
Nordic Journal of Computing 3(1996), 238{255.PARTIALLY PERSISTENTDATA STRUCTURES OF BOUNDED DEGREEWITH CONSTANT UPDATE TIMEGERTH ST�LTING BRODALBRICS, Department of Computer Science, University of AarhusNy Munkegade, DK-8000 �Arhus C, Denmarkgerth@brics.dkAbstract. The problem of making bounded in-degree and out-degree data struc-tures partially persistent is considered. The node copying method of Driscoll et al.is extended so that updates can be performed in worst-case constant time on thepointer machine model. Previously it was only known to be possible in amortisedconstant time.The result is presented in terms of a new strategy for Dietz and Raman's dynamictwo player pebble game on graphs.It is shown how to implement the strategy and the upper bound on the requirednumber of pebbles is improved from 2b+2d+O(pb) to d+2b, where b is the boundof the in-degree and d the bound of the out-degree. We also give a lower boundthat shows that the number of pebbles depends on the out-degree d.CR Classi�cation: E.1, F.2.2Key words: data structures, partial persistence, pebble game, lower bounds1. IntroductionThis paper describes a method to make data structures partially persistent.A partially persistent data structure is a data structure in which old ver-sions are remembered and can always be inspected. However only the latestversion of the data structure can be modi�ed.An interesting application of a partially persistent data structure is givenin [4] where the planar point location problem is solved by an elegant appli-cation of partially persistent search trees. The method given in [4] can begeneralised to make arbitrary bounded in-degree data structures partiallypersistent [2].As in [2], the data structures we consider will be described in the pointermachine model, i.e. they consist of records with a constant number of �eldseach containing a unit of data or a pointer to another record. The data struc-tures can be viewed as graphs with bounded out-degree. In the following letd denote this bound.The main assumption is that the data structures also have bounded in-degree. Let b denote this bound. Not all data structures satisfy this con-Received March 9, 1995; accepted June 28, 1996.



2 BRODALstraint | but they can be converted to do it: Replace nodes by balancedbinary trees, so that all original pointers that point to a node now insteadpoint to the leafs in the tree substituted into the data structure instead ofthe node, and store the node's original information in the root of the tree.The assumption can now be satis�ed by letting at most a constant numberof pointers point to the same leaf. The drawback of this approach is thatthe time to access a node v is increased from O(1) to O(log bv) where bv isthe original in-degree of v.The problem with the method presented in [2, 4] is that an update of thedata structure takes amortised time O(1), in the worst case it can be O(n)where n is the size of the current version of the data structure.In this paper we describe how to extend the method of [2, 4] so that anupdate can be done in worst case constant time. The main result of thispaper is:Theorem 1. It is possible to implement partially persistent data structureswith bounded in-degree (and out-degree) such that each update step and ac-cess step can be performed in worst case time O(1).The problem can be restated as a dynamic two player pebble game ondynamic directed graphs, which was done by Raman and Dietz in [1]. Infact, it is this game we consider in this paper.The central rules of the game are that player I can add a pebble to anarbitrary node and player D can remove all pebbles from a node providedhe places a pebble on all of the node's predecessors. For further details referto Sect. 3. The goal of the game is to �nd a strategy for player D that canguarantee that the number of pebbles on all nodes are bounded by a constantM . Dietz and Raman gave a strategy which achieved M � 2b+2d+O(pb)| but they were not able to implement it e�ciently which is necessary toremove the amortisation from the original persistency result.In this paper we improve the bound toM = d+2b by a simple modi�cationof the original strategy. In the static case (where the graph does not change)we get M = d+ b.We also consider the case where the nodes have di�erent bounds on theirin- and out-degree. In this case we would like to have Mv = f(bv; dv) wheref : N2 ! N is a monotonically increasing function. Hence only nodes witha high in-degree should have many pebbles. We call strategies with thisproperty for locally adaptive. In fact, the strategy mentioned above satis�esthat Mv = dv + 2bv in the dynamic game and Mv = dv + bv in the staticgame.By an e�ciently implementable strategy we mean a strategy that can beimplemented such that the move of player D can be performed in time O(1)if player D knows where player I performed his move. In the following wecall such strategies implementable.The implementable strategies we give do not obtain such good bounds.Our �rst strategy obtainsM = 2bd+1, whereas the second is locally adaptiveand obtains Mv = 2bvdv + 2bv � 1.



