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Abstract

For matrix games we study how small nonzero probability must be used in
optimal strategies. We show that for n × n win-lose-draw games (i.e. (−1, 0, 1)
matrix games) nonzero probabilities smaller than n−O(n) are never needed. We
also construct an explicit n × n win-lose game such that the unique optimal
strategy uses a nonzero probability as small as n−Ω(n). This is done by con-
structing an explicit (−1, 1) nonsingular n× n matrix, for which the inverse has
only nonnegative entries and where some of the entries are of value nΩ(n).
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1 Introduction

Given a matrix game A we are interested in the following question: What is the
smallest nonzero probability that must be used in optimal strategies. This quantity,
the smallest nonzero probability of a strategy, was first considered in the context of
recursive games (stochastic games where payoffs are only accumulated in absorbing
states) by Everett [4]. To be more precise, if p is the smallest nonzero probability
of a probability vector σ, we say that the patience of σ is 1/p. Note that this is the
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1 Introduction

precisely the expected number of times that σ must be sampled in order to observe
the least likely outcome. Also dlog2(1/p)e is a lower bound on the number of random
bits required in order to sample from σ using a source of uniform random bits.

In this paper we study the patience required for playing optimal strategies in matrix
games. Our focus is how this quantity depends on the dimensions of the matrix game,
rather than on the individual payoffs. In particular we consider win-lose and win-lose-
draw matrix games. We model win-lose games as (0, 1) matrices and win-lose-draw
matrices as (−1, 0, 1) matrices. Note that for win-lose games this choice of matrices
have no consequence: the set of optimal strategies is invariant under addition by
a number and multiplication by a positive number, applied simultaneously to every
entry of the matrix. In particular, we can equivalently model win-lose matrix games
as (−1, 1) matrices.

We prove both upper and lower bounds on the patience required for playing optimal
strategies for these two classes of matrix games. Our lower bounds build on previous
constructions of ill-conditioned matrices [8, 1]. In particular we show that from any
ill-conditioned matrix A, a matrix game can be derived with patience at least the
size of the largest entry of the inverse of A. As such our question can be seen as
yet another application of ill-conditioned matrices. A downside of this connection is
that it is not explicit - namely, we do not know of a polynomial time algorithm for
computing this derived matrix game, given the ill-conditioned matrix A as input. We
address this unsatisfactory situation by constructing a variant of the ill-conditioned
matrix constructed by Alon and Vũ [1], and study in detail the structure of the inverse
matrix. We use this to construct an ill-conditioned (−1, 1) matrix with a non-negative
inverse, and from this we directly obtain an explicit construction of a win-lose matrix
of high patience. This construction is in fact what we will call fully-explicit, meaning
that each entry of the matrix can be computed in time polynomial in the bitlength of
the dimension of the matrix.

Patience behaves very differently in matrix games compared to its original setting
of recursive games [11, 9, 10]. First of all in recursive games optimal strategies are not
guaranteed to exist; On the other hand, for every ε > 0 both players have stationary
strategies guaranteeing an expected payoff within ε of the value of the game from any
starting position [4]. However, there exist recursive games with N positions, each with
m ≥ 2 actions, and every payoff is 0 or 1, where any (1 − 4m−N/2)-optimal strategy

must have patience at least 2m
N/3

. On the other hand, patience (1/ε)m
O(N)

is always
sufficient for having an ε-optimal strategy in recursive games where every payoff is 0
or 1.

Consider now again the setting of matrix games. Lipton and Young proved that
in a zero-sum n× n matrix game where all payoffs belongs to the interval [0, 1], each
player has a simple strategy guaranteeing an expected payoff within ε of the value of
the game, where a simple strategy is a strategy that mixes uniformly on a multiset of
dlnn/ε2e actions [15]. Thus the patience of such strategies is also at most dlnn/ε2e.

In other words, comparing with our results below, if one is willing to give up ε payoff,
one can play with patience that is smaller by an exponential magnitude than required
for playing truly optimally.
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1 Introduction

1.1 Our Results

For stating our results we use standard matrix game terminology. We refer the reader
to Section 2 for explanations of this terminology.

We define the patience of a strategy to be 1/p, where p is the smallest nonzero
probability the strategy x assigns to one of the actions. That is, the patience of a
strategy x is (min{xi | xi > 0})−1.

Given a matrix game A, we define the patience τ1(A) required for Player 1 to play
A optimally to be the minimum patience of an optimal strategy for A. In a similar
way we can define τ2(A) for Player 2.

We are interested in the largest patience required for optimal strategies of win-
lose and win-lose-draw games, as a function of the size of the matrix game. Thus,
define τwl(n) as the maximum of τ1(A) taken over all (0, 1) n × n matrix games A,
and similarly τwld(n) as the maximum of τ1(A) taken over all (−1, 0, 1) n× n matrix
games A.

Clearly the definition of τwl(n) and τwld(n) would be unchanged by considering
τ2(A) rather than τ1(A). However we shall also consider the patience required by
both players for optimal strategies. Thus, we define also τ̂wl(n) as the maximum of
min(τ1(A), τ2(A)) taken over all (0, 1) n × n matrix games A, and similarly τ̂wld(n)
as the maximum of min(τ1(A), τ2(A)) taken over all (−1, 0, 1) n× n matrix games A.
All these measures of patience are in fact closely related (cf. Section 2.3).

We are now able to state our results. First using a Theorem of Shapley and Snow [20]
and standard estimates of the magnitude determinants we obtain the following basic
upper bound on patience.

Proposition 1.

τwl(n) ≤ (n+ 2)
n+2
2 /2n+1 , τwld(n) ≤ (n+ 1)

n+1
2 .

Next, using previous results on ill-conditioned matrices by Alon and Vũ [1] we obtain
the following (non-explicit) lower bound on patience.

Theorem 2.
τ̂wld(n) ≥ nn

2 /2n(2+o(1)) .

By Corollary 15 from Section 2.3 we obtain a result for win-lose matrix games as
well.

Corollary 3.
τ̂wl(n) ≥ nn

4 /2n(5/4+o(1)) .

Our main contribution is an explicit construction of a matrix game satisfying a
similar patience lower bound.

Theorem 4. Let n = 2m be a power of two. Then

τwl(n) ≥ nn
2 /2n(1+o(1)) .

Furthermore there is an algorithm that for each n and given indices i and j computes
the entry (i, j) of the matrix witnessing the lower bound, in time polynomial in m.
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1.2 Organization of the paper

In Section 2 we briefly introduce sign patterns of matrices and matrix games, followed
by a more extensive coverage of patience of matrix games in Section 2.3. In particular
this section provides a proof of the upper bound on patience of matrix games, Proposi-
tion 1. In Section 3 we consider the relationship between ill-conditioned matrices and
patience of matrix games. In Section 4 we consider three easy examples of explicit ill-
conditioned matrices and show how they give matrix games of large patience. Finally,
in Section 5 we present our main contribution, an explicit construction of a win-lose
matrix game of almost worst case patience.

2 Preliminaries

We shall denote by 1 a vector of appropriate dimension where every entry is 1. All
vectors we consider are column vectors.

2.1 Sign Patterns of Matrices

A full sign pattern is a matrix with entries from {−1, 1}. A pair of vectors σ(1), σ(2)

with entries from {−1, 1} gives rise to a full sign pattern σ(1)(σ(2))T We shall call a
full sign pattern of this form a block checkerboard sign pattern.

Let A = (aij) be a n × n matrix with real valued entries. We say that A weakly
obeys a block checkerboard sign pattern if there is a block checkerboard sign pattern
Σ = (σij) such that σij = 1 implies aij ≥ 0 and σij = −1 implies aij ≤ 0. Note that
given A, Σ is not necessarily unique, depending upon the entries of A that are 0.

Lemma 5. Let A = (aij) be a n×n nonsingular matrix with real valued entries, such
that the inverse A−1 weakly obeys a block checkerboard sign pattern Σ = (σij). Define
the n× n matrix B = A ◦ΣT to be the Hadamard product of A and the transpose of Σ
(That is, B = (bij) is given by bij = aijσji). Then the entries of the inverse B−1 are
non-negative.

Proof. This follows immediately by considering the identity AA−1 = I.

2.2 Matrix Games

A matrix game is given by a m × n real matrix A = (aij). The entries aij are
payoffs. The game is played by Player 1 selecting an action i ∈ {1, . . . ,m} and Player
2 simultaneously selecting an action j ∈ {1, . . . , n}, after which Player 1 receives a
payoff of aij from Player 2. A strategy of a player is a probability distribution over the
actions of the player. We shall view these as stochastic vectors. A strategy is totally
mixed if it assign non-zero probability to each action.

Given a strategy x for Player 1 and a strategy y for Player 2, the expected payoff to
Player 1 when the two players use the pair (x, y) of strategies is xTAy. The celebrated
minimax theorem of von Neumann [23] states that every matrix game has a value.
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2 Preliminaries

Theorem 6 (von Neumann). For any matrix game A, there is a number v such that

v = max
x

min
y
xTAy = min

y
max
x

xTAy ,

where x and y range over strategies for the two players. The number v is called the
value, val(A), of A.

A strategy x is a maximin strategy for Player 1, if miny x
TAy = val(A). Similarly,

a strategy y is a minimax strategy for Player 2, if maxx x
TAy = val(A). We will call

both a maximin strategy for Player 1 and a minimax strategy for Player 2 for optimal
strategies.

Shapley and Snow [20] characterized the set of optimal strategies as the convex hulls
of basic solutions.

