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1. INTRODUCTION

Pattern matching on strings concerns the problem of determining all the occurrences of a pattern stringP , of lengthp, as substring of a larger text stringT , of lengthn. OptimalO(p + n) time solutions for
this problem were given already in the 70s by Knuth, Morris, and Pratt [19], and Boyer and Moore [3].
Originally the problem was motivated (among other things) by problems in text editing. In subsequent work
the problem has been generalized, extended and studied extensively for different applications. Seee.g.,
[1, 6, 25] for recent text books considering different pattern matching problems. An important direction of
this progress has been the development of efficient algorithms to handle different dynamic versions of the
problem, seee.g., [11, 12, 13, 14, 18, 20, 28, 30]. In a text editor it is,e.g., convenient to handle text updates
and searches for different patterns without using time proportional to the full text for every text modification.

We generalize the problem to maintain a family of strings under two update operations, split and con-
catenate. Given an indexi and a strings = a1a2 : : : ak in the family, the split operation splitss into the
two substringsa1 : : : ai�1 andai : : : ak, and inserts them into the family without preservings. The con-
catenate operation takes two stringss1 and s2 from the family, and inserts their concatenations1s2 into
the family again without preserving argumentss1 ands2. Finally for any string in the family, all occur-
rences of it within other strings in the family, can be be reported inO(log n log logn + occ) time, wheren is the total size of the strings andocc the number of occurrences. Update operations are supportedinO(log2 n log logn log� n) time. These bounds are competitive with or improve former results for less gen-
eralized versions of the problem (see below). To the best of our knowledge this is also the first result for
pattern matchingwhich supports split and concatenation of strings in polylogarithmic time per operation.

Pattern matching results for dynamic as well as static problems have shown to be essential tools for
problems in computational biology [21, 29]. In DNA sequenceanalysis often involves operations as split,
concatenation and reversals of strings, for which our set ofoperations can be helpful. For the classic text
editor problem, we can handle operations such as moving large text blocks while supporting fast searches.
This contributes to an efficient solution for an ideal editor, but for which a larger set of operations still would
be preferable [2],e.g., more efficient (persistent) methods to duplicate text blocks.

As an intermediate result we improve the bounds for thedynamic string equalityproblem due to
Mehlhorn, Sundar and Uhrig [23]. This problem is to maintaina family of strings underpersistentcon-
catenate and split operations (the arguments remain in the family) such that the equality of two strings can
be determined. Besides the improved time complexity, our solution for the string equality problem extends
the set of supported queries. We support comparisons of the lexicographical order of two strings in constant
time, and a longest common suffix and prefix operation in almost O(log n) time. In [23], the problem is
mainly motivated by problems in high-level programming languages like SETL. However later, this data
structure has been applied in order to give efficient solutions for other problems, seee.g., [4, 15].

Related work. Here, we sketch the history of pattern matching and refer to [14] for a more detailed account.
Some of the early progress in making pattern matching dynamic is thesuffix tree. In [20, 30] it is shown
how to preprocess a text in linear time, such that queries canbe answered on-line inO(p+occ) time, wherep is the length of the query pattern. Later in [28] the suffix tree is extended such that the text could be
extended by a single character to the end. Guet al. [18] were the first to consider the problem where the text
could be manipulated fully dynamically, naming the problemDynamic text indexing. The update operations
supported were insertion and deletion of asingle characterto/from the text inO(log n) time, wheren is the
current size of the text. The query operation is supported inO(p + occlog i + i log p) time, wherei is the
current number of updates performed. Next this problem was again extended by Ferragina [12] to efficiently
handle insertions/deletions of astring into/from the text, calledincremental text editing. Ferragina and
Grossi [11, 13, 14] improve [12]. They provide the time boundO(n1=2 + s) for updates andO(p+ occ) for
the search, or updates inO(s(log s+log log n)+logn) time with query timeO(p+occ+i log p+log logn),
wheres is the length of inserted/deleted string. In summary, none of the above results are in polylogarithmic
time for all operations in terms of the size of the text. Finally in [24], Sahinalp and Vishkin claims the
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following result for incremental text indexing. Searches inO(p + occ) time and updates inO(log3 n+ s)
time.

Outline of the paper. In Section 2 we review the signature encoding of strings fromMehlhornet al. [23]
and state our time bounds for the dynamic string equality problem. Then in Section 3 we describe our data
structure for dynamic pattern matching. In Section 4 we provide the implementation for the string equality
problem. Finally in the appendix we provide some additionaldetails and figures.

