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Abstract. The problem of making bounded in-degree and out-degree data struc-
tures partially persistent is considered. The node copying method of Driscoll et al
is extended so that updates can be performed in worst-case constant time on the
pointer machine model. Previously it was only known to be possible in amortised
constant time.

The result is presented in terms of a new strategy for Dietz and Raman’s dynamic
two player pebble game on graphs.

It is shown how to implement the strategy and the upper bound on the required
number of pebbles is improved from 26+ 2d + O(\/E) to d+4 2b, where b is the bound
of the in-degree and d the bound of the out-degree. We also give a lower bound
that shows that the number of pebbles depends on the out-degree d.
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1. Introduction

This paper describes a method to make data structures partially persistent.
A partially persistent data structure is a data structure in which old ver-
sions are remembered and can always be inspected. However only the latest
version of the data structure can be modified.

An interesting application of a partially persistent data structure is given
in [4] where the planar point location problem is solved by an elegant appli-
cation of partially persistent search trees. The method given in [4] can be
generalised to make arbitrary bounded in-degree data structures partially
persistent [2].

As in [2], the data structures we consider will be described in the pointer
machine model, i.e. they consist of records with a constant number of fields
each containing a unit of data or a pointer to another record. The data struc-
tures can be viewed as graphs with bounded out-degree. In the following let
d denote this bound.

The main assumption is that the data structures also have bounded in-
degree. Let b denote this bound. Not all data structures satisfy this con-
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straint — but they can be converted to do it: Replace nodes by balanced
binary trees, so that all original pointers that point to a node now instead
point to the leafs in the tree substituted into the data structure instead of
the node, and store the node’s original information in the root of the tree.
The assumption can now be satisfied by letting at most a constant number
of pointers point to the same leaf. The drawback of this approach is that
the time to access a node v is increased from O(1) to O(logb, ) where b, is
the original in-degree of v.

The problem with the method presented in [2, 4] is that an update of the
data structure takes amortised time O(1), in the worst case it can be O(n)
where n is the size of the current version of the data structure.

In this paper we describe how to extend the method of [2, 4] so that an
update can be done in worst case constant time. The main result of this
paper is:

THEOREM 1. It is possible to implement partially persistent data structures
with bounded in-degree (and out-degree) such that each update step and ac-
cess step can be performed in worst case time O(1).

The problem can be restated as a dynamic two player pebble game on
dynamic directed graphs, which was done by Raman and Dietz in [1]. In
fact, it is this game we consider in this paper.

The central rules of the game are that player I can add a pebble to an
arbitrary node and player D can remove all pebbles from a node provided
he places a pebble on all of the node’s predecessors. For further details refer
to Sect. 3. The goal of the game is to find a strategy for player D that can
guarantee that the number of pebbles on all nodes are bounded by a constant
M. Dietz and Raman gave a strategy which achieved M < 2b+ 2d + O(\/E)
— but they were not able to implement it efficiently which is necessary to
remove the amortisation from the original persistency result.

In this paper we improve the bound to M = d+2b by a simple modification
of the original strategy. In the static case (where the graph does not change)
we get M = d + b.

We also consider the case where the nodes have different bounds on their
in- and out-degree. In this case we would like to have M, = f(b,,d,) where
f:N? — N is a monotonically increasing function. Hence only nodes with
a high in-degree should have many pebbles. We call strategies with this
property for locally adaptive. In fact, the strategy mentioned above satisfies
that M, = d, + 2b, in the dynamic game and M, = d, + b, in the static
game.

By an efficiently implementable strategy we mean a strategy that can be
implemented such that the move of player D can be performed in time O(1)
if player D knows where player I performed his move. In the following we
call such strategies implementable.

The implementable strategies we give do not obtain such good bounds.
Our first strategy obtains M = 2bd+1, whereas the second is locally adaptive
and obtains M, = 2b,d, + 2b, — 1.
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The analysis of our strategies are all tight — we give examples which
match the upper bounds. The two efficiently implementable strategies have
simple implementations with small constant factors.