Theorem 7 (Shapley and Snow). Let X and Y be the sets of optimal strategies for
Player 1 and Player 2 in a matrix game. Then X and Y are the convex hulls of the
sets of basic solutions X∗ and Y ∗, where every pair of basic solutions x ∈ X∗ and
y ∈ Y ∗ correspond exactly to a square submatrix B of A, which satisfies:

val(A) = det(B)/1T adj(B)1 ,

xTB = 1T adj(B)/1T adj(B)1 ,

yB = adj(B)1/1T adj(B)1 ,

(1)

where xB and yB are obtained from of x and y by restricting to the rows and columns
of B, respectively.

If the value v of the matrix game A is nonzero this simplifies to

val(A) = 1/1TB−11 , xTB = v1TB−1 , yB = vB−11 , (2)

Conversely, we have the following result (see e.g. [6, Theorem 3.2]).

Theorem 8. Let A be a n×n matrix game, where A is nonsingular and 1TA−11 6= 0.
Define

v = 1/1TA−11 , xT = v1TA−1 , y = vA−11 .

If both x ≥ 0 and y ≥ 0 then val(A) = v and x and y are optimal strategies of A. If in
fact both x and y are totally mixed, i.e. x > 0 and y > 0, then x and y are the unique
optimal strategies.

2.3 Patience of matrix games

Basic Relations

Directly from the definitions we have:

Proposition 9.
τ̂wl(n) ≤ τwl(n) , τ̂wld(n) ≤ τwld(n) .
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2 Preliminaries

Conversely we can from matrix games where one player must use a strategy of high
patience construct a (larger) matrix game where this is the case for both players.

Proposition 10. Let A be a n×n (0, 1) matrix game such that 0 < val(A) < 1. Then
there exist a 2n× 2n (0, 1) matrix game B such that τ̂wl(B) ≥ max(τ1(A), τ2(A)).

Proof. Consider the 2n× 2n matrix game B given by

B =

[
A 0
0 11T −AT

]
.

Note that val(11T − AT) = 1 − val(A) > 0. It follows that the optimal strategies for
Player 1 in B are of the form

(
(1− val(A))xT, val(A)yT

)
and similarly the optimal

strategies for Player 2 in B are of the form
(
(1− val(A))yT, val(A)xT

)
, where x and y

are optimal strategies in A for Player 1 and Player 2, and the result follows.

We have a similar statement for win-lose-draw matrix games.

Proposition 11. Let A be a n×n (−1, 0, 1) matrix game such that −1 < val(A) < 1.
Then there exist a 2n×2n (−1, 0, 1) matrix game B such that τ̂wl(B) ≥ max(τ1(A), τ2(A)).

Proof. The proof follows similarly to that of Proposition 10, by considering the 2n×2n
matrix game B given by

B =

[
A −11T

−11T −AT

]
.

and noting that this matrix game has the same optimal strategies as the matrix game
obtained by adding 1 to each entry:[

A+ 11T 0
0 11T −AT

]
,

val(A+ 11T) = val(A) + 1 > 0, and val(11T −AT) = 1− val(A) > 0.

Since a win-lose matrix game of value 0 or 1 as well as a win-lose-draw matrix game
of value −1 or 1 has trivial patience 1 for both players we have the following relations,
complementing Proposition 9.

Corollary 12.
τ̂wl(2n) ≥ τwl(n) , τ̂wld(2n) ≥ τwld(n) .

Next we consider the relationship between win-lose and win-lose-draw games. Im-
mediately from the definition we have.

Proposition 13.
τwl(n) ≤ τwld(n) , τ̂wl(n) ≤ τ̂wld(n) .

We next show how to convert win-lose-draw matrix games into win-lose matrix
games.
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2 Preliminaries

Proposition 14. Let A be a n× n (−1, 0, 1) matrix game. Define the 2n× 2n (0, 1)
matrix game B obtained from A by replacing (−1)-entries by the 2×2 all-zero matrix,
0-entries by the 2×2 identity matrix, and 1-entries by the 2×2 all-ones matrix. Then
τ1(A) ≤ τ1(B) and τ2(A) ≤ τ2(B)

Proof. Let x′ be an optimal strategy for Player 1 in B. Define the strategy x for
Player 1 in A by xi = x′2i−1+x′2i. By definition we have (x′T(2B−11T))j = 2(x′TB)j−
1 ≥ 2 val(B)− 1 for all j. We then get

(xTA)j =
1

2
(x′T(2B − 11T))2j−1 +

1

2
(x′T(2B − 11T))2j

≥ 1

2
(2 val(B)− 1) +

1

2
(2 val(B)− 1) = 2 val(B)− 1

Similarly, for an optimal strategy y′ for Player 2 in B we define the strategy y for
Player 2 in A by yi = y′2i−1 + y′2i and obtain (Ay)i ≤ 2 val(B)− 1 for all i. It follows
that val(A) = 2 val(B)− 1 and x and y are optimal strategies in A. Since the patience
of x is at most the patience of x′ and the patience of y is at most the patience of y′

the result follows.

We then immediately have the following converse to Proposition 13.

Corollary 15.
τwld(n) ≤ τwl(2n) , τ̂wld(n) ≤ τ̂wl(2n) .

Patience Upper Bound

Let A be a n×n matrix game with integer entries. We shall make use of Equation (1)1.
Let B be a m ×m submatrix of A corresponding to an optimal strategy x of Player

1. Define the auxiliary (m + 1) × (m + 1) matrix M =

[
0 1T

1 B

]
. Computing the

determinant of M by expanding along first column and then the first row we find that
det(M) = −1T adj(B)1. Since the entries of adj(B) are integers, by Equation (1) we
have that either xi = 0 or xi ≥ 1/|det(M)|. We may thus bound the patience of x by
|det(M)|.

Now, in case A is a (0, 1) matrix game, the matrix M is a (0, 1) matrix as well, of
dimension at most (n+ 1)× (n+ 1). A bound of Faddeev and Sominskii [5] then gives

|det(M)| ≤ (n+ 2)
n+2
2 /2n+1.

Similarly, in case A is a (−1, 0, 1) matrix game, the matrix M is a (−1, 0, 1) matrix
as well, of dimension at most (n+ 1)× (n+ 1), and using the Hadamard bound we get

|det(B)| ≤ (n+ 1)
n+1
2 . Combining these, the proof of Proposition 1 follows.

1Alternatively one could do essentially the same derivation using the standard formulation of matrix
games as linear programs.
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3 Patience and Ill-conditioned Matrices

3 Patience and Ill-conditioned Matrices

From Theorem 8 we see that a nonsingular n× n matrix A with 1TA−11 6= 0 defines
a matrix game of patience at least 1TA−11, provided that both 1TA−1/1TA−11 > 0
and A−11/1TA−11 > 0.

For a non-singular n × n matrix A, let B = A−1 = (bij) and define χ(A) =
maxi,j |bij |. The problem of constructing (0, 1) or (−1, 1) matrices A for which χ(A) is
large was considered first by Graham and Sloane [8], and later by Alon and Vũ [1]. Such
matrices have besides the direct application of constructing ill-conditioned matrices,
several applications such as flat simplices, coin weighing, indecomposable hypergraphs,
and weights of Boolean threshold functions [8, 12, 1, 17, 2].

Define χ1(n) as the maximum of χ(A) over all non-singular n × n (0, 1) matrices
A. Define χ2(n) to be the analogous quantity where (−1, 1) matrices are considered
instead. Alon and Vũ [1], building on the techniques of H̊astad, gave a near optimal
construction of ill-conditioned matrices. More precisely they provide for every n an
explicit n × n (0, 1) matrix A1 and an explicit n × n (−1, 1) matrix A2 such that
χ(Ai) ≥ nn/2/2n(2+o(1)) for i = 1, 2. When n is a power of 2 these lower bounds
may be improved to nn/2/2n(1+o(1)). Upper bounds for χi(n) are derived from the
Hadamard inequality.

Theorem 16 (Alon and Vũ).

n
n
2 /2n(2+o(1)) ≤ χi(n) for i = 1, 2

χ1(n) ≤ nn
2 /2n−1

χ2(n) ≤ (n− 1)
n−1
2 /2n−1

In their application to indecomposable hypergraphs, Alon and Vũ construct a non-
singular (0, 1) n × n matrix D such that y = D−11 ≥ 0 and |y1/y2| ≥ n

n
2 /2n(2+o(1)).

Unfortunately this construction does not ensure that also 1TD−1 ≥ 0, and hence we
cannot use it to give a matrix game of large patience as described above.

It does however turn out that any matrix A with large χ(A) can be used to construct
a matrix game with patience χ(A), as will be explained in the following section.

3.1 The Matrix Switching Game

Let B be any n×nmatrix. We call the operation of flipping all the signs of an entire row
a row switch, and similarly the operation of flipping all the signs of an entire column
a column switch. We are interested in the sum of all entries, 1TB′1, for matrices
B′ obtained from B using row and column switches. The matrix switching game for
B is to find such a matrix B′ maximizing 1TB′1, the value of the switching game.
Equivalently we may view the matrix switching game as the problem of maximizing the
bilinear form xTBy over x, y ∈ {−1, 1}n. The special case of matrix switching game
for (−1, 1) matrices is known as the Gale-Berlekamp switching game [22, Chapter 6]
(or simply the Berlekamp switching game [21]).
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3 Patience and Ill-conditioned Matrices

Directly from the definition of the matrix switching game we have the following.

Lemma 17. Let B be any n × n matrix, such that 1TB1 can not be increased by a
row or column switch. Then 1TB ≥ 0 and B1 ≥ 0.

It is easy to see that the value of the matrix switching game is at least as large as
the largest element of the matrix.

Lemma 18. Let B = (bij) be any n × n matrix. Then there exist x ∈ {−1, 1}n and
y ∈ {−1, 1}n such that xTBy ≥ maxij |bij |.