Preliminaries. Given a strings over an alphabet�, we let jsj denote the length ofs, s[i℄ the ith element
of s (1 � i � jsj), ands[i::j℄ the substrings[i℄s[i + 1℄ : : : s[j℄ of s (1 � i � j � jsj). If j < i thens[i::j℄ denotes the empty string�. For arbitraryi andj, s[i::j℄ = s[max(1; i)::min(jsj; j)℄, s[i::℄ = s[i::jsj℄
ands[::j℄ = s[1::j℄. We letprefk(s) = s[::jsj � k℄, sufk(s) = s[k + 1::℄, andinfk(s) = s[k + 1::jsj � k℄.
The reverse strings[jsj℄ : : : s[2℄s[1℄ is denotedsR. For a mappingf : � ! U , we extendf : �� ! U� by
definingf(a1a2 : : : an) = f(a1)f(a2) : : : f(an). For two stringss1 ands2 we letl
p(s1; s2) andl
s(s1; s2)
denote the longest common prefix and suffix respectively ofs1 ands2. We assume w.l.o.g. throughout the
paper that no string is equal to the empty string.

Let � be totally ordered. We define the lexicographical ordering on �� by s1 � s2 if and only ifs1 = l
p(s1; s2) or s1[jl
p(s1; s2)j+ 1℄ < s2[jl
p(s1; s2)j+ 1℄. We letu �R v denote that the reverse ofu
is less than the reverse ofv, i.e., uR � vR.

We let logn = lnn= ln 2, log(1) n = log n, log(i+1) n = log log(i) n, andlog� n = minfij log(i) n � 1g.
When interpreting integers as bit-strings we letAND, OR, andXOR denote bitwise boolean operations, andx "i be the operation shiftingx i bits to the left,i.e., x "i= x � 2i. For positive integersx and i we letbit(x; i) denote theith bit in the binary representation ofx, i.e., bit(x; i) = (x� 2i) mod 2.

2. SIGNATURE ENCODING OF STRINGS

In the following we describe thesignature encodingof strings over some finite alphabet�. The signature
encoding we use throughout this paper was originally described by Mehlhornet al. in [23]. The basic idea
is to associate a uniquesignature� to each strings such that two strings are equal if and only if they have
equal signatures. The signature encoding of a strings 2 �� is defined relative to a signature alphabetE � N
and a partial injective mappingSig : �[ E+ [ (E � N ) ,! E . The mappingSig is extended during updates
in order to keep it defined for all applied values.

The signature encoding ofs consists of a sequence of signature strings fromE�,shrink 0(s); pow 0(s); shrink 1(s); pow 1(s); : : : ; shrinkh(s). The strings are defined inductively byshrink0(s) = Sig(s)pow 0(s) = Sig(en
pow (shrink 0(s)))
...shrink j(s) = Sig(en
blo
k(pow j�1(s)))pow j(s) = Sig(en
pow (shrink j(s)))
...shrinkh(s) = Sig(en
blo
k(powh�1(s)))

whereen
pow anden
blo
k are functions defined below, andh the height of the encoding ofs which is the
smallest value for whichjshrinkh(s)j = 1. We leth(s) denote the height of the encoding ofs.

The mappingen
pow groups identical elements such that a substring�i is mapped into the pair(�; i).
Formally, fors 2 E� ands = �l11 : : : �lmm ; �i 2 E where�i 6= �i+1 for 1 � i < m. Thenen
pow (s) =(�1; l1); (�2; l2); : : : ; (�m; lm). The functionen
pow (s) can be computed in timeO(jsj).
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The mappingen
blo
k decomposes a string into a sequence of small substrings of sizes between two
and four, except for the first block which has size between oneand four. Each substring is denoted a
block. The strategy behind the decomposition is based on thedeterministic coin tossingalgorithm of Cole
and Vishkin [5] which ensures the property that the boundaries of any block are determined by a small
neighborhood of the block. This strategy is only applicableto strings where no two consecutive elements
are identical and the role of the mappingen
pow is to ensure this property prior to employment ofen
blo
k .

Because the signature encoding is deterministic, two identical strings also have identical encodings. Fig-
ure 1 gives the signature encoding of a string of length 54.

The neighborhood dependence of a block decomposition is characterized by two parameters�L and�R,
such that given a signature� in a string it can be determined if� is the first signature in a block by only
examine�L and�R signatures respectively to the left and to right of�. We assume in the following thatN is a constant bounding the total number of signatures to be used, and we also assume that signatures and
characters can be handled in constant time. Given a signature� we let� denote the string from�� encoded
by �, and for a signature string�1 : : : �k we let�1 : : : �k = �1 : : : �k.

The details of the block decomposition of Mehlhornet al. [23] are included in Appendix A. From
Lemma 6 in Appendix A it follows that�L = log�N + 6 and�R = 4.

2.1. Persistent strings. Mehlhornet al. [23] considered how to maintain a familyF of strings under the
following operations.

STRING(a) : A new single letter string containing the lettera 2 � is created. The resulting string is
added toF and returned.

CONCATENATE(s1; s2) : Concatenates the two stringss1; s2 2 F . The resulting string is added toF
and returned. The two stringss1 ands2 arenot destroyed.

SPLIT(s; i) : Splitss into two stringss[::i� 1℄ ands[i::℄. The two resulting strings are added toF and
returned. The strings is not destroyed.