We also give lower bounds for the value of M which shows that M depends
both on b and d for all strategies. More precisely we show that (we define
log = max{1,log, z}):

log 2d
M > max{b+1,|at /2a —T/4—1/2], {b;{gﬁ— 1}},
3

where o = min{b, d}.

The paper is organised as follows. In Sect. 2 we describe the method
of [2, 4] and in Sect. 3 we define the dynamic graph game of [1]. In Sect. 4
we give the new game strategy for player D which is implementable. The
technical details which are necessary toimplement the strategy are described
in Sect. 5 and the strategy is analysed in Sect. 6. In Sect. 7 we give a locally
adaptive strategy and in Sect. 8 we give a locally adaptive strategy which
is implementable. Finally, the lower bound for M is given in Sect. 9.

2. The node copying method

In this section we briefly review the method of [2, 4]. For further details we
refer to these articles. The purpose of this section is to motivate the game
that is defined in Sect. 3, and to show that if we can find a strategy for this
game and implement it efficiently, then we can also remove the amortisation
from the partially persistency method described below.

The ephemeral data structure is the underlying data structure we want to
make partially persistent. In the following we assume that we have access
to the ephemeral data structure through a finite number of entry pointers.
For every update of the data structure we increase a version counter which
contains the number of the current version.

When we update a node v we cannot destroy the old information in »
because this would not enable us to find the old information again. The idea
is now to add the new information to v together with the current version
number. So if we later want to look at an old version of the information,
we just compare the version numbers to find out which information was in
the node at the time we are looking for. This is in very few words the idea
behind the so called fat node method.

An alternative to the previous approach is the node copying method. This
method allows at most a constant number (M) of additional information
in each node (depending on the size of b). When the number of different
copies of information in a node gets greater than M we make a copy of
the node and the old node now becomes dead because new pointers to the
node has to point to the newly created copy. In the new node we only
store the information of the dead node which exists in the current version
of the ephemeral data structure. We now have to update all the nodes in
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the current version of the data structure which have pointers to the node
that has now become dead. These pointers should be updated to point to
the newly created node instead — so we recursively add information to all
the predecessors of the node that we have copied. The copied node does not
contain any additional information.

3. The dynamic graph game

The game Dietz and Raman defined in [1] is played on a directed graph
G = (V, E) with bounded in-degree and out-degree. Let b be the bound of
the in-degree and d the bound of the out-degree. W.l.o.g. we do not allow
self-loops or multiple edges. To each node a number of pebbles is associated,
denoted by P,. The dynamic graph game is now a game where two players
I and D alternate to move. The moves they can perform are:

Player I:

a) add a pebble to an arbitrary node v of the graph or

b) remove an existing edge (v, u) and create a new edge (v, w) without
violating the in-degree constraint on w, and place a pebble on the
node wv.

Player D:

¢) do nothing or
d) remove all pebbles from a node v and place a new pebble on all
the predecessors of v. This is denoted by ZERO(v).

The goal of the game is to show that there exists a constant M and
a strategy for player D such that, whatever player I does, the maximum
number of pebbles on any node after the move of player D is bounded by
M. In the static version of the game player I can only do moves of type a).

The relationship between partially persistent data structures and the peb-
ble game defined is the following. The graph of the pebble game corresponds
to the current version of an ephemeral data structure. A pebble corresponds
to additional information stored in a node. A move of player I of type a)
corresponds to updating a data field in the ephemeral data structure and
a move of type b) corresponds to updating a pointer field in the ephemeral
data structure. A ZERO operation performed by player D corresponds to
the copying of a node in the node copying method. The pebbles placed on
the predecessor nodes correspond to updating the incoming pointers of the
corresponding node copied in the persistent data structure.

The existence of a strategy for player D was shown in [1], but the given
strategy could not be implemented efficiently (i.e. the node v in d) could
not be located in time O(1)).

THEOREM 2. (DIETZ AND RAMAN [1]) A strategy for player D exists that
achieves M = O(b + d).
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Fig. 1: The effect of performing a BREAK operation. The numbers are the number of
pebbles on the nodes.

