
An Implementation of Bigraph Matching
Arne John Glenstrup ∗, Troels Christoffer Damgaard, Lars Birkedal, Espen Højsgaard

IT University of Copenhagen, Denmark

Abstract

We describe a provably sound and complete matching algorithm for bigraphical reactive systems. The algorithm has been im-
plemented in our BPL Tool, a first implementation of bigraphical reactive systems. We describe the tool and present a concrete
example of how it can be used to simulate a model of a mobile phone system in a bigraphical representation of the polyadic π

calculus.

Key words: Bigraph, Matching, Reactive system, Pi calculus, Modelling tool

1. Introduction

The theory of bigraphical reactive systems [13] provides a general meta-model for describing and analyzing mobile
and distributed ubiquituous systems. Bigraphical reactive systems form a graphical model of computation in which
graphs embodying both locality and connectivity can be reconfigured using reaction rules. So far it has been shown
how to use the theory for recovering behavioural theories for various process calculi [12, 13, 15] and how to use the
theory for modelling context-aware systems [2].

In this paper we describe the core part of our BPL Tool, a first prototype implementation of bigraphical reactive
systems, which can be used for experimenting with bigraphical models.

The main challenge of implementing the dynamics of bigraphical reactive systems is the matching problem, that
is, to determine for a given bigraph and reaction rule whether and how the reaction rule can be applied to rewrite the
bigraph. When studying the matching problem in detail, one finds that it is a surprisingly tricky problem (it is related
to the NP-complete graph embedding problem). Therefore we decided early on to study the matching problem quite
formally and base our prototype implementation on a provably correct specification. In previous work [1, 4], we gave
a sound and complete inductive characterization of the matching problem for bigraphs. Our inductive characterization
was based on normal form theorems for binding bigraphs [9].

In the present paper we extend the inductive characterization from graphs to a term representation of bigraphs. A
single bigraph can be represented by several structurally congruent bigraph terms. Using an equational theory for bi-
graph terms [9], we essentially get a non-deterministic matching algorithm operating on bigraph terms. However, such
an algorithm will be wildly non-deterministic and we thus provide an alternative, but still provably sound and com-
plete, characterization of matching on terms, which is more suited for mechanically finding matching. In particular, it
spells out how and where to make use of structural congruences.

∗ Corresponding address: Rued Langgaards vej 7, DK–2400 Copenhagen S, Denmark. Tel.:+45 7218 5000; fax.: +45 7218 5001
Email addresses: panic@itu.dk (Arne John Glenstrup), tcd@itu.dk (Troels Christoffer Damgaard), birkedal@itu.dk (Lars Birkedal),

espen@itu.dk (Espen Højsgaard).

Preprint submitted to Elsevier 5 January 2008

We have implemented the resulting algorithm in our BPL Tool, which we briefly describe in Section 6. We also
present an example of a bigraphical reactive system, an encoding of the polyadic π calculus, and show how it can be
used to simulate a simple model of a mobile phone system.

Bigraphical reactive systems are related to general graph transformation systems; Ehrig et al. [10] provide a recent
comprehensive overview of graph transformation systems. In particular, bigraph matching is related to the general
graph pattern matching (GPM) problem, so general GPM algorithms might also be applicable to bigraphs [11, 14, 20,
21]. As an alternative to implementing matching for bigraphs, one could try to formalize bigraphical reactive systems
as graph transformation systems and then use an existing implementation of graph transformation systems. Some
promising steps in this direction have been taken [19], but they have so far fallen short of capturing precisely all the
aspects of binding bigraphs. For a more detailed account of related work, in particular on relations between BRSs,
graph transformations, term rewriting and term graph rewriting, see the Thesis of Damgaard [8, Section 6].

The remainder of this paper is organized as follows. In Section 2 we give an informal presentation of bigraphical
reactive systems and in Section 3 we present our matching algorithm: we first recall the graph-based inductive char-
acterization, then we develop a term-based inductive characterization, which forms the basis for our implementation
of matching. In Section 4 we describe how our implementation deals with the remaining nondeterminism and in Sec-
tion 5 we discuss a couple of auxiliary technologies needed for the implementation of the term-based matching rules.
In Section 6 we finally describe the BPL Tool and present an example use of it. We conclude and discuss future work
in Section 7.

2. Bigraphs and Reactive Systems

In the following, we present bigraphs informally; for a formal definition, see the work by Jensen and Milner [13]
and Damgaard and Birkedal [9].

2.1. Concrete Bigraphs

A concrete binding bigraph G consists of a place graph GP and a link graph GL. The place graph is an ordered
list of trees indicating location, with roots r0, . . . ,rn, nodes v0, . . . ,vk, and a number of special leaves s0, . . . ,sm called
sites, while the link graph is a general graph over the node set v0, . . . ,vk extended with inner names x0, . . . ,xl , and
equipped with hyper edges, indicating connectivity.

We usually illustrate the place graph by nesting nodes, as shown in the upper part of Figure 1 (ignore for now the
interfaces denoted by “ : · → ·”). A link is a hyper edge of the link graph, either an internal edge e or a name y. Links

Bigraph G : 〈3, [{},{},{x0,x2}],X〉 → 〈2, [{y0},{}],Y 〉

0

1

2

y0 y1 y2

x0 x2

x1

e2

v0

v1

v2 v3

e1

X ={x0,x1,x2}

Y ={y0,y1,y2}

Place graph GP : 3→ 2

roots:

sites:

r0

v0

v1

s0

v2

r1

v3

s2 s1

Link graph GL : X → Y

names:

inner names:

y0 y1 y2

v0

v1

v2

v3

x0 x2 x1

e1

e2

Fig. 1. Example bigraph illustrated by nesting and as place and link graph.

2

that are names are called open, those that are edges are called closed. Names and inner names can be global or local,
the latter being located at a specific root or site, respectively. In Figure 1, y0 is located at r0, indicated by a small
ring, and x0 and x2 are located at s2, indicated by writing them within the site. Global names like y1 and y2 are drawn
anywhere at the top, while global inner names like x1 are drawn anywhere at the bottom. A link, including internal
edges like e2 in the figure, can be located with one binder (the ring), in which case it is a bound link, otherwise it
is free. However, a bound link must satisfy the scope rule, a simple structural requirement that all points (cf. next
paragraph) of the link lie within its location (in the place graph), except for the binder itself. This prevents y2 and e1
in the example from being bound.

2.2. Controls and Signatures

Every node v has a control K, indicated by v : K, which determines a binding and free arity. In the example of
Figure 1, we could have vi : Ki, i = 0,1,2,3, where arities are given by K0 : 1, K1 : 2, K2 : 3, K3 : 1→ 2, using K : f as
a shorthand for K : 0→ f . The arities determine the number of bound and free ports of the node, to which bound and
free links, respectively, are connected. Ports and inner names are collectively referred to as points.

In addition to arity, each control is assigned a kind, either atomic, active or passive, and describe nodes according
to their control kinds. We require that atomic nodes contain no nodes except sites; any site being a descendant of a
passive node is passive, otherwise it is active. If all sites of a bigraph G are active, G is active.

A collection of controls with their associated kinds and arities is referred to as a signature.

2.3. Abstract Bigraphs

While concrete bigraphs with named nodes and internal edges are the basis of bigraph theory [13], our prime
interest is in abstract bigraphs, equivalence classes of concrete bigraphs that differ only in the names of nodes and
internal edges 1 . Abstract bigraphs are illustrated with their node controls (see Figure 13 in Section 6). In what follows,
“bigraph” will thus mean “abstract bigraph.”

2.4. Interfaces

Every bigraph G has two interfaces I and J, written G : I→ J, where I is the inner face and J the outer face. An
interface is a triple 〈m,~X ,X〉, where m is the width (the number of sites or roots), X the entire set of local and global
names, and ~X indicates the locations of each local name, cf. Figure 1. We let ε = 〈0, [],{}〉; when m = 1 the interface
is prime, and if all x ∈ X are located by ~X , the interface is local. As in the work by Milner [18] we write G : → J or
G : I→ for G : I→ J when we are not concerned about about I or J, respectively.

A bigraph G : I→ J is called ground, or an agent, if I = ε , prime if I is local and J prime, and a wiring if m = n = 0,
where m and n are the widths of I and J, respectively. For I = 〈m,~X ,X〉, bigraph idI : I→ I consists of m roots, each
root ri containing just one site si, and a link graph linking each inner name x ∈ X to name x.

2.5. Discrete and Regular Bigraphs

We say that a bigraph is discrete iff every free link is a name and has exactly one point. The virtue of discrete
bigraphs is that any connectivity by internal edges must be bound, and node ports can be accessed individually by the
names of the outer face. Further, a bigraph is name-discrete iff it is discrete and every bound link is either an edge, or
(if it is a name) has exactly one point. Note that name-discrete implies discrete.

A bigraph is regular if, for all nodes v and sites i, j,k with i≤ j ≤ k, if i and k are descendants of v, then j is also a
descendant of v. Further, for roots ri′ and r j′ , and all sites i and j where i is a descendant of ri′ and j of r j′ , if i≤ j then
i′ ≤ j′. The bigraphs in the figures are all regular, the permutation in Table 1 is not. The virtue of regular bigraphs is
that permutations can be avoided when composing them from basic bigraphs.

