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1. INTRODUCTION

Pattern matching on strings concerns the problem of deténgniall the occurrences of a pattern string

P, of lengthp, as substring of a larger text strirl, of lengthn. Optimal O(p 4+ n) time solutions for
this problem were given already in the 70s by Knuth, Morrisg #ratt [19], and Boyer and Moore [3].
Originally the problem was motivated (among other thingsploblems in text editing. In subsequent work
the problem has been generalized, extended and studiedlsiely for different applications. Semg,
[1, 6, 25] for recent text books considering different pattenatching problems. An important direction of
this progress has been the development of efficient algositto handle different dynamic versions of the
problem, see.qg, [11, 12, 13, 14, 18, 20, 28, 30]. In a text editor itésg, convenient to handle text updates
and searches for different patterns without using time griignal to the full text for every text modification.

We generalize the problem to maintain a family of stringsamvo update operations, split and con-
catenate. Given an indexand a strings = ajas ... a, in the family, the split operation splitsinto the
two substringsa; . ..a;—1 anda, . .. ag, and inserts them into the family without preserving The con-
catenate operation takes two stringsand s, from the family, and inserts their concatenatigfs, into
the family again without preserving argumentsand s,. Finally for any string in the family, all occur-
rences of it within other strings in the family, can be be mgd in O (log n loglogn + occ) time, where
n is the total size of the strings amgtc the number of occurrences. Update operations are suppiorted
O(log? nloglog nlog* n) time. These bounds are competitive with or improve formsults for less gen-
eralized versions of the problem (see below). To the besupokoowledge this is also the first result for
pattern matchingvhich supports split and concatenation of strings in p@glithmic time per operation.

Pattern matching results for dynamic as well as static prokl have shown to be essential tools for
problems in computational biology [21, 29]. In DNA sequeremlysis often involves operations as split,
concatenation and reversals of strings, for which our setpefrations can be helpful. For the classic text
editor problem, we can handle operations such as moving karg blocks while supporting fast searches.
This contributes to an efficient solution for an ideal editurt for which a larger set of operations still would
be preferable [2]e.g, more efficient (persistent) methods to duplicate textkdoc

As an intermediate result we improve the bounds for dymamic string equalityproblem due to
Mehlhorn, Sundar and Uhrig [23]. This problem is to maintaifamily of strings undepersistentcon-
catenate and split operations (the arguments remain irathéyf) such that the equality of two strings can
be determined. Besides the improved time complexity, olutiem for the string equality problem extends
the set of supported queries. We support comparisons of#ieolgraphical order of two strings in constant
time, and a longest common suffix and prefix operation in atnif{$og n) time. In [23], the problem is
mainly motivated by problems in high-level programmingdaages like SETL. However later, this data
structure has been applied in order to give efficient sahgtifor other problems, seeg, [4, 15].

Related work. Here, we sketch the history of pattern matching and refet4dfior a more detailed account.
Some of the early progress in making pattern matching dynasrthe suffix tree In [20, 30] it is shown
how to preprocess atext in linear time, such that queriebeamswered on-line i@ (p + occ) time, where
p is the length of the query pattern. Later in [28] the suffixetie extended such that the text could be
extended by a single character to the end.eGai. [18] were the first to consider the problem where the text
could be manipulated fully dynamically, naming the problBgmamic text indexingThe update operations
supported were insertion and deletion afiagle characteto/from the text in®(log n) time, wheren is the
current size of the text. The query operation is supporte@ (in + occlog i + i log p) time, wherei is the
current number of updates performed. Next this problem waseextended by Ferragina [12] to efficiently
handle insertions/deletions ofsiring into/from the text, calledncremental text editing Ferragina and
Grossi [11, 13, 14] improve [12]. They provide the time boun¢h!/2 + s) for updates and (p + occ) for
the search, or updates(s(log s+1loglog n)+1logn) time with query time?D(p+occ+i log p+loglogn),
wheres is the length of inserted/deleted string. In summary, ndrieeabove results are in polylogarithmic
time for all operations in terms of the size of the text. Hah [24], Sahinalp and Vishkin claims the
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following result for incremental text indexing. Searcheg](p + occ) time and updates i@ (log® n + )
time.

Outline of the paper. In Section 2 we review the signature encoding of strings fMehlhornet al. [23]
and state our time bounds for the dynamic string equalitplera. Then in Section 3 we describe our data
structure for dynamic pattern matching. In Section 4 we fg®the implementation for the string equality
problem. Finally in the appendix we provide some additiatethils and figures.

Preliminaries. Given a strings over an alphabel, we let|s| denote the length of, s[i] the ith element
of s (1 < i < [s]), ands[i..j] the substrings[i]s[i + 1]...s[j] of s (1 < i < j < |s]). If j < ¢ then
s[i..j] denotes the empty string For arbitrary: andj, s[i..j] = s[max(1,).. min(|s|, j)], s[i..] = s[i..|s|]
ands[..j] = s[1..j]. We letpref,(s) = s[..|s| — k], suf,(s) = s[k + 1..], andinf,(s) = s[k + 1..|s| — k].
The reverse string[|s|] . . . s[2]s[1] is denotecs®. For a mappingf : ¥ — U/, we extendf : =* — U* by
definingf(aias . ..an) = f(a1)f(a2)... f(ay,). FOrtwo stringss; andss we leticp (s, s2) andles(sy, s2)
denote the longest common prefix and suffix respectively; @nds;. We assume w.l.0.g. throughout the
paper that no string is equal to the empty string.

Let X be totally ordered. We define the lexicographical orderimg3ty by s; < ss if and only if
s1 = lep(s1,s2) or si[|lep(st, s2)| + 1] < sof|lep(s1, s2)| + 1]. We letu <p v denote that the reverse of
is less than the reverse ofi.e., u®t < v%.

We letlogn = Inn/In2,log") n = log n, log®*" n = log log® n, andlog* n = min{i|log® n < 1}.
When interpreting integers as bit-strings weAeaib, OR, andXOR denote bitwise boolean operations, and
x 7' be the operation shifting i bits to the left,i.e, = 1= = - 2. For positive integers: andi we let
bit(z,i) denote theth bit in the binary representation of i.e., bit(x,i) = (z < 2') mod 2.

i+1)

2. SGNATURE ENCODING OF STRINGS

In the following we describe thgignature encodingf strings over some finite alphab¥t The signature
encoding we use throughout this paper was originally deedrby Mehlhorret al. in [23]. The basic idea
is to associate a uniquegnatures to each strings such that two strings are equal if and only if they have
equal signatures. The signature encoding of a striag:* is defined relative to a signature alphabet N
and a partial injective mappingig : X U U (€ x N) < £. The mappingSig is extended during updates
in order to keep it defined for all applied values.

