as going from HomS(I(Γ),Γ) to HomS(1,Γ). If we let πX ∈ HomS(X × 1, X)
be the canonical projection, the function taking g ∈ HomS(I(Γ),Γ) to ˜δ ◦ πI(X) ∈ HomS(1,I
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(Γ) → Γ) is an isomorphism, and we can thus define a function taking a global point of
I (Γ) → Γ) to a global point of Γ. One potential way to define such a function, is to give a
morphism fixΓ ∈ HomS(I (Γ) → Γ,Γ) such that the function is HomS(1, fixΓ). This is the
approach we will take in the following theorem, which also generalizes the above discussion
to morphisms, which are contractive in the first variable.

Theorem 4.12. For all Γ ∈ S0 there exists a morphism fixΓ : (I (Γ) → Γ) → Γ such
that for all ∆ ∈ S0, γ ∈ HomS(Γ × ∆,Γ) contractive in the first variable with witness
δ ∈ HomS(I (Γ) × ∆,Γ) it holds that fixΓ ◦δ̃, where δ̃ ∈ HomS(∆,I (Γ) → Γ) is the
exponential transpose, is the unique λ ∈ HomS(∆,Γ) such that γ ◦ 〈λ, Id∆〉 = λ, where
〈λ, Id∆〉 is the mediating morphism of the product Λ×∆.

Proof. Define for each i ∈ ω0

(fixΓ)i : (I(Γ)→ Γ)(i)→ Γ(i)

α 7→
{
αi(i ≤ i, 0) i = 1
αi(i ≤ i, (fixΓ)i−1(α|i−1)) i > 1

.

It holds for all j ≤ i ∈ ω1 and α ∈ (I(Γ)→ Γ)(i) if i = j that

(fixΓ)j ◦ (I(Γ)→ Γ)(j ≤ i) = (fixΓ)j ◦ Id(I(Γ)→Γ)(j)

= IdΓ(i) ◦(fixΓ)i
= Γ(j ≤ i) ◦ (fixΓ)i,

if j = 1 < i that

((fixΓ)j ◦ (I(Γ)→ Γ)(j ≤ i))(α) = (fixΓ)j(α ◦ (Homω(−, j ≤ i)× IdI(Γ)))
= (α ◦ (Homω(−, j ≤ i)× IdI(Γ)))j(j ≤ j, 0)
= (αj ◦ (Homω(j, j ≤ i)× IdI(Γ)(j)))(j ≤ j, 0)
= αj(j ≤ i, 0)
= αj(j ≤ i, (I(Γ)(j ≤ i) ◦ (fixΓ)i−1)(α|i−1))
= (αj ◦ (Homω(j ≤ i, i)× I(Γ)(j ≤ i)))(i ≤ i, (fixΓ)i−1(α|i−1))
= (αj ◦ (Homω(−, i)× I(Γ))(j ≤ i))(i ≤ i, (fixΓ)i−1(α|i−1))
= (Γ(j ≤ i) ◦ αi)(i ≤ i, (fixΓ)i−1(α|i−1))
= (Γ(j ≤ i) ◦ (fixΓ)i)(α),
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and if 1 < j < i and (fixΓ)j−1 ◦ (I(Γ)→ Γ)(j − 1 ≤ i− 1) = Γ(j − 1 ≤ i− 1) ◦ (fixΓ)i−1 that

((fixΓ)j ◦ (I(Γ)→ Γ)(j ≤ i))(α)
= ((I(Γ)→ Γ)(j ≤ i)(α))j(j ≤ j, (fixΓ)j−1((I(Γ)→ Γ)(j ≤ i)(α)|j−1))
= (α ◦ (Homω(−, j ≤ i)× IdI(Γ)))j(j ≤ j, (fixΓ)j−1(α|j−1))
= (αj ◦ (Homω(j, j ≤ i)× IdI(Γ)(j)))(j ≤ j, (fixΓ)j−1(α|j−1))
= αj(j ≤ i, (fixΓ)j−1(α|j−1))
= αj(j ≤ i, ((fixΓ)j−1 ◦ (I(Γ)→ Γ)(j − 1 ≤ i− 1))(α|i−1))
= αj(j ≤ i, (Γ(j − 1 ≤ i− 1) ◦ (fixΓ)i−1)(α|i−1))
= αj(j ≤ i, (I(Γ)(j ≤ i) ◦ (fixΓ)i−1)(α|i−1))
= (αj ◦ (Homω(j ≤ i, i)× I(Γ)(j ≤ i)))(i ≤ i, (fixΓ)i−1(α|i−1))
= (αj ◦ (Homω(−, i)× I(Γ))(j ≤ i))(i ≤ i, (fixΓ)i−1(α|i−1))
= (Γ(j ≤ i) ◦ αi)(i ≤ i, (fixΓ)i−1(α|i−1))
= (Γ(j ≤ i) ◦ (fixΓ)i)(α),