4. The strategy

We now describe our new strategy for player D. We start with some defi-
nitions. We associate the following additional information with the graph
G.
o Edges are either black or white. Nodes have at most one incoming
white edge. There are no white cycles.

o Nodes are either black or white. Nodes are white if and only if they
have an incoming white edge.

The definitions give in a natural way rise to a partition of the nodes
into components: two nodes connected by a white edge belong to the same
component. It is easily seen that a component is a rooted tree of white edges
with a black root and all other nodes white. A single black node with no
adjacent white edge is also a component. We call a component consisting
of a single node a simple component and a component with more than one
node a non simple component. See Fig. 1 (on the left) for an example of a
graph with two simple components and one non simple component.

To each node v we associate a queue ), containing the predecessors of v.
The queue operations used in the following are:

o ADD(Q,,v) adds v to the back of Q.

o DELETE(Q,,v) removes v from Q.

o ROTATE(Q,) moves the front element v of @, to the back of @), and
returns v.

The central operation in our strategy is now the following BREAK opera-
tion. The component containing v is denoted C,.

procedure BREAK(C))
7 «— the root of C,
colour all nodes and edges in (', black
if @, # 0 then
colour 7 and (ROTATE((),), r) white
endif
ZERO(T)
end.
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The effect of performing BREAK on a component is that the component is
broken up into simple components and that the root of the original compo-
nent is appended to the component of one of its predecessors (if any). An
example of the application of the BREAK operation is shown in Fig. 1.

A crucial property of BREAK is that all nodes in the component change
colour (except for the root when it does not have any predecessors, in this
case we per definition say that the root changes its colour twice).

Our strategy is now the following (for simplicity we give the moves of
player I and the counter moves of player D as procedures).

procedure ADDPEBBLE(v)
place a pebble on v
BrEAK(C))

end.

procedure MovEEDGE((v, u), (v, w))
place a pebble on v
if (v, u) is white then
BrEAK(C))
DELETE(Q,v)
replace (v, u) with (v, w)in £
ADpD(Qy,v)
else
DELETE(Q,v)
replace (v, u) with (v, w)in £
ADpD(Qy,v)
BrEAK(C))
endif
end.

In MoVvEEDGE the place where we perform the BREAK operation depends
on the colour of the edge (v, u) being deleted. This is to guarantee that
we only remove black edges from the graph (in order not to have to split
components).

Observe that each time we apply ADDPEBBLE or MOVEEDGE to a node
v we find the root of C, and zero it. We also change the colour of all nodes
in €', — in particular we change the colour of v. Now, every time a black
node becomes white it also becomes zeroed, so after two I moves have placed
pebbles on v, v has been zeroed at least once. That the successors of a node
v cannot be zeroed more than O(1) times and therefore cannot place pebbles
on v without v getting zeroed is shown in Sect. 6. The crucial property is
the way in which BREAK colours nodes and edges white. The idea is that
a successor u of v cannot be zeroed more than O(1) times before the edge
from (v, u) will become white. If (v, u) is white both v and u belong to the
same component, and therefore u cannot change colour without v changing
colour.

In Sect. 5 we show how to implement BREAK in worst case time O(1) and
in Sect. 6 we show that the approach achieves that M = O(1).
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5. The new data structure

The procedures in Sect. 4 can easily be implemented in worst case time O(1)
if we are able to perform the BREAK operation in constant time. The central
idea is to represent the colours indirectly so that all white nodes and edges
in a component points to the same variable. All the nodes and edges can
now be made black by setting this variable to black.

A component record contains two fields. A colour field and a pointer field.
If the colour field is white the pointer field will point to the root of the
component.

To each node and edge is associated a pointer ¢r which points to a com-
ponent record. We will now maintain the following invariant.

o The c¢r pointer of each black edge and each node forming a simple
component will point to a component record where the colour is black
and the root pointer is the null pointer. Hence, there is a component
record for each non simple component, but several black edges and
nodes forming a simple component can share the same component
record.

o For each non simple component there exist exactly one component
record where the colour is white and the root pointer points to the
root of the component. All nodes and white edges in this component
point to this component record.