The signature encoding ofs consists of a sequence of signature strings frofif,
shrinko(s), powq(s), shrinkq(s), pow(s), ..., shrinky(s). The strings are defined inductively by

shrinkq(s) Sig(s)
powy(s) = Sig(encpow (shrinko(s)))
shrink;(s) = Sig(encblock(pow;_,(s)))
pow;(s) = Sig(encpow(shrink;(s)))
shrinkp(s) = Sig(encblock(pow;_,(s)))

whereencpow andencblock are functions defined below, afhdhe height of the encoding aefwhich is the
smallest value for whiclshrink, (s)| = 1. We leth(s) denote the height of the encodingf
The mappingencpow groups identical elements such that a substeihgs mapped into the paifo, 7).
Formally, fors € £* ands = ol' ..ok, o; € £ whereo; # ;41 for 1 < i < m. Thenencpow(s) =
(o1,01), (02,12)y ..., (Om, ). The functionencpow (s) can be computed in tim@(|s|).
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The mappingencblock decomposes a string into a sequence of small substringzed bietween two
and four, except for the first block which has size between amg four. Each substring is denoted a
block The strategy behind the decomposition is based omid¢erministic coin tossinglgorithm of Cole
and Vishkin [5] which ensures the property that the bouredadf any block are determined by a small
neighborhood of the block. This strategy is only applicabletrings where no two consecutive elements
are identical and the role of the mappiegcpow is to ensure this property prior to employmenteaf:block.

Because the signature encoding is deterministic, two ickrgtrings also have identical encodings. Fig-
ure 1 gives the signature encoding of a string of length 54.

The neighborhood dependence of a block decomposition isctegized by two parameters, andAg,
such that given a signaturein a string it can be determined df is the first signature in a block by only
examineA| andAg signatures respectively to the left and to rightoofWe assume in the following that
N is a constant bounding the total number of signatures to bé, @d we also assume that signatures and
characters can be handled in constant time. Given a signatwe letz denote the string fronx.* encoded
by o, and for a signature string; . ..o, we letey ... or = 771...0%.

The details of the block decomposition of Mehlhaghal. [23] are included in Appendix A. From
Lemma 6 in Appendix A it follows thaf\| = log* N + 6 andAr = 4.

2.1. Persistent strings. Mehlhornet al. [23] considered how to maintain a famil§ of strings under the
following operations.

STRING(a) : A new single letter string containing the letiere ¥ is created. The resulting string is
added taF and returned.

CONCATENATE(s1, 89) : Concatenates the two strings, s € F. The resulting string is added &
and returned. The two strings ands, arenot destroyed.

SPLIT(s,4) : Splitss into two stringss|..: — 1] ands[i..]. The two resulting strings are addedoand
returned. The string is not destroyed.

EQUAL(s1, s2) : Returns true if and only if; = so.

Note that strings are never modified or destroyed, the strings created argersistent In the
CONCATENATE operations; and s, are allowed to refer to the same stringg,, it is possible to construct
strings of exponential length in linear time. Mehlha@nal. [23] proved the following theorem.

Theorem 1 (Mehlhornet al.[23]). There exists a persistent string implementation which SUp|STRING
and EQUAL in O(1) time, andCONCATENATE and SPLIT in O(log n((log* N)? + logn)) time, wheren is
the length of strings involved in the operations.

In the above theorem we assumed that a lookup inSigefunction takes constant time. In [23] th&g
function is stored using a search tree, implying that it safime log m to make a lookup, where: is the
number of operations done so far. Constant time lookugpfgrcan be achieved by using randomization or
using more than linear space by either using dynamic perfeshing [10] or using a digital search tree of
degreeN°¢ [22], 0 < ¢ < 1. The number of lookups to th&ig function for each ©NCATENATE and SPLIT
operation isO(log nlog* N).

In Section 4 we show how to improve the bounds of [23] and temkithe set of supported persistent
string operations with the following operations.

COMPARE(s1, $2) : Returns the lexicographical order of relative toss, i.e., if s; = s9, 57 < s9, OF
S1 > S9.

LCPREFIX(s1, s2) : Returng|lep(sy, s9)|.

LCSUFFIX(s1,s9) : Returns|ics(sy, s2)|.

The following theorem summarizes our results in Sectionrdp@sistent strings.
Theorem 2. There exists a persistent string implementation which stpBTRING in O(log |X|) time,

EQuAL and CoMPARE in O(1) time, LCPREFIX in O(logn) time, LCSUFFIX in O(lognlog* N) time,
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and CONCATENATE and SPLIT in O(lognlog* N + log |X|) time, wheren is the length of strings involved
in the operations.

3. DYNAMIC PATTERN MATCHING

In this section we will describe how to implement a data dtmee for the dynamic pattern matching
problem, with the claimed update and query time bounds.

Let G denote a family of strings over a fixed alphaBetAn occurrenceof a strings in family G, is a pair
(s',p) wheres' € G andp specifies the specifiocation of the occurrence within’. Let indez(p) denote
the index offset of this location id, i.e,, it satisfiess = s'[index(p)..index(p) + |s| — 1]. We denote the
set of all occurrences afin G by Oce(s, G).

The dynamic pattern matching problems is to maintain a datatare for a family of strings; which
supports the updatesT8ING, SPLIT and GONCATENATE for strings inG defined as in last section, but
withoutthe persistence.e., the arguments to&.IT and CONCATENATE are removed frong by the call. In
addition to these update operations the data structureosispihe search query:

FIND(s) Return the set of all occurrences 0 G.

For the rest of this section we letdenote the total size @, i.e,n =) . |s|.

Theorem 3. There exists an implementation for the dynamic pattern hiagcproblem which supports
CONCATENATE, SPLIT in O(log? n log log n log* n) time, STRING in O(log n log* n) time andFIND (s) in
O(occ + log nloglogn) time whereocc is the number of occurrences.

The occurrences returned by thexB operation, are represented pgintersinto the specific occurrences
in lists representing the strings. For such pointer we netglitianal O(log n) time to compute the exact
offsetindez (p) of the occurrence. That is the time fom® is O(occ logn + logn log log n) when output
is required in this form.

3.1. Thedatastructure. The data structure consists of several ingredients, wherprimary part consists
of a combination of a range query data structure with theigterst string data structure given in 4.

3.1.1. Dynamic lists and signature encodings for For each string i € G we maintain a list(s), where
theith character irs is theith node ini(s). These lists are maintained by balanced trees under joisglitd
operations, such that given indéwne can report théth nodel(s)[i] and return the rank of a node, seg,
[6].

The set of all nodes for all lists fa¥ is denotedL. For a listi(s), we denote théth node byi(s)]].
Next every string inG is also represented in an auxiliary family of strings we ¢&lusing the persistent
data structure from Section 2.1. Besides the strings family F also contains certain substrings of these
described later. Furthermore we assume the reverse repaéisa of every string € F to be inF as well,
i.e, t® € F. This only increases the time requirement for the split amucatenation operation of by a
constant factor. For all the strings hC F, we assume the terminology of Section 2.1 with respect to the
signature encodings of these strings.

3.1.2. Anchors. Consider a strings € G and a levelj > 0 with the signature string: = shrink;(s)
encoding all ofs. We define the set dfreakpointsfor x by

BP(x) = {i | [i] # «[i +1]}.

