International PhD School in
Algorithms for Advanced Processor Architectures - AFAPA

Word RAM Algorithms

Gerth Stølting Brodal

University of Aarhus

Monday June 9, 2008, IT University of Copenhagen, Denmark
Computer *word sizes* have increased over time (4 bits, 8 bits, 12 bits, 16 bits, 32 bits, 64 bits, 128 bits, ...GPU...)

What is the power and limitations of *word computations*?

How can we exploit *word parallelism*?
Overview

- Word RAM model
- Words as sets
- Bit-manipulation on words
- Trees
- Searching
- Sorting
- Word RAM results
Word RAM Model
Word RAM (Random Access Machine)

- Unlimited memory
- Word = n bits
- CPU, $O(1)$ registers
- CPU, read & write memory words
 - set[i,v], get[i]
- CPU, computation:
 - Boolean operations
 - Arithmetic operations: $+$, $-$, (\ast)
 - Shifting: $x<<k = x \cdot 2^k$, $x>>k = \lfloor x/2^k \rfloor$
- Operations take $O(1)$ time
Word RAM – Boolean operations

<table>
<thead>
<tr>
<th>AND</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OR</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XOR</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>~x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

0 = False, 1 = True

Corresponding word operations work on all \(n\) bits in one or two words in parallel.

Example: Clear a set of bits using AND

<table>
<thead>
<tr>
<th>AND</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AND</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

0 0 1 1 0 0 1 0 0 1 1 1
The first tricks...
Exercise 1

Consider a double-linked list, where each node has three fields: prev, next, and an element. Usually prev and next require one word each.

Question. Describe how prev and next for a node can be combined into one word, such that navigation in a double-linked list is still possible.
Question.
How can we pack an array of N 5-bit integers into an array of 64-bit words, such that

a) we only use $\approx N \cdot 5/64$ words, and

b) we can access the i’th 5-bit integer efficiently?
Words as Sets
Words as Sets

Would like to store *subsets* of \{0,1,2,...,n-1\} in an \(n\)-bit word.

The set \{2,5,7,13\} can e.g. be represented by the following word (bit-vector):

\[
\begin{array}{cccccccccccccc}
15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0
\end{array}
\]
Question.
How can we perform the following set operations efficiently, given two words representing S_1 and S_2:

a) $S_3 = S_1 \cap S_2$

b) $S_3 = S_1 \cup S_2$

c) $S_3 = S_1 \setminus S_2$
Question.

How can we perform the following set queries, given words representing the sets:

a) $x \in S$?
b) $S_1 \subseteq S_2$?
c) $\text{Disjoint}(S_1, S_2)$?
d) $\text{Disjoint}(S_1, S_2, \ldots, S_k)$?
Question.
How can we perform compute $|S|$, given S as a word (i.e. number of bits = 1)?

a) without using multiplication
b) using multiplication

$S = \begin{array}{cccccccccccccc}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
\end{array}$

$|S| = 4$
Bit-manipulations on Words
Exercise 6

Question.
Describe how to efficiently reverse a word S.

$$S = \begin{array}{cccccccccccccccc}
15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0
\end{array}$$

$$\text{reverse}(S) = \begin{array}{cccccccccccccccc}
15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}$$
Exercise 7

Question.
How can we efficiently compute the zipper

\[y_{n/2-1}x_{n/2-1} \ldots y_2x_2y_1x_1y_0x_0 \]

of two half-words \(x_{n/2-1} \ldots x_2x_1x_0 \) and \(y_{n/2-1} \ldots y_2y_1y_0 \) ?
Exercise 8

Question.
Describe how to compress a subset of the bits w.r.t. an arbitrary set of bit positions $i_k > \cdots > i_2 > i_1$:

$$\text{compress}(x_{n-1}, \ldots, x_2, x_1, x_0) = 0 \ldots 0 x_{i_k} \ldots x_{i_2} x_{i_1}$$

compress(x)
Question.
a) Describe how to remove the rightmost 1
b) Describe how to extract the rightmost 1
Exercise 10

Question.
Describe how to compute the position $\rho(x)$ of the rightmost 1 in a word x

a) without using multiplication
b) using multiplication
c) using integer-to-float conversion

\[
x = \begin{array}{cccccccccccccccccc}
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}
\]

$\rho(x) = 4$
Exercise 11

Let $\lambda(x)$ be the position of the leftmost 1 in a word x (i.e. $\lambda(x) = \lfloor \log_2(x) \rfloor$).

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$\lambda(x) = 11$

Question.
Describe how to test if $\lambda(x) = \lambda(y)$, without actually computing $\lambda(x)$ and $\lambda(y)$.
Question.
Describe how to compute the position $\lambda(x)$ of the leftmost 1 in a word x (i.e. $\lambda(x) = \lfloor \log_2(x) \rfloor$)

a) without using multiplication
b) using multiplication
c) using integer-to-float conversion