An example of component records is shown in Fig. 2. Notice that the colour
of an edge e is simply e.cr.colour so the test in MOVEEDGE is trivial to
implement. The implementation of BREAK is now:

procedure BREAK(v)
if v.cr.colour = black then
T e— 0
else
T < v.cr.T0o0t
v.cer.colour — black
v.cT. 700t — —
endif
if 7.Q # 0 then
u — ROTATE(r.Q))
if uw.cr.colour = black then
u.cr — new-component-record(white, u)
endif
r.er — (u,r).cr — u.cr
endif
ZERO(T)
end.

From the discussion of the node copying method in Sect. 2 it should be
clear that the above described data structure also applies to this method.
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Fig. 2: A graph with component records.

6. The analysis

THEOREM 3. The player D strategy given in Sect. 4 achieves M = 2bd + 1.

Proor. A direct consequence of Lemmas 1 and 2. O

LemMA 1. The player D strategy given in Sect. 4 achieves M < 2bd + 1.

Proofr.  Let the first operation (either an ADDPEBBLE or MOVEEDGE
operation) be performed at time 1, the next at time 2 and so on.

Assume that when the game starts all nodes are black and there are no
pebbles on any node.

Fix an arbitrary node v at an arbitrary time ¢,,,,,. Let #;,5 denote the last
time before t,,,,, when v was zeroed (if v has never been zeroed let #;,5 be
0). In the following we want to bound the number of pebbles placed on v
in the interval |t;,5¢, tnow[. In this interval v cannot change its colour from
black to white because this would zero v.

Assume without loss of generality that v is white at the end of time ¢4,
that at time tpreak € Jtiast, tnow| @ BREAK(C,) is performed and (therefore)
at time ¢,,.,, v is black (it is easy to see that all other cases are special cases
of this case).

Note that the only time an ADDPEBBLE(v) or MOVEEDGE((v, u), (v, w))
operation can be performed is at time #3,.,; because these operations force
the colour of v to change. Therefore, v’s successors are the same in the
interval Jt1,st, toreak [, and similarly for tpcar, trhow|-

We will handle each of the two intervals and the time tp,.,; separately.
Let us first consider the interval [t;,s¢, tprear[. L€t w be one of v’s successors
in this interval. w can be zeroed at most b times before it will be blocked
by a white edge from v (w cannot change the colour without changing the
colour of v), because after at most b — 1 ZERO(w) operations, v will be the
first element in ).

So a successor of v can be zeroed at most bd times throughout the first
interval which implies that at most bd pebbles can be placed on v during
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the first interval. For |ty cqk, tnow| We can repeat the same argument so at
most bd pebbles will be placed on b during this interval too.

We now just have to consider the operation at time tp..qr. The colour of
v changes so a BREAK(C,) is performed. There are three possible reasons
for that: a) An ADDPEBBLE(v) operation is performed, b) a MOVEEDGE
((v,u),(v,w)) is performed or c) one of the operations is performed on a
node different from ». In a) and b) we first add a pebble to v and then
perform a BREAK(C,) operation and in ¢) we first add a pebble to another
node in €, and then do BREAK(C),). The BREAK operation can add at
most one pebble to v when we perform a ZERO operation to the root of C,
(because we do not allow multiple edges) so at most two pebbles can be
added to v at time tp,eqk-

We have now shown that at time %,,, the number of pebbles on v can be
at most 2bd+ 2. This is nearly the claimed result. To decrease this bound by
one we have to analyse the effect of the operation performed at time tp,cqz
more carefully.

What we prove is that when two pebbles are placed on v at time tp,eqp
then at most bd — 1 pebbles can be placed on v throughout |tpreak, trnowl-
This follows if we can prove that there exists a successor of v that cannot
be zeroed more than b — 1 times in the interval |tpcak, trowl-

In the following let r be the node that is zeroed at time tp..,x. We have
the following cases to consider:

i) ADDPEBBLE(v) and BREAK(7) places a pebble on v. Now r and one of
its incoming edges are white. So r can be zeroed at most b — 1 times
before (v, r) will become white and block further ZERO(r) operations.