Theoffsetoffset’ (i) of a breakpoini € BP(x), is defined to be the index i where the signature]i] starts
its encoding ins, i.e., offset’(i) = |x[1..i — 1]| + 1. Similarly we will talk about breakpoints in substrings
of signature strings,e., the breakpoints in substringk..[] is simply BRxz) N [£..0].

For a breakpoint € BP(shrink;(s)) we associate aanchorthat consists of two infixes of which

captures a certain context of that breakpoint. Furtherrtt@enchor also contains the ndde)[offset? (i)].
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Fix A to be an integer larger thah; + Agr + 4 for the rest of this section. THeft boundaryof breakpoint
i, denoted Iifi), is a breakpoint 16 A breakpoints left” ofi, formally:

Ib(:) = max({j € BP(x) | |[j..i] N BP(z)| > 16A} U {1}).
Similarly theright boundaryof i is defined by
rb(i) = min({j € BP(z) | |[i..j] N BP(x)| > 16A } U {|z| }).

Let !, p andr be the offsets of Ib(7), : and ri{:) respectively. The@nchorassociated breakpointdenoted
Anc(i), is defined to be the triple

(s[l..p — 1], s[p..r — 1],1(s)[p]) € £* x ¥* x L.

We refer to the strings[l..p — 1] ands[p..r| as thecontextstrings anchor An@).

For every breakpoint in some shrink signature string foings in G, there is an anchoir,e., the set of
all anchors is: Ancholg/) = [;cg ;50f AnC(i) | @ € BP(shrink;(s)) }. For an anchofsy, s, e) €
Anchorg§G), we maintain copies of the strings andss in the family 7. That is we maintain the invariant
AnchorgG) C F x F x L.

3.1.3. Range query data structurd=or each levelj, the anchors associated with breakpoint at this level,
i.e., breakpoint in stringshrink ;(s) for s € G, is kept in arange query data structur&; C Anchorgg).
The data structure faR; supports the operations

INSERT(Rj,a): Inserts the anchar € AnchorgG) into R;.

DELETE(R;, a): Deletes anchat from R;.

REPORT(Rj,11,12,13,t4): FOrty,to,t3,t4 € F, reports all anchorési, so, e) € Rjwheret; <g s; <pg

to andts < so < 4.

The above operations are supported in a comparison basedsuactture, with access to theo@PARE
operation on the strings iff (using the reverse representations of stringrifior the <z comparisons), as
described in Section 2.1. That is the aboms&RT and DELETE operation, can be supported in worst-case
time O(log | R;| log log | R;|) and the REPORTOperation in worst-case tim@(log | R;|loglog |R;| + occ),
see [8]. Note thalR;| is bounded byO(n).

3.2. Searching for occurrences in G. In this section we will describe how to perform a search of all
occurrences)cc(s, G), provided the above representation ¢br

The search considers different cases depending on thetwignencoding of the string. Fix A >
AL + Ar + 4 as in last section.

Case l: |powy(s)| < 12A.
Case2: There existg > 0 such thaishrink;(s)| > 3A and|BP(shrink;(s))| < 12A.

Lemmal. For any strings € G, either Case 1 or Case 2 (or both) are satisfied.

Proof. Suppose Case 1 it satisfied. Then lef = min{i | |pow,(s)| < 12A }. Then|pow,_;(s)| >
12A and since each block has size at msie have|shrink ;(s)| > i\powj,l(s)\ > 3A. By minimality
of j, [BP(shrink;(s))| = [pow ;(s)| < 12A, so level; satisfies Case 2. O

Letj = 0if Case 1 above is satisfied, or chogse 0 as in the proof of above lemma such that Case 2 is
satisfied and let = shrink;(s). For Case 2 above we define the ‘protected’ set of breakpaietsotedV/,
as the breakpoints in infixf o (z),i.e, M = BP(z) N[A +1..|z| — A]. For Case 1 = 0), the “protected”
breakpoints is simply all the breakpoint®., M = BP(shrinkq(s)).

In this section we limit the exposition to the case whifds nonemptyj.e., for Case 2, we assume the
substringinf A (x) of length at least\ contains two different signatures. The special case whéis empty,
i.e., s contains a long substring of small periodicity, is omittegdo lack of space.

Hence leti € M. The following lemma states that for each specific occueesfs in G, this occurrence
is encoded by a shrink string that contains a breakpoint hvisicaligned’ with breakpoint.
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Lemma2. For any occurrence(t,p) € Occ(s, ), there exists’ € BP(shrink;(t)) whereindez(p) =
offset](i') — offsetd (i) + 1.

We say that the breakpoiiftt € BP(shrink ;(t)) from the above lemmalignswith breakpoint;, relative
to occurrencét, p) € Occ(s, G).

Proof. Forj = 0, the lemma is immediate from definition of breakpoints arelfdttsi’ = offset?(i') and
i = offset’(i). Consider the case fgr> 0, where the premises in Case 2 holds. {tep) € Occ(s,G) and
i € M. Writet ast = t; sty where|t;| = indez(p) — 1. By repeated use of Lemma 9 it follows that

(1) shrink j(t) = w shrink ;(s)[A + 1..|shrink;(s)| — A]v
for someu, v € £*, where
2 u =ty shrink;(s)[..Al.

Sincei is a breakpoint inV/, we can write (1) as
shrink j(t) = u shrink ;(s)[A + 1..i)shrink ;(s)[i + 1..|shrink ;(s)| — A]v
and hence the indeX = |u| + i — A is a breakpoint in B&hrink ;(t)). Furthermore using (2)
offset] (i) = |a| + [shrink;(s)[A + 1..1]|
= |t1| + [shrink;(s)[.. A]| + |shrink;(s)[A + 1..i]|
= |t1] + offset’(i).
Henceindez (p) = |t1] + 1 = offset! (i') — offset! (i) + 1 as desired. O

The next lemma states that for every breakpdirbat aligns withi, the anchor associateétihas ‘suffi-
ciently large’ context information with respect to Formally writes = s;s9, Wheres; = s[1..offset’ (i) —
1].

