HASHIWOKAKERO Is NP-Complete

Daniel Andersson
Department of Computer Science,
Aarhus University, Denmark
koda@cs.au.dk

Abstract. In a Hashiwokakero puzzle, one must build bridges to connect a set of islands. We show that deciding the solvability of such puzzles is NP-complete.

Keywords: computational complexity, combinatorial problems.

1 Introduction

Hashiwokakero ("build bridges!") is a type of puzzle published by Nikoli [3]. Given a set of points in the plane (islands), one must connect them using vertical and horizontal line segments (bridges). Each island specifies how many bridges that must be connected to it. A bridge must not cross any other bridge or island, at most two bridges may run in parallel, and all islands must be reachable from one another. Fig. 1 shows an example.

Demaine and Hearn [1] survey complexity results on combinatorial games and puzzles, and they list Hashiwokakero as previously unstudied. We show:

Theorem 1. Deciding the solvability of a Hashiwokakero puzzle is NP-complete.

We construct a reduction from the following NP-hard problem [2]: Given a finite set $P \subset \mathbb{Z}^2$, is there a Hamiltonian circuit in the unit distance graph of P?
2 Reduction

We assume $|P| \geq 3$. For each $x \in P$, output an island at $2x$ with bridge requirement $6 - |\{y \in P : |x - y| = 1\}|$ (big island) and an island at $x + y$ with bridge requirement 1 (small island) for each $y \in \mathbb{Z}^2 \setminus P$ such that $|x - y| = 1$. Fig. 2 shows an example.

![Diagram showing an example of the reduction and a pair of corresponding solutions.]

Because of the reachability constraint, each small island must be connected to a big island, and by construction, there is only one choice. After all such connections have been made, all big islands have a remaining bridge requirement of 2. Since $|P| \geq 3$, the reachability constraint prevents parallel bridges between big islands, and so the connection possibilities now correspond exactly to edges in the unit distance graph of P.

References