iil) MoveEEDGE((v,u),(v,w))and ZERO(r) places a pebble on v. Depending
on the colour of (v, u) we have two cases:

a) (v,u)is white. Therefore u is white and r # u. Since we perform
BrEAK(7) before we modify the pointers we have that r # w.
So as in i) r can be zeroed at most b — 1 times throughout
]tbreakv tnow[-

b) (v,u) is black. Since BREAK is the last operation we do, the suc-
cessors of v will be the same until after ¢,,,,, so we can argue in
the same way as i) and again get that r can be zeroed at most
b — 1 times throughout |tprcaks trhowl-

We conclude that no node will ever have more than 2bd + 1 pebbles. O

LeMMA 2. The player D strategy given in Sect. 4 achieves M > 2bd + 1.

Proofr. Let G = (V,F)be the directed graph given by V = {r,vy,..., v,
wy, ..., wqtand B = {(r, ) }U{(v;,w;)|i € {1,...,0}Aj € {1,...,d}}. The
graph is shown in Fig. 3. Initially all nodes in V' are black and all queues
()., contain the nodes (vq,..., ). We will now force the number of pebbles
on vp to become 2bd + 1.
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Fig. 3: A graph which can force M to become 2bd + 1.

First place one pebble on v, — so that v, becomes white. Then place 2b—1
pebbles on each w;. There will now be bd pebbles on v, and all the edges
(vp, w;) are white. Place one new pebble on v, and place another 2b — 1
pebbles on each w;. Now there will be 2bd + 1 pebbles on v,. O

7. A simple locally adaptive strategy

In this section we present a simple strategy that is adaptive to the local in-
and out-degree bounds of the nodes. It improves the bound achieved in [1].
The main drawback is that the strategy cannot be implemented efficiently
in the sense that the node to be zeroed cannot be found in constant time.
In Sect. 8 we present an implementable strategy that is locally adaptive but
does not achieve as good a bound on M.

Let d, denote the bound of the out-degree of v and b, the bound of the
in-degree. Define M, to be the best bound player D can guarantee on the
number of pebbles on v. We would like to have that M, = f(b,,d,) for a
monotonic function f: N2 — N.

The strategy is quite simple. To each node v we associate a queue (),
containing the predecessors of v and a special element ZERO. Fach time the
ZERO element is rotated from the front of the queue the node is zeroed.

The simple adaptive strategy
if the I-move deletes (v,u) and adds (v, w) then
DELETE(Q,v)
ApD(Qy,v)
endif
while (v — ROTATE(Q,))#ZERO do v — v’ od
ZERO(v)
end.

Notice that the strategy does not use the values of b, and d, explicitly.
This gives the strategy the nice property that we can allow b, and d, to
change dynamically.
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Fig. 4: A graph which can force M to become d, + 2b,.

The best bound Dietz and Raman could prove for their strategy was M <
2b 4+ 2d + O(\/B) The next theorem shows that the simple strategy above
achieves a bound of M,, = d,,+2b,. If the graph is static the bound improves
to M, =d, +b,.

THEOREM 4. For the simple adaptive strategy we have that M, = d, + 2b,.
In the static case this improves to M, = d, + b,.

Proor.  Each time we perform ADDPEBBLE(v) or MOVEEDGE((v,u),
(v, w)) we rotate Q,. It is possible to rotate @), at most b, times without
zeroing v. This implies that between two ZERO(v) operations at most b,
MovVvEEDGE operations can be performed on outgoing edges of v. Therefore,
v can have had at most b, + d, different successors between two ZERO(v)
operations. Between two zeroings of a successor w of v, ¢}, must have been
rotated because ROTATE(Q,,) returned v in the while-loop, this is because
the ZERO element is moved to the back of @}, when w is being zeroed. So
except for the first zeroing of w all zeroings of w will be preceded by a
rotation of ¢),.

For each operation performed on v we both place a pebble on » and rotate
Q). So the bound on the number of rotations of (), gives the following bound
on the number of pebbles that can be placed on v: M, < (d, + b,) + b,.

In the static case the number of different successors between two ZERO
(v) operations is d, so in the same way we get the bound M, < d, + b,.