and thus by induction fixΓ ∈ HomS(I(Γ)→ Γ,Γ) is a natural transformation.
It holds for all i ∈ ω0 and x ∈ ∆(i) if i = 1 that

(γ ◦ 〈fixΓ ◦δ̃, Id∆〉)i(x) = γi(((fixΓ)i ◦ δ̃i)(x), x)
= γi(δ̃i(x)i(i ≤ i, 0), x)
= (δ ◦ (nextΓ× Id∆))i(δ̃i(x)i(i ≤ i, 0), x)
= δi(0, x)
= δi(0,∆(i ≤ i)(x))
= δ̃i(x)i(i ≤ i, 0)
= (fixΓ ◦δ̃)i(x),
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and if i > 1 and (γ ◦ 〈fixΓ ◦δ̃, Id∆〉)i−1 = (fixΓ ◦δ̃)i−1 that

(γ ◦ 〈fixΓ ◦δ̃, Id∆〉)i(x) = γi(((fixΓ)i ◦ δ̃i)(x), x)
= (δ ◦ (nextΓ× Id∆))i(((fixΓ)i ◦ δ̃i)(x), x)
= δi((nextΓ ◦ fixΓ ◦δ̃)i(x), x)
= δi((nextΓ ◦δ̃i(x))i(i ≤ i, (fixΓ)i−1(δ̃i(x)|i−1)), x)
= δi((nextΓ ◦δ)i((fixΓ)i−1(δ̃i(x)|i−1),∆(i ≤ i)(x)), x)
= δi((Γ(i− 1 ≤ i) ◦ δi)((fixΓ)i−1(δ̃i(x)|i−1), x), x)
= δi((δi−1 ◦ (I(Γ)×∆)(i− 1 ≤ i))((fixΓ)i−1(δ̃i(x)|i−1), x), x)
= δi(δi−1((I(Γ)(i− 1 ≤ i) ◦ (fixΓ)i−1)(δ̃i(x)|i−1),∆(i− 1 ≤ i)(x)), x)
= δi(δi−1((nextΓ ◦fixΓ)i−1(δ̃i(x)|i−1), x|i−1), x)
= δi((δ ◦ (nextΓ× Id∆))i−1((fixΓ)i−1(δ̃i(x)|i−1), x|i−1), x)
= δi(γi−1((fixΓ)i−1(δ̃i(x)|i−1), x|i−1), x)
= δi(γi−1((fixΓ)i−1(((I(Γ)→ Γ)(i− 1 ≤ i) ◦ δ̃i)(x)), x|i−1), x)
= δi(γi−1((fixΓ)i−1((δ̃i−1 ◦∆(i− 1 ≤ i))(x)), x|i−1), x)
= δi(γi−1((fixΓ ◦δ̃)i−1(x|i−1), x|i−1), x)
= δi((γ ◦ 〈fixΓ ◦δ̃, Id∆〉)i−1(x|i−1), x)
= δi((fixΓ ◦δ̃)i−1(x|i−1), x)
= δi((fixΓ)i−1(δ̃i(x)|i−1),∆(i ≤ i)(x))
= δ̃i(x)i(i ≤ i, (fixΓ)i−1(δ̃i(x)|i−1))
= (fixΓ ◦δ̃)i(x),

and thus by induction γ ◦ 〈fixΓ ◦δ̃, Id∆〉 = fixΓ ◦δ̃.
Let λ ∈ HomS(∆,Γ) with γ ◦ 〈λ, Id∆〉 = λ. It then holds i ∈ ω0 and x ∈ ∆(i) if i = 1 that