1 Formally, we also disregard idle edges: edges not connected to anything.

3

2.6. Product and Composition

For bigraphs G1 and G2 that share no names or inner names, we can make the tensor product G1⊗G2 by juxtaposing
their place graphs, constructing the union of their link graphs, and increasing the indexes of sites in G2 by the number
of sites of G1. We write

⊗n
i Gi for the iterated tensor G0⊗·· ·⊗Gn−1, which, in case n = 0, is idε .

The parallel product G1 ||G2 is like the tensor product, except global names can be shared: if y is shared, all points
of y in G1 and G2 become the points of y in G1 ||G2.

The prime product G1 |G2 is like the parallel product, except the result has just one root (also when G1 and G2 are
wirings), produced by merging any roots of G1 and G2 into one.

We can compose bigraphs G2 : I→ I′ and G1 : I′→ J, yielding bigraph G1 ◦G2 : I→ J, by plugging the sites of G1
with the roots of G2, eliminating both, and connecting names of G2 with inner names of G1. In the following, we will
omit the ‘◦’, and simply write G1G2 for composition, letting it bind tighter than tensor product.

2.7. Notation, Basic Bigraphs, and Abstraction

In the sequel, we will use the following notation:] denotes union of sets required to be disjoint; we write {~Y}
for Y0] ·· ·]Yn−1 when ~Y = Y0, . . .Yn−1, and similarly {~y} for {y0, . . . ,yn−1}. For interfaces, we write n to mean
〈n, [/0, . . . , /0], /0〉, X to mean 〈0, [],X〉, 〈X〉 to mean 〈1, [{}],X〉 and (X) to mean 〈1, [X],X〉.

Any bigraph can be constructed by applying composition, tensor product and abstraction to identities (on all inter-
faces) and a set of basic bigraphs, shown in Table 1 [9]. For permutations, when used in any context, π~X G or Gπ~X , ~X
is given entirely by the interface of G; in these cases we simply write π~X as π .

Given a prime P, the abstraction operation localises a subset of its outer names. Note that the scope rule is neces-
sarily respected since the inner face of a prime P is required to be local, so all points of P are located within its root.
The abstraction operator is denoted by (·)· and reaches as far right as possible.

For a renaming α : X→Y , we write pαq to mean (α⊗ id1)pXq, and when σ : U→Y , we let σ̂ = (Y)(σ⊗ id1)pUq.
We write substitutions~y/[/0, . . . , /0] : ε → Y as Y .

Note that []/[] = / /0 = π0 = idε and merge1 = p /0q = π1 = id1, where πi is the nameless permutation of width i.

2.8. Bigraphical Reactive Systems

Bigraphs in themselves model two essential parts of context: locality and connectivity. To model also dynamics, we
introduce bigraphical reactive systems (BRS) as a collection of rules. Each rule R

ρ−→R′ consists of a regular redex
R : I→ J, a reactum R′ : I′→ J, and an instantiation ρ , mapping each site of R′ to a site of R, and mapping local names
in I′ to those of I, as illustrated in Figure 2. Interfaces I = 〈m,~X ,X〉 and I′ = 〈m′,~X ′,X ′〉must be local, and are related

R
0 1

x1 x2

R′

0 1

x0
1 x0

2 x1
1 x1

2
ρ ρ = [1&[x0

1 7→ x1,x0
2 7→ x2],

1&[x1
1 7→ x1,x1

2 7→ x2]]

Fig. 2. A reaction rule

by X ′i = Xρ(i), where ρ must be a bijection between X ′i and Xρ(i). We illustrate ρ by ‘i := j’, whenever ρ(i) = j 6= i,
or, alternatively, by listing [ρ(0), . . . ,ρ(m′−1)]. Given an instantiation ρ and a discrete bigraph d = d0⊗·· ·⊗dk with
prime di’s, we let ρ(d) = dρ(0)⊗·· ·⊗dρ(k), allowing copying, discarding and reordering parts of d.

Given an agent a, a match of redex R is a decomposition a = C(idZ ⊗R)d, with active context C and discrete
parameter d with its global names Z. Dynamics is achieved by transforming a into a new agent a′ = C(idZ ⊗R′)d′,
where d′ = ρ(d), cf. Figure 3. This definition of a match is as given by Jensen and Milner [13], except that we here
also require R to be regular. This restriction to regular redexes R simplifies the inductive characterization of matching
without limiting the set of possible reactions, as sites in R and R′ can be renumbered to render R regular.

4

Notation Example

Merge mergen : n→ 1 merge3 =
0 1 2

Concretion pXq : (X)→ 〈X〉 p{x1,x2}q =
0

x1

x1

x2

x2

Abstraction (Y)P : I→〈1, [Y],Z]Y 〉 ({y1,y2})({y3})p{y1,y2,y3,z}q =
0

y1

y1

y2

y2

y3

y3

z

z

Substitution
σ

~y/~X : X → Y [y1,y2,y3]/[{x1,x2},{},{x3}] =

x1

y1

x2

y2

x3

y3

Renaming
α,β

~y/~x : X → Y [y1,y2,y3]/[x1,x2,x3] =

x1

y1

x2

y2

x3

y3

Closure /X : X →{} /{x1,x2,x3} = x1 x2 x3

Wiring
ω

(id⊗/Z)σ : X → Y
(id{y1,y2}⊗/{z1,z2})
[y1,z1,y2,z2]/
[{},{x1,x2},{x3,x4},{x5}]

=

y1

x1 x2 x3

y2

x4 x5

Ion K~y(~X) : ({~X})→ 〈{~y}〉 K[y1,y2]([{x1},{x2,x3},{}]) =
K

y1 y2

x1 x2 x3

Permutation
π~X

{i 7→ j, . . .} : 〈m,~X ,X〉 → 〈m,π(~X),X〉 {0 7→ 2,1 7→ 0,2 7→ 1}[{x}, /0,{y}] =
1 2 0

y

y

x

x

Table 1
Basic bigraphs, the abstraction operation, and variables ranging over bigraphs.

matching

instantiating

composing

d

d′

a′Cρ

R′

R a

Fig. 3. The reaction cycle

2.9. Bigraph Terms and Normal Forms

Expressing bigraphs as terms composed by product, composition and abstraction over basic bigraph terms, Dam-
gaard and Birkedal [9] showed that bigraphs can be expressed on normal forms uniquely up to certain permutations
and renamings. Further, they showed equivalence of term and bigraph equality, which will allow us in Section 3.2 to
base our implementation on terms rather than graphs.

In this work, we use the normal forms shown in Figure 4, which are unique up to permutation of Si’s and renaming
of names not visible on the interfaces. Regular bigraphs are expressed by the same forms, with the permutations
removed.

5

M ::= (idZ⊗K~y(~X))N molecule
S ::= pαq | M singular top-level node

G ::= (idY ⊗mergen)(
n⊗
i

Si)π global discrete prime

N ::= (X)G name-discrete prime
P,Q ::= (idZ⊗ σ̂)N discrete prime

D ::= α⊗ (
n⊗
i

Pi)π discrete bigraph

B ::= (ω⊗ id(~X))D binding bigraph

Fig. 4. Normal forms for binding bigraphs

3. Matching

In this section we develop the theory underlying the matching engine. First, we express matching inference using
a graph representation; this representation is the basis for correctness proofs. Then we transform it to be based on a
term representation more amenable to implementation, but in such a way that correctness is preserved—achieving an
implementation proven correct in great detail.

3.1. Inferring matches using a graph representation

For simplicity, we will first consider just place graphs to explain the basic idea behind matching inference.

3.1.1. Matching place graphs
A place graph match is captured by a matching sentence:

Definition 1 (Matching Sentence for Place Graphs). A matching sentence for place graphs is a 4-tuple of bigraphs
a,R ↪→C,d, all are regular except C, with a and d ground. A sentence is valid iff a = CRd.

We infer place graph matching sentences using the inference system given in Figure 5. Traversing an inference tree

PRIME-AXIOM
p, id ↪→ id, p

ION
p,R ↪→ P,d

K p,R ↪→ KP,d
SWITCH

p, id ↪→ P,d
p,P ↪→ id1,d

PAR
a,R ↪→C,d b,S ↪→ D,e
a⊗b,R⊗S ↪→C⊗D,d⊗ e

PERM
a,

⊗n
i Pπ−1(i) ↪→C,πd

a,
⊗n

i Pi ↪→Cπ,d
MERGE

a,R ↪→C,d
mergea,R ↪→ mergeC,d

Fig. 5. Inference rules for deriving place graph matches

bottom-up, the agent is decomposed, while constructing the context, using the ION, MERGE and PAR rules. The PERM
rule permutes redex parts to align tensor factors with corresponding agent factors.

At the point in the agent where a redex root should match, leaving a site in the context, the SWITCH rule is applied,
switching the roles of the context and redex. This allows the remaining rules to be reused (above the switch rule) for
checking that the redex matches the agent. When a site in the redex is reached, whatever is left of the agent should
become (a part of) the parameter—this is captured by the PRIME-AXIOM rule.

For a match with a redex R : m→ n consisting of n nontrivial (i.e., non-identity) primes, the inference tree will
contain m applications of PRIME-AXIOM and n applications of SWITCH. Further, between any leaf and the root of the
inference tree, SWITCH will be applied at most once. The structure of a matching inference tree will thus generally
be as illustrated in Figure 6; rules applied above SWITCH match agent and redex structure, while rules applied below
match agent and context structure.