Proof. Let bij be the entry of largest absolute value in B. First perform column
switches in B to make all entries of row i non-negative. Next perform a row switch in
any row where the sum of the entries of the row is negative.

Thus the value of the game is at least maxij |bij |.

Proposition 19. Let A be a nonsingular (−1, 1) n × n matrix. Then there exist a
block checkerboard sign pattern Σ such that the (n+1)× (n+1) (−1, 0, 1) matrix game
B given by

B =

[
1 0
0 A ◦ ΣT

]
satisfies τ1(B) ≥ χ(A) and τ2(B) ≥ χ(A).

Proof. Let x, y ∈ {−1, 1}n maximize the bilinear form xTA−1y, and define Σ = xyT.
Let C = A ◦ ΣT. Then C−1 = A−1 ◦ Σ. By Lemma 17 we have 1TC−1 ≥ 0 and
C−11 ≥ 0, and by Lemma 18 we have 1TC−11 ≥ χ(A) > 0. Hence Theorem 8 gives
v := val(C) = 1/1TC−11 > 0.

Optimal strategies in B for Player 1 must then be of the form (v/(1 + v), x′T/(1 +
v)), and similarly optimal strategies in B for Player 2 must be of the form (v/(1 +
v), y′T/(1 + v)), where x and y are optimal strategies in C for Player 1 and Player 2.
It follows these are of patience at least (1 + v)/v ≥ 1/v = 1TC−11 ≥ χ(A).

Combining this with Theorem 16 gives the proof of Theorem 2 and Corollary 3.
While these bounds matches the patience upper bound of Proposition 1 up to the

constant in the exponent, and in the case of win-lose-draw games in fact match up to
an exponential factor, a drawback is that the matrices giving these lower bounds are
not very explicit. We can formalize such a statement using computational complexity
theory, by looking at the complexity of the computational task to compute the n× n
matrix of the family, given as input the number n.

The matrices constructed by Alon and Vũ from Theorem 16 are in fact very explicit
in this sense as will be detailed in Section 5.8. Given such a matrix A, the proof of
Proposition 19 proceeds to invert A, and then solve the matrix switching game for
A−1. While inverting A is a polynomial time computation (in n) it turns out that
solving the Matrix Switching game is NP-hard [18] (this is true even in the case of
the Gale-Berlekamp game). This NP-hardness result is not a real obstacle though;
all that is needed for the proof of Proposition 19 to go through is that the vectors
x, y ∈ {−1, 1}n describe a local maximum of the matrix switching game, in the sense

9



3 Patience and Ill-conditioned Matrices

that the bilinear form xTA−1y cannot be increased by changing a single coordinate of
x or y, and furthermore that the value of this local maximum is at least χ(A). We will
discuss this issue of explicitness in more detail in the next section.

3.2 Local Search and Bipartite Maximum Cut

In this section we will consider local search algorithms from the perspective of compu-
tational complexity in order to properly discuss the explicitness of the matrix games
of high patience constructed in the previous section.

Johnson et.al. [13] formalized the notion of polynomial time local search problems
by the complexity class PLS. A local search problem P is specified by the following:

• A set I of instances, given by a polynomial time algorithm that decides if a
given string represents an instance of P .

• For each instance x, a set F (x) of feasible solutions, whose elements are strings
bounded polynomially in the length of x.

• A specification of P as either a maximization problem or a minimization problem,
together with a cost measure c(x, y), for x ∈ I and y ∈ F (x), to be maximized
or minimized, respectively.

• For each solution y ∈ F (x), a set N (x, y) of neighboring solutions.

We then say that P is in PLS if there exist polynomial time algorithms A, M , and C
as follows:

• A, on input x ∈ I , produces a solution y ∈ F (x).

• M , on input x ∈ I and y ∈ F (x), computes c(x, y).

• C, on input x ∈ I and y ∈ F (x), either reports that y is the best solution in
N (x, y), or produces a better solution y′ ∈ N (x, y).

The standard algorithm to solve the problem P is to first run algorithm A, and then
repeatedly run algorithm C until a locally optimum is found.

We can cast the matrix switching game of the previous section in this framework,
showing that the problem is in PLS: Instances are integer n × n matrices A. A
solution is given by a pair of vectors x, y ∈ {−1, 1}n. The cost of a solution is xTAy,
and neighbors of (x, y) are those obtained by flipping the sign of an entry in either x
or y. Algorithms A, M , and C are immediate.

We note that to implement the proof of Proposition 19 one would need not only a
locally optimum, but a locally optimum of a certain quality. We will suggest that it
might be hard to even just find a locally optimum, or in other words solve the matrix
switching game, without using specific knowledge of the input matrix A.

Using the notions of reductions and completeness one may in a similar way to the
theory of NP-completeness argue that certain problem in PLS are unlikely to be solvable
in polynomial time.
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3 Patience and Ill-conditioned Matrices

A PLS-problem P1 is PLS-reducible [13] to another PLS-problem P2, if there are
polynomial time computable functions f and g, such that f maps instances of P1

to instances of P2, g maps pairs (y′, x), where y′ is a solution of f(x), to a solution
g(y′, x) of x, and in the case when y′ is a local optimum of P2, then g(y, x) is a local
optimum of P1. With the notion of reduction in place, we say that a PLS-problem P
is PLS-complete, if every other PLS-problem reduces to P by a PLS-reduction.

Schäffer and Yannakakis [19] found a number of natural local search problems to be
PLS-complete. In particular they showed that the MaxCut problem is PLS-complete
under the Flip neighborhood. Here the MaxCut problem is given as follows: In-
stances are graphs G = (V,E), V = {1, . . . , n}, with integer weights on the edges, wij .
Solutions are cuts (S, S), S ⊆ V , of the vertices, and the cost of a solution is the sum
of the weights of edges connecting vertices across the cut,

∑
ij∈(S,S) wij . The Flip

neighborhood is defined by the action of moving a single vertex across the cut.
Letting xi ∈ {−1, 1} be given by xi = 1 if and only if i ∈ S, we see the MaxCut

problem is equivalent to maximizing the quadratic form
∑
i<j wij(1 − xixj)/2 over

x ∈ {−1, 1}n. Conversely, the problem of maximizing a quadratic form xTAx over
x ∈ {−1, 1}n can be formulated as a MaxCut instance.

Since, as we have seen, the matrix switching game is equivalent to maximizing
a bilinear form over {−1, 1}n, it is not surprising that we can also reformulate the
matrix switching game as a maximum cut problem.

Indeed, let A be any n× n matrix A, and x, y ∈ {−1, 1}n. Then

(xTAy − 1TA1)/2 =
∑
i,j

−aij(1− xiyj)/2 . (3)

Define now the bipartite graph GA = (V1, V2, E), with V1 = {1, . . . , n} and V2 =
{1′, . . . , n′} , with an edge (i, j) whenever aij 6= 0 of weight wij = −aij . This forms an
instance of the bipartite MaxCut problem, which is the restriction of the MaxCut
problem to bipartite graphs. That is, solutions are cuts (S, S), S ⊆ V1 ∪ V2, of the
vertices, and the cost of a solution is again the sum of the weights of edges connecting
vertices across the cut,

∑
ij∈(S,S) wij . Letting xi = 1 if and only if i ∈ S and yi = 1 if

and only if i′ ∈ S, this is exactly the quantity expressed in Equation (3).
The bipartite MaxCut problem is NP-hard [16, 18]. But as argued, the question

relevant for us should be if the bipartite MaxCut problem is PLS-complete under the
Flip neighborhood as well (observe that the Flip neighborhood corresponds to row
and column switches in the corresponding matrix switching game).

Despite our efforts, we have not been able to resolve this question. On the other
hand we have not been able to solve the problem in polynomial time either. Failing to
prove the problem to be PLS-complete does not a priori suggest that the local search
problem might be easy. Actually, unlike the theory of NP-completeness, it is not rare to
find local search problems that are neither known to be polynomial time solvable, nor
PLS-complete. An important such example is the Travelling Salesman problem.
Krentel showed the problem to be PLS-complete under the k-Opt neighborhood (which
is defined by the process of removing from a tour arbitrary k edges and reconnecting
the k resulting pieces into a new tour), for sufficiently large k [14]. It is still an open
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4 Explicit Examples of Exponential Patience

problem if the same is true for the simple 2-Opt and 3-Opt neighborhoods [19].
We are able to show a weaker statement about the bipartite MaxCut problem.

Define the 2-Flip neighborhood by the action of moving up to 2 vertices across the
cut. We then have the following hardness result.

Proposition 20. The bipartite MaxCut problem is PLS-complete under the 2-Flip
neighborhood.

Proof. The result is proved by a simple reduction from the ordinary MaxCut problem.
Let G = (V,E) with V = {1, . . . , n} be a graph with weight w forming a MaxCut
instance. Let M = 1 +

∑
ij |wij |. Define a bipartite graph G′ = (V1, V2, E

′) with
weights w′ij′ as follows. We let V1 = {1, . . . , n} and V2 = {1′, . . . , n′}. Vertices i and
i′ are joined by an edge of “huge” weight M . Whenever ij ∈ E we join i and j′ as
well as i′ and j by an edge of weight −wij . We thus let f(G,w) = (G′, w′) be the first
function of the reduction.

