Master Thesis

Algorithms
Algorithms – Who?

Faculty
Lars Arge
Gerth Stølting Brodal
Gudmund Skovbjerg Frandsen
Kristoffer Arnsfelt Hansen
Peter Bro Miltersen
Christian Nørgaard Storm Pedersen

Ph.d. and Master students
...

Researchers
Thomas Mailund
Henrik Blunck
Peyman Afshani
Nodari Sitchinava
Deepak Ajwani
Nguyen Kim Tang
Elias Tsigaridas
Algorithms – Where?

Algorithms (Turing 0+1)
Arge, Brodal, Frandsen, Miltersen, Blunck, Ajwani, Sitchinava, Tsigaridas, Afshani, Hansen, Tang

BioInformatics
(Building 110)
Pedersen, Mailund

Bioinformatics Research Center
University of Aarhus
Algorithms – Courses

Introductory
• Programming 2 - Frandsen
• Algorithms and data structures 1+ 2 - Brodal
• Machine architecture/Operating systems - Pedersen

Advanced
• Optimization/Combinatorial search - Miltersen/Arnsfelt
• Computational geometry - Brodal
• Advanced data structures - Brodal
• I/O algorithms - Arge
• Dynamic algorithms - Frandsen
• Randomized algorithms - Frandsen
• String algorithms - Pedersen/Mailund
• Algorithms in bioinformatics - Pedersen
• Machine learning - Pedersen/Mailund
• Complexity theory - Miltersen/Hansen
• Algorithmic game playing - Miltersen
• Data compression (loseless/lossy) - Miltersen
Algorithms – Research

• Theoretical computer science
• Tool development
 – BioInformatics, I/O algorithms
• Algorithm engineering
 – primarily in relation to thesis work
• Seminars – master students very welcome
 – BiRC, MADALGO, CAGT, Computational Mathematics…
Algorithm Research
— a typical result statement

<table>
<thead>
<tr>
<th>Problem</th>
<th>Best cache-oblivious result</th>
<th>Best cache-aware result</th>
</tr>
</thead>
<tbody>
<tr>
<td>List ranking</td>
<td>$O(\text{Sort}(V))$</td>
<td>$O(\text{Sort}(V))$</td>
</tr>
<tr>
<td>Euler Tour</td>
<td>$O(\text{Sort}(V))$</td>
<td>$O(\text{Sort}(V))$</td>
</tr>
<tr>
<td>Spanning tree/MST</td>
<td>$O(\text{Sort}(E) \cdot \log \log V)$</td>
<td>$O(\text{Sort}(E) \cdot \log \log (VB/E))$</td>
</tr>
<tr>
<td>(randomized)</td>
<td>$O(\text{Sort}(E))$</td>
<td>$O(\text{Sort}(E))$</td>
</tr>
<tr>
<td>Undirected BFS</td>
<td>$O(V + \text{Sort}(E))$</td>
<td>$O(\text{ST}(E) + \text{Sort}(E) + \sqrt{VE/B})$</td>
</tr>
<tr>
<td></td>
<td>$O(\text{ST}(E) + \text{Sort}(E))$</td>
<td>New $O(\text{ST}(E) + \text{Sort}(E) + \sqrt{VE/B})$</td>
</tr>
<tr>
<td></td>
<td>$+ \frac{B}{D} \cdot \log V + \sqrt{VE/B}$</td>
<td></td>
</tr>
<tr>
<td>Directed BFS & DFS</td>
<td>$O((V + E/B) \cdot \log V + \text{Sort}(E))$</td>
<td>$O((V + E/B) \cdot \log V + \text{Sort}(E))$</td>
</tr>
<tr>
<td>Undirected SSSP</td>
<td>$O(V + (E/B) \cdot \log (E/B))$</td>
<td>New $O(V + (E/B) \cdot \log (E/B))$</td>
</tr>
</tbody>
</table>

Table 1. I/O-bounds for some fundamental graph problems.

Algorithm Research

— another typical result

Comparisons by Quicksort

Element swaps

Running time

Types of Algorithmic Thesis

- Solve a concrete problem
 ...using algorithmic techniques
- Survey of a research area
- Implement a technical paper
 ...fill in the missing details
 ...perform experiments
- Explain all (missing) details in a technical paper
 ...how 8 pages become +100 pages
- Experimental comparison of several algorithms
- The clever idea: Describe a new algorithm

Examples:
www.cs.au.dk/~gerth/cv/#Advising
www.cs.au.dk/~cstorm/www/www/students/
Master Thesis in Algorithms

Thesis work

• Large fraction of time spend on trying to understand technical complicated constructions

• Implementations are often an ”existence proof” – most algorithm authors do not implement their algorithms (did they ever think about the missing details?)

• Hard to convince friends that it took you ½ year to understand an 8 page paper...
Hidden work...

Compact Oracles for Reachability and Approximate Distances in Planar Digraphs

Mikkel Thorup
AT&T Labs - Research, Shannon Laboratory
180 Park Avenue, Florham Park, NJ 07932, USA
mthorup@research.att.com

! Warning! Nontrivial construction ahead of you

! Warning! Need to understand another paper first

The proof is contained in [13], but somewhat details because they need to ensure that the paths are of $O(\sqrt{n})$ length. The existence of v and w is what is actually proved in the proof of Lemma 2 in [13]. They find (v, w) as an edge in an arbitrary triangulation of H. No side of the fundamental cycle of (v, w) in T contains more than $2/3$ of H. The vertices v and w are found in linear time in steps 1, 8, and 9 of the partitioning algorithm in §3 in [13].