Lemma3. Lets' be any breakpoint which aligns with breakpointelative to an occurrencét,p) €
Occ(s,G). Let(ti,t2,e) = Andi’) € R;. Then|s;| < |t1] and |so| < [to], i.e., les(s1,t1) = s; and
lep(s2, t2) = s2.
Proof. Lett = t'st” such that/t'| = index(p) — 1. Write shrink;(t) = uj v vo us Wherewv; is the
infix from the left boundary of, i.e., shrink;(t)[Ib(i')..i" — 1] and similarv; is until the right boundary,
vy = shrink;(t)[i'..rb(i")]. We show|t,| = [o7] > |s1] by showinguy is a prefix oft’. By repeated use of
Lemma 9 we can write:

shrink j(t) = prefa (shrink j(t')) wy inf A (shrink ;(s)) wo SUfA (shrink;(t")),
where|w |, |wz| < A. Next we boundBP(w inf A (shrinkj(s)) w2)| < |BP(shrink;(s))| +2A < 14A.
Since the index’ has to be within this infix, antBP(v; )| = 16A (u; is nonempty)u; = shrink ;(t)[..i" —
|v1|] must be a prefix oprefa (shrink;(t')), and thuszy is a prefix oft’ as desired. By a similar argument
uy is a suffix oft”, implying |t2| > so. O

Suppose the alphabet is extended with a special Iétierthe alphabet larger than letters occurring in
strings forG. Lemma 2 and Lemma 3 tell us there is an andltoris, e) € R; with s; <g t; <p $s; and
s9 < tg < sof if and only if nodee € L points into(¢,p) € ocds, G) at offset|s| right of index(p). Thus
the set of all occurrences can be computed by the followiegsst

1. Find a level; such that one of the above cases are satisfied and a breakpoint.

2. Compute the offsep = offset/(i) of i in s. Construct and insert the strings = s[1..p — 1],

sg = s[s[p..|s|], $s1 andss$ into F using the $LIT and CONCATENATE operations forF.
3. Report occurrences (represented as nodég by the query RPORT(R;, s1, $s1, 52, 5298).

As remarked earlier, if occurrences have to be reporteddisén into the corresponding strings, we need a

rank query for each reported node.
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3.2.1. Time usageWe summarize the time usage for the search can be summaniz&ldp 1 takes time
O(log" n), i.e, if [pow,(s)| > 8A we expand the root signature feuntil we get a levelj wherepow ;(s)
has length at mostA and shrink;(s) satisfy the premises in Case 2. Step 2 uses tiMilgnlog* n)
for the computation of the index in of the chosen breakpoint, with subsequent calls ef 1% and
CONCATENATE to compute the arguments for th&RORT operation. Finally the single call of operation
usesO(log n loglog n + occ) time, leading to the same total time cost for the search.

3.3. Concatenate and split. In this section we describe how to perform concatenationvofstrings ingG.
The split operation for a string i6f is done in a similar manner and omitted.

CONCATENATE(s1, 82). Consider two strings;, s € G where we want to compute the concatenation
s = 8189 and insert this string into G, destroyings; ands,. First the signature encoding felis computed
and inserted into the auxiliary string famil§y through the @ NCATENATE operation for this family. Next a
new listl(s) for s is created by joinind(s;) andi(s2). This means that the node information associated the
anchors in the various range query structulgsnow is considered as nodesls) instead.

Now the main part of the computation consists of restrunguthe various range query data structures
R; which now must contain anchors with respect to the signataeding ofs. In the following we will
describe what is done at each level. Fix a leyeb 0. Write shrink;(s1) = u; w' wherew' is such
that [BP(w')| = 16A and similarly forshrink ;(s2) = w" up with |[BP(w")| = 12A. By repeated use of
Lemma 9 we can write the new signature strigigink ;(s) = u; wus where|BP(w)| < 34A. Fori a
breakpoint inu; or uy, let Anc(i) denote the anchor when it was associatedink ;(s1) or shrink;(s2),
and let Anc(i) denote the anchor foshirink ;(s).

Lemma 4. For any breakpoint within substringsu; or us, the context strings in Ai¢) and Ané(i) are
the same.

Proof. For a breakpoint in prefix:.;, the left and right boundary are withjprefa (shrink;(s1)) which is
a prefix of shrink ;(s) by Lemma 9. Hence the context strings fodefined Section 3.1.2 are the same.
Similarly for breakpoints ins. O

In order to update?; the following is done. First the anchors Ry for breakpoints associated the suffix
and prefixw’ andw” of the ‘old’ shrink signature strings are removed. Next feey breakpoint in the above
infix w, a new associated anchor is created and insertedintd\fter this, every anchor foshrink ;(s) is
correctly represented iR; since for anchors not in a breakpointuir, w" andw, i.e., a breakpoint ini; or
ug, the associated context strings are by Lemma 4 unchangddharassociated node is also correct after
the link of[(s1) andl(sy) forming(s). In order to create the new anchors for substringhe breakpoints
in w are determined, which is done through the informatiopaf ;(s) and using techniques similar to the
description given in Appendix C. For each such breakpbintw, we then need to create its new anchor,
ANc (i). First the nodé(s)[offset’ (i)] is computed (again by the techniques from Appendix C and ey
operations supported for ligts)). Then in order to compute the neentextstrings for the anchor, we also
need to compute the offsets énof the left and right boundaries (B and ri{i). Then finally by applying
the persistent 8LIT operation ons € F for the offsets of these boundaries, the two context stringshe
anchor are generated JjA.

3.3.1. Time usage.The computation of breakpoints, offsets, context stringbtae list operations are done
within time O(log n log* n) per anchor. The number of anchors manipulated is the nunfi@Eeakpoints
in w', w" andw. For each of these anchors, a single call e6#RT or DELETE is done, using time
O(log nloglogn), see Section 3.1.3. Hence in total theNZZATENATE(sy, s2) operation use worst-case
time O((log nlog* n) - (lognlog* n + lognloglogn)) = O(log? nloglog nlog* n).
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4. PERSISTENT STRINGS

We represent a persistent strin@py the root-signature of a signature encoding af We denote this the
implicit representatiorof s. This implies that a string can be stored in a single word filesspace required
to store the signature functiafig. The lower levels of the signature encodingsafan be extracted from
by recursively applyingSig !, especially the neighborhoods which need to be consideratendifferent
operations can be constructed when required. By stfipg! as an arraySig—* can be computed i@ (1)
time.

We would like to note, that this is an essential differenampared to the representation used in Mehlhorn
et al. [23]. They represent a string by a persistent data struatdnieh consists of a linked list of rooted
trees, each tree storing one level of the signature encaafinige string. Their representation implies an
overhead of0(log n) for accessing each level of the encoding of a string. Our Kiieg representation
avoids this overhead.

By using the implicit representation of strings we get Lenseelow, improving and extending the result
of Mehlhornet al. [23].

Lemmab. The operationsSTRING and EQUAL can be supported i (1) time, CONCATENATE, SPLIT,
and LCSuUFFIX in time O(log n log™ N) time, andLCPREFIX and COMPARE in O(log n) time, wheren is
the length of strings involved in the operations.

Proof. The operation $RING(a) returnsSig(a), and EQUAL(s1, s9) returns true if and only if the root-
signatures of the signature encodingspinds, are identical. The details of the remaining operations can
be found in Lemma 10, Lemma 11 and Lemma 12 in the Appendix. O

Figure 2 contains an example of a LEErIx computation. The underlined characters are the leftmost
characters which mismatch. The signatures in circles @&sitinatures from the signature encodings which
actually are compared. Full circles denote successful emisgns. The sequence of signatures connected
by dashed lines are the signatures which definddhef the two strings. Note that for the powedé =
Sig~1(12) and9? = Sig~!(27) we do not need to compare all signature94n

4.1. Maintaining strings sorted. In the previous section we describe how to perform compasison

persistent strings i (log n) time. In this section we show how reduce thig261) time while maintaining
the asymptotic times for the update operatiom®RBIG, CONCATENATE and $LIT except for an additive
log |X| term. The ideas used arg:keep all persistent strings lexicographical sorted, indssociate with
each strings a keykey(s), such that two strings can be compared by comparing thedcaged keys in
O(1) time.