λi(x) = (γ ◦ 〈λ, Id∆〉)i(x)
= (δ ◦ (nextΓ× Id∆) ◦ 〈λ, Id∆〉)i(x)
= (δ ◦ 〈nextΓ ◦λ, Id∆〉)i(x)
= δi((nextΓ ◦λ)i(x), x)
= δi(0, x),

and if i > 1 that

λi(x) = (γ ◦ 〈λ, Id∆〉)i(x)
= (δ ◦ (nextΓ× Id∆) ◦ 〈λ, Id∆〉)i(x)
= (δ ◦ 〈nextΓ ◦λ, Id∆〉)i(x)
= δi((nextΓ ◦λ)i(x), x)
= δi((Γ(i− 1 ≤ i) ◦ λi)(x), x)
= δi((λi−1 ◦∆(i− 1 ≤ i))(x), x),

and thus by induction, λ is uniquely determined.
Finally, if we choose ∆ =I (Γ)→ Γ and δ̃ = IdI(Γ)→Γ, δ̃ is epic, and thus since fixΓ ◦δ̃ is

uniquely determined, fixΓ is also unique.
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4.4 Example: Streams
We will now use streams as an example to see how to solve equations of types. A stream
of natural numbers is an infinite sequence of natural numbers with two operations; a head
operation, which returns the first element of the stream, and a tail operation, which is the
rest of the stream, i.e. what the stream does later. We should therefore have some sort of
equation Strm ∼= N× I Strm, stating that a stream is pretty much what is happening now
and what is happening later.

In order to implement this idea into S, we will let U be a Grothendieck universe containing
the set of natural numbers N2, and consider S as a CwDRA via Corollary 4.7. We then define
N ∈ Ty(1) as the presheaf on

∫
ω(1) constantly equal to N and wish to find Strm ∈ Ty(1)

such that 1 · Strm ∼= 1 · N× I (1 · Strm)3. Assuming such a type exists, let δ ∈ HomS(I
(1 · Strm) × 1 · N, 1 · Strm) be an isomorphism. The first component of δ gives a bijection
between I(1 · Strm)(1)× (1 · N)(1) = 1× 1×N and (1 · Strm)(1) = 1× Strm(1, 0), and thus
we may choose Strm(1, 0) = N and

δ1 : 1× 1×N → 1×N
(0, 0, n) 7→ (0, n),

which is the unique choice up to isomorphism. Assuming we know Strm(i) and δi for some
i ∈ ω0, δi+1 is a bijection between I(1 ·Strm)(i+1)×(1 ·N)(i+1) = 1×Strm(i, 0)×1×N and
(1 · Strm)(i+ 1) = 1× Strm(i+ 1, 0), and we may thus choose Strm(i+ 1, 0) = Strm(i, 0)×N
and

δi+1 : 1× Strm(i, 0)× 1×N → 1× Strm(i, 0)×N
(0, t, 0, n) 7→ (0, t, n),

which again is the unique choice up to isomorphism. By induction, this shows that Strm(i, 0) =
N i for i ∈ ω0, and naturality of δ implies that for i ∈ ω0 and (n1, . . . , ni+1) ∈ Strm(i+ 1, 0)
that

(1 · Strm)(i ≤ i+ 1)(0, n1, . . . , ni+1)
= (δi ◦ (I(1 · Strm)× 1 · N)(i ≤ i+ 1) ◦ δ−1

i+1)(0, n1, . . . , ni+1)
= (δi ◦ (I(1 · Strm)(i ≤ i+ 1)× (1 · N)(i ≤ i+ 1))(0, n1, . . . , ni, 0, ni+1)
= δi(I(1 · Strm)(i ≤ i+ 1)(0, n1, . . . , ni), (1 · N)(i ≤ i+ 1)(0, ni+1))
= δi(I(1 · Strm)(i ≤ i+ 1)(0, n1, . . . , ni), 0, ni+1)
= (I(1 · Strm)(i ≤ i+ 1)(0, n1, . . . , ni), ni+1),

and thus in particular

(1 · Strm)(1 ≤ 2)(0, n1, n2) = (I(1 · Strm)(1 ≤ 2)(0, n1), n2)
= (0, n2),

which by induction implies that

(1 · Strm)(i ≤ i+ 1)(0, n1, . . . , ni+1) = (0, n2, . . . , ni+1).

There are more general methods for solving these kinds of equations, in particular in [2,
Section 2.6] fixpoints of locally contractive functors are used, similarly to the fixpoints of
contractive morphisms, and in [1] fixpoints on universes are used to the same effect.

2As discussed earlier, no such universe is guaranteed to exists by ZFC, but we will take as an additional
axiom that such a Grothendieck universe does exists.

3We write the equation in terms of contexts rather than types, as we have not yet concerned ourselves with
isomorphisms of types.
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