It is easy to construct an example that matches this upper bound. Let

G = (V, E) where

14 {0 U, ey Uy, Wy e e oy Wy s Wiyt 1y - -y Wy +b, } and

E = {(uno)i€ {10} U{(v,wi)li € {1,...,d,}).

The graph is shown in Fig. 4.

At the beginning all nodes are black and the ZERO element is at the front of
each queue. The sequence of operations which will force the number of peb-
bles on v to become d,, +2b, is the following: ADDPEBBLE on v, w1, ..., w,,,



12 BRODAL

followed by MoOVEEDGE((v, wi—144,), (v, wi+q,)) and ADDPEBBLE(w;4q4, )
for: =1,...,b,. The matching example for the static case is constructed in
a similar way. O

8. A locally adaptive data structure

We will now describe a strategy that is both implementable and locally
adaptive. The data structure presented in Sect. 4 and Sect. 5 is not locally
adaptive, because when redoing the analysis with local degree constraints
we get the following bound for the static version of the game:

M,=1+42 > by,
{wl(v,w)el}

The solution to this problem is to incorporate a ZERO element into each of
the queues ), as in Sect. 7 and then only zero a node when ROTATE returns
this element. We now have the following BREAK operation:

procedure BREAK(C))
7« the root of C,
colour all nodes and edges in (', black
w — ROTATE(Q,)
if w =ZERO then
ZERO(T)
w — ROTATE(Q,)
endif
if w #ZERO then
colour r and (w,r) white
endif

end.

The implementation is similar to the implementation of Sect. 5.

The next theorem shows that the number of pebbles on a node v with this
strategy will be bounded by M, = 2b,d, + 2b, — 1, so only nodes with large
in-degree (or out-degree) can have many pebbles.

THEOREM 5. The above strategy for player D achieves M, = 2b,d,+2b,—1.

Proor. The proof follows the same lines as in the proof of Theorem 3.
A node v can change its colour at most 2b, — 1 times between two zeroings.
We then have that the number of ADDPEBBLE and MOVEEDGE operations
performed on v is at most 2b, — 1.

The time interval between two ZERO(v) operations is partitioned into 2b,
intervals and that » changes its colour only on the boundary between two
intervals. In each of the intervals each successor w of v can be zeroed at
most once before it will be blocked by a white edge from ».
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So when we restrict ourselves to the static case we have that each successor
gets zeroed at most 2b, times. Hence the successors of v can place at most
2b,d, pebbles on v.

Each ADDPEBBLE operation places a pebble on », so for the static case,
the total number of pebbles on v is bounded by M, = 2b,d, + 2b, — 1.

We now only have to show that a MOVEEDGE((v,u), (v, w)) operation
does not affect this analysis. We have two cases to consider. If u has been
zeroed in the last interval then u will either be blocked by a white edge
from » or v appears before the ZERO element in (), and therefore none of
the BREAK operations in MOVEEDGE can result in a ZERO(u). If u has not
been zeroed then it is allowed to place a pebble on » in the MOVEEDGE
operation. If the BREAK operation forces a ZERO(w) to place a pebble on
v then w cannot place a pebble on v during the next time interval. So we
can conclude that the analysis still holds.

The matching lower bound is given in the same way as in Theorem 4. O

9. A lower bound

In this section we will only consider the static game.

Raman states in [3] that “the dependence on d of M appears to be an
artifact of the proof (for the strategy of [1])”. Theorem 6 shows that it is
not an artifact of the proof, but that the value of M always depends on the
value of b and d.

It is shown in [2] that M < b holds in the amortised sense, so in that game
M does not depend of d.

THEOREM 6. For b > 1 and all player D strategies we have:

log 2d
M > max{b+ 1, |a+ /20 — 7/4 — 1/2], {b;{gﬁ— 1}},
3

where a = min{b, d}.

Proor. Immediate consequence of Lemma 3 and 4 and Corollary 1. O

LeMMA 3. Forb,d > 1 and all player D strategies we have M > b+ 1.

Proor. We will play the game on a convergent tree with [ levels where
each node has exactly b incoming edges. The player I strategy is simple, it
just places the pebbles on the root of the tree.