Data structures for maintaining order in a list have beerelbgped by Dietz [7], Dietz and Sleator [9]
and Tsakalidis [27]. The data structure of Dietz and Slefgpsupports NSERT(z,y), DELETE(x) and
ORDER(z, y) operations in worst-cas@(1) time. The operationNSERT(z, y) inserts elemeny afterz in
the list, and [ELETE(x) deletest from the list. The query @DER(z, y) returns ifx is beforey in the list.

The key we associate with each persistent string is a “hargilen by the data structure of Dietz
and Sleator [9]. A ©MPARE(s1, $2) query can now be answered in worst-c&3¢l) time by applying
EQUAL(s1, s2) and by applying @DER(key(s1), key(s2)).

In the remaining of this section we describe how new stringated by $RING, CONCATENATE and
SPLIT can be added to the lexicographical sorted list of strings, how to locate where to insert new
strings into the data structure of Dietz and Sleator. A ghtiorward implementation is to store the strings
as elements in a balanced search tree and to use dhwPARE operation described in Lemma 12 when
searching in the search tree. This implementation requitdsg m log n) time for each string created,
wherem is the number of strings stored. In the following we deschibes to avoid thdog m factor.

4.2. Tries. We now describe a data structure for maintaining a set afggrin sorted order. The basic data
structure is a collection dfies. A trie is a rooted tree where all edges are label with symbols some
8



alphabet, and where all child edges of a node are distinetddb Given a node we letS,, denote the string
consisting of the concatenation of the labels along the fsath the root tov. Further information on tries
can be found ine.g, [22]. We will use the terminology thatcorresponds to the string,. First we give the
outline of a static space inefficient data structure to ftate the underlying search. After having sketched
the basic idea we fill in the technical details to make the datacture dynamic.

Let F be the set of strings stored. For each levafithe signature encodings, we maintain a fiestoring
all signature stringshrink;(s) for all s € F, and such that each leaf ¥ corresponds tahrink;(s) for
ans € F. The child edges of a node is stored in a sparse array indexételedge labels. For each node
vin T i > 1, we have a pointer to a nodé in T%~!. Let s be a string inF such thatS, is a prefix of
shrink;(s). Thenv' is the node satisfying tha, is a prefix ofshrink; 1(s) andS, = S,,.

We let the children of each nodeof T° be sorted from left-to-right w.r.t. the ordering on the chaters
encoded by the edge signatures, and let the child list of eadh inT° be stored in a balanced search tree.
A left-to-right preorder traversal df® will then report the nodes sorted w.r.t. the lexicographaraer of
the corresponding strings.

To each node of T° we associate two keys, andk!, in the Dietz and Sleator data structure such that
appears before all keys before the keys assigned to destsrafe andk, appears after all keys assigned
to descendents of.

Given the above described data structure we can find theipgdef a new strings among the strings in
F,i.e, we can assign a key from the Dietz and Sleator data structure.

The search fog is very similar to the computation of LG¥FIX of two strings in Appendix C. For each
level i of the signature encoding afwe identify the nodey; in T such thatS,, is the maximal prefix of
shrink;(s) that matches a prefix ofirink;(t) for a stringt € F. Note that the string can vary from level
to level as shown in Figure 3, wheve corresponds tdep (shrinkq(s), shrinki(t2)) andvg corresponds to
lep(shrinkg(s), shrinko(t1)). Whenwv; € T has been found we follow the pointer to the nades 7%~ !
whereS,, is a prefix ofshrink;_,(s). Fromv' we can continue the search down the ife’! as long as the
prefix of shrink,;_1 (s) matches the labels along the path from the root to the cunehe, until we findy;_; .

As in the implementation of LCREFIX we incrementally expand the signature descriptior along the
search path by always keeping the- Ar next signatured,e., afterv; has been found we just have to keep
shrink;(s)[|Sy| + 1..|Sy| + 6 + Ag]. That it is sufficient to expand + Ag signatures of for each level
follows similarly to the proof of Lemma 12, by showing a cauiction with that the matching prefix found
for shrink;1(s) is maximal. Note thaé + Ag signatures irshrink;(s) can at most expand th6 + AR)
signature powers irhrink;_1(s). To be able to skip an arbitrary part of a signature powe®in) time
we associate an array, (indexed1..|A|) for each outgoing edge of a nodev with a signature different
from the signature on the edge leading:teuch thatd.[;] is a pointer to the node in the subtree rooted at
which can be reached by a path labeldd We let| A| be the length of the longest path beginning witind
where all edges have label Each of the at most + Ar matching signature powers can now be matched
in constant time by using thé, arrays to arrive at the correct nodes.

A new signatures can be inserted into the data structure, by first performiregabove described search.
The search identifies for eadfi the nodey; where a new path of nodes should be attached, corresponding
to the unmatched tail ofhrink;(s). Together with the nodes and keys we add'inwve also have to add the
appropriate pointers to nodesTi~! and updated, arrays. The new child of vy can be inserted into the
sorted list of children ofyy in time O(log |X|). We can assigm keys as follows. If there exists a sibling
v to the left ofc then we can assigakeys such thak. and k. appears immediately aftét . If ¢ has no
sibling to the left we create keys. andk! immediately afterk,,. In both cases the keys can be assigned
in O(1) time. The assignment of keys to the tail of the path is donesbynsively applying the above key
assignment. The total search time&1$Ar log |s|) and the total update time {3(|s| + log |X|) because the
size of the levels of the encoding ofire geometrically decreasing.

4.3. Trieswith collapsed paths. The update time in the previous sectiortl§s|) because a linear number
of new nodes need to be created. Except for the first childexeia each trie all new nodes have at most
9



one child. The main idea to speedup updates is by collapsmypaths of nodes with only one child. This
is vaguely related to the standard notion of compressesl [2#], except that we do not necessarily collapse
all nodes with one child, and that we use a different appréachpresent collapsed edges.

For each triel; we define a set alownnodes. Down nodes aré: the root ofT;, ii) nodes with two or
more children, andii) nodes corresponding to stringsfn Note thatiii ) implies that all leaves are down
nodes. We will maintain the invariant that only for down nedee have a pointer to the corresponding
nodes inT; ;. We call these nodes i, _; up nodes. The remaining nodes all have exactly one child and
are denotedollapsible Only non-collapsible nodes are stored explicitly. A cpfiiole path is a path where
all nodes are collapsible except for the first and the lasen&ghch collapsible path is stored asuperedge.