First, observe if a given cut (S′, S′) of the vertices of G′ does not satisfy i ∈ S′ if
and only if i′ ∈ S′, then the weight of the cut can be improved by moving either of i
or i′ to the other partition of the cut. We will thus in the following calculation assume
that this is not the case for any i. Now a cut (S′, S′) of G′ induces a cut (S, S) of G
defined by i ∈ S if and only if i ∈ S′. We then have

w′(S′, S′) = nM +
∑

i∈S′,j′∈S′
w′ij′ +

∑
i′∈S′,j∈S′

w′i′j = nM + 2
∑

i∈S′,j′∈S′
w′ij′

= nM − 2
∑

i∈S,j∈S
wij = (nM − 2

∑
ij

wij) + 2
∑

i∈S,j∈S

wij

From this we see that w(S, S) = w′(S′, S′)/2 + (
∑
ij wij − nM/2).

We can thus simply define the last function g of the reduction as g(S′, S′) = (S, S).

Remark. One can observe that the reduction above in fact satisfies the notion of
being tight as defined by Schäffer and Yannakakis [19]. We will not define the notion
here, but just remark that it implies that the reduction gives a number of additional
results besides showing PLS-completeness. For instance it implies that the standard
algorithm must take exponential time in the worst case. And this is true no matter
how the neighbors are chosen in each step of the local search procedure.

4 Explicit Examples of Exponential Patience

In this section we give several examples of matrix games that requires exponential
patience. All of the examples are special Toeplitz matrices, that were constructed
earlier for the purpose of studying ill-conditioned matrices [8] and extremal matrices
with respect to the determinant [3]. Here a n×n matrix A = (aij) is called a Toeplitz
matrix, if every left-to-right descending diagonal of A is constant, i.e. aij = ai+1,j+1

12



4 Explicit Examples of Exponential Patience

for all i and j. We may thus specify A by the 2n− 1 numbers an,1, . . . , a1,1, . . . , a1,n.
We shall use the notation

A = T(an,1 . . . a2,1a1,1a1,2 . . . a1,n)

with the upper left element of A underlined.
For all the examples we use Theorem 8 to compute the patience. For the first matrix

we can do this directly, whereas for the last two examples we need to go via Lemma 5,
using that the inverse of the matrices turn out to weakly obey block checkerboard
sign patterns. This in turn gives rise to win-lose-draw matrix games, whereas the
first matrix give rise to a win-lose matrix game. These n × n win-lose-draw matrix
games can be converted to 2n× 2n win-lose matrix games of the same patience using
Proposition 14, but we can do better in these examples using the tight connection
between n×n (0, 1) matrices and (n+ 1)× (n+ 1) (−1, 1) matrices, we describe next.
Let A be a n×n (0, 1) matrix. Then define a (n+ 1)× (n+ 1) (−1, 1) matrix Φ(A) by

Φ(A) =

[
1 1T

−1 2A− 11T

]
. (4)

If A is invertible then Φ(A) is invertible as well and we have (cf. [1])

Φ(A)−1 =
1

2

[
2− 1TA−11 −1TA−1

A−11 A−1

]
.

4.1 (0, 1) Hessenberg matrix

Ching [3] considered the following Hessenberg-Toeplitz matrices. For given n define
the n × n matrix Dn = (dij) by di,i−k = 1 if k ∈ {−1, 0, 2, 4, . . .} and di,i−k = 0
otherwise. Alternatively, Dn = T(0101 . . . 10110000 . . . ).

It was shown by Ching that for any n × n (0, 1) Hessenberg matrix An (i.e. An
is a triangular matrix except that the diagonals above and below the main diagonal
may also be nonzero) with n > 2 satisfies |det(An)| ≤ det(Dn). We remark however
that the matrix Dn is actually the transpose of the upper-right n × n submatrix of
the matrix Tn+1, defined by Graham and Sloane, that we will consider in the next
subsection. Also, in fact Graham and Sloane already obtained the result of Ching
while showing properties of Tn (see [8], Lemma 9).

For us, however, the matrix Dn has the advantage over the other examples we
consider, that it directly gives a matrix game where the optimal strategies are totally
mixed.

Example.

D5 =


1 1 0 0 0
0 1 1 0 0
1 0 1 1 0
0 1 0 1 1
1 0 1 0 1


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Let Fn denote the nth Fibonacci number, given by Fn = Fn−1 + Fn−2 for n > 2,
F1 = F2 = 1, and F0 = 0. Alternatively

Fn = (ϕn − (1− ϕ)n) /
√

5 ,

where ϕ = (1 +
√

5)/2 = 1.61803... is the golden ratio.
We shall not compute the inverse of Dn, but just determine the information needed

to apply Theorem 8. We can determine a recurrence for the determinant of Dn by
expanding along the first row, and obtain det(Dn) = det(Dn−1)+det(Dn−2) for n > 2.
Also det(D1) = det(D2) = 1, and hence det(Dn) = Fn. Similarly, one may easily verify
the following.

Lemma 21. Let x̃, ỹ ∈ Rn be defined by x̃i = ỹn−i+1 = Fi/Fn for i < n and x̃n = ỹ1 =
Fn−2/Fn. Then x̃TDn = 1T and Dnỹ = 1. Also

∑n
i=1 x̃i =

∑n
i=1 ỹi = (2Fn − 1)/Fn,

and hence 1TD−1n 1 = (2Fn − 1)/Fn.

From this and Theorem 8 we immediately obtain a statement about the matrix Dn

viewed as a matrix game.

Proposition 22. The matrix game Dn has value v = Fn/(2Fn−1) and unique optimal
strategies x and y for the two players, where xi = yn−i+1 = Fi/Fn for i < n and
xn = y1 = vFn−2/Fn. In particular we have x1 = yn = 1/(2Fn − 1), and the patience
of both x and y is precisely 2Fn − 1, and asymptotically Ω(ϕn).

4.2 Triangular matrix

Graham and Sloane [8] defined the following triangular matrices. For given n define
the n×n matrix tn = (tij) by ti,i+k = 1 if k ∈ {0, 1, 3, 5, . . . } and ti,i−k = 0 otherwise.
Alternatively tn = T(0 . . . 01101010 . . . ).

Example.

t6 =


1 1 0 1 0 1
0 1 1 0 1 0
0 0 1 1 0 1
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 1


As pointed out by Graham and Sloane, the inverse of tn is again a triangular Toeplitz

matrix, namely

t−1n = T(0, . . . , 0, 1,−F1, F2,−F3, . . . , (−1)n−1Fn−1) .

This means that t−1n weakly obeys the (block) checkerboard sign pattern Σn = (σij)
given by σij = (−1)i+j . We thus have that the matrix tn = tn◦Σ = T(0 . . . 0, 1,−1, 0,−1, 0,−1, 0 . . . )
has inverse T(0, . . . , 0, 1, F1, F2, . . . , Fn−1).

One may now easily verify the following.
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Lemma 23. Let x̃, ỹ ∈ Rn be defined by x̃i = ỹn−i+1 = Fi+1. Then x̃Ttn = 1T and

tnỹ = 1. Also
∑n
i=1 x̃i =

∑n
i=1 ỹi = 1Tt

−1
n 1 = Fn+3 − 2.

And from Theorem 8 we obtain the following.

Proposition 24. The (−1, 0, 1) matrix game tn has value v = 1/(Fn+3−2) and unique
optimal strategies x and y for the two players, where xi = yn−i+1 = Fi+1/(Fn+3 − 2).
In particular we have x1 = yn = 1/(Fn+3 − 2), and the patience of both x and y is
precisely Fn+3 − 2, and asymptotically Ω(ϕn).

We next derive a win-lose matrix game of similar patience using Equation (4). Define
a vector f and its reverse fR by

f = ((−1)n−2Fn−2, . . . ,−F1, F0,−1)T

fR = (−1, F0,−F1, . . . , (−1)n−2Fn−2)T .

One may verify that the inverse of Φ(tn) is then given by

Φ(tn)−1 =
1

2

[
(−1)n−2Fn−3 fTR

−f t−1n

]
,

and we see that Φ(tn)−1 weakly obeys the similar (block) checkerboard sign pattern
−Σn+1. Thus the matrix t′n = Φ(tn)−1 ◦ (−Σn+1) has a non-negative inverse.

One may now easily verify the following.

Lemma 25. Let x̃, ỹ ∈ Rn+1 be defined by x̃1 = ỹn+1 = Fn−1, and x̃i = ỹn−i+2 =

Fi−1, for i ≥ 2. Then x̃Tt′n = 1T and t′nỹ = 1. Also
∑n+1
i=1 x̃i =

∑n+1
i=1 ỹi = 1Tt′

−1
n 1 =

Fn−1 + Fn+2 − 1.

And from Theorem 8 we obtain the following.

Proposition 26. The (−1, 1) matrix game t′n has value v = 1/(Fn−1 +Fn+2−1) and
unique optimal strategies x and y for the two players, where x1 = yn+1 = Fn−1/(Fn−1+
Fn+2 − 1) and xi = yn−i+2 = Fi−1/(Fn−1 + Fn+2 − 1), for i ≥ 2

In particular we have x2 = yn+1 = 1/(Fn−1 + Fn+2 − 1), and the patience of both x
and y is precisely Fn−1 + Fn+2 − 1, and asymptotically Ω(ϕn).

4.3 Toeplitz matrix

Graham and Sloane [8] additionally defined the following Toeplitz matrices. For given
n define the n× n matrix Tn = (tij) by ti,i−k = 1 if k ∈ {−3,−1, 0, 3, 4, 6, 7, . . .} and
ti,i−k = 0 otherwise. Alternatively Tn = T(. . . 11001100110100000 . . . ). The inverse
of Tn was computed by Graham and Sloane using Trench’s algorithm, and is described
below.

Define sequences {pn} and {qn} of integers by q0 = 0, p0 = q1 = q2 = 1, and
inductively

pn = pn−1 + qn−1 , for n ≥ 1 ,

qn = qn−1 + pn−2 , for n ≥ 3 .
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From these definitions one may determine their asymptotics as pn, qn = Ω(ρn3 ), where
ρ3 = 1.75488... is the largest root of x3 − 2x2 + x− 1.