EQUAL(s1; s2) : Returns true if and only ifs1 = s2.
Note that strings are never modified or destroyed,i.e., the strings created arepersistent. In the

CONCATENATE operations1 ands2 are allowed to refer to the same string,i.e., it is possible to construct
strings of exponential length in linear time. Mehlhornet al. [23] proved the following theorem.

Theorem 1 (Mehlhornet al. [23]). There exists a persistent string implementation which supports STRING

andEQUAL in O(1) time, andCONCATENATE andSPLIT in O(log n((log�N)2 + log n)) time, wheren is
the length of strings involved in the operations.

In the above theorem we assumed that a lookup in theSig function takes constant time. In [23] theSig
function is stored using a search tree, implying that it takes time logm to make a lookup, wherem is the
number of operations done so far. Constant time lookup forSig can be achieved by using randomization or
using more than linear space by either using dynamic perfecthashing [10] or using a digital search tree of
degreeN 
 [22], 0 < 
 < 1. The number of lookups to theSig function for each CONCATENATE and SPLIT

operation isO(log n log�N).
In Section 4 we show how to improve the bounds of [23] and to extend the set of supported persistent

string operations with the following operations.

COMPARE(s1; s2) : Returns the lexicographical order ofs1 relative tos2, i.e., if s1 = s2, s1 < s2, ors1 > s2.
LCPREFIX(s1; s2) : Returnsjl
p(s1; s2)j.
LCSUFFIX(s1; s2) : Returnsjl
s(s1; s2)j.

The following theorem summarizes our results in Section 4 for persistent strings.

Theorem 2. There exists a persistent string implementation which supports STRING in O(log j�j) time,
EQUAL and COMPARE in O(1) time, LCPREFIX in O(log n) time, LCSUFFIX in O(log n log�N) time,
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andCONCATENATE andSPLIT in O(log n log�N + log j�j) time, wheren is the length of strings involved
in the operations.

3. DYNAMIC PATTERN MATCHING

In this section we will describe how to implement a data structure for the dynamic pattern matching
problem, with the claimed update and query time bounds.

LetG denote a family of strings over a fixed alphabet�. An occurrenceof a strings in family G, is a pair(s0; p) wheres0 2 G andp specifies the specificlocationof the occurrence withins0. Let index (p) denote
the index offset of this location ins0, i.e., it satisfiess = s0[index (p)::index (p) + jsj � 1℄. We denote the
set of all occurrences ofs in G by O

(s;G).

The dynamic pattern matching problems is to maintain a data structure for a family of stringsG which
supports the updates STRING, SPLIT and CONCATENATE for strings inG defined as in last section, but
without the persistence,i.e., the arguments to SPLIT and CONCATENATE are removed fromG by the call. In
addition to these update operations the data structure supports the search query:

FIND(s) Return the set of all occurrences ofs 2 G.
For the rest of this section we letn denote the total size ofG, i.e., n =Ps2G jsj.
Theorem 3. There exists an implementation for the dynamic pattern matching problem which supports
CONCATENATE, SPLIT in O(log2 n log logn log� n) time,STRING in O(log n log� n) time andFIND(s) inO(o

 + log n log log n) time whereo

 is the number of occurrences.

The occurrences returned by the FIND operation, are represented bypointersinto the specific occurrences
in lists representing the strings. For such pointer we need additionalO(log n) time to compute the exact
offset index (p) of the occurrence. That is the time for FIND isO(o

 log n+ logn log log n) when output
is required in this form.

3.1. The data structure. The data structure consists of several ingredients, where the primary part consists
of a combination of a range query data structure with the persistent string data structure given in 4.

3.1.1. Dynamic lists and signature encodings forG. For each string ins 2 G we maintain a listl(s), where
theith character ins is theith node inl(s). These lists are maintained by balanced trees under join andsplit
operations, such that given indexi one can report theith nodel(s)[i℄ and return the rank of a node, seee.g.,
[6].

The set of all nodes for all lists forG is denotedL. For a list l(s), we denote theith node byl(s)[i℄.
Next every string inG is also represented in an auxiliary family of strings we callF using the persistent
data structure from Section 2.1. Besides the strings inG family F also contains certain substrings of these
described later. Furthermore we assume the reverse representation of every stringt 2 F to be inF as well,
i.e., tR 2 F . This only increases the time requirement for the split and concatenation operation onF by a
constant factor. For all the strings inG � F , we assume the terminology of Section 2.1 with respect to the
signature encodings of these strings.

3.1.2. Anchors. Consider a strings 2 G and a levelj � 0 with the signature stringx = shrink j(s)
encoding all ofs. We define the set ofbreakpointsfor x by

BP(x) = f i j x[i℄ 6= x[i+ 1℄ g:
Theoffseto�set js(i) of a breakpointi 2 BP(x), is defined to be the index ins, where the signaturex[i℄ starts
its encoding ins, i.e., o�set js(i) = jx[1::i � 1℄j + 1. Similarly we will talk about breakpoints in substrings
of signature strings,i.e., the breakpoints in substringx[k::l℄ is simply BP(x) \ [k::l℄.