The root has to be zeroed at least once for each group of M+1 ADDPEBBLE
operations. So at least a fraction ﬁ of the time will be spent on zeroing
the root. At most M pebbles can be placed on any internal node before the
next ZERO operation on that node, because we do not perform ADDPEBBLE
on internal nodes. So a node on level 1 has to be zeroed at least once for
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every M ZERO operation on the root. Zeroing a node at level 1 takes at

least ﬁ of the time, and in general, zeroing a node at level i takes at

(M+1)
1 .
m of the time.
Because the number of nodes in each level of the tree increases by a factor
b we now have the following constraint on M:

: b 1 by
> ot = e (a) <t
M(M+1) M+1&=\M

=0

By letting | > M we get the desired result M > b+ 1. If d = 1, it follows
from Theorem 4 that this bound is tight. O

least

LEMMA 4. For b,d > 1 and all player D strategies we have:

2
M {M _ 1} |
log log %d

Proor. We will play the game on the following graph GG = (V, E') where
V={rv,...,vq} and E = {(r,v1),...,(r,vq)}. The adversary strategy we
will use for player I is to cyclically place pebbles on the subset of the »;’s
which have not been zeroed yet. The idea is that for each cycle at least a
certain fraction of the nodes will not be zeroed.

We start by considering how many nodes cannot be zeroed in one cycle.
Let the number of nodes not zeroed at the beginning of the cycle be k. Fach
time one of the v;’s is zeroed a pebble is placed on r, so out of M 4 1 zeroings
at least one will be a ZERO(7). So we have that at least LML_HJ of the nodes
are still not zeroed at the end of the cycle. So after ¢ cycles we have that
the number of nodes not zeroed is at least (the number of floors is 7):

[ )

By the definition of M, we know that all nodes will be zeroed after M + 1
cycles, so we have the following equation (the number of floors is M + 1):

sl ] ) e

Lemma 3 gives us that M > 2. By induction on the number of floors is
it easy to show that omitting the floors increases the result at most 3/2.
Hence, we have

d <3/2
(M + 1)M+1 = ’
So the minimum solution of M for this inequality will be a lower bound for
2
M. It is easy to see that this minimum solution has to be at least lo:i)gid —1.
3

a
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LEMMA 5. For all D strategies where b = d we have:

M > |b++/2b—7/4—1/2].

Proor. For b=d =0 the lemma is trivial. The case b = d = 1 is true by
Lemma 3. In the following we assume b = d > 2.

Again, the idea is to use player I as an adversary that forces the number
of pebbles to become large on at least one node.

The graph we will play the game on is a clique of size b+ 1. For all nodes
w and v both (u,v) and (v, u) will be edges of the graph and all nodes will
have in- and out-degree b. Each ZERO operation of player D will remove
all pebbles from a node of the graph and place one pebble on all the other
nodes.

At a time given Fy, Py, ..., P, will denote the number of pebbles on each
of the b4+ 1 nodes — in increasing order, so P, will denote the number of
pebbles on the node with the largest number of pebbles.

Let ¢1,¢5 and ¢3 denote constants characterising the adversary’s strategy.
The following invariants will hold from a certain moment of time to be
defined later:

I i§j2>PZ'§P]‘,

I P; >,

I . P01+02—i261+62_1 fOI’lSiSCg,
3 Poye,—i > c1+ca—2 foreg <i<ey,
1 1<e3<eys and e+ <b+1.

Iy is satisfied per definition. I is not satisfied initially but after the first b
ZERO’s will be satisfied. This is easily seen. The nodes that have not been
zeroed will have at least b pebbles and the nodes that have been zeroed can
be ordered according to the last time they were zeroed. A node followed by ¢
nodes in this order will have at least ¢ pebbles because each of the following
(at least) 7 zeroings will place a pebble on the node.

We can now satisfy Is and I by setting ¢; = ¢3 = ¢3 = 1 so now we have
that all the four invariants are satisfied after the first b ZERO operations.