It turns out that the inverse of Tn is symmetric about the top-right to bottom-left
diagonal and of the following form.

T−1n =



−1 −p2 −p3 . . . −pn−4 −pn−3 qn−2 −qn−3† pn−2
1 q1 q2 . . . qn−5 qn−4 −pn−4 pn−5 −qn−3†
−1 −q2 −q3 . . . −qn−4 −qn−3 pn−3 −pn−4 qn−2

1 p1 p2 . . . pn−5 pn−4 −qn−3 qn−4 −pn−3
0 1 p1 . . . pn−6 pn−5 −qn−4 qn−5 −pn−4
0 0 1 . . . pn−7 pn−6 −qn−5 qn−6 −pn−5
...

...
. . .

. . .
. . .

...
...

...
...


Note that T−1n weakly obeys the block checkerboard sign pattern

Σ = (−1, 1,−1, 1, . . . , 1)(1, . . . , 1,−1, 1,−1)T .

By Lemma 5 the matrix Tn = Tn ◦ ΣT has as inverse a matrix with all entries being
non-negative. We only give an asymptotic lower bound on the patience of Tn.

Proposition 27. The (−1, 0, 1) matrix game Tn has unique optimal strategies x and
y for the two players each of patience Ω(ρn3 ).

Proof. Note that 1TT
−1
n 1 = Ω(pn) = Ω(ρn3 ), (1TT

−1
n )1 = (T

−1
n 1)n = 4. Using Theo-

rem 8 we have that x1 = yn = 1/Ω(ρn3 ), and the patience of x and y is Ω(ρn3 ).

Again we may derive a win-lose matrix game of similar patience using Equation (4).
Define a vector g and its reverse gR by

g = (1, 0, 1, 0, . . . , 0)T

gR = (0, . . . , 0, 1, 0, 1)T .

One may verify that the inverse of Φ(Tn) is then given by

Φ(Tn)−1 =
1

2

[
0 −gTR
g T−1n

]
,

and we see that Φ(Tn)−1 weakly obeys the similar (block) checkerboard sign pattern

Σ′ = (1,−1, 1,−1, 1, . . . , 1)(−1, 1, . . . , 1,−1, 1,−1)T .

Thus the matrix T ′n = Φ(Tn)−1 ◦ Σ′ has a non-negative inverse. We then have the
following.

Proposition 28. The (−1, 1) matrix game T ′n has unique optimal strategies x and y
for the two players each of patience Ω(ρn3 ).

Proof. Note that 1TT ′
−1
n 1 = Ω(pn) = Ω(ρn3 ), (1TT

−1
n )1 = (T

−1
n 1)1 = 1. Using Theo-

rem 8 we have that x1 = y1 = 1/Ω(ρn3 ), and the patience of x and y is Ω(ρn3 ).
†In [8] this entry is incorrectly written as −qn−1.

16



5 Explicit matrices of almost worst case patience

5 Explicit matrices of almost worst case patience

In this section we present the proof of our main result, Theorem 4. The overall strategy
for the proof is similar to the last examples of Section 4. Namely for any n = 2m, we
first construct a non-singular n× n (−1, 1) matrix A for which χ(A) ≥ nn

2 /2n(1+o(1)).
This matrix is a specific instance of the ill-conditioned matrices constructed by Alon
and Vũ [1]. This immediately means that the inverse of A has an entry of magnitude
n

n
2 /2n(1+o(1)) by the analysis of Alon and Vũ (or alternatively it is easily derived from

the more involved analysis of this section). But just as important for us, the specifics
of our construction allows us to show that A−1 weakly obeys a block checkerboard sign
pattern Σ. Using Lemma 5 this means that the (−1, 1) matrix B = (bij) = A ◦ΣT has
a non-negative inverse. We can then apply the result of Shapley and Snow to analyze
the patience of the matrix game B. Specifically by Theorem 8, the matrix game B
has unique optimal strategies x and y. In particular the strategy x is given by

xT = 1TB−1/1TB−11 .

In Section 5.4.1 we compute the first column of A−1 and from this analysis we find

n∑
i=1

bi1 = −(1−m/2) +m/2 = m− 1 .

Since B−1 is non-negative we also have 1TB−11 ≥ χ(A) ≥ n
n
2 /2n(1+o(1)). Thus the

patience of B is at least n
n
2 /2n(1+o(1)) as well.

The rest of the section is organized as follows. In Section 5.1 we review the details
of the construction of Alon and Vũ. In Section 5.2 we define the specific instance of
this construction that we will use. In Sections 5.3 and the following three sections we
show that the matrix weakly obeys a specific block checkerboard sign pattern. Finally
in Section 5.8 we give a sketch of the proof that our construction is fully explicit.

5.1 The Alon-Vũ matrix

We review here the matrix construction of Alon and Vũ. Let n = 2m be a power of
two. Let α1, . . . , αn be an ordering of the n subsets of [m] that satisfies

• |αi| ≤ |αi+1|

• |αi 4 αi+1| ≤ 2.

Such an ordering was shown to exist by H̊astad [12]. In Section 5.2 we will construct
a particular such ordering. Define for convenience α0 = ∅. Given the ordering we
define a n × n (−1, 1) matrix A = (aij) by the following rules (for intuition behind
this construction see [12]).

1. If αj ∩ (αi−1 ∪ αi) = αi−1 4 αi and |αi−1 4 αi| = 2, then aij = −1.

2. αj ∩ (αi−1 ∪ αi) 6= ∅, but case (1) does not occur, then aij = (−1)|αi−1∪αj |+1.
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3. If αj ∩ (αi−1 ∪ αi) = ∅, then aij = 1.

For analyzing the matrix, Alon and Vũ essentially considered a LQ decomposition
of A. Define the (−1, 1) matrix Q = (qij) by qij = (−1)|αi∩αj |. Then Q is a symmetric
Hadamard matrix, Q2 = nI.

For i > 1, define subsets Ai of [n] by Ai = αi−1 ∪ αi, and from these, further define
families Fi of subsets of [n] by the following rules.

1. If |αi−1 4 αi| = 2, then Fi = {αs | αs ⊆ Ai, |αs ∩ (αi−1 4 αi)| = 1}.

2. If |αi−1 4 αi| = 1, then Fi = {αs ⊆ Ai}

Whenever |αi| = k we have |Fi| = 2k for both cases. Next, define the lower triangular
matrix L = (lij) as follows. Let l11 = 1 and l1j = 0, for j > 1. For i > 1 we let

lij =


( 1
2 )k−1 − 1 if j = i− 1

( 1
2 )k−1 if αj ∈ Fi \ {αi−1}

0 if αj /∈ Fi
.

One can then verify the following.

Lemma 29 ([1], Lemma 2.1.2).
A = LQ .

5.2 The ordering.

Here we construct a specific ordering of the subsets of [m] satisfying the requirements
given in Section 5.1. We first construct separate orderings for the subsets of size k for
every k. These will have the property that the first set in the order is the lexicograph-
ically smallest set, i.e. {1, . . . , k}, and the last set of the order is the lexicographically
largest set, i.e. {m− k + 1, . . . ,m}.

If β ⊆ [m] denote by (β + i) the subset of [m + i] defined by (β + i) = {j + i ∈
[m+ i] | j ∈ β} (this definition makes sense also when β = ∅, in which case the result
is also ∅). Let β = (β1, . . . , β`) be an ordering of the subsets β1, . . . , β` ⊆ [m]. We
denote by rev(β) the reverse ordering rev(β) = (β`, . . . , β1). By (β + i) we denote
the ordering (β + i) = ((β1 + i), . . . , (β` + i)). By ({i} ∪ β) we denote the ordering
({i} ∪ β) = (({i} ∪ β1), . . . , ({i} ∪ β`)). (These definitions make sense even if β is the
empty list, resulting in the empty list as well). If β′ = (β′1, . . . , β

′
`′) is another ordering

of different subsets, we denote by β ◦β′ the ordering β ◦β′ = (β1, . . . , β`, β
′
1, . . . , β

′
`′).

The separate ordering for subsets of size k of [m], is defined by induction on k and

m. Denote this ordering by β(k)
m . For k = 0 we have just the empty set ∅, and hence

β(0)
m = (∅). For convenience, define β(k)

m as the empty order β(k)
m = (), when k > m.

We now construct the ordering of subsets of size k of [m] for m ≥ k > 0. Assume
by induction we have ordered the subsets of size k− 1 of [m′] for all m′ ≥ k− 1. Then
we define

β(k)
m = ({1} ∪ (β

(k−1)
m−1 + 1)) ◦ ({2} ∪ rev(β

(k−1)
m−2 + 2)) ◦ (β

(k)
m−2 + 2) .
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We see the ordering begins with the first
(
m−1
k−1

)
sets containing element 1, starting with

the set {1, . . . , k} and ending with the set {1,m−k+2, . . . ,m}. Next follows the
(
m−2
k−1

)
sets containing element 2 but not element 1, starting with the set {2,m−k+2, . . . ,m}
and ending with the set {2, . . . , k+1}. Finally follows all the

(
m−2
k

)
sets not containing

the elements 1 and 2, starting with the set {3, . . . , k + 2} and ending with the set
{m − k + 1, . . . ,m}. We note that between all these neighboring ending sets and
starting sets the symmetric difference is exactly 2, and we have covered all

(
m
k

)
=(

m−1
k−1

)
+
(
m−2
k−1

)
+
(
m−2
k

)
sets. By induction the ordering thus satisfies the requirement

of symmetric differences being at most 2. Note that the first set is the lexicographically
smallest set, and the last set is the lexicographically largest set.