For a breakpointi 2 BP(shrink j(s)) we associate ananchor that consists of two infixes ofs which
captures a certain context of that breakpoint. Furthermorethe anchor also contains the nodel(s)[o�set js(i)℄.
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Fix � to be an integer larger than�L +�R + 4 for the rest of this section. Theleft boundaryof breakpointi, denoted lb(i), is a breakpoint “16� breakpoints left” ofi, formally:

lb(i) = max(f j 2 BP(x) j j[j::i℄ \ BP(x)j > 16� g [ f 1 g):
Similarly theright boundaryof i is defined by

rb(i) = min(f j 2 BP(x) j j[i::j℄ \ BP(x)j > 16� g [ f jxj g):
Let l, p andr be the offsetss of lb(i), i and rb(i) respectively. Theanchorassociated breakpointi, denoted
Anc(i), is defined to be the triple(s[l::p� 1℄; s[p::r � 1℄; l(s)[p℄) 2 �� � �� � L:
We refer to the stringss[l::p� 1℄ ands[p::r℄ as thecontextstrings anchor Anc(i).

For every breakpoint in some shrink signature string for strings inG, there is an anchor,i.e., the set of
all anchors is: Anchors(G) = Ss2G;j�0fAnc(i) j i 2 BP(shrink j(s)) g. For an anchor(s1; s2; e) 2
Anchors(G), we maintain copies of the stringss1 ands2 in the familyF . That is we maintain the invariant
Anchors(G) � F �F � L.

3.1.3. Range query data structure.For each levelj, the anchors associated with breakpoint at this level,
i.e., breakpoint in stringsshrink j(s) for s 2 G, is kept in arange query data structureRj � Anchors(G).
The data structure forRj supports the operations

INSERT(Rj ; a): Inserts the anchora 2 Anchors(G) into Rj.
DELETE(Rj ; a): Deletes anchora from Rj.
REPORT(Rj ; t1; t2; t3; t4): Fort1; t2; t3; t4 2 F , reports all anchors(s1; s2; e) 2 Rj wheret1 �R s1 �Rt2 andt3 � s2 � t4.

The above operations are supported in a comparison based data structure, with access to the COMPARE

operation on the strings inF (using the reverse representations of string inF for the�R comparisons), as
described in Section 2.1. That is the above INSERT and DELETE operation, can be supported in worst-case
timeO(log jRj j log log jRj j) and the REPORToperation in worst-case timeO(log jRjj log log jRj j+ o

),
see [8]. Note thatjRj j is bounded byO(n).
3.2. Searching for occurrences in G. In this section we will describe how to perform a search of all
occurrencesO

(s;G), provided the above representation forG.

The search considers different cases depending on the signature encoding of the strings. Fix � >�L +�R + 4 as in last section.

Case 1: jpow 0(s)j � 12�.
Case 2: There existsj > 0 such thatjshrink j(s)j > 3� andjBP(shrink j(s))j � 12�.

Lemma 1. For any strings 2 G, either Case 1 or Case 2 (or both) are satisfied.

Proof. Suppose Case 1 isnot satisfied. Then letj = minf i j jpow i(s)j � 12� g. Thenjpow j�1(s)j >12� and since each block has size at most4, we havejshrink j(s)j � 14 jpow j�1(s)j > 3�. By minimality
of j, jBP(shrink j(s))j = jpow j(s)j � 12�, so levelj satisfies Case 2.

Let j = 0 if Case 1 above is satisfied, or choosej > 0 as in the proof of above lemma such that Case 2 is
satisfied and letx = shrink j(s). For Case 2 above we define the ‘protected’ set of breakpoints, denotedM ,
as the breakpoints in infixinf�(x), i.e.,M = BP(x)\ [�+1::jxj��℄. For Case 1 (j = 0), the “protected”
breakpoints is simply all the breakpoints,i.e., M = BP(shrink 0(s)).

In this section we limit the exposition to the case whereM is nonempty,i.e., for Case 2, we assume the
substringinf�(x) of length at least� contains two different signatures. The special case whereM is empty,
i.e., s contains a long substring of small periodicity, is omitted due to lack of space.

Hence leti 2M . The following lemma states that for each specific occurrence ofs in G, this occurrence
is encoded by a shrink string that contains a breakpoint which is ‘aligned’ with breakpointi.
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Lemma 2. For any occurrence(t; p) 2 O

(s;G), there existsi0 2 BP(shrink j(t)) whereindex (p) =o�set jt (i0)� o�set js(i) + 1.

