Funnel Heap

- A Cache-Oblivious Priority Queue

Gerth Stølting Brodal Rolf Fagerberg

BRICS

University of Aarhus

Thirteenth International Symposium on Algorithms and Computation Vancouver, BC, Canada, November 22, 2002

Outline of talk

- Cache-oblivious model
- Cache-oblivious results
- Cache-oblivious priority queues
- Funnel heap
 - k merger
 - the data structure
 - operations

The Classic RAM Model

The RAM model:

Add: O(1)

Mult: O(1)

Mem access: O(1)

The Classic RAM Model

Bottleneck: transfer between two highest memory levels in use

The I/O Model

- N = problem size
- M = memory size
- B = I/O block size

Aggarwal and Vitter 1988

- One I/O moves B consecutive records from/to disk
- Cost: number of I/Os

$$Scan(N) = O(N/B)$$

$$Sort(N) = O\left(\frac{N}{B}\log_{M/B}\frac{N}{B}\right)$$

Cache-Oblivious Model

Frigo, Leiserson, Prokop, Ramachandran 1999

- Program in the RAM model
- Analyze in the I/O model (for arbitrary B and M)

Advantages

- Optimal on arbitrary level ⇒ optimal on all levels
- ullet B and M not hard-wired into algorithm

Cache-Oblivious Results

- Scanning ⇒ stack, queue, selection, . . .
- Sorting, matrix multiplication, FFT

Frigo, Leiserson, Prokop, Ramachandran, FOCS'99

Cache oblivious search trees

Prokop 99

Bender, Demaine, Farach-Colton, FOCS'00

Rahman, Cole, Raman, WAE'01

Bender, Duan, Iacono, Wu and Brodal, Fagerberg, Jacob, SODA'02

Priority queue and graph algorithms

Arge, Bender, Demaine, Holland-Minkley, Munro, STOC'02

Computational geometry

Bender, Cole, Raman, ICALP'02 Brodal, Fagerberg, ICALP'02

Scanning dynamic sets

Bender, Cole, Demaine, Farach-Colton, ESA'02

Priority Queues

Classic RAM:

• Heap: $O(\log_2 n)$ time

Williams 1964

Priority Queues

Classic RAM:

• Heap: $O(\log_2 n)$ time, $O\left(\log_2 \frac{N}{M}\right)$ I/Os

Williams 1964

Priority Queues

Classic RAM:

• Heap: $O(\log_2 n)$ time, $O\left(\log_2 \frac{N}{M}\right)$ I/Os

Williams 1964

I/O model:

• Buffer tree:
$$O\left(\frac{1}{B}\log_{M/B}\frac{N}{B}\right) = O\left(\frac{\operatorname{Sort}(N)}{N}\right)$$
 I/Os Arge 1995

Cache-Oblivious Priority Queues

• $O\left(\frac{1}{B}\log_{M/B}\frac{N}{B}\right)$ I/Os

Arge, Bender, Demaine, Holland-Minkley, Munro 2002

- Uses sorting and selection as subroutines
- Requires tall cache assumption, $M \geq B^2$

Cache-Oblivious Priority Queues

• $O\left(\frac{1}{B}\log_{M/B}\frac{N}{B}\right)$ I/Os

Arge, Bender, Demaine, Holland-Minkley, Munro 2002

- Uses sorting and selection as subroutines
- Requires tall cache assumption, $M \geq B^2$
- Funnel heap

This talk

- Uses only binary merging
- Profile adaptive, i.e. $O\left(\frac{1}{B}\log_{M/B}\frac{N_i}{B}\right)$ I/Os

 N_i is either the size profile, max depth profile, or #insertions during the lifetime of the ith inserted element

Merge Trees

Binary merger

Merge Trees

Binary merger

Merge tree

Merging Algorithm

k - merger

Recursive memory layout
Recursive defi nition of buffer sizes

Lemma: $O(\frac{k^3}{B}\log_M(k^3) + k)$ I/Os per invocation (if $M \ge B^2$)

Frigo, Leiserson, Prokop, Ramachandran 1999 Brodal, Fagerberg 2002

The Priority Queue

The Priority Queue

The Priority Queue

In total: A single binary merge tree

Operations — DeleteMin

- If A_1 is empty, call $Fill(v_1)$
- Search I and A_1 for minimum element

Operations — **Insert**

- Insert in I
- If I overflows, call Sweep(i) for first i where $c_i \leq k_i$

Sweep \approx addition of one to number $c_1c_2...c_i...c_{\max}$

$$s_i = s_1 + \sum_{j=1}^{i-1} k_j s_j$$

Analysis

We can prove:

Number N of insertions performed:

$$s_{i_{\max}} \leq N$$

- Number of I/Os per Insert for link i: $O\left(\frac{1}{B}\log_{M/B}s_i\right)$
- By the doubly-exponentially growth of s_i , the total number of I/Os per Insert is

$$O\left(\sum_{k=0}^{\infty} \frac{1}{B} \log_{M/B} N^{(3/4)^k}\right) = O\left(\frac{1}{B} \log_{M/B} N\right)$$

DeleteMin is amortized for free

Profile Adaptive

- Modify Insert to apply Sweep(i) for
 - first i where $c_i \leq k_i$, or
 - link i is at most half-full, i.e. there exists S_{ij_1} and S_{ij_2} that can be merged
- $O\left(\frac{1}{B}\log_{M/B}\frac{N_i}{B}\right)$ I/Os

Conclusions

- Funnel heap a cache-oblivious priority queue
- Profile adaptive
- Requires tall cache assumption
 (necessary requirement Brodal, Fagerberg 2002)

Open problem

Worst-case bounds