3.1.2. Matching binding bigraphs
Turning now to consider binding bigraphs, we extend the matching sentences to cater for links:

6

PAX PAX

PAX

PAX

PAX

PAX

SWITCH

SWITCH

SWITCH

Fig. 6. The general structure of an inference tree for matching (PAX = PRIME-AXIOM)

Definition 2 (Matching Sentence for Binding Bigraphs). A (binding bigraph) matching sentence is a 7-tuple of
bigraphs: ωa,ωR,ωC ` a,R ↪→C,d, where a,R,C and d are discrete with local inner faces, all regular except C, with a
and d ground. It is valid iff (id⊗ωa)a = (id⊗ωC)(idZ]V ⊗C)(idZ⊗ (id⊗ωR)R)d.

This definition separates the wirings, leaving local wiring in a, R, C and d, while keeping global wiring of agent,
redex and context in ωa, ωR and ωC, respectively. The validity property shows how a valid matching sentence relates
to a match, as illustrated in Figure 7.

a

id⊗ωa

agent→ =

d

idZ
R

ωR id

idZ]V C

id⊗ωC
← context

← redex

agent︷ ︸︸ ︷
(id⊗ωa)a =

context︷ ︸︸ ︷
(id⊗ωC)(idZ]V ⊗C)(idZ⊗

redex︷ ︸︸ ︷
(id⊗ωR)R)d.

Fig. 7. Decomposition of the bigraphs of a valid matching sentence

To reach a system for inferring valid matching sentences for binding bigraphs, we simply augment the place graph
rules with wirings as shown in Figure 8, and add three rules for dealing with purely wiring constructs, shown in
Figure 9. A detailed explanation of the rules is available in the literature [4], along with proofs of soundness and
completeness of the inference system.

3.2. Inferring matches using a term representation

While the graph representation of matching sentences is useful for constructing a relatively simple inference system
amenable to correctness proofs, it is not sufficient for an implementation based on syntax, that is, bigraph terms. One
bigraph can be represented by several different bigraph terms that are structurally congruent by the axiom rules:
a = a⊗ id0 = merge1 a, a⊗ (b⊗ c) = (a⊗ b)⊗ c and merge(a⊗ b) = merge(b⊗ a). If, for instance, we were to
match agent a = merge((K⊗ L)⊗M) with redex R = K, we would first need to apply the axioms to achieve R =
merge((K⊗ id0)⊗ id0) before being able to apply the MERGE and PAR rules.

In the following, we recast the matching sentences to be tuples of 3 wirings and 4 bigraph terms ωa,ωR,ωC `
a,R ; C,d, with the same restrictions and validity as before, interpreting the terms as the bigraphs they represent.
Given this, adding just this one rule would be sufficient to achieve completeness of the inference system:

STRUCT
a≡ a′ R≡ R′ C ≡C′ h≡ h′ ωa,ωR,ωC ` a′,R′ ; C′,h′

ωa,ωR,ωC ` a,R ; C,h

The STRUCT rule says that we can apply structural congruence to rewrite any term a,R,C or h to a term denoting
the same bigraph. With the help of the equational theory for determining bigraph isomorphism on the term level [9],
we have essentially a nondeterministic algorithm for matching bigraph terms—implementable in say, Prolog. A brief

7

PRIME-AXIOM
σ : W]U → β : Z→U α : V →W τ : X →V p : 〈X]Z〉

σ(β ⊗ατ), idε ,σ ` p, id (V) ↪→ p α q, (β ⊗ τ̂)(X) p

ION

ωa,ωR,ωC ` ((~v)/(~X)⊗ idU) p,R ↪→ ((~v)/(~Z)⊗ idW) P,d α =~y/~u σ : {~y}→

σ ||ωa,ωR,σα ||ωC ` (K ~y(~X)⊗ idU) p,R ↪→ (K ~u(~Z)⊗ idW) P,d

SWITCH

ωa, idε ,ωC(σ ⊗ωR⊗ idZ) ` p, id ↪→ P,d σ : W →U P : → 〈W]Y 〉 d : 〈m,~X ,X]Z〉

ωa,ωR,ωC ` p, (σ̂ ⊗ idY)(W) P ↪→ p U q,d

PAR

ωa,ωR,ωC ||ω ` a,R ↪→C,d ωb,ωS,ωD ||ω ` b,S ↪→ D,e

ωa ||ωb,ωR ||ωS,ωC ||ωD ||ω ` a⊗b,R⊗S ↪→C⊗D,d⊗ e

PERM

ωa,ωR,ωC ` a,
⊗m

i Pπ−1(i) ↪→C, (π ⊗ id) d

ωa,ωR,ωC ` a,
⊗m

i Pi ↪→Cπ,d

MERGE

ωa,ωR,ωC ` a,R ↪→C,d

ωa,ωR,ωC ` (merge ⊗ idY) a,R ↪→ (merge ⊗ idX) C,d

Fig. 8. Place graph rules (shaded) augmented for deriving binding bigraph matches

WIRING-AXIOM
y,X ,y/X ` idε , idε ↪→ idε , idε

ABSTR
σa⊗ωa,ωR,σC⊗ωC ` p,R ↪→ P,d σa : Z→W p : 〈Z]Y 〉 σC : U →W P : → 〈U]X〉

ωa,ωR,ωC ` (σ̂a⊗ idY)(Z)p,R ↪→ (σ̂C⊗ idX)(U)P,d

CLOSE
σa,σR, idYR ⊗σC ` a,R ↪→C,d σa : →U]YR σR : →V]YR σC : →W]YC

(idU ⊗/(YR]YC))σa,(idV ⊗/YR)σR,(idW ⊗/YC)σC ` a,R ↪→C,d

Fig. 9. Added inference rules for deriving binding bigraph matches

glance at the equational theory, shows us, though, that the associative and commutative properties of the basic opera-
tors of the language would yield a wildly nondeterminstic inference system, since we would need to apply structural
congruence between every step to infer a match. This is reminiscent of the problems in implementing rewriting logic,
that is, term rewriting modulo a set of static equivalences [6, 7, 16]. Consequentially, we abandon the fully general
STRUCT rule. For the purposes of stating the completeness theorem below, we shall need to refer to sentences derived
from the ruleset for bigraphs (i.e., from section 3.1.2) recast to terms with the help of the STRUCT rule above. We shall
write such sentences ωa,ωR,ωC ` a,R ;S C,h for wirings ωa,ωR,ωC and terms a,R,C and h.
Definition 3. For wirings ωa,ωR,ωC and terms a,R,C and h, sentences ωa,ωR,ωC ` a,R ;S C,h range over sen-
tences derived from the rules of Figure 9—reading a,R,C and h as terms—extended with the STRUCT rule.

8

Instead, to specialize the characterization into a more efficient algorithm for mechanically finding matches, we
define normal inferences. Normal inferences are classes of inferences that are complete in the sense that all valid
matching sentences can be inferred, but suitably restricted, such that inferences can be built mechanically. In particular,
normal inference definitions for term matching need to spell out how and where to apply structural congruence. As a
main trick, we utilize a variant of the normal forms proven complete for binding bigraphs (cf. Section 2.9), lending
us a set of uniform representations of classes of bigraphs based directly on terms for bigraphs; we define normal
inferences that require each inference to start by rewriting the term to be on normal form.

Before giving the format for normal inferences, we incorporate structural congruence axioms into PRODUCT and
MERGE rules. We derive rules for iterated tensor product and permutations under merge, arriving at the inference
system shown in Figure 10. In this inference system, the terms in the conclusion of every rule except DNF is in some
normal form as given by Figure 4, where e is a discrete prime (p) or global discrete prime (g). An expression [[t]]G

means term t expressed on G-normal form—for instance, [[pαq]]G means (idY ⊗merge1)(
⊗1

i pαq)—and similarly
for the remaining normal forms. The expression ρ̄(n,m) denotes the set of n-m-partitions. An n-m-partition ρ is a
partition of {0, . . . ,n−1} into m (possibly empty) subsets, and for i ∈m, ρi is the ith subset. Given a metavariable X ,
X ranges over iterated tensor products of X ’es. As indicated by the superscript, rules PERE , PARE

n and PARE
≡ can be

used either on discrete primes p and P or global discrete primes g and G.
The main differences from the preceding inference system is that we have replaced the binary PAR rule by two

iterative PAR rules, PARE
n and PARE

≡, and specialised the MERGE rule into a rule, MER, that makes the partitioning
of children in an agent node explicit. The PARE

≡ rule splits up an iterated tensor product into a number of products
matching agent factors, while PARE

n performs the actual inductive inference on each of the factors. (Note, by the way,
that PARE

≡ and MERE
≡ correspond just to particular instances of the STRUCT-rule, that we abandoned above.)

Furthermore, note that the usage of the previous WIRING-AXIOM-rule for introducing idle linkage has been inlined
to a side-condition on a slightly generalized PAR-rule (i.e., the PARE

n -rule). The σ ′ in that rule allows us to introduce
idle linkage in redex and agent, and link them in context; as previously allowed by the WIRING-AXIOM-rule. Hence,
PARE

n also serves as an axiom, introducing 0-ary products of idε ’s on G- and P-normal forms.
While this inference system is more explicit about partitioning tensor products (in the MER and PARE

≡ rules), there is
still a lot of nondeterministic choice left in the order in which the rules can be applied. To limit this, we define normal
inferences based, essentially, on the order rules were used in the proof of completeness [4]. We derive a sufficient
order that still preserves completeness:

Definition 4 (Normal Inference). A normal inference is a derivation using the term matching rules of Figure 10 in the
order specified by the grammar given in Figure 11.