PARTIALLY PERSISTENT DATA STRUCTURES 3The analysis of our strategies are all tight | we give examples whichmatch the upper bounds. The two e�ciently implementable strategies havesimple implementations with small constant factors.We also give lower bounds for the value ofM which shows thatM dependsboth on b and d for all strategies. More precisely we show that (we de�nelog x = maxf1; log2 xg):M � maxfb+ 1; b�+q2�� 7=4� 1=2c;& log 23dlog log 23d � 1'g;where � = minfb; dg.The paper is organised as follows. In Sect. 2 we describe the methodof [2, 4] and in Sect. 3 we de�ne the dynamic graph game of [1]. In Sect. 4we give the new game strategy for player D which is implementable. Thetechnical details which are necessary to implement the strategy are describedin Sect. 5 and the strategy is analysed in Sect. 6. In Sect. 7 we give a locallyadaptive strategy and in Sect. 8 we give a locally adaptive strategy whichis implementable. Finally, the lower bound for M is given in Sect. 9.2. The node copying methodIn this section we briey review the method of [2, 4]. For further details werefer to these articles. The purpose of this section is to motivate the gamethat is de�ned in Sect. 3, and to show that if we can �nd a strategy for thisgame and implement it e�ciently, then we can also remove the amortisationfrom the partially persistency method described below.The ephemeral data structure is the underlying data structure we want tomake partially persistent. In the following we assume that we have accessto the ephemeral data structure through a �nite number of entry pointers.For every update of the data structure we increase a version counter whichcontains the number of the current version.When we update a node v we cannot destroy the old information in vbecause this would not enable us to �nd the old information again. The ideais now to add the new information to v together with the current versionnumber. So if we later want to look at an old version of the information,we just compare the version numbers to �nd out which information was inthe node at the time we are looking for. This is in very few words the ideabehind the so called fat node method.An alternative to the previous approach is the node copying method. Thismethod allows at most a constant number (M) of additional informationin each node (depending on the size of b). When the number of di�erentcopies of information in a node gets greater than M we make a copy ofthe node and the old node now becomes dead because new pointers to thenode has to point to the newly created copy. In the new node we onlystore the information of the dead node which exists in the current versionof the ephemeral data structure. We now have to update all the nodes in



4 BRODALthe current version of the data structure which have pointers to the nodethat has now become dead. These pointers should be updated to point tothe newly created node instead | so we recursively add information to allthe predecessors of the node that we have copied. The copied node does notcontain any additional information.3. The dynamic graph gameThe game Dietz and Raman de�ned in [1] is played on a directed graphG = (V;E) with bounded in-degree and out-degree. Let b be the bound ofthe in-degree and d the bound of the out-degree. W.l.o.g. we do not allowself-loops or multiple edges. To each node a number of pebbles is associated,denoted by Pv. The dynamic graph game is now a game where two playersI and D alternate to move. The moves they can perform are:Player I:a) add a pebble to an arbitrary node v of the graph orb) remove an existing edge (v; u) and create a new edge (v; w) withoutviolating the in-degree constraint on w, and place a pebble on thenode v.Player D:c) do nothing ord) remove all pebbles from a node v and place a new pebble on allthe predecessors of v. This is denoted by Zero(v).The goal of the game is to show that there exists a constant M anda strategy for player D such that, whatever player I does, the maximumnumber of pebbles on any node after the move of player D is bounded byM . In the static version of the game player I can only do moves of type a).The relationship between partially persistent data structures and the peb-ble game de�ned is the following. The graph of the pebble game correspondsto the current version of an ephemeral data structure. A pebble correspondsto additional information stored in a node. A move of player I of type a)corresponds to updating a data �eld in the ephemeral data structure anda move of type b) corresponds to updating a pointer �eld in the ephemeraldata structure. A Zero operation performed by player D corresponds tothe copying of a node in the node copying method. The pebbles placed onthe predecessor nodes correspond to updating the incoming pointers of thecorresponding node copied in the persistent data structure.The existence of a strategy for player D was shown in [1], but the givenstrategy could not be implemented e�ciently (i.e. the node v in d) couldnot be located in time O(1)).Theorem 2. (Dietz and Raman [1]) A strategy for player D exists thatachieves M = O(b+ d).