Example. For m = 4 we have the following orderings.

β
(0)
4 = (∅)

β
(1)
4 = ({1}, {2}, {3}, {4})

β
(2)
4 = ({1, 2}, {1, 3}, {1, 4}, {2, 4}, {2, 3}, {3, 4})

β
(3)
4 = ({1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4})

β
(0)
4 = ({1, 2, 3, 4})

Next, we construct the full ordering βm by combining all β(k)
m . First, for k = 2 we

define a shifted version of the ordering. Let ` =
(
m
2

)
. Let β(2)

m = (β
(2)
m,1, . . . , β

(2)
m,`).

Then define β̂(2)
m = (β̂

(2)
m,1, . . . , β̂

(2)
m,`) by β̂

(2)
m,i = {(j − 1) mod m | j ∈ β(2)

m,i}. Having
this shifted version of sets of size 2 will be critically used in our proof. Now we can
finally define

βm = β0
m ◦ β

1
m ◦ β̂

(2)
m ◦ rev(β3

m) ◦ β4
m ◦ rev(β5

m) ◦ β6
m ◦ · · · ◦ β

m
m .

In other words, βm begins with the concatenation of β0
m, β1

m, and β̂(2)
m , after which

the remaining orders βkm are concatenated with βkm reversed if k is odd.
We now verify that the two properties the order must satisfy holds. Clearly the sets

are ordered in nondecreasing size. We have already established the requirement about
symmetric differences within each order of sets of a given size. We next consider the
pairs of ending sets and starting sets. The first 3 such pairs are (∅, {1}), ({m}, {1,m}),
and ({m−2,m−1}, {m−2,m−1,m}). In each case the symmetric difference is exactly
1. The general case follows by recalling that each order starts with the lexicographically
smallest set and ends with the lexicographically largest set, and every second order is
reversed.
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Example.

β4 = (∅,
{1}, {2}, {3}, {4}
{4, 1}, {4, 2}, {4, 3}, {1, 3}, {1, 2}, {2, 3}
{2, 3, 4}, {1, 3, 4}, {1, 2, 4}, {1, 2, 3}
{1, 2, 3, 4})

5.3 Sign pattern of the inverse of A

In this section we let α1, . . . , αn denote the particular ordering defined in Section 5.2,
and we consider the construction of the matrix A from Section 5.1 with respect to this
ordering, together with the corresponding matrices L and Q, sets Ai, and families of
subsets Fi.

Definition 30. For a subset α ⊆ {1, . . . ,m} we let num(α) denote the unique j ∈
{1, . . . , n} such that α = αj . Define also ik = min{j : |αj | = k}, for all k.

We remark that ik does not depend on the particular order we consider, but is fully
defined by the conditions of Section 5.1.

We prove that the matrix A, for m ≥ 2 has an inverse that weakly obeys a block
checkerboard sign pattern. Namely we show that A−1 weakly obeys a sign pattern Σ
of the following kind.

Σ =


−1 1

1 −1
−1 1

1 −1
...

...

 ,
The n rows are divided into m+ 1 blocks. Block k corresponds to the subsets of size
k−1, for k = 1, . . . ,m+1. That is, block k consists of the rows i for which |αi| = k−1.
The columns are divided into precisely two blocks. For m ≥ 6, we in fact prove that
the first block of columns is of size 2m− 1. Thus Σ = σ(1)(σ(2))T, where

σ
(1)
i = (−1)|αi| and σ(2) = (

2m−1︷ ︸︸ ︷
−1, . . . ,−1,

n−2m+1︷ ︸︸ ︷
1, . . . , 1) .

One may verify by hand that the matrices for m = 4 and m = 5 also weakly obeys
this sign pattern. The matrices for m = 2 and m = 3 do not weakly obey this sign
pattern, but the similar sign pattern where the columns are divided into two blocks
of equal size. The matrix for m = 1 does not weakly obey a block checkerboard sign
pattern.

We prove this for the first column as a special case in Subsection 5.4. The remaining
columns we handle as follows. By Lemma 29 we have A = LQ. Column j of A−1 is
then the solution of the linear system

LQx = ej (5)
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Defining z = Qx, we have the equivalent system

Lz = ej (6)

In Subsections 5.5, 5.6, and 5.7 we prove that for j > 1 we have |zn| >
∑n−1
i=1 |zi|.

Then, since x = 1
nQz, by the definition of Q we have

sgn(xi) = (−1)|αi| sgn(zn)

Furthermore, we prove that zn > 0 for i < 2m, and zn < 0 for i ≥ 2m, thus establishing
the claimed sign pattern. Note that this latter part is not necessary to claim that A−1

weakly obeys a block checkerboard sign pattern. But proving this allows us to argue
that the construction is fully-explicit.

We will several times use the following simple facts.

Lemma 31. Let w1 ≥ 1 and wi+1 ≥ (2 + ε)wi, for i ≥ 1 and ε > 0. Let c > 0. Then

ws >

s−1∑
`=1

w` + cw1 ,

for s ≥ log2+ε(c/ε) + 2.

Proof. Clearly wi >
∑i−1
`=1 w` for all i, and thus

ws ≥ (2 + ε)ws−1 > ws−1 +

s−2∑
`=1

w` + εws−1 ≥
s−1∑
`=1

w` + ε(2 + ε)s−2w1 ≥
s−1∑
`=1

w` + cw1 .

Lemma 32. Let z be the solution of Lz = ei, and let s ≥ i3 be such that |zs| >∑s−1
`=1 |z`|. Then |zn| >

∑n−1
`=1 |z`|, and sgn(zn) = sgn(zs).

Proof. The proof is a simple induction argument. Let j > s, and k = |αj |. If ` < i
then z` = 0. Hence our assumption implies that s ≥ i, and thus j > i. We then have
the equation

1

2k−1

(1− 2k−1)zj−1 +
∑

α`∈Fj\{αj−1}

zα`

 = 0 ,

which means
zj = (2k−1 − 1)zj−1 −

∑
α`∈Fj\{αj−1,αj}

zα`
.

We treat the case of zs > 0; the case of zs < 0 is analogous. By induction we can
estimate

zj ≥ (2k−1 − 1)zj−1 −
j−2∑
`=1

|z`| ≥ (2k−1 − 2)zj−1 >

j−1∑
`=1

|z`| ,

since k ≥ 3.
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Below we state as an example the matrices L (with zero entries omitted), A, and
A−1, for m = 4.

L =



1
1

1
1

1
1/2 1/2 -1/2 1/2

1/2 1/2 -1/2 1/2
1/2 1/2 -1/2 1/2

1/2 1/2 -1/2 1/2
1/2 1/2 -1/2 1/2

1/2 1/2 -1/2 1/2
1/4 1/4 1/4 1/4 1/4 1/4 -3/4 1/4

1/4 1/4 1/4 1/4 1/4 1/4 -3/4 1/4
1/4 1/4 1/4 1/4 1/4 1/4 -3/4 1/4

1/4 1/4 1/4 1/4 1/4 1/4 -3/4 1/4
1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 -7/8 1/8



A =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 −1 1 1 1 −1 1 1 −1 −1 1 1 −1 −1 −1 −1
1 1 −1 1 1 1 −1 1 1 −1 −1 −1 1 −1 −1 −1
1 1 1 −1 1 1 1 −1 −1 1 −1 −1 −1 1 −1 −1
1 1 1 1 −1 −1 −1 −1 1 1 1 −1 −1 −1 1 −1
1 −1 1 1 1 1 1 1 −1 −1 1 1 1 1 −1 1
1 1 −1 1 1 −1 1 1 1 −1 −1 1 −1 −1 −1 −1
1 1 1 −1 1 1 −1 1 −1 1 −1 −1 1 −1 −1 −1
1 −1 1 1 1 −1 1 −1 1 −1 1 −1 −1 −1 1 −1
1 1 −1 1 1 1 −1 1 −1 1 −1 −1 −1 1 −1 −1
1 1 1 −1 1 1 1 −1 −1 −1 1 1 −1 −1 −1 −1
1 1 1 1 −1 −1 1 1 1 1 −1 −1 1 1 −1 −1
1 −1 1 1 1 1 −1 −1 1 −1 −1 1 −1 −1 −1 1
1 1 −1 1 1 −1 1 −1 −1 1 −1 −1 1 −1 −1 1
1 1 1 −1 1 −1 −1 −1 1 −1 1 −1 −1 1 −1 1
1 1 1 1 −1 1 1 1 −1 −1 −1 −1 −1 −1 1 1


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A−1 =
1

2



−2 −95 −117 −195 −108 −50 −30 50 110 136 142 108 36 12 4 1
1 91 114 192 108 52 32 −48 −108 −134 −140 −107 −36 −12 −4 −1
1 90 112 189 106 51 31 −47 −106 −132 −138 −105 −35 −12 −4 −1
1 85 106 178 100 48 29 −45 −100 −124 −130 −99 −33 −11 −4 −1
1 69 86 145 81 39 24 −36 −81 −101 −106 −81 −27 −9 −3 −1
0 −67 −84 −143 −81 −40 −25 35 80 100 105 80 27 9 3 1
0 −65 −82 −139 −79 −39 −24 34 78 97 102 78 26 9 3 1
0 −60 −76 −129 −73 −36 −22 32 72 90 94 72 24 8 3 1
0 −82 −103 −175 −99 −49 −30 43 98 122 128 98 33 11 4 1
0 −87 −110 −186 −105 −52 −32 46 104 130 136 104 35 12 4 1
0 −80 −101 −172 −97 −48 −30 42 96 120 126 96 32 11 4 1
0 57 72 123 70 35 22 −30 −69 −86 −90 −69 −23 −8 −3 −1
0 59 75 127 72 36 22 −31 −71 −89 −93 −71 −24 −8 −3 −1
0 64 81 138 78 39 24 −34 −77 −96 −101 −77 −26 −9 −3 −1
0 78 99 169 96 48 30 −41 −94 −118 −124 −95 −32 −11 −4 −1
0 −57 −72 −122 −69 −34 −21 30 68 85 89 68 23 8 3 1


5.4 First column

We first solve the equation Lz = e1. By induction we show that zj = 1− k, whenever
|αj | = k. For the base case, clearly z1 = 1, since the first row of L is eT1 . Next for the
induction step we treat the cases of k = 1 and k ≥ 2 separately.