Now we can give the main theorem stating that normal inferences are sufficient for finding all valid matches. The
following theorem states formally for every sentence derivable with the ruleset for bigraphs recast to bigraph terms by
extending with STRUCT, that such a sentence is also derivable as a normal inference.

Theorem 5 (Normal inferences are sound and complete). For wirings ωa,ωR,ωC and terms a,R,C,d, we can infer
ωa,ωR,ωC ` a,R ;S C,d iff we can infer ωa,ωR,ωC ` a,R ; C,d using a normal inference.

Proof. (Sketch) By induction over the structure of the derivation of the sentence ωa,ωR,ωC ` a,R ;S C,d. We case
on the last rule used to conclude this sentence. By the induction hypothesis (IH), we can conclude a normal derivation
of the sentence used for concluding ωa,ωR,ωC ` a,R ;S C,d.

STRUCT: By IH, we can construct a normal derivation of ωa,ωR,ωC ` a′,R′ ; C′,d′, with a = a′, R′ = R, C′ = C
and d′ = d. This normal derivation can be used directly to conclude also ωa,ωR,ωC ` a′,R′ ; C′,d′.

PRIME-AXIOM: We produce the needed normal inference by starting with an application of PAX, which introduces
the needed prime bigraphs and wiring—that is, each term being equal up to structural congruence to the sentence
concluded with PRIME-AXIOM. Now we proceed to build the needed normal inference by a building first a DP and
then a DB-inference. All steps add only term structure to match a particular normal form, while not changing the
denotation of the terms.

ION: By IH, we can construct a normal derivation of ωa,ωR,ωC ` ((~v)/(~X)⊗ idU)p,R ; ((~v)/(~Z)⊗ idW)P,d. For
this case, we have to unroll that normal derivation up across the DB production except for the last ABS-step, concluding
with a PARP

1 step (since we know p and P are prime). We now have a DP normal inference with an added ABS-step,
which we can use for concluding an ION-step introducing our needed ion. Referring to the grammar in Figure 11,

9

PAX
σ : W]Z→ α : V →W τ : X →V g : 〈X]Z〉

σ(idZ⊗ατ), idε ,σ ` g, [[id(V)]]P ; [[pαq]]G, [[(idZ⊗ τ̂)(X)g]]P

ION
σa,σR,σC ` (id⊗ (~v)/(~X))n,P ; (id⊗ (~v)/(~Z))N,q α =~y/~u σ : {~y}→

(σ ||σa),σR,(σα ||σC) ` [[(idU ⊗K~y(~X))n]]G,P ; [[(idW ⊗K~u(~Z))N]]G,q

SWX

σ : W →U G : → 〈W]Y 〉 q : 〈m,~X ,X]Z〉
σa, idε ,σ

C(idZ⊗σ ⊗σR) ` g, [[
⊗n

i id(Xi)]]
P ; G,q

σa,σR,σC ` g, [[(idY ⊗ σ̂)(W)G]]P ; [[pUq]]G,q

PARE
n

σ ′ : IR→ Ia (∀i ∈ n) σa
i ,σR

i ,σ ||σC
i ` ei,Pi ; Ei,qi(

Ia ||
n
i σa

i
)
,
(
IR ||

n
i σR

i
)
,
(
σ ′ ||σ || n

i σC
i

)
`

⊗n
i ei,

⊗n
i Pi ;

⊗n
i Ei,

⊗n
i qi

PARE
≡

P′i j = Pj+∑r∈i lr q′i j = q j+∑r∈i kr P′i j : 〈ki j,~Xi j〉 → ki = ∑ j∈li ki j

σa,σR,σC `
⊗n

i ei,
⊗n

i
⊗li

j P′i j ;
⊗n

i Ei,
⊗n

i
⊗ki

j q′i j

σa,σR,σC `
⊗n

i ei,
⊗m

i Pi ;
⊗n

i Ei,
⊗m′

i qi

PERE
σa,σR,σC ` e,

⊗n
i Qπ−1(i) ; E,

⊗m
i qπ̄−1(i)

σa,σR,σC ` e,
⊗n

i Qi ; Eπ,
⊗m

i qi

MER
σa,σR,σC `

⊗m
i (id⊗merge)

⊗
j∈ρi,ρ∈ρ̄(n,m) m j,P ; (

⊗m
i [[Sπ−1(i)]]

G)π̄,q

σa,σR,σC ` (id⊗merge)
⊗n

i mi,P ; (id⊗merge)
⊗m

i Si,q

ABS
σa

L ⊗σa,σR,σC
L ⊗σC ` g,P ; G,q σa

L : Z→W σC
L : U →W G : → 〈U]X〉

σa,σR,σC ` (id⊗ σ̂a
L)(Z)g,P ; (id⊗ σ̂C

L)(U)G,q

CLO
σa,σR, idYR ⊗σC ` p,P ; Qπ,q

(id⊗/(YR]YC))σa,(id⊗/YR)σR,(id⊗/YC)σC ` p,P ; Qπ,q

DNF

a≡ p R≡ P C ≡ Qπ h≡ q p,P,Q,q are on normal form R is regular
ωa,ωR,ωC ` p,P ; Qπ,q

ωa,ωR,ωC ` a,R ; C,h

Fig. 10. Inference rules for binding bigraph terms

we see that this produces a DG-inference, which we have to lead through two series of PAR-PER-MER steps (and one
ABS-step), to produce a full normal inference.

SWITCH: This case needs a little extra care. First, we point out two properties of normal derivations: (i) any DG and
DP inference without SWX is also a D ′G or D ′P inference, respectively; and, (ii) any sentence, ωa, idε ,ωC ` a, id ; C,h
has a normal derivation with no SWX-steps. Both are easily verified.

Now, by the IH we can construct a normal derivation of a sentence ωa, idε ,ωC(σ ⊗ωR⊗ idZ) ` p, id ; P,d for
global P. By property (ii), we can assume that this normal derivation does not contain any applications of SWX. We
unroll this normal derivation up across the whole DB production, . This leaves us with a DP-type normal derivation,

10

DG ::=



PAX · · ·

ION
ABS

DP
· · ·
· · ·

SWX
D ′P
· · ·

D ′G ::=


PAX · · ·

ION
ABS

D ′P
· · ·
· · ·

DP ::=



DG

MER
PERG
PARG

≡

PARG
n

DG · · · DG
· · ·
· · ·
· · ·
· · ·

D ′P ::=



D ′G

MER
PERG
PARG

≡

PARG
n

D ′G · · · D ′G
· · ·
· · ·
· · ·
· · ·

DB ::= DNF
CLO
PERP
PARP

≡

PARP
n

ABS
DP
· · · · · · ABS

DP
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·

Fig. 11. Grammar for normal inferences for binding bigraphs with start symbol DB

which by property (i), we can use also as D ′P derivation. Hence, we can apply SWX to obtain a DG derivation. We
proceed to build first a DP type inference, and then a DB type inference, in particular applying again ABS to introduce
local linkage in p.

PAR: By IH, we can construct normal derivations of ωa,ωR,ωC ||ω ` a,R ; C,d and ωb,ωS,ωD ||ω ` b,S ; D,e.
Each of these normal derivations we can unroll up to the last application of PARP

n Di and E j, applied for concluding
these PARP

n steps. To construct the required normal inference we simply let instead a single PARP
n step utilize all of the

normal inferences Di and E j.
PERM: By IH, we can construct a normal derivation of ωa,ωR,ωC ` a,

⊗m
i Pπ(i) ; C,(π ⊗ idZ)d. Unrolling this

normal derivation up through the applications of DNF, CLO, and PERP, we can edit the PERP-step to also move the
permutation π to the context.

MERGE: By IH, we can construct a normal derivation of ωa,ωR,ωC ` a,R ; C,d for global a and C. We unroll
this derivation up across the DB production to obtain n DP-derivations (for a and C of width n). We may consider
these as DG-derivations, also. We combine these in a single application of PARG

n , and, after a PARP
≡ and a PER-step,

we apply MER to merge the roots as required by the case. We conclude by adding term structure to the terms of this
DP-inference as required by the normal form and lead it through the steps to produce a DB-derivation.

WIRING-AXIOM: As sketched in the text above, introduction of idle names is now handled by PARP
n . For this case,

we simply start with a PARP
0 -step and proceed through the grammar for DB to produce a normal inference as needed.

ABSTR: By IH, we can construct a normal derivation of σa⊗ωa,ωR,σC⊗ωC ` p,R ; P,d. We unroll this normal
derivation up across the entire DB-inference to obtain a DP type inference. (We know there is only one DP-inference,
as p and P are prime.) We construct the required DB inference by starting with a modified ABS-step, where we
introduce the required abstractions and local substitutions.

CLOSE: By IH, we can construct a normal inference for a sentence with only substitutions (i.e., with no closed
links). We simply unroll this normal inference up across the CLO-step, and instead, to produce the needed normal
inference, close the needed names in a new CLO-step.