We say that the breakpointi0 2 BP(shrink j(t)) from the above lemmaalignswith breakpointi, relative
to occurrence(t; p) 2 O

(s;G).
Proof. For j = 0, the lemma is immediate from definition of breakpoints and the factsi0 = o�set0t (i0) andi = o�set0s(i). Consider the case forj > 0, where the premises in Case 2 holds. Let(t; p) 2 O

(s;G) andi 2M . Write t ast = t1 s t2 wherejt1j = index (p)� 1. By repeated use of Lemma 9 it follows thatshrink j(t) = u shrink j(s)[� + 1::jshrink j(s)j ��℄ v(1)

for someu; v 2 E�, where u = t1 shrink j(s)[::�℄:(2)

Sincei is a breakpoint inM , we can write (1) asshrink j(t) = u shrink j(s)[� + 1::i℄shrink j(s)[i+ 1::jshrink j(s)j ��℄ v
and hence the indexi0 = juj+ i�� is a breakpoint in BP(shrink j(t)). Furthermore using (2)o�set jt (i0) = juj+ jshrink j(s)[� + 1::i℄j= jt1j+ jshrink j(s)[::�℄j+ jshrink j(s)[� + 1::i℄j= jt1j+ o�set js(i):
Henceindex (p) = jt1j+ 1 = o�set jt (i0)� o�set js(i) + 1 as desired.

The next lemma states that for every breakpointi0 that aligns withi, the anchor associatedi0 has ‘suffi-
ciently large’ context information with respect tos. Formally writes = s1s2, wheres1 = s[1::o�set js(i)�1℄.
Lemma 3. Let i0 be any breakpoint which aligns with breakpointi relative to an occurrence(t; p) 2O

(s;G). Let (t1; t2; e) = Anc(i0) 2 Rj . Thenjs1j � jt1j and js2j � jt2j, i.e., l
s(s1; t1) = s1 andl
p(s2; t2) = s2.
Proof. Let t = t0 s t00 such thatjt0j = index (p) � 1. Write shrink j(t) = u1 v1 v2 u2 wherev1 is the
infix from the left boundary ofi, i.e., shrink j(t)[lb(i0)::i0 � 1℄ and similarv2 is until the right boundary,v2 = shrink j(t)[i0::rb(i0)℄. We showjt1j = jv1j � js1j by showingu1 is a prefix oft0. By repeated use of
Lemma 9 we can write:shrink j(t) = pref�(shrink j(t0))w1 inf�(shrink j(s))w2 suf�(shrink j(t00));
wherejw1j; jw2j � �. Next we boundjBP(w1 inf�(shrink j(s))w2)j � jBP(shrink j(s))j + 2� � 14�.
Since the indexi0 has to be within this infix, andjBP(v1)j = 16� (u1 is nonempty),u1 = shrink j(t)[::i0 �jv1j℄ must be a prefix ofpref�(shrink j(t0)), and thusu1 is a prefix oft0 as desired. By a similar argumentu2 is a suffix oft00, implying jt2j � s2.

Suppose the alphabet is extended with a special letter$ in the alphabet larger than letters occurring in
strings forG. Lemma 2 and Lemma 3 tell us there is an anchor(t1; t2; e) 2 Rj with s1 �R t1 �R $s1 ands2 � t2 � s2$ if and only if nodee 2 L points into(t; p) 2 occ(s;G) at offsetjs1j right of index (p). Thus
the set of all occurrences can be computed by the following steps:

1. Find a levelj such that one of the above cases are satisfied and a breakpointi 2M .
2. Compute the offsetp = o�set js(i) of i in s. Construct and insert the stringss1 = s[1::p � 1℄,s2 = s[s[p::jsj℄, $s1 ands2$ intoF using the SPLIT and CONCATENATE operations forF .
3. Report occurrences (represented as nodes inL) by the query REPORT(Rj ; s1; $s1; s2; s2$).

As remarked earlier, if occurrences have to be reported as indices into the corresponding strings, we need a
rank query for each reported node.
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3.2.1. Time usage.We summarize the time usage for the search can be summarized to. Step 1 takes timeO(log� n), i.e., if jpow 0(s)j � 8� we expand the root signature fors until we get a levelj wherepow j(s)
has length at most8� and shrink j(s) satisfy the premises in Case 2. Step 2 uses timeO(log n log� n)
for the computation of the index ins of the chosen breakpoint, with subsequent calls of SPLIT and
CONCATENATE to compute the arguments for the REPORT operation. Finally the single call of operation
usesO(log n log log n+ o

) time, leading to the same total time cost for the search.

3.3. Concatenate and split. In this section we describe how to perform concatenation of two strings inG.
The split operation for a string inG is done in a similar manner and omitted.

CONCATENATE(s1; s2). Consider two stringss1; s2 2 G where we want to compute the concatenations = s1s2 and insert this strings into G, destroyings1 ands2. First the signature encoding fors is computed
and inserted into the auxiliary string familyF through the CONCATENATE operation for this family. Next a
new list l(s) for s is created by joiningl(s1) andl(s2). This means that the node information associated the
anchors in the various range query structuresRj now is considered as nodes inl(s) instead.