Fig. 5 illustrates the relationship between ¢y, ¢; and ¢3 and the number of
pebbles on the nodes. The figure only shows the pebbles which are guaran-
teed to be on the nodes by the invariants. The idea is to build a block of
nodes which all have the same number of pebbles. These nodes are shown
as a dashed box in Fig. 5. The moves of player I and D affect this box. A
player I move will increase the block size whereas a player D move will push
the block upwards. In the following we will show how large the block can
be forced to be.

We will first consider an ADDPEBBLE operation. If ¢3 < ¢9 we know
that on node ¢; 4+ ¢z — ¢3 — 1 (in the current ordering) there are at least
c1 + ¢2 — 2 pebbles so by placing a pebble on the node ¢; + ¢3 — ¢35 — 1 we
can increase cg by one and still satisfy the invariants Iy,...,I;. There are
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(

number of pebbles

Fig. 5: The adversary’s strategy.

three cases to consider. If the node ¢; + ¢3 — ¢3 — 1 already has ¢ + ¢ — 1
pebbles we increase ¢z by one and try to place the pebble on another node.
If 3 =cyand ¢4 + ¢2 < b+ 1 we can increase ¢y by one and set ¢3 = 1 and
then try to place the pebble on another node. If we have that ¢o = ¢3 and
¢1+ co = b+ 1 we just place the pebble on an arbitrary node — because the
block has reached its maximum size.

Whenever player D does a ZERO operation we can easily maintain the
invariant by just increasing ¢; by one — as long as ¢; + ¢3 < b+ 1. Here
we have three cases to consider. Let ¢ denote the number of the node that
player D zeroes. We will only consider the case when ¢; < ¢ < ¢1 + ¢9,
the cases 0 <7 < ¢y and ¢ + ¢2 < ¢ < b are treated in a similar way. The
values of the Ps after the ZERO operation are: P{=0,P = Po+1,..., P/ =
P +1,P | = Pp1+1,..., P, = P,+1. So because I; and I3 were satisfied
before the ZERO operation it follows that when we increase ¢; by one the
invariant will still be satisfied after the ZERO operation.

We will now see how large the value of ¢5 can become before ¢;4+¢5 = b+1.
We will allow the last move to be a player I move.

We let 2 denote the maximum value of ¢ when ¢; + ¢o = b+ 1. At this
point we have that ¢ = b+ 1 — x. Initially we have that ¢; = 1. Each
ZERO operation can increase ¢y by at most one so the maximum number of
ADDPEBBLE operations we can performis 1+ ((b+1—-2)—1)=b+1— 2.

It is easily seen that the worst case number of pebbles we have to add to
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bring ¢y up to @ is 1 + 3“7} (i — 1) — because it is enough to have two
pebbles in the last column of the block when we are finished.
So the size of & > 0 is now constrained by:

r—1
1+> (i-1) < bt+1l—ua.
=2

Hence, we have > |[1/2+4 /20— 7/4|. Let ¢ € {0,1,...,2 — 1} denote the
number of ZERO operations after the block has reached the top. By placing
the pebbles on node b — 1 it is easy to see that the following invariants will
be satisfied (I3 and Iy will not be satisfied any longer):

Is: Py > b+,
le: Py >b+i-1 forj=1,...,2 —1— 1.

So after the next # — 1 zeroings we see that P, > b+ (z — 1) which gives the
stated result. O

COROLLARY 1. For all D strategies we have M > |a 4+ /20— 7/4 — 1/2]

where o = min{b,d}.

10. Conclusion

In the preceding sections we have shown that it is possible to implement par-
tially persistent bounded in-degree (and out-degree) data structures where
each access and update step can be done in worst case constant time. This
improves the best previously known technique which used amortised con-
stant time per update step.

It is a further consequence of our result that we can support the operation
to delete the current version and go back to the previous version in constant
time. We just have to store all our modifications of the data structure on a
stack so that we can backtrack all our changes of the data structure.

11. Open problems

The following list states open problems concerning the dynamic two player
game.

o Is it possible to show a general lower bound for M which shows how
M depends on b and d?

o Do better (locally adaptive) strategies exist?

o Do implementable strategies for player D exist where M € O(b+ d)?
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