11

Normal inferences are sufficiently restricted such that we can base our prototype implementation on mechanically
constructing them.

4. Nondeterminism

Given these term-based rules and the normal inference grammar, proven correct matching has been expressed in an
operational, that is, implementable, form. However, there is still a fair amount of nondeterminism left, but fortunately
we can clearly identify where it occurs:

Grammar selection: Which branches to select for DG, DP, D ′G and D ′P.

Tensor grouping: How to group the tensor product in PAR≡.

Children partitioning: How to partition molecules in MER.

Prime permutation: How to permute redex primes in PER.

Context-redex-parameter wiring: How to choose Z,α and τ in PAX.

Mapping closed links: How to find an appropriate decomposition of agent wiring in CLO such that closed agent links
are matched correctly with closed redex links (i.e., determining σa and YR).

When implementing matching, the challenge is to develop a heuristic that will handle typical cases well. In general,
an agent-redex pair can lead to many different matches, so in our implementation we return for every inference rule a
lazy list of possible matches.

To handle nondeterminism, we return possible matches as follows, bearing in mind that operationally speaking,
rules applied below SWX are given agent and redex, while rules above SWX are given agent (, redex) and context:

Grammar selection: For DG and DP, we concatenate the returned lazy lists returned from matching each branch in
turn. However, if PAX succeeds, there is no reason to attempt a SWX match, as no new matches will result.

For DG
′ and DP

′, we try each branch in turn, returning the first branch that succeeds, as later branches will not
find any new matches.

Tensor grouping: For given m and n in PARE
≡, we compute all the ways of splitting [0, . . . ,m− 1] into n (possibly

empty) subsequences, trying out matching for each split. Note that this need only be done for applications of PARE
≡

below the SWX rule.

Children partitioning: For given m and n in MER, we compute all the ways of partitioning {0, . . . ,m− 1} into n
(possibly empty) sets, trying out matching for each partitioning.

Prime permutation: For given n in PERE , we compute all n-permutations, trying out matching for each permutation.
This is done for applications of PERE below the SWX rule; above, similar permutations are computed in the MER
rule.

Context-redex-parameter wiring: Given global agent wiring, we compute the ways of decomposing it into σ(idZ⊗
ατ), returning a match for each decomposition.

Mapping closed links: We split agent wiring into named and closed links, and postpone the actual mapping of each
closed link to redex or context links until some constraint, given by ION or PAX produces it.

Note that even after limiting nondeterminism in this way, we can still in general find several instances of the same
match, reached by different inference trees, as we are computing abstract bigraph matches using concrete represen-
tations. For instance, matching redex R = K1 in agent a = merge(K1⊗K1) produces matches with context C1 =
merge(id1⊗K1) and context C2 = merge(K1⊗ id1).

5. Auxiliary Technologies

A number of auxiliary technologies are needed for implementing the match inference system presented here, no-
tably the normalising and regularising operations needed in the DNF rule. While they do not represent the most
advanced part of bigraph matching, their correctness is vital for achieving a correct implementation.

12

5.1. Normalising

We define a normalisation relation t ↓B t ′ for bigraph terms (details are given in Figure A.2 of Appendix A.1), with
the following property:

Proposition 6. For any bigraph terms t, t ′, if t represents a bigraph b and t ↓B t ′, then t ′ represents b as well, and is
on B-normal form given in Figure 4.

The relation recursively normalises subterms, then recombines the results; for tensor product, the rule stated is

Bten

ti ↓B (ωi⊗ id(~Yi)
)Di Di ≡ αi⊗ (

⊗
j∈ni

P j
i)πi : Ii→ 〈ni,~Yi,Yi〉

ω =
⊗

i∈n ωi α =
⊗

i∈n αi id(~Y) =
⊗

i∈n id(~Yi)
π =

⊗
i∈n πi

P =
⊗

j∈n
⊗

i∈n j
P j

i D≡ α⊗Pπ⊗
i∈n ti ↓B (ω⊗ id(~Y))D

.

We find that the expression
⊗

j∈n
⊗

i∈n j
P j

i in general will lead to name clashes, because we can only assume that
outer, not inner names, of the ωi’s are disjoint.

One solution could be to rename names on P j
i ’s outer face in the Bten rule. However, as Bten is applied recursively at

each level of tensor product, this would lead to multiple renamings of the same names, causing inefficiency. Instead, we
precede normalisation by a renaming phase described in the following; it will prevent name clashes in normalisation.

5.2. Renaming

While renaming names used in a term might look trivial at first sight, it is in fact not entirely straightforward. First,
inner and outer names of a term must not be renamed, or we would be representing a different bigraph. Second, we
cannot even require of a renamed term that all internal names are unique, as a normalised subterm can contain several
instances of the same name, due to the use of idY in the normal form.

Thus, we need to identify a more refined notion of internal horizontal uniqueness, where a name can be reused
vertically in link compositions, but not horizontally in tensor products. To this end, given a term t, we conceptually
replace all occurrences of /X by e1/x1⊗·· ·⊗en/xn, and K~y(~X) by K~y(~e/~X), in effect naming uniquely each closed link.
We then define a function linknames, mapping terms to link namers (details are given in Figure A.3 of Appendix A.2).
Using this function we define a predicate normalisable, which identifies terms whose tensor products and composi-
tions do not produce subterms with name clashes, and is preserved by normalisation (details are given in Figure A.4
of Appendix A.2):

Proposition 7. For any bigraph term t, if normalisable(t), there exists a t ′ such that t ↓B t ′ and normalisable(t ′).
For the actual renaming, we define inductively a renaming judgment U ` α, t ↓β t ′,β aV , where U is a set of used

names and α renames t’s inner names to those of t ′, while β renames t’s outer names to those of t ′ and V extends U
with names used in t ′ (details are given in Figure A.5 of Appendix A.2).

We can show that renaming preserves the bigraph, and enables normalisation:

Proposition 8. Given a term t representing a bigraph b : 〈m,~X ,X〉→ 〈n,~Y ,Y 〉, we can derive X ∪Y ` idX , t ↓β t ′′,β a
V for some t ′′,β ,V , and set t ′ = ((β glob)−1⊗ ̂(β loc)−1)t ′′; then t ′ represents b, and normalisable(t ′).

5.3. Regularising

As a regular bigraph can be expressed as a term containing permutations, we must define regularising to represent
it as a permutation-free term. This is done by splitting the permutations in the D- and G-normal forms, recursively
pushing them into the subterms where they reorder the tensor product of Si’s.

While D’s permutation π must be a tensor product of πi’s—otherwise the bigraph would not be regular—G’s
permutation, on the other hand, need not be so. However, as the bigraph is regular, it must be possible to split it into a
major permutation π

~X and n minor permutations π
~X
i , based on the local inner faces, ~X , of the Si’s. Then π

~X is elided

13

by permuting the Si’s, and each π
~X
i permutation is handled recursively in its Si (details are given in Figure A.6 of

Appendix A.3).
We can show that regularisation is correct:

Proposition 9. Given a term t representing a regular bigraph b, we can infer t ↪→ t ′, for some t ′ where t ′ contains no
nontrivial permutations, and t ′ represents b.

A detailed illustration of the entire reaction cycle involving the preceding transformation technologies can be seen
in Figure 12.

renaming

normalising

regularisingmatching

instantiating

composing

a

a

a

d

d′

a′

Cρ

R′

R

a

Fig. 12. Details of the reaction cycle

6. Tool Implementation and Example Modelling

We have implemented a BPL Tool as a reference implementation of binding bigraph matching, and as a toolbox for
experimenting with bigraphs. It is written in SML, consists of parser, normalisation and matching kernel, and includes
web and command line user interfaces [5].

To ensure correctness, we have implemented normalisation, renaming, regularisation and matching faithfully by
implementing one SML function for every inference rule—in the case of matching, two: one for applications above
and one for below the SWX rule.

The BPL Tool handles normalisation, regularisation, matching and reaction for the full set of binding bigraphs, and
allows construction of simple tactics for prescribing the order in which reaction rules should be applied. The following
example output is taken verbatim from the command line interface, which is based on the SMLNJ interactive system;
omitted details are indicated by “[...]”.

As an example, we model the polyadic π calculus, running the mobile phone system introduced in Milner’s π

book [17]. The calculus can be modeled by a family of reaction rules {REACTi | i = 0,1, . . .}, one for each number of
names that are to be communicated in a reaction [13]; REACT2 is shown in Figure 13.

The signature for the nodes modelling the calculus and the mobile phone system is constructed using passive and
atomic functions as shown in Figure 14. For this system, we only need Send and Get nodes for REACT0 and REACT2.
Note that all reaction rule nodes are passive, preventing reaction within a guarded expression.

The system consists of a car, one active and one idle transmitter, and a control centre, as shown in Figure 15.
Internally, a prime product constructed using the ‘|‘ operator is represented by a wiring and merge2 composed with
a binary tensor product. The function simplify applies various heuristics for producing human-readable bigraph
terms, in this case for a prime product of four factors.

The definition of these nodes and connections, shown in Figure 16, allows the control centre to switch Car com-
munication between the two transmitters (supposedly when the car gets closer to the ilde than the active transmitter),
and allows the car to talk with the active transmitter. Note that in the BPL tool, we define a node by a rule that unfolds
an atomic node into a bigraph corresponding to the defining π calculus expression.