Now the main part of the computation consists of restructuring the various range query data structuresRj which now must contain anchors with respect to the signatureencoding ofs. In the following we will
describe what is done at each level. Fix a levelj � 0. Write shrink j(s1) = u1w0 wherew0 is such
that jBP(w0)j = 16� and similarly forshrink j(s2) = w00 u2 with jBP(w00)j = 12�. By repeated use of
Lemma 9 we can write the new signature stringshrink j(s) = u1 w u2 wherejBP(w)j � 34�. For i a
breakpoint inu1 or u2, let Anc(i) denote the anchor when it was associatedshrink j(s1) or shrink j(s2),
and let Anc0(i) denote the anchor forshrink j(s).
Lemma 4. For any breakpointi within substringsu1 or u2, the context strings in Anc(i) and Anc0(i) are
the same.

Proof. For a breakpoint in prefixu1, the left and right boundary are withinpref�(shrink j(s1)) which is
a prefix of shrink j(s) by Lemma 9. Hence the context strings fori defined Section 3.1.2 are the same.
Similarly for breakpoints inu2.

In order to updateRj the following is done. First the anchors inRj for breakpoints associated the suffix
and prefixw0 andw00 of the ‘old’ shrink signature strings are removed. Next for every breakpoint in the above
infix w, a new associated anchor is created and inserted intoRj . After this, every anchor forshrink j(s) is
correctly represented inRj since for anchors not in a breakpoint inw0, w00 andw, i.e., a breakpoint inu1 oru2, the associated context strings are by Lemma 4 unchanged, and the associated node is also correct after
the link of l(s1) andl(s2) forming l(s). In order to create the new anchors for substringw, the breakpoints
in w are determined, which is done through the information ofpow j(s) and using techniques similar to the
description given in Appendix C. For each such breakpointi in w, we then need to create its new anchor,
Anc0(i). First the nodel(s)[o�set js(i)℄ is computed (again by the techniques from Appendix C and the query
operations supported for listl(s)). Then in order to compute the newcontextstrings for the anchor, we also
need to compute the offsets ins of the left and right boundaries lb(i) and rb(i). Then finally by applying
the persistent SPLIT operation ons 2 F for the offsets of these boundaries, the two context stringsfor the
anchor are generated inF .

3.3.1. Time usage.The computation of breakpoints, offsets, context strings and the list operations are done
within timeO(log n log� n) per anchor. The number of anchors manipulated is the number of breakpoints
in w0, w00 andw. For each of these anchors, a single call of INSERT or DELETE is done, using timeO(log n log log n), see Section 3.1.3. Hence in total the CONCATENATE(s1; s2) operation use worst-case
timeO((log n log� n) � (log n log� n+ log n log log n)) = O(log2 n log logn log� n).
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4. PERSISTENT STRINGS

We represent a persistent strings by the root-signature� of a signature encoding ofs. We denote this the
implicit representationof s. This implies that a string can be stored in a single word plusthe space required
to store the signature functionSig . The lower levels of the signature encoding ofs can be extracted from�
by recursively applyingSig�1, especially the neighborhoods which need to be considered by the different
operations can be constructed when required. By storingSig�1 as an array,Sig�1 can be computed inO(1)
time.

We would like to note, that this is an essential difference compared to the representation used in Mehlhorn
et al. [23]. They represent a string by a persistent data structurewhich consists of a linked list of rooted
trees, each tree storing one level of the signature encodingof the string. Their representation implies an
overhead ofO(log n) for accessing each level of the encoding of a string. Our simplified representation
avoids this overhead.

By using the implicit representation of strings we get Lemma5 below, improving and extending the result
of Mehlhornet al. [23].

Lemma 5. The operationsSTRING and EQUAL can be supported inO(1) time, CONCATENATE, SPLIT,
andLCSUFFIX in timeO(log n log�N) time, andLCPREFIX andCOMPARE in O(log n) time, wheren is
the length of strings involved in the operations.

Proof. The operation STRING(a) returnsSig(a), and EQUAL(s1; s2) returns true if and only if the root-
signatures of the signature encodings ofs1 ands2 are identical. The details of the remaining operations can
be found in Lemma 10, Lemma 11 and Lemma 12 in the Appendix.

Figure 2 contains an example of a LCPREFIX computation. The underlined characters are the leftmost
characters which mismatch. The signatures in circles are the signatures from the signature encodings which
actually are compared. Full circles denote successful comparisons. The sequence of signatures connected
by dashed lines are the signatures which define thel
p of the two strings. Note that for the powers96 =Sig�1(12) and94 = Sig�1(27) we do not need to compare all signatures in94.
4.1. Maintaining strings sorted. In the previous section we describe how to perform comparisons on
persistent strings inO(log n) time. In this section we show how reduce this toO(1) time while maintaining
the asymptotic times for the update operations STRING, CONCATENATE and SPLIT except for an additivelog j�j term. The ideas used are:i) keep all persistent strings lexicographical sorted, andii ) associate with
each strings a keykey(s), such that two strings can be compared by comparing their associated keys inO(1) time.