To each super edgeconnectingy and a descendedin 7; we associate the start and the end indices of the
substring spanned hy; i.e., |S,| and|S,|. Finally we store the first(6 + AR) signature powers along

The stored signature powers guarantee that if the trie BéafE; as described in the previous section starts
atv then we have sufficient signatures stored alemgquired by the search. Because collapsible nodes are
not stored we do not have to assign keys to these nadesn each trieT; at mostO(|F|) nodes are stored
and have assigned keys.

To perform a search we proceed basically as described inrthvéops section, except that parts of the
trie structures must be expanded in the search (like thenskpa of the search string) and that going from
T; to T;_1 is more complicated because only down nodes have pointarettries one level below. The
information we incrementally expand for the tries is thddaiing. Assume that we have found the nage
in T; which corresponds to the longest matching prefix wiihink;(s). We maintain the invariant that if
v; is a collapsible node, then we have a pointer to the super ealgfainingv; and we have expanded the
6 + ARg signatures after; in the collapsible path represented dyTo find the corresponding node T_4
there are two cases: 1f has a pointer we are done, otherwise we find the nearest anclestn nodew;
of v; and follow the down pointer stored a. There are at moshg + 2 up nodes which must be visited
before the down node is reached.

¢ From the reached node we can find the nodg in corresponding t@; by expanding the prefix of the
signatures betweem; andwv;. If this node is implicitly represented by a super edgee can expand the
signatures required by the searchlin ; from the signatures we have expandeddand from the explicit
stored signature power strings storedlin; and7;. To handle signature powers we modify the arrays we
introduced in the previous section to only store pointersaie-collapsed nodeke., the arrays are sparse. To
match a signature power we then make a brute force lineacls@a® (AR) time to find the non-collapsed
node closest to the the longest matching prefix. If the liearch does not succeed we do an exponential
search to find the super edge containing the node corresmptalihe longest matching prefix®_;. The
exponential search is only required once for every stringotal a new string can be inserted in to the tries
in total O(log |s|Ar) = O(log|s|) time.
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APPENDIXA. DETERMINISTIC BLOCK DECOMPOSITION

In this section we recall the deterministic block decompasiof Mehlhornet al.[23], which is based on
a three-coloring technique of Goldbeeg al. [17] which in turn is a generalization of a deterministic rtoi
tossing algorithm of Cole and Vishkin [5].

In this section we only consider strings fraNf. A string s is said to bek-coloredif i) 0 < s[i] < k for
all s with 1 < ¢ < |s|, andii) s is repetition-freej.e., s[i] # s[i + 1] for all s with 1 < ¢ < |s|. A k-coloring
of an N-colored strings is ak-colored stringt with || = |s|.

Lemma 6 (Mehlhornet al.[23]). For every integerN there is a functionf : [—1..N — 1]log" N+11
{0,1} such that for everyN-colored strings of lengthn, the stringd € {0,1}" defined byd[i] :=
J (i 10g* N—65 -+, 5i+4), Wheres; = s[j] forall j with1 < j < n ands; = —1 otherwise, satisfies:
1.dil+di+1] <1forl1 <i<n,
2. dli]+di+1]+di+2]+di+3]>1for1 <i<n-—3,
i.e., among two adjacenl:]'s there is at most one 1, and among four adjacéufs there is at least one 1.
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Proof. Here we only give the constructive algorithm for generatingror the proof of correctness we refer
to [23].

The construction ofl proceeds in three phases. First a 6-coloring is construttetie second phase the
6-coloring is converted to a 3-coloring, which then in thigdlphase is used to construtt ‘

In the first phase we construct a sequence of colorXigsX ', ... of s, whereX? = s andX* for i > 0
is inductively defined by

Xilj] = bit(X*~"[4], 0) ifj=1,
I = bit(X*1[j],p) +2p otherwise,

wherep = min{g|bit(X*~'[j],q) # bit(X*~'[j — 1],¢)}. Itis straightforward to prove that ik is k-
colored thenX“*+! is (1 + 2|log k| )-colored, andX*[;] only is a function ofs[j —i..;]. It follows that if X°
is N-colored, then\!o8” N+2 js 6-colored [23]. Let® = Xo8" N+2 pe the 6-coloring of.

In the second phase 5-, 4-, and 3-colorings Y* andY 3 of s are constructed by

i — min{ovla?}\{YiJrl[._l]aYiJrl['-f—l}} if Yl+1[ =1,
Y= { Y] ! ! otherwise,

assumingY*1[0] = Y’“[n + 1] = oco. It is straightforward to prove that™[j] only is a function of
Y6[j — 3,5 +3],i.e,of s[j —log* N — 5,5 + 3].
Finally letd[j] = 1 if only if Y3[] is a local maximum. Formally,

dlj] = 1 ifl<j<nandY?j—1]<Y3j]>Y3j+1],
1= 0 otherwise.

Again, it is straightforward to prove thal;] only is a function ofY3[j — 1,5 + 1], i.e., of s[j — log* N —
6,7 +4]. O

Note that the algorithmic construction in the proof of Lemfheequires timed(n log™ N) to compute
the stringd (assumingX‘[j] can be computed i@ (1) time from X*~'[j — 1..5]). In Lemma 7 we prove
that the construction can be done in linear time, provideahalltable has been precomputed.

Lemma 7. The construction of in Lemma 6 can be done ifi(n) time, provided a table of siz&log V)
has been precomputed.

Proof. The construction proceeds exactly as in the proof of Lemnex&pt that we in linear time construct
X'log” N+2 directly from X2, i.e, X3...., X'8" N+1 gre not constructed. This reduces the total construction
time toO(n).

The computation ofX[j] for i = 1,2 can be done irO(1) time as follows. Letz = X*~'[j —

1] XOR X~ 1[ /. Note thatp is the mdex of the first nonzero in Letz' = ((z — 1) XOR z) AND z) = 2P.
Thenbit(X*~![j],p) = 1if and only if X*~![j] AND 2’ # 0. The extraction of) from 2’ = 2P can be
done inO(1) time by either converting’ into a floating pointer number and extracting the exponent by
shifting [26], by a constant number of multiplications [16} by a table lookup. See [16, 26] for further
discussion.

The elements o ? are onlyw = 2 + [loglog[log N7] bit integers and\'°¢” N+2[;] depends only on
X?[j — log* N..j], i.e, X'98" N+2[4] is a function ofw(1 + log* N) bits. Letg denote this function. The
function g will be stored as a precomputed table of spg!*log” N) — o(log N). Because each entry of
g can be constructed in tim@((log* N)?) as in the proof Lemma 6, we have thatan be constructed in
time O((log* N)?2v(1+log” N)y — 4(log N) time.

In linear time we construct a strin§ such thatX[i] corresponds to the concatenation of the bits in the
substringX?[i — log* N..i] by
X[0] = X?*0] 1" orX?[0],

X[i] = (X[i—1]1" orX?[i]) ANp 1@(1+log" N)
12



Note that to mark the beginning of the string we prepaftd0] by itself. BecauseX? is repetition-free this
representation is unique.
Finally, X'°¢" N+2 js computed in time)(n) from X'°¢" N+2[j] = ¢(XTi]). O

Lemma 6 can be used to construct the block decompositiohlock (s) of an N-colored strings by
letting eachi[;j] = 1 mark the beginning of a new blodk, where the first block always contairf].