$\lambda(x) = 11$
Fredman & Willard

Computation of $\lambda(x)$ in $O(1)$ steps using 5 multiplications

\[n = g \cdot g, \ g \text{ a power of } 2 \]

\[t_1 \leftarrow h \& (x | ((x | h) - l)), \ where \ h = 2^{g-1}l \text{ and } l = (2^n - 1)/(2^g - 1); \]
\[y \leftarrow (((a \cdot t_1) \mod 2^n) \gg (n - g)) \cdot l, \ where \ a = (2^{n-g} - 1)/(2^{g-1} - 1); \]
\[t_2 \leftarrow h \& (y | ((y | h) - b)), \ where \ b = (2^{n+g} - 1)/(2^{g+1} - 1); \]
\[m \leftarrow (t_2 \ll 1) - (t_2 \gg (g - 1)), \ m \leftarrow m \oplus (m \gg g); \]
\[z \leftarrow (((l \cdot (x \& m)) \mod 2^n) \gg (n - g)) \cdot l; \]
\[t_3 \leftarrow h \& (z | ((z | h) - b)); \]
\[\lambda \leftarrow ((l \cdot ((t_2 \gg (2g - 1g g - 1)) + (t_3 \gg (2g - 1)))) \mod 2^n) \gg (n - g). \]
Exercise 13

Question.
Describe how to compute the length of the *longest common prefix* of two words

\[x_{n-1}...x_2x_1x_0 \quad \text{and} \quad y_{n-1}...y_2y_1y_0 \]

\[
\begin{array}{cccccccccccccccc}
15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline
\text{x} & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
\text{y} & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
\end{array}
\]

\[\text{lcp}(x,y) = 6 \]
Trees
Question.
Consider the nodes of a complete binary tree being numbered level-by-level and the root being numbered 1.

a) What are the numbers of the children of node \(i \) ?

b) What is the number of the parent of node \(i \) ?
Exercise 15

Question.

a) How can the height of the tree be computed from a leaf number?

b) How can LCA(x,y) of two leaves x and y be computed (lowest common ancestor)?
Question.

Describe how to assign $O(1)$ words to each node in an arbitrary tree, such that $\text{LCA}(x,y)$ queries can be answered in $O(1)$ time.
Searching
Exercise 17

Question. Consider a n-bit word x storing k n/k-bit values $v_0, ..., v_{k-1}$

a) Describe how to decide if all v_i are non-zero
b) Describe how to find the first v_i equal to zero
c) Describe how implement Search(x, u), that returns a i such that $v_i = u$ (if such a v_i exists)
Sorting : Sorting Networks
Question. Construct a comparison network that outputs the *minimum* of 8 input lines. What is the number of comparators and the depth of the comparison network?
Question. Construct a comparison network that outputs the *minimum* and *maximum* of 8 input lines. What is the number of comparators and the depth of the comparison network?
Odd-Even Merge Sort

K.E. Batcher 1968

Odd-even merge sort for \(N = 8 \).

Size \(O(N \cdot (\log N)^2) \) and depth \(O((\log N)^2) \)

Fact. At each depth all comparators have equal length

[Ajtai, Komlós, Szemerédi 1983: depth \(O(\log N) \), size \(O(N \cdot \log N) \)]
Sorting:
Word RAM implementations of Sorting Networks
Exercise 20

Question.

Describe how to sort two sub-words stored in a single word on a Word RAM — without using branch-instructions

(implementation of a comparator)

\[
\begin{array}{c}
\text{input} \\
\begin{array}{cccccc}
1 & 0 & 0 & 1 & 1 & 1 \\
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\text{output} \\
\begin{array}{cccccc}
1 & 1 & 0 & 1 & 1 & 0 \\
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\text{max}(x,y) \\
\begin{array}{cccccc}
1 & 0 & 1 & 1 & 0 \\
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\text{min}(x,y) \\
\begin{array}{cccccc}
1 & 1 & 0 & 0 & 1 \\
\end{array}
\end{array}
\]

\[
\begin{array}{c}
1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
\end{array}
\]
Question.
Consider a n-bit word x storing n/k-bit values v_0, \ldots, v_{k-1}.
Describe a Word RAM implementation of odd-even merge sort with running $O((\log k)^2)$.

Odd-even merge sort for $N=8$.
More about Sorting & Searching
More about Sorting & Searching

Sorting N words

<table>
<thead>
<tr>
<th>Type</th>
<th>Complexity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomized</td>
<td>$O(N \cdot (\log \log N)^{1/2})$</td>
<td>Han & Thorup 2002</td>
</tr>
<tr>
<td>Deterministic</td>
<td>$O(N \cdot \log \log N)$</td>
<td>Han 2002</td>
</tr>
<tr>
<td>Randomized AC^0</td>
<td>$O(N \cdot \log \log N)$</td>
<td>Thorup 1997</td>
</tr>
<tr>
<td>Deterministic AC^0</td>
<td>$O(N \cdot (\log \log N)^{1+\epsilon})$</td>
<td>Han & Thorup 2002</td>
</tr>
</tbody>
</table>

Dynamic dictionaries storing N words

<table>
<thead>
<tr>
<th>Type</th>
<th>Complexity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic</td>
<td>$O((\log N/\log \log N)^{1/2})$</td>
<td>Andersson & Thorup 2001</td>
</tr>
<tr>
<td>Deterministic AC^0</td>
<td>$O((\log N)^{3/4+o(1)})$</td>
<td></td>
</tr>
</tbody>
</table>
Summary
Summary

- Many operations on words can be efficiently without using multiplication

\[\lambda(x) \] and \[\rho(x) \] can be computed in \(O(1) \) time using multiplication, and \(O(\log\log n) \) time without mut.

- Parallellism can be achieved by packing several elements into one word

- The great (theory) question:

 Can N words be sorted on a Word RAM in \(O(N) \) time?