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0Fig. 1: The e�ect of performing a Break operation. The numbers are the number ofpebbles on the nodes. 4. The strategyWe now describe our new strategy for player D. We start with some de�-nitions. We associate the following additional information with the graphG. � Edges are either black or white. Nodes have at most one incomingwhite edge. There are no white cycles.� Nodes are either black or white. Nodes are white if and only if theyhave an incoming white edge.The de�nitions give in a natural way rise to a partition of the nodesinto components: two nodes connected by a white edge belong to the samecomponent. It is easily seen that a component is a rooted tree of white edgeswith a black root and all other nodes white. A single black node with noadjacent white edge is also a component. We call a component consistingof a single node a simple component and a component with more than onenode a non simple component. See Fig. 1 (on the left) for an example of agraph with two simple components and one non simple component.To each node v we associate a queue Qv containing the predecessors of v.The queue operations used in the following are:� Add(Qu; v) adds v to the back of Qu.� Delete(Qu; v) removes v from Qu.� Rotate(Qu) moves the front element v of Qu to the back of Qu, andreturns v.The central operation in our strategy is now the following Break opera-tion. The component containing v is denoted Cv.procedure Break(Cv)r  the root of Cvcolour all nodes and edges in Cv blackif Qr 6= ; thencolour r and (Rotate(Qr); r) whiteendifZero(r)end.



6 BRODALThe e�ect of performing Break on a component is that the component isbroken up into simple components and that the root of the original compo-nent is appended to the component of one of its predecessors (if any). Anexample of the application of the Break operation is shown in Fig. 1.A crucial property of Break is that all nodes in the component changecolour (except for the root when it does not have any predecessors, in thiscase we per de�nition say that the root changes its colour twice).Our strategy is now the following (for simplicity we give the moves ofplayer I and the counter moves of player D as procedures).procedure AddPebble(v)place a pebble on vBreak(Cv)end.procedure MoveEdge((v; u); (v; w))place a pebble on vif (v; u) is white thenBreak(Cv)Delete(Qu; v)replace (v; u) with (v; w) in EAdd(Qw; v)elseDelete(Qu; v)replace (v; u) with (v; w) in EAdd(Qw; v)Break(Cv)endifend.In MoveEdge the place where we perform the Break operation dependson the colour of the edge (v; u) being deleted. This is to guarantee thatwe only remove black edges from the graph (in order not to have to splitcomponents).Observe that each time we apply AddPebble or MoveEdge to a nodev we �nd the root of Cv and zero it. We also change the colour of all nodesin Cv | in particular we change the colour of v. Now, every time a blacknode becomes white it also becomes zeroed, so after two Imoves have placedpebbles on v, v has been zeroed at least once. That the successors of a nodev cannot be zeroed more than O(1) times and therefore cannot place pebbleson v without v getting zeroed is shown in Sect. 6. The crucial property isthe way in which Break colours nodes and edges white. The idea is thata successor u of v cannot be zeroed more than O(1) times before the edgefrom (v; u) will become white. If (v; u) is white both v and u belong to thesame component, and therefore u cannot change colour without v changingcolour.In Sect. 5 we show how to implement Break in worst case time O(1) andin Sect. 6 we show that the approach achieves that M = O(1).