Our BPL definition of the initial system in Figure 15, System1, is the folded version; as BPL matching is complete,
querying the tool reveals the four possible unfolding matches, illustrated in Figure 17. Here mkrules constructs the
internal representation of a rule set, and print_mv prettyprints a lazy list of matches, produced by the matches
function.

14

REACT2: (x̄〈y1,y2〉.P0 +P1) | (x(z1,z2).P2 +P3)→{zi/yi}P0 | P2

0

1

2

3

Send2 Get2

Sum Sum

x

z1

z2

y1y2

0

1
z1 z2

y1y2x

0:=0,1:=2

REACT2

val REACT2 = "REACT2" :::
Sum o (Send2[x,y1,y2] ‘|‘ idp(1)) ‘|‘ Sum o (Get2[x][[z1],[z2]] ‘|‘ idp(1))
--[0 |-> 0, 1 |-> 2]--|>
(y1/z1 * y2/z2 * x//[] * idp(1)) o (idp(1) ‘|‘ ‘[z1, z2]‘);

Fig. 13. π calculus reaction rule shown as bigraphs and BPL value.

(* Pi calculus nodes *) (* Mobile phone system nodes *)
val Sum = passive0 ("Sum") val Car = atomic ("Car" -: 2)
val Send0 = passive ("Send0" -: 0 + 1) val Trans = atomic ("Trans" -: 4)
val Get0 = passive ("Get0" =: 0 --> 1) val Idtrans = atomic ("Idtrans" -: 2)
val Send2 = passive ("Send2" -: 2 + 1) val Control = atomic ("Control" -: 8)
val Get2 = passive ("Get2" =: 2 --> 1)

Fig. 14. Signature for π calculus and mobile phone system nodes.

Car

Trans Idtrans

Control

talk1

switch1

lose1

gain1

lose2

gain2

- val System1 = simplify (
Car[talk1,switch1]

‘|‘ Trans[talk1,switch1,gain1,lose1]
‘|‘ Idtrans[gain2,lose2]
‘|‘ Control[lose1,talk2,switch2,gain2,

lose2,talk1,switch1,gain1]);
val System1 =

(lose1//[lose1_83, lose1_98] * talk2/talk2_82 * switch2/switch2_81
* gain2//[gain2_80, gain2_95] * lose2//[lose2_7f, lose2_94]
* talk1//[talk1_7e, talk1_9b, talk1_a5]
* switch1//[switch1_7d, switch1_9a, switch1_a4]
* gain1//[gain1_7c, gain1_99]) o merge(4) o

(Car[talk1_a5, switch1_a4] *
Trans[talk1_9b, switch1_9a, gain1_99, lose1_98] *
Idtrans[gain2_95, lose2_94] *
Control[lose1_83, talk2_82, switch2_81, gain2_80, lose2_7f, talk1_7e,

switch1_7d, gain1_7c])
: 0 -> <{lose1, talk2, switch2, gain2, lose2, talk1, switch1, gain1}> : bgval

-

Fig. 15. Definition of the mobile phone system, System1

Using react_rule that simply applies a named reaction rule, and ++ that runs its arguments sequentially, we
construct a tactic, TAC_unfold, for unfolding all four nodes once, shown in Figure 18. Applying this tactic using
function run, we get an unfolded version of the system.

Querying the BPL Tool for all possible matches in the unfolded system reveals exactly the switch and talk actions,
initiated by REACT2 and REACT0 rules, respectively, cf. Figure 19. Applying the π calculus reaction rules for switch-
ing, we arrive at System2, where Car communication has been switched to the other transmitter, as witnessed by the

15

Defining equation BPL definition

Car(talk,switch)def=

talk.Car〈talk,switch〉

+switch(t,s).Car〈t,s〉

val DEF_Car = "DEF_Car" :::
Car[talk,switch]
----|>
Sum o (Send0[talk] o Car[talk,switch]

‘|‘ Get2[switch][[t],[s]]
o (<[t,s]> Car[t,s]))

Trans(talk,switch,gain, lose)def=

talk .Trans〈talk,switch,gain, lose〉

+ lose(t,s).switch〈t,s〉

. Idtrans〈gain, lose〉

val DEF_Trans = "DEF_Trans" :::
Trans[talk,switch,gain,lose]
----|>
Sum o (Get0[talk][] o Trans[talk,switch,gain,lose]

‘|‘ Get2[lose][[t],[s]]
o (<[t,s]> Sum o Send2[switch,t,s]

o Idtrans[gain,lose]))

Idtrans(gain, lose)def=

gain(t,s).Trans〈t,s,gain, lose〉

val DEF_Idtrans = "DEF_Idtrans" :::
Idtrans[gain, lose]
----|>
Sum o Get2[gain][[t],[s]]
o (<[t,s]> Trans[t,s,gain,lose])

Control(lose1, talk2,switch2,gain2,

lose2, talk1,switch1,gain1)
def=

lose1〈talk2,switch2〉.gain2〈talk2,switch2〉

.Control〈lose2, talk1,switch1,gain1,

lose1, talk2,switch2,gain2〉

val DEF_Control = "DEF_Control" :::
Control[lose1,talk2,switch2,gain2,

lose2,talk1,switch1,gain1]
----|>
Sum o Send2[lose1,talk2,switch2]
o Sum o Send2[gain2,talk2,switch2]
o Control[lose2,talk1,switch1,gain1,

lose1,talk2,switch2,gain2]

Fig. 16. Definitions of Car, Trans, Idtrans and Control nodes.

- val rules = mkrules [REACT0, REACT2, DEF_Car, DEF_Trans, DEF_Idtrans, DEF_Control];
[...]
- print_mv (matches rules System1);
[{rule = "DEF_Car",
context
= (lose1//[lose1_d3, lose1_d6] * talk2/talk2_d2 * switch2/switch2_d1

* gain2//[gain2_d0, gain2_d5] * lose2//[lose2_cf, lose2_d4]
* talk1//[talk, talk1_ce, talk1_d9]
* switch1//[switch, switch1_cd, switch1_d8]
* gain1//[gain1_cc, gain1_d7]) o

(merge(4) o
(Trans[talk1_d9, switch1_d8, gain1_d7, lose1_d6] *
Idtrans[gain2_d5, lose2_d4] *
Control[lose1_d3, talk2_d2, switch2_d1, gain2_d0, lose2_cf,

talk1_ce, switch1_cd, gain1_cc])),
parameter = idx0},

{rule = "DEF_Control", [...] },
{rule = "DEF_Idtrans", [...] },
{rule = "DEF_Trans", [...] }]

Fig. 17. Determining which rules match System1.

outer names to which Car ports link, as well as the order of names to which Control ports link.
This concludes our description of the example highlighting how we can use the BPL Tool to experiment with

bigraphical reactive systems.

16

- val TAC_unfold =
react_rule "DEF_Car" ++ react_rule "DEF_Trans" ++
react_rule "DEF_Idtrans" ++ react_rule "DEF_Control";

[...]
- val System1_unfolded = run rules TAC_unfold System1;
val System1_unfolded =

(lose1//[lose1_3f9, lose1_419, lose_441, lose_459, lose_45d]
* talk2//[talk2_3f8, talk2_40f, talk2_418]
* switch2//[switch2_3f7, switch2_40e, switch2_417]
* gain2//[gain2_3f6, gain2_410, gain_431, gain_438]
* lose2//[lose2_3fd, lose_430]
* talk1//[talk1_3fc, talk_460, talk_465, talk_482, talk_485]
* switch1//[switch1_3fb, switch_447, switch_45f, switch_480, switch_481]
* gain1//[gain1_3fa, gain_442, gain_45e]) o merge(4) o

(Sum o merge(2) o
(Send0[talk_485] o Car[talk_482, switch_481] *
Get2[switch_480][[t_47d], [s_47c]] o
(<[s_47c, t_47d]> Car[t_47d, s_47c])) *

Sum o merge(2) o
(Get0[talk_465] o Trans[talk_460, switch_45f, gain_45e, lose_45d] *
Get2[lose_459][[t_446], [s_445]] o
(<[s_445, t_446]>

Sum o (Send2[switch_447, t_446, s_445] o Idtrans[gain_442, lose_441]))) *
Sum o Get2[gain_438][[t_433], [s_432]] o
(<[s_432, t_433]> Trans[t_433, s_432, gain_431, lose_430]) *
Sum o
(Send2[lose1_419, talk2_418, switch2_417] o
(Sum o
(Send2[gain2_410, talk2_40f, switch2_40e] o
Control[lose2_3fd, talk1_3fc, switch1_3fb, gain1_3fa, lose1_3f9,

talk2_3f8, switch2_3f7, gain2_3f6]))))
: 0 -> <{lose1, talk2, switch2, gain2, lose2, talk1, switch1, gain1}> : agent

Fig. 18. Unfolding System1, using the TAC_unfold tactic.