Let |αj | = 1. When j = i1 = 2, we have A2 = {1}, and hence F2 = {α1, α2}. When
j > i1 = 2, we have A2 = {j − 2, j − 1}, and hence Fj = {αj−1, αj}. In both cases we
actually have Fj \ {αj−1, αj} = ∅. Thus

zj = (21−1 − 1)zj−1 −
∑

α`∈Fj\{αj−1,αj}

z` = 0 .

Let |αj | = k ≥ 2. Consider first j = ik. We have |Aj | = |αj | = k, and Fj contains(
k
s

)
sets of size s. By the induction hypothesis we have

zj = (2k−1 − 1)zj−1 −
∑

α`∈Fj\{αj−1,αj}

z`

= (2k−1 − 1)(1− (k − 1))−
k−2∑
s=0

(
k

s

)
(1− s)− (k − 1)(1− (k − 1))

= (2k−1 − 1)(2− k)−
k∑
s=0

(
k

s

)
(1− s) + (2− k) + (1− k)

= (2k−1 − 1)(2− k)− (2− k)2k−1 + (2− k) + (1− k) = 1− k

Consider next j > ik. We have |Aj | = k+ 1, and Fj contains 2
(
k−1
s−1
)

sets of size s > 0.
In particular Fj contains only the sets αj and αj−1 of size k. Again by the induction
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hypothesis we have

zj = (2k−1 − 1)zj−1 −
∑

α`∈Fj\{αj−1,αj}

z`

= (2k−1 − 1)(1− k)−
k−2∑
s=0

2

(
k − 1

s

)
(1− (s+ 1))

= (2k−1 − 1)(1− k) + 2

k−1∑
s=0

(
k − 1

s

)
s− 2(k − 1)

= (2k−1 − 1)(1− k) + 2(k − 1)2k−2 − 2(k − 1) = 1− k

5.4.1 Sign pattern

Next we compute x = 1
nQz. We need the following well-known identity ([7, Equation

5.42])

Lemma 33. Let P (a) = c0 + c1a+ · · ·+ cka
k be a polynomial, k ≥ 0. Then

k∑
a=0

(
k

a

)
(−1)aP (a) = (−1)kk! ck .

Consider given j, and let k = |αj |. Then

xj =
1

n

n∑
`=0

(−1)|αj∩α`|z` =
1

n

n∑
`=0

(−1)|αj∩α`|(1− |α`|) (7)

For given `, let a = |αj ∩ α`| and b = |α`| − a. Then we may collect the terms in
Equation (7) according to a and b and obtain

xj = 2−m
k∑
a=0

(
k

a

)
(−1)a

m−k∑
b=0

(
m− k
b

)
(1− a− b)

We first evaluate the innermost summation

m−k∑
b=0

(
m− k
b

)
(1− a− b) = (1− a)

m−k∑
b=0

(
m− k
b

)
−
m−k∑
b=0

(
m− k
b

)
b

= (1− a)2m−k − (m− k)2m−k−1 = 2m−k(1− (m− k)/2− a)

Thus,

xj = 2−k
k∑
a=0

(
k

a

)
(−1)a(1− (m− k)/2− a)

By Lemma 33 we have x1 = 1−m/2, since |α1| = 0, xj = 1/2, for k = |αj | = 1, and
xj = 0 when k = |αj | > 1.
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5.5 Second block

Here we consider the equation Lz = ei, for |αi| = 1. The last column of the block is
handled separately. In this and the following sections we shall use the notation zα as
a shorthand for the entry znum(α).

5.5.1 First m− 1 columns

We have z1 = 0, since the first row of L is eT1 . Next, zj = 0 for j ∈ {2, . . . ,m+1}\{i},
and zi = 1, since row j of L is eTj for all j ∈ {2, . . . ,m+ 1}.

For j = i2 we have the equation

1

2
(z∅ + z{1} + (1− 2)z{m} + zi2) = 0 ,

since Ai2 = {1,m}, and Fi2 = {∅, {1}, {m}, {1,m}}. We assume here that i < m+1 =
num({m}), and thus have zi2 = −z{1}. Thus zi2 = 0 when i > 2, and zi2 = −1 when
i = 2. For i2 < j < i3 we have |αj 4 αj−1| = 2. Let αj 4 αj−1 = {a, b}. Then
Fj = {{a}, {b}, αj−1, αj} and we have the equation

1

2
(z{a} + z{b} + (1− 2)zj−1 + zj) = 0 .

Hence zj = zj−1 − 1 if i ∈ αj 4 αj−1, and zj = zj−1 otherwise.
Note that any element of {2, . . . ,m−2} appears 2 times in the symmetric differences

αj−1 4 αj for i2 < j ≤ num({m − 1,m}), whereas the elements 1 and m − 1 appear
only 1 time. Hence it follows that z{m,m−2} and z{m,m−1} are both at least −2.

Note that when m ≥ 6, any element of {2, . . . ,m − 1} appears at least 4 times in
the symmetric differences αj−1 4 αj for i2 < j < i3, whereas the element 1 appear
exactly 3 times. In both cases this implies by the above that zi3−1 ≤ −4.

Consider now j = i3. Then Aj = {m − 2,m − 1,m} and Fj =
{
∅, {m − 2}, {m −

1}, {m}, {m− 2,m− 1}, {m− 2,m}, {m− 1,m}, {m− 2,m− 1,m}
}

, and we thus have
the equation

1

4
(z∅ + z{m−2} + z{m−1} + z{m} + z{m−2,m} + z{m−1,m} + (1− 4)zi3−1 + zi3) = 0 ,

and hence zi3 = 3zi3−1 − z{m,m−2} − z{m,m−1}, when i /∈ {m − 2,m − 1}, and zi3 =
3zi3−1− z{m,m−2}− z{m,m−1}− 1, otherwise. In both cases zi3 ≤ 3zi3−1− z{m,m−2}−
z{m,m−1}. We already have the estimates zi3−1 ≤ −4, and z{m,m−2}, z{m,m−1} ≥ −2.
Hence z{m,m−2} + z{m,m−1} ≥ −4 ≥ zi3−1, and it follows

zi3 ≤ 2zi3−1 ≤ −8 .

Next consider j = i3 + 1. Then Aj = {m − 3,m − 2,m − 1,m}, but the set
Fj depends on whether m is even or odd. Write Aj = {m − 3,m − 1, a, b}, where
αi34αi3+1 = {m−3, a}. Then Fj =

{
{m−3}, {a}, {m−3,m−1}, {m−3, b}, {a,m−
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1}, {m − 2,m}, {m − 3,m − 1, b}, {m − 2,m − 1,m}
}

. Let β1, . . . , β4 denote the sets
of size 2 of Fj . We then have the equation

1

4
(z{m−3} + z{a} + zβ1

+ zβ2
+ zβ3

+ zβ4
+ (1− 4)zi3 + zi3+1) = 0

and hence zi3+1 = 3zi3−
∑4
s=1 zβs

, when i /∈ {m−3, a}, and zi3+1 = 3zi3−
∑4
s=1 zβs

−1,

otherwise. In both cases zi3+1 ≤ 3zi3 −
∑4
s=1 zβs . As seen z{m−2,m} ≥ −2 ≥ 1

2zi3−1,
and for the other βs we have zβs

≥ zi3−1. Thus

zi3+1 ≤ 3zi3 − (3 +
1

2
)zi3−1 ≤ 3zi3 − (3 +

1

2
)
1

2
zi3 =

5

4
zi3 .

For the remaining j = i3+`+1, ` > 0, for which |αj | = 3 we have the similar inequality

zi3+`+1 ≤ 3zi3+` −
4∑
s=1

zβs ≤ 3zi3+` − 4zi3−1 ≤ 3zi3+` − 2zi3 ≤ 3zi3+` −
8

5
zi3+1 ,

for appropriate sets β1, . . . , β4 of size 2.

Claim 34. For j = i3 + `+ 1, ` > 0, for which |αj | = 3 we have

zi3+`+1 ≤
3` + 4

3`−1 + 4
zi3+`

Proof. The proof is by induction on `. For ` = 1 we have

zi3+2 ≤ 3zi3+1 −
8

5
zi3+1zi3+1 =

3 + 4

1 + 4
zi3+1 .

Next, for the induction step

zi3+`+1 ≤ 3zi3+` −
8

5
zi3+1 ≤ 3zi3+` −

8

5

(
`−1∏
s=1

3s−1 + 4

3s + 4

)
zi3+`

= (3− 8

5

5

3`−1 + 4
)zi3+` =

3` + 4

3`−1 + 4
zi3+` .

We next find s such that

|zi3+s| >
i3+s−1∑
`=1

|z`| .

We estimate the first i3 + 3 terms separately. We have at most 1 + m(m − 1)/2 + 4
nonzero terms, each of absolute value less than |zi3+4|. That is

i3+3∑
`=1

|z`| < m2|zi3+4| ,
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using m ≥ 6.