PARTIALLY PERSISTENT DATA STRUCTURES 75. The new data structureThe procedures in Sect. 4 can easily be implemented in worst case time O(1)if we are able to perform the Break operation in constant time. The centralidea is to represent the colours indirectly so that all white nodes and edgesin a component points to the same variable. All the nodes and edges cannow be made black by setting this variable to black.A component record contains two �elds. A colour �eld and a pointer �eld.If the colour �eld is white the pointer �eld will point to the root of thecomponent.To each node and edge is associated a pointer cr which points to a com-ponent record. We will now maintain the following invariant.� The cr pointer of each black edge and each node forming a simplecomponent will point to a component record where the colour is blackand the root pointer is the null pointer. Hence, there is a componentrecord for each non simple component, but several black edges andnodes forming a simple component can share the same componentrecord.� For each non simple component there exist exactly one componentrecord where the colour is white and the root pointer points to theroot of the component. All nodes and white edges in this componentpoint to this component record.An example of component records is shown in Fig. 2. Notice that the colourof an edge e is simply e:cr:colour so the test in MoveEdge is trivial toimplement. The implementation of Break is now:procedure Break(v)if v:cr:colour = black thenr  velser  v:cr:rootv:cr:colour blackv:cr:root ?endifif r:Q 6= ; thenu  Rotate(r:Q)if u:cr:colour = black thenu:cr  new-component-record(white; u)endifr:cr  (u; r):cr u:crendifZero(r)end.From the discussion of the node copying method in Sect. 2 it should beclear that the above described data structure also applies to this method.
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1 3 1Fig. 2: A graph with component records.6. The analysisTheorem 3. The player D strategy given in Sect. 4 achieves M = 2bd+1.Proof. A direct consequence of Lemmas 1 and 2. 2Lemma 1. The player D strategy given in Sect. 4 achieves M � 2bd+ 1.Proof. Let the �rst operation (either an AddPebble or MoveEdgeoperation) be performed at time 1, the next at time 2 and so on.Assume that when the game starts all nodes are black and there are nopebbles on any node.Fix an arbitrary node v at an arbitrary time tnow . Let tlast denote the lasttime before tnow when v was zeroed (if v has never been zeroed let tlast be0). In the following we want to bound the number of pebbles placed on vin the interval ]tlast; tnow[. In this interval v cannot change its colour fromblack to white because this would zero v.Assume without loss of generality that v is white at the end of time tlast,that at time tbreak 2 ]tlast; tnow[ a Break(Cv) is performed and (therefore)at time tnow v is black (it is easy to see that all other cases are special casesof this case).Note that the only time an AddPebble(v) or MoveEdge((v; u); (v; w))operation can be performed is at time tbreak because these operations forcethe colour of v to change. Therefore, v's successors are the same in theinterval ]tlast; tbreak [, and similarly for ]tbreak; tnow [.We will handle each of the two intervals and the time tbreak separately.Let us �rst consider the interval ]tlast; tbreak[. Let w be one of v's successorsin this interval. w can be zeroed at most b times before it will be blockedby a white edge from v (w cannot change the colour without changing thecolour of v), because after at most b� 1 Zero(w) operations, v will be the�rst element in Qw.So a successor of v can be zeroed at most bd times throughout the �rstinterval which implies that at most bd pebbles can be placed on v during