Car

Idtrans Trans

Control

talk2

switch2

lose2

gain2

lose1

gain1

- print_mv (matches rules System1_unfolded);
[{rule = "REACT0", [...] }, {rule = "REACT2", [...] }]
[...]
- val TAC_switch =

react_rule "REACT2" ++ (* Control tells Trans to lose. *)
react_rule "REACT2" ++ (* Control tells Idtrans to gain. *)
react_rule "REACT2"; (* Trans tells Car to switch. *)

[...]
- val System2 = run rules TAC_switch System1_unfolded;
val System2 =

(lose1//[lose1_86a, lose_8c0] * talk2//[t_858, talk2_869, t_8bf]
* switch2//[s_857, switch2_868, s_8be] * gain2//[gain_856, gain2_867]
* lose2//[lose_855, lose2_86e] * talk1/talk1_86d * switch1/switch1_86c
* gain1//[gain1_86b, gain_8c1]) o merge(4) o

(Idtrans[gain_8c1, lose_8c0] * Car[t_8bf, s_8be] *
Control[lose2_86e, talk1_86d, switch1_86c, gain1_86b, lose1_86a, talk2_869,

switch2_868, gain2_867] * Trans[t_858, s_857, gain_856, lose_855])
: 0 -> <{lose1, talk2, switch2, gain2, lose2, talk1, switch1, gain1}> : agent

-

Fig. 19. Checking possible matches, then switching to System2, using the TAC_switch tactic.

17

7. Conclusion and Future Work

We have developed a provably sound and complete inference system over bigraph terms for inferring legal matches
of bigraphical reactive systems. Moreover, we have implemented our BPL Tool, the first implementation of bigraphical
reactive systems. We have demonstrated a simple, but concrete, example of how the tool can be used to simulate
bigraphical models. We have found it very useful to base this first implementation of bigraphical reactive systems
so closely on the developed theory—this has naturally given us greater confidence in the implementation, but the
implementation work has also helped to debug the developed theory.

There are lots of interesting avenues for future work. While the current implementation of BPL Tool is efficient
enough to experiment with small examples, we will try to make it more efficient by using a number of different
techniques: we plan to investigate how to prune off invalid matches quickly, for instance by making use of sorting
information [3]. Moreover, we will investigate to what extent we can capture the link graph matching via a constraint-
based algorithm.

We also plan to investigate smarter ways of combining matching and rewriting. As a starting point, we have made
it possible for users to combine tactics to inform the tool in which order it should attempt to apply reaction rules.

Jean Krivine and Robin Milner are currently investigating stochastic bigraphs, which will be particularly important
for simulation of real systems. We hope that our detailed analysis of matching for binding bigraphs will make it
reaonably straightforward to extend it to stochastic bigraphs.

References

[1] L. Birkedal, T. C. Damgaard, A. J. Glenstrup, and R. Milner. Matching of bigraphs. In Proceedings of Graph
Transformation for Verification and Concurrency Workshop 2006, Electronic Notes in Theoretical Computer
Science. Elsevier, Aug. 2006.

[2] L. Birkedal, S. Debois, E. Elsborg, T. T. Hildebrandt, and H. Niss. Bigraphical models of context-aware systems.
In L. Aceto and A. Ingólfsdóttir, editors, Proceedings of the 9th International Conference on Foundations of
Software Science and Computation Structure, volume 3921 of Lecture Notes in Computer Science, pages 187–
201. Springer-Verlag, Mar. 2006. ISBN ISBN: 3-540-33045-3.

[3] L. Birkedal, S. Debois, and T. T. Hildebrandt. Sortings for reactive systems. In C. Baier and H. Hermanns,
editors, Proceedings of the 17th International Conference on Concurrency Theory, volume 4137 of Lecture
Notes in Computer Science, pages 248–262. Springer-Verlag, Aug. 2006.

[4] L. Birkedal, T. C. Damgaard, A. J. Glenstrup, and R. Milner. An inductive characterisation of matching in
binding bigraphs. to appear, 2008.

[5] T. BPL Group. BPLweb—the BPL tool web demo, 2007. URL http://tiger.itu.dk:8080/bplweb/. IT
University of Copenhagen, Denmark. Prototype.

[6] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and J. F. Quesada. Maude: Specification
and programming in rewriting logic. Theoretical Computer Science, 2001.

[7] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. Talcott. The Maude 2.0 System. In
R. Nieuwenhuis, editor, Rewriting Techniques and Applications (RTA 2003), volume 2706 of Lecture Notes in
Computer Science, pages 76–87. Springer-Verlag, June 2003.

[8] T. C. Damgaard. Syntactic theory for bigraphs. Master’s thesis, IT University of Copenhagen, Rued Langgaards
Vej 7, DK-2300 Copenhagen V, Dec. 2006.

[9] T. C. Damgaard and L. Birkedal. Axiomatizing binding bigraphs. Nordic Journal of Computing, 2006.
[10] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph Transformation. Monographs

in Theoretical Computer Science. An EATCS Series. Springer, 2006.
[11] J. J. Fu. Directed graph pattern matching and topological embedding. 22(2):372–391, 1997.
[12] O. H. Jensen. Mobile Processes in Bigraphs. PhD thesis, Univ. of Cambridge, 2008. Forthcoming.
[13] O. H. Jensen and R. Milner. Bigraphs and mobile processes (revised). Technical Report UCAM-CL-TR-580,

University of Cambridge, Feb. 2004.
[14] J. Larrosa and G. Valiente. Constraint satisfaction algorithms for graph pattern matching. 12:403–422, 2002.

18

[15] J. J. Leifer and R. Milner. Transition systems, link graphs and Petri nets. Technical Report UCAM-CL-TR-598,
University of Cambridge, Aug. 2004.

[16] T. Maude Team. The Maude system, 2007. http://maude.cs.uiuc.edu/.
[17] R. Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge University Press, 1999.
[18] R. Milner. Bigraphs whose names have multiple locality. Technical Report UCAM-CL-TR-603, University of

Cambridge, Sept. 2004.
[19] V. Sassone and P. Sobociński. Reactive systems over cospans. In Proceedings of Logic in Computer Science

(LICS’05), pages 311–320. IEEE Press, 2005.
[20] J. D. Ullman. An algorithm for subgraph isomorphism. 23(1):31–42, 1976.
[21] A. Zündorf. Graph pattern matching in PROGRES. In J. E. Cuny, H. Ehrig, G. Engels, and G. Rozenberg,

editors, TAGT, volume 1073 of Lecture Notes in Computer Science, pages 454–468. Springer-Verlag, 1994.
ISBN 3-540-61228-9.

Appendix A. Auxiliary Technologies Details

A.1. Normalising

We define a normalisation relation t ↓B t ′ for elementary bigraphs: mergen,pXq,~y/~X ,K~y(~X) and π as shown in
Figure A.1, and inductively for operations: abstraction (X)P, product

⊗n
i Bi and composition B1B2 as shown in Fig-

ure A.2, where the notation σ�Y means {X 7→ y ∈ σ | y ∈ Y}.

Bmer
N ≡ (/0)(id /0⊗mergen)

⊗
i∈npid /0q P≡ (id /0⊗ ([])/([]))N D≡ id /0⊗ (

⊗
i∈1 P)idn

mergen ↓B (id /0⊗ id[/0])D

Bcon

N ≡ (/0)(idX ⊗merge1)
⊗

i∈1(idX ⊗ id1)pXq
P≡ (idX ⊗ ([])/([]))N D≡ id /0⊗ (

⊗
i∈1 P)id(X)

pXq ↓B (idX ⊗ id[/0])D
Bwir

~y/~X ↓B (~y/~X⊗ id[])(idX ⊗ id0id0)

Bion

X = {~X} Y = {~y} M ≡ (id /0⊗K~y(~X))(X)(idX ⊗merge1)
⊗

i∈1(idX ⊗ id1)pXq

N ≡ (/0)(idY ⊗merge1)
⊗

i∈1 M P≡ (idY ⊗ ([])/([]))N D≡ id /0⊗ (
⊗

i∈1 P)id(X)

K~y(~X) ↓B (idY ⊗ id[/0])D

Bper

Yi = {~yi} Ni ≡ (Yi)(idYi ⊗merge1)
⊗

j∈1(idYi ⊗ id1)pYiq

Pi ≡ (id /0⊗~̂yi/~yi)Ni D≡ id /0⊗ (
⊗

i∈m Pi)π

π : 〈m,~X ,X〉 → 〈m,~Y ,X〉 ↓B (id /0⊗ id~Y)D

Fig. A.1. Inference rules for normalising elementary bigraph expressions

A.2. Renaming

Let a link namer be a map µ mapping every link l (outer name or edge) in its domain to a pair (E,X), where
E is a set of names used internally to compose the link, and X are the inner names linking to l. We let Vi(Y,µ) =⋃

y∈Y,y7→(X1,X2)∈µ Xi and define link namer composition by

µ1 ◦µ2 = {y1 7→ (E1∪X1∪V1,V2) | y1 7→ (E1,X1) ∈ µ1∧Vi = Vi(X1,µ2)}

∪ {y2 7→ (E2,X2) ∈ µ2 | ∀y1 7→ (E1,X1) ∈ µ1 : y2 /∈ X1},

essentially composing links of µ1 with those of µ2, and adding closed links from µ2.

