
I/O Efficient Sorting

Upper and Lower bounds

• Aggarwal and Vitter, The Input/Output Complexity of Sorting and

Related Problems. Communications of the ACM, 31(9),

p. 1116-1127, 1988.

Page 1

Standard MergeSort

Merge of two sorted sequences ∼ sequential access

· · ·
· · ·
· · ·

MergeSort: O(N log2(N/M)/B) I/Os

Page 2

Multiway Merge

· · ·

· · ·
· · ·
· · ·
· · ·

• For k-way merge of sorted lists we need:

M ≥ B(k + 1) ⇔ M/B − 1 ≥ k

• Number of I/Os: 2N/B.

Page 3

Multiway MergeSort

• N/M times sort M elements internally ⇒ N/M sorted runs of

length M .

• Merge k runs at at time, to produce (N/M)/k sorted runs of length

kM .

• Repeat: Merge k runs at at time, to produce (N/M)/k2 sorted runs

of length k2M , . . .

At most logk N/M phases, each using 2N/B I/Os.

Best k: M/B-1.

O(N/B logM/B(N/M)) I/Os

Page 4

Multiway MergeSort

1 + logM/B(x) = logM/B(M/B) + logM/B(x) = logM/B(x · M/B)

⇓

O(N/B logM/B(N/M)) = O(N/B logM/B(N/B))

Defining n = N/B and m = M/B we get

Multiway MergeSort: O(n logm(n))

Page 5

Sorting Lower Bound

Model of memory:

· · ·
RAM Disk

• Comparison based model: elements may be compared in internal

memory. May be moved, copied, destroyed. Nothing else.

• Assume M ≥ 2B.

• May assume I/Os are block-aligned, and that at start, input

contiguous in lowest positions on disk.

• Adversary argument: adversary gives order of elements in internal

memory (chooses freely among consistent answers).

• Given an execution of a sorting algorithm: St = number of

permutations consistent with knowledge of order after t I/Os.

Page 6

Adversary Strategy

After an I/O, adversary must give new answer, i.e. must give order of

elements currently in RAM.

If number of possible (i.e. consistent with current knowledge) orders is

X, then there exist answer such that

St+1 ≥ St/X.

This is because any single answer induces a subset of the St currently

possible permutations (consisting of the permutations consistent with

this answer), and the X such subsets clearly form a partition of the St

permutations. If no subset has size St/X, the subsets cannot add up to

St permutations.

Adversary chooses answer fulfilling the inequality above.

Page 7

Possible X’s

Type of I/O Read untouched block Read touched block Write

X
(

M
B

)

B!
(

M
B

)

1

Note: at most N/B I/0s on untouched blocks.

From S0 = N ! and St+1 ≥ St/X we get

St ≥
N !

(

M
B

)t
(B!)N/B

Sorting algorithm cannot stop before St = 1. Thus,

1 ≥ N !
(

M
B

)t
(B!)N/B

for any correct algorithm making t I/Os.

Page 8

Lower Bound Computation

1 ≥ N !
(

M
B

)t
(B!)N/B

t log

(

M

B

)

+ (N/B) log(B!) ≥ log(N !)

3tB log(M/B) + N log B ≥ N log N − 1/ ln 2

3t ≥ N(log N − 1/ ln 2 − log B)

B log(M/B)

t = Ω(N/B logM/B(N/B))

Lemma was used:

a) log(x!) ≥ x(log x − 1/ ln 2)

b) log(x!) ≤ x log x

c) log

�

x

y �

≤ 3y log(x/y) when x ≥ 2y

Page 9

Proof of Lemma

Lemma:

a) log(x!) ≥ x(log x − 1/ ln 2)

b) log(x!) ≤ x log x

c) log
(

x
y

)

≤ 3y log(x/y) when x ≥ 2y

Stirlings formula: n! =
√

2πn · (n/e)n · (1 + O(1/12n))

Proof (using Stirling):

a) log(x!) ≥ log(
√

2πx)x(log x − 1/ ln 2) + o(1)

b) log(x!) ≤ log(xx) = x log x

c) log
(

x
y

)

≤ log(xy

(y/e)y) = y(log(x/y) + log(e))

≤ 3y log(x/y) when x ≥ 2y

Page 10

The I/O-Complexity of Sorting

Defining

n = N/B

m = M/B

N/B logM/B(N/B) = sort(N)

we have proven

I/O cost of sorting:

Θ(N/B logM/B(N/B))

= Θ(n logm(n))

= Θ(sort(N))

Page 11