PARTIALLY PERSISTENT DATA STRUCTURES 9the �rst interval. For ]tbreak ; tnow[ we can repeat the same argument so atmost bd pebbles will be placed on b during this interval too.We now just have to consider the operation at time tbreak . The colour ofv changes so a Break(Cv) is performed. There are three possible reasonsfor that: a) An AddPebble(v) operation is performed, b) a MoveEdge((v; u); (v; w)) is performed or c) one of the operations is performed on anode di�erent from v. In a) and b) we �rst add a pebble to v and thenperform a Break(Cv) operation and in c) we �rst add a pebble to anothernode in Cv and then do Break(Cv). The Break operation can add atmost one pebble to v when we perform a Zero operation to the root of Cv(because we do not allow multiple edges) so at most two pebbles can beadded to v at time tbreak .We have now shown that at time tnow the number of pebbles on v can beat most 2bd+2. This is nearly the claimed result. To decrease this bound byone we have to analyse the e�ect of the operation performed at time tbreakmore carefully.What we prove is that when two pebbles are placed on v at time tbreakthen at most bd � 1 pebbles can be placed on v throughout ]tbreak ; tnow[.This follows if we can prove that there exists a successor of v that cannotbe zeroed more than b� 1 times in the interval ]tbreak ; tnow[.In the following let r be the node that is zeroed at time tbreak . We havethe following cases to consider:i) AddPebble(v) and Break(r) places a pebble on v. Now r and one ofits incoming edges are white. So r can be zeroed at most b� 1 timesbefore (v; r) will become white and block further Zero(r) operations.ii) MoveEdge((v; u); (v;w)) and Zero(r) places a pebble on v. Dependingon the colour of (v; u) we have two cases:a) (v; u) is white. Therefore u is white and r 6= u. Since we performBreak(r) before we modify the pointers we have that r 6= w.So as in i) r can be zeroed at most b � 1 times throughout]tbreak ; tnow[.b) (v; u) is black. Since Break is the last operation we do, the suc-cessors of v will be the same until after tnow , so we can argue inthe same way as i) and again get that r can be zeroed at mostb� 1 times throughout ]tbreak ; tnow[.We conclude that no node will ever have more than 2bd+ 1 pebbles. 2Lemma 2. The player D strategy given in Sect. 4 achieves M � 2bd+ 1.Proof. Let G = (V;E) be the directed graph given by V = fr; v1; : : : ; vb;w1; : : : ; wdg and E = f(r; vb)g[f(vi; wj)ji 2 f1; : : : ; bg^j 2 f1; : : : ; dgg. Thegraph is shown in Fig. 3. Initially all nodes in V are black and all queuesQwi contain the nodes (v1; : : : ; vb). We will now force the number of pebbleson vb to become 2bd+ 1.
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b21Fig. 3: A graph which can force M to become 2bd+ 1.First place one pebble on vb | so that vb becomes white. Then place 2b�1pebbles on each wj . There will now be bd pebbles on vb and all the edges(vb; wj) are white. Place one new pebble on vb and place another 2b � 1pebbles on each wj . Now there will be 2bd+ 1 pebbles on vb. 27. A simple locally adaptive strategyIn this section we present a simple strategy that is adaptive to the local in-and out-degree bounds of the nodes. It improves the bound achieved in [1].The main drawback is that the strategy cannot be implemented e�cientlyin the sense that the node to be zeroed cannot be found in constant time.In Sect. 8 we present an implementable strategy that is locally adaptive butdoes not achieve as good a bound on M .Let dv denote the bound of the out-degree of v and bv the bound of thein-degree. De�ne Mv to be the best bound player D can guarantee on thenumber of pebbles on v. We would like to have that Mv = f(bv; dv) for amonotonic function f : N2! N .The strategy is quite simple. To each node v we associate a queue Qvcontaining the predecessors of v and a special element Zero. Each time theZero element is rotated from the front of the queue the node is zeroed.The simple adaptive strategyif the I-move deletes (v; u) and adds (v; w) thenDelete(Qu; v)Add(Qw ; v)endifwhile (v0  Rotate(Qv))6=Zero do v  v0 odZero(v)end.Notice that the strategy does not use the values of bv and dv explicitly.This gives the strategy the nice property that we can allow bv and dv tochange dynamically.
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d+bd+1dFig. 4: A graph which can force M to become dv + 2bv.The best bound Dietz and Raman could prove for their strategy wasM �2b+ 2d + O(pb). The next theorem shows that the simple strategy aboveachieves a bound ofMv = dv+2bv. If the graph is static the bound improvesto Mv = dv + bv.Theorem 4. For the simple adaptive strategy we have that Mv = dv + 2bv.In the static case this improves to Mv = dv + bv.Proof. Each time we perform AddPebble(v) or MoveEdge((v; u);(v; w)) we rotate Qv. It is possible to rotate Qv at most bv times withoutzeroing v. This implies that between two Zero(v) operations at most bvMoveEdge operations can be performed