Data structures for maintaining order in a list have been developed by Dietz [7], Dietz and Sleator [9]
and Tsakalidis [27]. The data structure of Dietz and Sleator[9] supports INSERT(x; y), DELETE(x) and
ORDER(x; y) operations in worst-caseO(1) time. The operation INSERT(x; y) inserts elementy afterx in
the list, and DELETE(x) deletesx from the list. The query ORDER(x; y) returns ifx is beforey in the list.

The key we associate with each persistent string is a “handle” given by the data structure of Dietz
and Sleator [9]. A COMPARE(s1; s2) query can now be answered in worst-caseO(1) time by applying
EQUAL(s1; s2) and by applying ORDER(key(s1); key(s2)).

In the remaining of this section we describe how new strings created by STRING, CONCATENATE and
SPLIT can be added to the lexicographical sorted list of strings,i.e., how to locate where to insert new
strings into the data structure of Dietz and Sleator. A straightforward implementation is to store the strings
as elements in a balanced search tree and to use the COMPARE operation described in Lemma 12 when
searching in the search tree. This implementation requiresO(logm log n) time for each string created,
wherem is the number of strings stored. In the following we describehow to avoid thelogm factor.

4.2. Tries. We now describe a data structure for maintaining a set of strings in sorted order. The basic data
structure is a collection oftries. A trie is a rooted tree where all edges are label with symbolsfrom some
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alphabet, and where all child edges of a node are distinct labeled. Given a nodev we letSv denote the string
consisting of the concatenation of the labels along the pathfrom the root tov. Further information on tries
can be found in,e.g., [22]. We will use the terminology thatv corresponds to the stringSv. First we give the
outline of a static space inefficient data structure to illustrate the underlying search. After having sketched
the basic idea we fill in the technical details to make the datastructure dynamic.

LetF be the set of strings stored. For each leveli of the signature encodings, we maintain a trieT i storing
all signature stringsshrink i(s) for all s 2 F , and such that each leaf inT i corresponds toshrink i(s) for
ans 2 F . The child edges of a node is stored in a sparse array indexed by the edge labels. For each nodev in T i, i � 1, we have a pointer to a nodev0 in T i�1. Let s be a string inF such thatSv is a prefix ofshrink i(s). Thenv0 is the node satisfying thatSv0 is a prefix ofshrink i�1(s) andSv0 = Sv.

We let the children of each nodev of T 0 be sorted from left-to-right w.r.t. the ordering on the characters
encoded by the edge signatures, and let the child list of eachnode inT 0 be stored in a balanced search tree.
A left-to-right preorder traversal ofT 0 will then report the nodes sorted w.r.t. the lexicographical order of
the corresponding strings.

To each nodev of T 0 we associate two keyskv andk0v in the Dietz and Sleator data structure such thatkv
appears before all keys before the keys assigned to descendents ofv andk0v appears after all keys assigned
to descendents ofv.

Given the above described data structure we can find the ordering of a new strings among the strings inF , i.e., we can assigns a key from the Dietz and Sleator data structure.
The search fors is very similar to the computation of LCPREFIX of two strings in Appendix C. For each

level i of the signature encoding ofs we identify the nodevi in T i such thatSvi is the maximal prefix ofshrink i(s) that matches a prefix ofshrink i(t) for a stringt 2 F . Note that the stringt can vary from level
to level as shown in Figure 3, wherev1 corresponds tol
p(shrink 1(s); shrink 1(t2)) andv0 corresponds tol
p(shrink 0(s); shrink 0(t1)). Whenvi 2 T i has been found we follow the pointer to the nodev0 2 T i�1
whereSv0 is a prefix ofshrink i�1(s). Fromv0 we can continue the search down the trieT i�1 as long as the
prefix ofshrink i�1(s) matches the labels along the path from the root to the currentnode, until we findvi�1.

As in the implementation of LCPREFIX we incrementally expand the signature description ofs along the
search path by always keeping the6 +�R next signatures,i.e., aftervi has been found we just have to keepshrink i(s)[jSvj + 1::jSv j + 6 + �R℄. That it is sufficient to expand6 + �R signatures ofs for each level
follows similarly to the proof of Lemma 12, by showing a contradiction with that the matching prefix found
for shrink i+1(s) is maximal. Note that6 + �R signatures inshrink i(s) can at most expand to4(6 + �R)
signature powers inshrink i�1(s). To be able to skip an arbitrary part of a signature power inO(1) time
we associate an arrayAe (indexed1::jAj) for each outgoing edgee of a nodev with a signature different
from the signature on the edge leading tov such thatAe[j℄ is a pointer to the node in the subtree rooted atv
which can be reached by a path labeled�j. We letjAj be the length of the longest path beginning withe and
where all edges have label�. Each of the at most5 + �R matching signature powers can now be matched
in constant time by using theAe arrays to arrive at the correct nodes.