Lemma8. Lets be anN-colored string andencblock(s) = by ... by the block decomposition efdefined
above, then

1.1<bh <4,and2 < |p;| <4forall2<i<k,

2.k < [ls|/2] .

APPENDIXB. SPLIT AND CONCATENATE

The implementation of &.1T and CONCATENATE described below is similar to the implementation given
in Section 4.2 of [23], but the implicit representation ofgstent strings implies that the implementation
details become very different. Lemma 9 below is an extensfdremma 11 in [23].

Lemma9. Letsy, sy andss = s1s9 be strings inF. Let integersD}, D2, I, and I? be given by

17 7 ?

shrink;(ss) = prefp: (shrink;(s1)) w; Sufp2 (shrink;(s2)) ,

wherew; € £*, |w;| = I} + I?, s, is a prefix ofshrink;(s3)[..|shrink;(s1)| — D} + I}], and D}, D?, and
I} are chosen as small as possible.
ThenD)! < Agr+2,D? <AL +2,I} <Ag+3,andI? < AL + 1.

Proof. The proof is by induction. Far= 0 the lemma trivially holds because} = DZ = I, = 0.

Fori > 0 considershrink;(s1). By the induction hypothesis at most a suffix of length_; of
shrink;_1(s1) can change when concatenating and s;. Then at most a suffix of length + D}_l
of pow,;_,(s1) changes. The marking in the block decompositiorpei,_,(s1) can then only be dif-
ferent in a suffix of lengthAr + 1 + D} . Finally, only signatures imhrink;(s;) can change which
span a signature from the lagt+ Ag + D)_, signatures ofpow, ;(s1). We have the constraint that
2(D} —1) <1+ Ag+ D} |, implying D} < Ag+5/2,i.e, D} < Ar+2.

Symmetrically it follows that at most a prefix @bw,_, (s2) with length D? | + 1 can change and the
markings at most change for a prefix of lengii_, + 1 + A. The signatures iBhrink;(s2) which can
change are the signatures spanning signatures from the pfefow,_ (s1) of lengthD? | + 1+ AL. We
then get the constrai?( D? — 2) < D? | + 1+ AL — 2, implying D? < AL +5/2,i.e, D? < AL + 2.

If shrink;_1(s3) contains a new substring;_; of lengthI} | + I? | thenpow; ,(s3) contains a new
substring of length at most + I} ;) + (I2, + 1) where the first term of each of the sums is the smallest
prefix of the substrings which can spayi|s; |]. Thenw; at most spans this substring plls- Ag signatures
to the left of this string of whick\r get new markings and th&, signatures to the right with new markings.
The following constraints follow2(I] —2) < Ag+1+ 1} | —land2(I? —1) < I2 , + 14+ A — 1,
implying I < Ar+7/2andI? < AL +3/2,i.e,I! <Ar+3andl? <AL +1. O

Lemma 10. CONCATENATE(s1, s9) can be supported in im@((AL + AR) log(|s1| + |s2|).

Proof. Using Lemma 9 we can computg = CONCATENATE(s1, $2) by only recomputing the encoding

of the concatenation of the the ladk + 2 signatures ofshrink;(s;) with the firstA_ + 2 signatures of

shrink;(s2). We do this by a recursive procedure that takes two argumenésdz,. For the call at level

i of the encodingsy; is the suffix ofshrink;(sq) of lengthA + Agr + 2 (or the complete signature string

if it is shorter) andzs is the prefix ofshrink;(s2) of lengthA_ + Agr + 2 (or the complete signature string

if it is shorter),i.e., z129 contains the signature substring to be recomputed and fthan@ right contexts
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which influence the block decompositions. Let be the new encoding af; x5 which is a substring of
shrink;(s3). The procedure returns;.

If i = 0 thenz3 = =x129. Otherwise we compute the strings of signature powgrs =
Sig~L(encblock ™" (Sig '(x1))) andys = Sig !(enchlock™" (Sig~'(x2))), where|yi,|y2| < 4(AL +
ARr+2). Fromy; we remove the lash| + Ar+ 2 signatures and from, we remove the firsf\| + Ag +2
signatures. Let/ respectivelyr), be the deleted signatures frgmandy,. Note that} andz), are the suffix
respectively the prefix ofirink;_1(s1) andshrink;_;(s1) of lengthAL + Agr + 2, andZiz3 = y12) z4ys.
Fromz) andx}, we recursively compute the new encodiflg A string of signature powers is created by
concatenatingy;, 4 (by identifying signature powers) ang. By applying Sig to the resulting string we
get a substrings of pow,;_;(s3). Letz = Sig(encblock(ys3)), thenz = Z1z3. Because of the neighbor-
hood dependence of the block decomposition, the prefix amdulfix of = may differ with the encoding
of shrink;(s3). By recycling the block decomposition given b;efAR_Q(xl) andsquL+2(:c2), which by
Lemma 9 should remain invariant under the concatenatiorgameconstruct:s.

By Lemma 7 the total time required for each of t8¢log(|s1|+|s2|)) levels of the recurrence 8(A +
AR). O

Lemma1l. SPLIT(s,4) can be supported in tim@((AL + ARg) log |s|).

Proof. Lets; = s[..i — 1] andsy = s[i..]. For levely, leti; denote the index such thafirink ;(s)[i;] spans
s[i — 1]. Noteig =i — 1.

The implementation of &LIT(S, ) is a recursive procedure that for each leyatomputes a suffix of
shrink j(s1) and a prefix ofshrink;(s2). The procedure for level takes three arguments, zo, and/,
such thatz; = shm’nkj(s)[ij — AR —2— AL..Z']'}, To = shm’nkj(s)[ij + 1..ij + AL +1+ AR}, and
¢ = |shrink(s)[..i;]|, i.e, z122 by Lemma 9 spans the substring of signatures that need taccbmprited
plus A, signatures to the left andr signatures to the right of this substring. The procedurernsty; and
y2 such thatjigz = T1Z2 andy; is the suffix ofshrink ;(s1) andys, is the prefix ofshrink ;(s2).

If j = 0, theny; = z; andy, = xo. Otherwise compute; = Sig~'(encblock ' (Sig~'(x;))) and
2 = Sig~(encblock™"(Sig (x9))), where|z| < 4(AL + Ar + 3) and|z;| < 4(AL + Ar + 1). Move
the rightmost signatures af which only span substrings ef to z;. At most 4 signature powers need to be
moved, where part of the last signature power may need toinepaat of z;. Let z3 denote the signatures
moved fromz; to z3. Then letl’ = ¢ — |z3|. Delete fromz; the rightmostAr + 3 + A signatures, and let
x| denote the deleted substring. Delete fropthe rightmostAg + 1 + A signatures, and let!, denote
the deleted substring. Nolg@; = 212229 and?’ = |shrink;_1(s)[..i5]|.