on outgoing edges of v. Therefore,v can have had at most bv + dv di�erent successors between two Zero(v)operations. Between two zeroings of a successor w of v, Qv must have beenrotated because Rotate(Qw) returned v in the while-loop, this is becausethe Zero element is moved to the back of Qw when w is being zeroed. Soexcept for the �rst zeroing of w all zeroings of w will be preceded by arotation of Qv.For each operation performed on v we both place a pebble on v and rotateQv. So the bound on the number of rotations ofQv gives the following boundon the number of pebbles that can be placed on v: Mv � (dv + bv) + bv.In the static case the number of di�erent successors between two Zero(v) operations is dv so in the same way we get the bound Mv � dv + bv.It is easy to construct an example that matches this upper bound. LetG = (V;E) whereV = fv; u1; : : : ; ubv ; w1; : : : ; wdv ; wdv+1; : : : ; wdv+bvg andE = f(ui; v)ji 2 f1; : : : ; bvgg [ f(v; wi)ji 2 f1; : : : ; dvgg:The graph is shown in Fig. 4.At the beginning all nodes are black and the Zero element is at the front ofeach queue. The sequence of operations which will force the number of peb-bles on v to become dv+2bv is the following: AddPebble on v; w1; : : : ; wdv ,



12 BRODALfollowed by MoveEdge((v; wi�1+dv); (v; wi+dv)) and AddPebble(wi+dv )for i = 1; : : : ; bv. The matching example for the static case is constructed ina similar way. 28. A locally adaptive data structureWe will now describe a strategy that is both implementable and locallyadaptive. The data structure presented in Sect. 4 and Sect. 5 is not locallyadaptive, because when redoing the analysis with local degree constraintswe get the following bound for the static version of the game:Mv = 1 + 2 Xfwj(v;w)2Eg bw:The solution to this problem is to incorporate a Zero element into each ofthe queues Qv as in Sect. 7 and then only zero a node when Rotate returnsthis element. We now have the following Break operation:procedure Break(Cv)r  the root of Cvcolour all nodes and edges in Cv blackw  Rotate(Qr)if w =Zero thenZero(r)w  Rotate(Qr)endifif w 6=Zero thencolour r and (w; r) whiteendifend.The implementation is similar to the implementation of Sect. 5.The next theorem shows that the number of pebbles on a node v with thisstrategy will be bounded by Mv = 2bvdv + 2bv� 1, so only nodes with largein-degree (or out-degree) can have many pebbles.Theorem 5. The above strategy for playerD achieves Mv = 2bvdv+2bv�1.Proof. The proof follows the same lines as in the proof of Theorem 3.A node v can change its colour at most 2bv � 1 times between two zeroings.We then have that the number of AddPebble and MoveEdge operationsperformed on v is at most 2bv � 1.The time interval between two Zero(v) operations is partitioned into 2bvintervals and that v changes its colour only on the boundary between twointervals. In each of the intervals each successor w of v can be zeroed atmost once before it will be blocked by a white edge from v.



PARTIALLY PERSISTENT DATA STRUCTURES 13So when we restrict ourselves to the static case we have that each successorgets zeroed at most 2bv times. Hence the successors of v can place at most2bvdv pebbles on v.Each AddPebble operation places a pebble on v, so for the static case,the total number of pebbles on v is bounded by Mv = 2bvdv + 2bv � 1.We now only have to show that a MoveEdge((v; u); (v; w)) operationdoes not a�ect this analysis. We have two cases to consider. If u has beenzeroed in the last interval then u will either be blocked by a white edgefrom v or v appears before the Zero element in Qu and therefore none ofthe Break operations in MoveEdge can result in a Zero(u). If u has notbeen zeroed then it is allowed to place a pebble on v in the MoveEdgeoperation. If the Break operation forces a Zero(w) to place a pebble onv then w cannot place a pebble on v during the next time interval. So wecan conclude that the analysis still holds.The matching lower bound is given in the same way as in Theorem 4. 29. A lower boundIn this section we will only consider the static game.Raman states in [3] that \the dependence on d of M appears to be anartifact of the proof (for the strategy of [1])". Theorem 6 shows that it isnot an artifact of the proof, but that the value of M always depends on thevalue of b and d.It is shown in [2] that M � b holds in the amortised sense, so in that gameM does not depend of d.Theorem 6. For b � 1 and all player D strategies we have:M � maxfb+ 1; b�+q2�� 7=4� 1=2c;& log 23dlog log 23d � 1'g;where � = minfb; dg.Proof. Immediate consequence of Lemma 3 and 4 and Corollary 1. 