Using Claim 34, observing that 3`+4
3`−1+4

is increasing with `, and 34+4
34−1+4 ≥

5
2 , we can

apply Lemma 31 with wi = |zi3+3+i|, c = m2, ε = 1
2 to obtain

|zi3+s| >
i3+s−1∑
`=1

|z`|

for s = log5/2(2m2) + 5. Note that i3 + s < i4, since there are
(
m
3

)
sets of size 3, and

m ≥ 6. Also by Claim 34 we have that zi3+s < 0. By Lemma 32 we thus have

zn < −
n−1∑
`=1

|z`| .

5.5.2 Last column

Here we consider the last column of the second block, corresponding to solving the
equation Lz = ei2−1. As above we have z1 = 0, and zj = 0 for j ∈ {2, . . . ,m}, and
zi2−1 = 1. For j = i2 we have the equation

1

2
(z∅ + z{1} + (1− 2)z{m} + zi2) = 0 ,

since Ai2 = {1,m}, and Fi2 = {∅, {1}, {m}, {1,m}}. It follows that zi2 = 1. Also as
above for i2 < j < i3, zj = zj−1 if m ∈ αj4αj−1, and zj = zj−1 otherwise. All sets of
size 2 containing the element m comes before all other sets of size 2 in the order, and
hence the case of m ∈ αj4αj−1 occurs only when j = num({m,m−1})+1 = 2m+1.
Thus we have zj = 1 when i2 < j ≤ 2m and zj = 0 when 2m < j < i3.

For j = i3, we have the equation

1

4
(z∅ + z{m−2} + z{m−1} + z{m} + z{m−2,m} + z{m−1,m} + (1− 4)zi3−1 + zi3) = 0 ,

since again Aj = {m− 2,m− 1,m} and Fj =
{
∅, {m− 2}, {m− 1}, {m}, {m− 2,m−

1}, {m− 2,m}, {m− 1,m}, {m− 2,m− 1,m}
}

. From this we see that zi3 = −3.
For i3 < j < i4 we have

zj = (23−1 − 1)zj−1 −
∑

α`∈Fj\{αj−1,αj}

z` ≤ 3zj−1 ,

and also zj < 0. Again we find s such that

|zi3+s| >
i3+s−1∑
`=1

|z`| .

Note that
∑i3−1
`=1 |z`| = 1 + (m − 1) = m. We can then apply Lemma 31 with wi =

|zi3+i−1|, c = m, ε = 1 to obtain

|zi3+s| >
i3+s−1∑
`=1

|z`|
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for s = log3(m) + 2, noting that i3 + s < i4. We also have zi3+s < 0. By Lemma 32
we then have

zn < −
n−1∑
`=1

|z`| .

5.6 Third block

Here we consider the equation Lz = ei, for |αi| = 2. We have zj = 0 for j < i, zi = 1,
and hence zj = (22−1 − 1)zj−1 −

∑
α`∈Fj\{αj−1,αj} z` = 1, for i < j < i3. We remark

for future use that
∑i3−1
`=1 |z`| ≤

(
m
2

)
.

Consider now j = i3. As usual we have the equation

1

4
(z∅ + z{m−2} + z{m−1} + z{m} + z{m−2,m} + z{m−1,m} + (1− 4)zi3−1 + zi3) = 0 ,

and hence

zi3 = 3zi3−1 − z{m−2,m} − z{m−1,m} = 3− z{m−2,m} − z{m−1,m}.

Next consider j = i3 + 1. As above Aj = {m− 3,m− 2,m− 1,m}, where the set Fj
depends on whether m is even or odd. Write again Aj = {m − 3,m − 1, a, b}, where
αi34αi3+1 = {m−3, a}. Then Fj =

{
{m−3}, {a}, {m−3,m−1}, {m−3, b}, {a,m−

1}, {m − 2,m}, {m − 3,m − 1, b}, {m − 2,m − 1,m}
}

. Let β1, . . . , β4 denote the sets
of size 2 of Fj . We then have the equation

1

4
(z{m−3} + z{a} + zβ1 + zβ2 + zβ3 + zβ4 + (1− 4)zi3 + zi3+1) = 0 ,

and hence zi3+1 = 3zi3 −
∑4
s=1 zβs . We consider below 3 cases depending on the

relationship between i and num({m− 2,m}) = 2m− 1.

• i < num({m − 2,m}): Here zi3 = 1. Also in our ordering, for s ∈ {1, . . . , 4}
we have num(βs) ≥ num({m − 3,m}) ≥ i. It follows that zi3+1 = −1. For
i3 + 1 < j < i4, we have zj = (23−1 − 1)zj−1 −

∑
α`∈Fj\{αj−1,αj} z` ≤ 3zj−1. We

can thus apply Lemma 31 with wi = |zi3+i|, c = m2/2, ε = 1 to obtain

|zi3+s| >
i3+s−1∑
`=1

|z`|

for s = log3(m2/2) + 2, noting that i3 + s < i4. We also have zi3+s < 0. By
Lemma 32 we then have

zn < −
n−1∑
`=1

|z`| .
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• i = num({m− 2,m}): Here zi3 = 1 as well. In case a = m we have zi3+1 = −1.
Also

zi3+2 ≤ (23−1 − 1)zi3+1 −
∑

α`∈Fi3+2\{αi3+1,αi3+2}

z` ≤ 3zi3+1 = −3 .

However in case a = m−2 we have zi3+1 = 0. Thus we consider j = i3+2 as well.
We have here that αj = {m−3,m−2,m} and thus αi3+14αi3+2 = {m−1,m}.
Then

zi3+2 = −z{m−3,m−1} − z{m−2,m−1} − z{m−3,m} − z{m−2,m} = −3

For i3 + 2 < j < i4, we have as before zj ≤ 3zj−1, and can thus apply Lemma 31
with wi = |zi3+i+1|, c = m2/2, ε = 1 to obtain

|zi3+s| >
i3+s−1∑
`=1

|z`|

for s = log3(m2/2) + 3, noting that i3 + s < i4. We also have zi3+s < 0. By
Lemma 32 we then have

zn < −
n−1∑
`=1

|z`| .

• i > num({m−2,m}): Here zi3 ≥ 2. Since num({m−2,m}) < num({m−1,m}) ≤
i we have zi3+1 = 3zi3 −

∑4
s=1 zβs ≥ 3zi3 − 3 ≥ 3

2zi3 . Let β
(2)
1 , . . . , β

(2)
4 denote

the sets of size 2 of Fi3+2. Then zi3+2 = 3zi3+1 −
∑4
s=1 zβ(2)

s
≥ 5

3zi3+1 + 2zi3 −
4 ≥ 5

3zi3+1. Again, let β
(3)
1 , . . . , β

(3)
4 denote the sets of size 2 of Fi3+3. Then

zi3+3 = 3zi3+2 −
∑4
s=1 zβ(3)

s
≥ 11

5 zi3+2 + 4
5 ·

5
3 ·

3
2zi3 − 4 ≥ 11

5 zi3+2. By induction

it is now easy to derive zj ≥ 11
5 zj−1 for i3 + 3 < j < i4. We can thus apply

Lemma 31 with wi = zi3+i+1, c = m2/2, ε = 1
5 to obtain

|zi3+s| >
i3+s−1∑
`=1

|z`|

for s = log 11
5

(m2/2) + 3, noting that i3 + s < i4. We also have zi3+s > 0. By
Lemma 32 we then have

zn >

n−1∑
`=1

|z`| .

5.7 Remaining columns

Here we consider the equation Lz = ei, for |αi| = k ≥ 3. We then have that zj = 0 for

j < i, zi = 2k−1 ≥ 4. Clearly zi >
∑i−1
`=1|z`| = 0. By Lemma 32 we then have

zn >

n−1∑
`=1

|z`| .
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5.8 Explicitness

We discuss here in more detail the explicitness of our construction. We say that a
family {An} of matrices, where An is a n×n matrix, is explicit, if there is an algorithm
that given as input n computes the matrix An in time polynomial in n. We say that
the family is fully-explicit, if there is an algorithm that given as input i, j, and n,
computes entry (i, j) of An in time polynomial in log(n). Clearly the latter definition
is more restrictive than the former.

We next give a sketch of an argument that the matrices just constructed are fully-
explicit. Let A be the 2m × 2m matrix of Section 5.1 with the order of Section 5.2,
and let B be the 2m × 2m matrix obtained by the Hadamard product of A with the
transpose of the sign pattern Σ of Section 5.3. In order to compute entry (i, j) of B
we compute separately the entry (i, j) of A and the entry (j, i) of Σ.

To compute entry (j, i) of Σ we need to determine which block of rows that row j
belongs to and to check whether i > 2m − 1. The former is determined by finding k
such that

k∑
`=0

(
m

`

)
< j ≤

k+1∑
`=0

(
m

`

)
.

This is easily done in time polynomial in m.
To compute entry (i, j) of A it is sufficient to observe that the following task can

be computed in time polynomial in m: Given index i, compute the set of the order,
αi. To do this, first compute the k such that |αi| = k. This is the same task as just
considered, and identifies the order βkm. Depending on k we may need to consider the
reverse of this. By appropriately adjusting i, we may just consider consider finding
the set i′ of the order βkm (for k = 2 we also need to shift the set afterwards). This
can be done by first identifying the smallest element a of the set αi′ and recursing.
Specifically, a can be determined by the inequalities

a−1∑
`=1

(
m− `
k − 1

)
< i′ ≤

a∑
`=1

(
m− `
k − 1

)
.

Then i′ is adjusted by subtracting the sum
∑a−1
`=1

(
m−`
k−1
)
, and continuing with βk−1m−a,

possibly adjusting i′ again if the order is reversed, finding the next-smallest element
and so on.
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