We can now for level — 1 call the procedure recursively with, 2, and¢'. Lety| andy) be the
returned signatures strings. Thefrz = 21y yh22. Letz] andz), be the strings of signature powers given
by 2} = zy} andzl, = y,zs. Similar to CONCATENATE we can now applyencblock to find the block
decomposition of] andz/. By combining the result with the block decomposition ginrefARﬁg(xl)
andsquL+1(:c2) and applyingSig we findy; andys.

By Lemma 7 the total time required for each of Bélog |s|) levels of the recurrence 8(AL+Ar). O

APPENDIXC. LONGEST COMMON PREFIX OF TWO STRINGS

Lemma 12. Given two stringss; and sy, LCPREFIX(s1,s2) and COMPARE(s1, $2) can be supported
in O(logn) time, and LCSUFFIX(s1,s2) can be supported in tim&(lognlog* N), wheren =
max{|s1], [s2/}.

Proof. To compute LCREFIX(s1,s2) we compute lcp(sy,ss). The search foricp(si,ss) is
done top-down on the signature encodings sf and s such thatlcp(pow;(s1), pow,(s2)) and
lep(shrink;(s1), shrink;(s2)) are identified for alli = 0,1,...,min{A(s1),h(s2)}. If we find that
pow;(sj) = lep(pow;(s1), pow;(s2)) or shrink;(s;) = lep(shrink;(s1), shrink;(s2)) for j = 1 or 2,
we haves; = lep(s1, s2) and the search terminates.
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The basic abstract steps of thé&p computation are the following. Assume =
|lep (shrink;(s1), shrink;(s2))| has been found and 1ét be given byshrink;(s1)[..¢] = pow,;_;(s1)[..¢].
In a linear search find the smallegt > ¢' such thatpow, ,(s1)[j + 1] # pow,_;(s2)[7 + 1].
Then |lep(pow; y(s1),pow; 1(s2))| = j. Let (o1,6) = Sig (pow; y(s)j + 1]) and
(09, 09) = Sig~(pow,_,(s2)[j + 1]). Then

\lep(shrink;—1(s1), shrink;_1(s2))| = { ;-i— min{fy. 6} gtgénf/igé_’

We first prove that the linear search only compaf¥s\r) signatures. Assume thgt=j —¢' > 5+ AR,
i.e, pow;_(s1)[..l' + 5+ AR] = pow;_,(s2)[..l' + 5 + Ag]. But then the marking produced by Lemma 6
of pow;_,(s1)[..l' + 5] andpow;_,(s2)[..I' + 5] are identical. This implies that the block decomposition of
pow;_1(s1)[¢'+1..'+5] andpow; _ (s2)[¢'+1..I'+5] are identical, andhrink;(s1)[(+1] = shrink;(s2)[(+
1] contradicting the assumption that |lcp(shrink;(s1), shrink;(s2))|. We concludg’ < 4 4+ Ag.

We now give a recursive implementation of LEEriX. For each level we will not computel explicitly
but only the following three values

m; = |lep(shrink;(sy), shrink;(s2))]
x; = shrink;(s1)[{+ 1.0+ K]
y; = shrink;(so)[l + 1.4+ K]

whereK = 6 + Ar andmg = |lcp(s1, s2)|. Note that by definitior;[1] # y;[1], provided that the search
has not terminated becausgor s, is equal tolep(sy, s2). Letz’ = Sig~!(x;) andy’ = Sig~!(y;). Note
thatj' = |lep('.y/)| < 4+ A, (01,61) = Sig™'(@'[j' + 1]), and (02, 62) = Sig™' (/[ + 1]). Let
d = min{{y, (s} if 01 = 09, otherwise letl = 0. We can now compute:;_1, 2,1 andy;_; by

mi—1 = m;+ |lep(a’,y')| + d[7]
Ti—1 = takeK((01,€1 —d)Sig_l(ac'[j'—i—Q..K}))
yio1 = takeg((02,0o —d)Sig™" (y/[j +2..K])) ,

where takey returns the firstk' signatures from a string of signature powers. If the sigmapowers
represent less thali signaturestake  just returns these signatures. To prove that the consttugtg and
y;—1 are the required strings there are two cases to consider;| Ik K thenz;_; is the required string. If
|z;| = K then observe that'| > 2K — 1 and at most4 + Ag) + 1 signatures fromx’ can be matched. We
get the constraint

2K —1-5-Ar> K,
which is satisfied foS > 6 + Ag. Fory; the argument is similar.

Assume w.l.0.g. that; # ss. If the signature encodings ef ands, have equal height, then the initial
values of the search i&, = 0, andx;, andy, are the two root signatures, otherwise we first expand and
apply take k to the top levels of the highest tree to reach equal height.

When the recursion reaches the leaf level, we have foundakigign wheres; ands; differs, andzg[1]
andyy[1] contain the two characters. By comparing the two charaeterfind lexicographical ordering of
s1 andsy. We conclude that LCREFIX and GMPARE can be done i (Ag logn) time.

The implementation of LCSFFIX is identical to LCRREFIX except that the expansion and comparison
of signature strings in done from the right. The differense¢hiat|ics(z’,y')] < 3 + AL and we have the
constraint2K — 1 — 4 — AL > K, implying that it is sufficient to havé > 5 + A_ when computing
LCSuFFIX. It follows that LCSJFFIX can be done i¥ (A log n) time. O

15



shrinks(s) 56

.\
pow 4(s) 54 55
shrinka(s) 52 53
\ -
powg(s) 48 49 50 51
\ | \ \
shrinks(s) 44 45 46 47
pow,(s)36 37 38 39 40 21 42 43
\ | | | \ \ \ \
shrinko(s) 28 29 30 31 32 33 34 35
A YA NN ST~ N T N
pow,(s)18 19 20 21 22 23 24 25 2226 19 20 21 22 23 27
LA L T /N \
shrink1(s) 9 1010 11 12 13 14 15 101010 10 10 13 16 1010 11 12 13 14 17
AN NANANIANAANNNNNNNNAN N NN N AN
powg(s) ‘\15‘45‘4 6 ‘75‘75‘75‘7\54;57‘54‘54‘54‘—54‘154‘1"54‘7‘57‘45‘454‘1 6‘ 7‘57‘57‘57‘54575 8
LETEA TPt e AL A
shrinko(s) 121212232323232123212121212121323121212232323232BA3
s CBCBCBBABABABABCBABCBCBCBCBCBCABACBCBCBBABABABABCBABAA

FIGURE 1. The signature encoding of a string of length 54 drawn a®e@, twhere the
signatures 1 = Sig([6,7]), 17 = Sig([5,7,5,8]), 18 = Sig(9') and25 = Sig(10°).
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FIGURE 3. ForF = {t1,t2} ands, the longest matching prefix ehrink;(s) with a string
from F' is with ¢, for : = 0 and witht; for: = 0.
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