2Lemma 3. For b; d � 1 and all player D strategies we have M � b+ 1.Proof. We will play the game on a convergent tree with l levels whereeach node has exactly b incoming edges. The player I strategy is simple, itjust places the pebbles on the root of the tree.The root has to be zeroed at least once for each group ofM+1AddPebbleoperations. So at least a fraction 1M+1 of the time will be spent on zeroingthe root. At most M pebbles can be placed on any internal node before thenext Zero operation on that node, because we do not perform AddPebbleon internal nodes. So a node on level 1 has to be zeroed at least once for



14 BRODALevery M Zero operation on the root. Zeroing a node at level 1 takes atleast 1M(M+1) of the time, and in general, zeroing a node at level i takes atleast 1M i(M+1) of the time.Because the number of nodes in each level of the tree increases by a factorb we now have the following constraint on M :lXi=0 biM i(M + 1) = 1M + 1 lXi=0� bM �i � 1:By letting l � M we get the desired result M � b+ 1. If d = 1, it followsfrom Theorem 4 that this bound is tight. 2Lemma 4. For b; d � 1 and all player D strategies we have:M � & log 23dlog log 23d � 1' :Proof. We will play the game on the following graph G = (V;E) whereV = fr; v1; : : : ; vdg and E = f(r; v1); : : : ; (r; vd)g. The adversary strategy wewill use for player I is to cyclically place pebbles on the subset of the vi'swhich have not been zeroed yet. The idea is that for each cycle at least acertain fraction of the nodes will not be zeroed.We start by considering how many nodes cannot be zeroed in one cycle.Let the number of nodes not zeroed at the beginning of the cycle be k. Eachtime one of the vi's is zeroed a pebble is placed on r, so out ofM+1 zeroingsat least one will be a Zero(r). So we have that at least b kM+1c of the nodesare still not zeroed at the end of the cycle. So after i cycles we have thatthe number of nodes not zeroed is at least (the number of oors is i):�: : :�� dM + 1� 1M + 1� : : : 1M + 1� :By the de�nition of M , we know that all nodes will be zeroed after M + 1cycles, so we have the following equation (the number of oors is M + 1):�: : :�� dM + 1� 1M + 1� : : : 1M + 1� = 0:Lemma 3 gives us that M � 2. By induction on the number of oors isit easy to show that omitting the oors increases the result at most 3=2.Hence, we have d(M + 1)M+1 � 3=2:So the minimum solution of M for this inequality will be a lower bound forM . It is easy to see that this minimum solution has to be at least log 23dlog log 23d�1.2



PARTIALLY PERSISTENT DATA STRUCTURES 15Lemma 5. For all D strategies where b = d we have:M � bb+q2b� 7=4� 1=2c:Proof. For b = d = 0 the lemma is trivial. The case b = d = 1 is true byLemma 3. In the following we assume b = d � 2.Again, the idea is to use player I as an adversary that forces the numberof pebbles to become large on at least one node.The graph we will play the game on is a clique of size b+1. For all nodesu and v both (u; v) and (v; u) will be edges of the graph and all nodes willhave in- and out-degree b. Each Zero operation of player D will removeall pebbles from a node of the graph and place one pebble on all the othernodes.At a time given P0; P1; : : : ; Pb will denote the number of pebbles on eachof the b + 1 nodes | in increasing order, so Pb will denote the number ofpebbles on the node with the largest number of pebbles.Let c1; c2 and c3 denote constants characterising the adversary's strategy.The following invariants will hold from a certain moment of time to bede�ned later:I1 : i � j ) Pi � Pj ;I2 : Pi � i;I3 : � Pc1+c2�i � c1 + c2 � 1 for 1 � i � c3;Pc1+c2�i � c1 + c2 � 2 for c3 < i � c2;I4 : 1 � c3 � c2 and c1 + c2 � b+ 1:I1 is satis�ed per de�nition. I2 is not satis�ed initially but after the �rst bZero's will be satis�ed. This is easily seen. The nodes that have not beenzeroed will have at least b pebbles and the nodes that have been zeroed canbe ordered according to the last time they were zeroed. A node followed by inodes in this order will have at least i pebbles because each of the following(at least) i zeroings will place