19

Babs

b ↓B (z/W ⊗ id([Y]))(id /0⊗ (
⊗

i∈1(idZ⊗~̂y/~X)(W)G)idI)
~zX = [z j←~z | z j ∈ X] ~zX̄ = [z j←~z | z j /∈ X]

~W X = [Wj← ~W | z j ∈ X] ~W X̄ = [Wj← ~W | z j /∈ X]

W X = {~W X} W X̄ = {~W X̄} U = {~y~zX} N ≡ (W X ∪W)G P≡ (idW X̄ ⊗ ̂~y~zX/~X~W X)N

(X)b ↓B (zX̄/W X̄ ⊗ id([U]))(id /0⊗ (
⊗

i∈1 P)idI)

Bten

bi ↓B (ωi⊗ id(~Yi)
)Di Di ≡ αi⊗ (

⊗
j∈ni

P j
i)πi : Ii→ 〈ni,~Yi,Yi〉

ω =
⊗

i∈n ωi α =
⊗

i∈n αi id(~Y) =
⊗

i∈n id(~Yi)
π =

⊗
i∈n πi

P =
⊗

j∈n
⊗

i∈n j
P j

i D≡ α⊗Pπ⊗
i∈n bi ↓B (ω⊗ id(~Y))D

Ccom
σ = (idZ⊗α)(idZ⊗ y/X)

(idZ⊗ (α⊗ id1)pYq)
⊗

i∈1(idZ⊗~̂y/~X)(X)(idU ⊗mergen)S̄ ↓S̄ σ , S̄

Mcom
(idZ⊗N)P̄ ↓N σ ,N′ ~X ′ = σ−1(~X) Z′ = σ−1(Z) Y ′ = σ−1(Y) σ ′ = id{~y}⊗σ�Z]Y

(idZ⊗ (idY ⊗K~y(~X))N)P̄ ↓S̄ σ ′,
⊗

i∈1(idZ′]Y ′ ⊗K~y(~X ′))N
′

Ncom

Pi : 〈mi,~Xi,Xi〉 → 〈1,(Yi),Yi]Wi〉⊗
i∈n P̄i =

⊗
i∈k Pi P̄i : Ii→ 〈ni,~Yi,{~Yi}]Zi〉 (idZi ⊗Si)P̄i ↓S̄ σi, S̄i

S̄ =
⊗

i∈n S̄i : I→ 〈n′,Z′]Y ′〉 σ =
⊗

i∈n σi X ′ = σ−1(X) Z′ = σ−1(Z) Y ′ = σ−1(Y)

(idZ⊗ (X)(idY ⊗mergen)
⊗

i∈n Si)
⊗

i∈k Pi ↓N σ ,(X ′)(idZ′]Y ′ ⊗mergen′)S̄

Pcom
(idZ⊗N)P̄ ↓N σ ,N′ W = σ−1(Z]Z′) ~X ′ = σ−1(~X) σ ′ = σ�Z]Z′

(idZ⊗ (idZ′ ⊗~̂y/~X)N)P̄ ↓P σ ′,(idW ⊗~̂y/~X ′)N′

Bcom

b1 ↓B

(
ω1⊗ id(~U1)

)
D1 : 〈m′,~X ′,X ′]Z〉 → 〈n,~U1,U1]W 〉

b2 ↓B

(
ω2⊗ id(~U2)

)
D2 : 〈m,~X ,X]U〉 → 〈m′,~U2,U2]Z〉

D1 ≡ α1⊗
(⊗

i∈n P1
i

)
π1 : 〈m′,~X ′,X ′]Z〉 → 〈n,~U1,U1]V 1]W 1〉

D2 ≡ α2⊗
(⊗

i∈m′ P
2
i

)
π2 : 〈m,~X ,X]U〉 → 〈m′,~U2,U2]V 2]W 2〉

P1
i : 〈m′i,~X ′i ,X ′i 〉 → 〈(U1

i),U1
i]V 1

i 〉 P2
i : 〈m′′i ,~X ′′i ,X ′′i 〉 → 〈(U2

i),U2
i]V 2

i 〉
ω1 : V 1]W 1→W ω2 : V 2]W 2→ Z α1 : Z→W 1 α2 : U →W 2

V 2 =
⊎

i∈m′V
2
i

⊗
i∈m′ P

2
π
−1
1 (i)

=
⊗

i∈n P̄i P̄i : I′i → 〈m′i,~X ′i ,X ′i]Z′i〉

(idZ′i
⊗P1

i)P̄i ↓P σi,Pi σ = idU ⊗
⊗

i∈n σi ω = ω1(α1ω2(α2⊗ idV 2)⊗ idV 1)σ
π = π1~X ′′π2 D≡ idU ⊗

(⊗
i∈n Pi

)
π

b1b2 ↓B

(
ω⊗ id(~U1)

)
D

Fig. A.2. Inference rules for normalising bigraph abstraction, product and composition expressions

We then define a function linknames, mapping terms to link namers, by the equations given in Figure A.3. By using
the link namers of immediate subterms, we can determine whether a term can be normalised without name clashes.
To this end, we define a predicate normalisable by the equations given in Figure A.4. We basically just require, that
at no level in the term does two different links share any internal names.

20

linknames(mergen) = {}

linknames(pXq) = {x 7→ ({},{x}) | x ∈ X}

linknames(~y/~X) = {yi 7→ ({},Xi) | i ∈ |~y|}

linknames(K~y(~e/~X)) = {yi 7→ ({},{}) | i ∈ |~y|}∪{ei 7→ ({},Xi) | i ∈ |~X |}

linknames(π : → 〈m,~X ,X〉) = {x 7→ ({},{x}) | x ∈ X}

linknames((Y)P) = linknames(P)

linknames(
⊗

i

ti) =
⋃

i

linknames(ti)

linknames(t1t2) = linknames(t1)◦ linknames(t2)

Fig. A.3. Function for determining which names are used internally to compose a link

normalisable(mergen) = true

normalisable(pXq) = true

normalisable(~y/~X) = true

normalisable(K~y(~e/~X)) = true

normalisable(π : → 〈m,~X ,X〉) = true

normalisable((Y)P) = normalisable(P)

normalisable(
⊗

i

ti) =
∧

i

normalisable(ti)

∧(∀i 6= j : Ei∩E j = /0)

where µi = linknames(ti)

Ei =
⋃

y7→(E,X)∈µi

E

normalisable(t1t2) = normalisable(t1)∧normalisable(t2)

∧(∀l1 6= l2 : µE(l1)∩µE(l2) = /0)

where µi = linknames(ti)

µ = µ1 ◦µ2

µE(l) = E, if µ(l) = (E,X)

Fig. A.4. Function for determining whether a (well-formed) term is normalisable

Renaming is achieved by the judgment U ` α, t ↓β t ′,β a V , where U is a set of used names and α renames t’s
inner names to those of t ′, while β renames t’s outer names to those of t ′ and V extends U with names used in t ′. The
system of rules for inferring this judgment is given in Figure A.5.

A.3. Regularising

The system of rules for inferring a permutation-free term representing a regular bigraph is given in Figure A.6.

21

Rmer
U ` id /0,mergen ↓β mergen, id /0 aU

Rcon
X ′ = α(X)

U ` α,pXq ↓β pX ′q,α aU

Rwir

Z = {~z} Z∩U = /0 |Z|= |~z|= |~y|
~X ′ = α(~X) β = {yi 7→ zi}

U ` α,~y/~X ↓β ~z/~X ′,β aU ∪Z
Rion

Z = {~z} Z∩U = /0 |Z|= |~z|= |~y|
~X ′ = α(~X) β = {yi 7→ zi}
U ` α,K~y(~X) ↓β K~z(~X ′),β aU ∪Z

Rper
X ′ = α(X) ~X ′ = α(~X) ~Y ′ = α(~Y)

U ` α,π : 〈m,~X ,X〉 → 〈m,~Y ,X〉 ↓β π : 〈m,~X ′,X ′〉 → 〈m,~Y ′,X ′〉,α aU

Rabs
U ` α, t ↓β t ′,β aV X ′ = β (X)

U ` α,(X)t ↓β (X ′)t ′,β aV

Rten
ti : 〈mi,~Xi,Xi〉 → Ji αi = α �Xi Ui ` αi, ti ↓β t ′i ,βi aUi+1 β =

⊗
i∈n βi

U0 ` α,
⊗

i∈n ti ↓β

⊗
i∈n t ′i ,β aUn

Rcom
U1 ` α1, t2 ↓β t ′2,β1 aU2 U2 ` β1, t1 ↓β t ′1,β2 aV2

U1 ` α1, t1t2 ↓β t ′1t ′2,β2 aV2

Fig. A.5. Renaming rules

α
pαqid(X) ↪→pαq

M
Nπ ↪→N′

(idZ⊗K~y(~X))Nπ ↪→(idZ⊗K~y(~X))N
′

N
Si : 〈mi,~Xi〉 → Ji π = π ′

~X Siπ
′~X
i ↪→S′i

((X)(idY ⊗mergen)
⊗

i∈n Si)π ′ ↪→(X)(idY ⊗mergen)
⊗

i∈n S′
π(i)

D
π =

⊗
i∈n πi πi : I′i → Ii Ni : Ii→ Ji Niπi ↪→N′i

α⊗ (
⊗

i∈n(idZi ⊗~̂yi/~Xi)Ni)π ↪→α⊗
⊗

i∈n(idZi ⊗~̂yi/~Xi)N′i

B D ↪→D′

(ω⊗ id(~X))D ↪→(ω⊗ id(~X))D
′

Fig. A.6. Removing nontrivial permutations from regular bigraphs.

22