a pebble on the node.We can now satisfy I3 and I4 by setting c1 = c2 = c3 = 1 so now we havethat all the four invariants are satis�ed after the �rst b Zero operations.Fig. 5 illustrates the relationship between c1; c2 and c3 and the number ofpebbles on the nodes. The �gure only shows the pebbles which are guaran-teed to be on the nodes by the invariants. The idea is to build a block ofnodes which all have the same number of pebbles. These nodes are shownas a dashed box in Fig. 5. The moves of player I and D a�ect this box. Aplayer I move will increase the block size whereas a player D move will pushthe block upwards. In the following we will show how large the block canbe forced to be.We will �rst consider an AddPebble operation. If c3 < c2 we knowthat on node c1 + c2 � c3 � 1 (in the current ordering) there are at leastc1 + c2 � 2 pebbles so by placing a pebble on the node c1 + c2 � c3 � 1 wecan increase c3 by one and still satisfy the invariants I1; : : : ; I4. There are
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number of pebblesFig. 5: The adversary's strategy.three cases to consider. If the node c1 + c2 � c3 � 1 already has c1 + c2 � 1pebbles we increase c3 by one and try to place the pebble on another node.If c3 = c2 and c1 + c2 < b+ 1 we can increase c2 by one and set c3 = 1 andthen try to place the pebble on another node. If we have that c2 = c3 andc1+ c2 = b+1 we just place the pebble on an arbitrary node | because theblock has reached its maximum size.Whenever player D does a Zero operation we can easily maintain theinvariant by just increasing c1 by one | as long as c1 + c2 < b + 1. Herewe have three cases to consider. Let i denote the number of the node thatplayer D zeroes. We will only consider the case when c1 � i < c1 + c2,the cases 0 � i < c1 and c1 + c2 � i � b are treated in a similar way. Thevalues of the P s after the Zero operation are: P 00 = 0; P 01 = P0+1; : : : ; P 0i =Pi�1+1; P 0i+1 = Pi+1+1; : : : ; P 0b = Pb+1. So because I2 and I3 were satis�edbefore the Zero operation it follows that when we increase c1 by one theinvariant will still be satis�ed after the Zero operation.We will now see how large the value of c2 can become before c1+c2 = b+1.We will allow the last move to be a player I move.We let x denote the maximum value of c2 when c1 + c2 = b+ 1. At thispoint we have that c1 = b + 1 � x. Initially we have that c1 = 1. EachZero operation can increase c1 by at most one so the maximum number ofAddPebble operations we can perform is 1 + ((b+ 1� x)� 1) = b+ 1� x.It is easily seen that the worst case number of pebbles we have to add to



PARTIALLY PERSISTENT DATA STRUCTURES 17bring c2 up to x is 1 +Px�1i=2 (i� 1) | because it is enough to have twopebbles in the last column of the block when we are �nished.So the size of x � 0 is now constrained by:1 + x�1Xi=2 (i� 1) � b+ 1� x:Hence, we have x � b1=2+p2b� 7=4c. Let i 2 f0; 1; : : : ; x� 1g denote thenumber of Zero operations after the block has reached the top. By placingthe pebbles on node b� 1 it is easy to see that the following invariants willbe satis�ed (I3 and I4 will not be satis�ed any longer):I5 : Pb � b+ i;I6 : Pb�j � b+ i� 1 for j = 1; : : : ; x� i� 1:So after the next x� 1 zeroings we see that Pb � b+ (x� 1) which gives thestated result. 2Corollary 1. For all D strategies we have M � b� +p2�� 7=4 � 1=2cwhere � = minfb; dg. 10. ConclusionIn the preceding sections we have shown that it is possible to implement par-tially persistent bounded in-degree (and out-degree) data structures whereeach access and update step can be done in worst case constant time. Thisimproves the best previously known technique which used amortised con-stant time per update step.It is a further consequence of our result that we can support the operationto delete the current version and go back to the previous version in constanttime. We just have to store all our modi�cations of the data structure on astack so that we can backtrack all our changes of the data structure.11. Open problemsThe following list states open problems concerning the dynamic two playergame.� Is it possible to show a general lower bound for M which shows howM depends on b and d?� Do better (locally adaptive) strategies exist?� Do implementable strategies for player D exist where M 2 O(b+ d)?
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