A new signatures can be inserted into the data structure, by first performing the above described search.
The search identifies for eachT i the nodevi where a new path of nodes should be attached, corresponding
to the unmatched tail ofshrink i(s). Together with the nodes and keys we add inT i we also have to add the
appropriate pointers to nodes inT i�1 and updateAe arrays. The new child
 of v0 can be inserted into the
sorted list of children ofv0 in timeO(log j�j). We can assign
 keys as follows. If there exists a siblingv to the left of
 then we can assign
 keys such thatk
 andk0
 appears immediately afterk0v . If 
 has no
sibling to the left we create keysk
 andk0
 immediately afterkv0 . In both cases the keys can be assigned
in O(1) time. The assignment of keys to the tail of the path is done by recursively applying the above key
assignment. The total search time isO(�R log jsj) and the total update time isO(jsj+ log j�j) because the
size of the levels of the encoding ofs are geometrically decreasing.

4.3. Tries with collapsed paths. The update time in the previous section isO(jsj) because a linear number
of new nodes need to be created. Except for the first child created in each trie all new nodes have at most

9



one child. The main idea to speedup updates is by collapsing long paths of nodes with only one child. This
is vaguely related to the standard notion of compressed tries [22], except that we do not necessarily collapse
all nodes with one child, and that we use a different approachto represent collapsed edges.

For each trieTi we define a set ofdownnodes. Down nodes are:i) the root ofTi, ii ) nodes with two or
more children, andiii ) nodes corresponding to strings inF . Note thatiii ) implies that all leaves are down
nodes. We will maintain the invariant that only for down nodes we have a pointer to the corresponding
nodes inTi�1. We call these nodes inTi�1 up nodes. The remaining nodes all have exactly one child and
are denotedcollapsible. Only non-collapsible nodes are stored explicitly. A collapsible path is a path where
all nodes are collapsible except for the first and the last node. Each collapsible path is stored as asuperedge.
To each super edgee connectingv and a descendedu in Ti we associate the start and the end indices of the
substring spanned bye, i.e., jSvj andjSuj. Finally we store the first4(6 + �R) signature powers alonge.
The stored signature powers guarantee that if the trie search in Ti as described in the previous section starts
at v then we have sufficient signatures stored alonge required by the search. Because collapsible nodes are
not stored we do not have to assign keys to these nodes,i.e., in each trieTi at mostO(jFj) nodes are stored
and have assigned keys.

To perform a search we proceed basically as described in the previous section, except that parts of the
trie structures must be expanded in the search (like the expansion of the search string) and that going fromTi to Ti�1 is more complicated because only down nodes have pointers tothe tries one level below. The
information we incrementally expand for the tries is the following. Assume that we have found the nodevi
in Ti which corresponds to the longest matching prefix withshrink i(s). We maintain the invariant that ifvi is a collapsible node, then we have a pointer to the super edgecontainingvi and we have expanded the6 + �R signatures aftervi in the collapsible path represented bye. To find the corresponding node inTi�1
there are two cases: Ifvi has a pointer we are done, otherwise we find the nearest ancestor down nodewi
of vi and follow the down pointer stored atwi. There are at most�R + 2 up nodes which must be visited
before the down node is reached.

¿From the reached node we can find the node inTi�1 corresponding tovi by expanding the prefix of the
signatures betweenwi andvi. If this node is implicitly represented by a super edgee0 we can expand the
signatures required by the search inTi�1 from the signatures we have expanded fore and from the explicit
stored signature power strings stored inTi�1 andTi. To handle signature powers we modify the arrays we
introduced in the previous section to only store pointers tonon-collapsed nodes,i.e., the arrays are sparse. To
match a signature power we then make a brute force linear search inO(�R) time to find the non-collapsed
node closest to the the longest matching prefix. If the linearsearch does not succeed we do an exponential
search to find the super edge containing the node corresponding to the longest matching prefix inTi�1. The
exponential search is only required once for every string. In total a new string can be inserted in to the tries
in totalO(log jsj�R) = O(log jsj) time.
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APPENDIX A. DETERMINISTIC BLOCK DECOMPOSITION

In this section we recall the deterministic block decomposition of Mehlhornet al. [23], which is based on
a three-coloring technique of Goldberget al. [17] which in turn is a generalization of a deterministic coin
tossing algorithm of Cole and Vishkin [5].

In this section we only consider strings fromN �. A string s is said to bek-colored if i) 0 � s[i℄ < k for
all i with 1 � i � jsj, andii) s is repetition-free,i.e., s[i℄ 6= s[i+1℄ for all i with 1 � i < jsj. A k-coloring
of anN -colored strings is ak-colored stringt with jtj = jsj.
Lemma 6 (Mehlhornet al. [23]). For every integerN there is a functionf : [�1::N � 1℄log�N+11 !f0; 1g such that for everyN -colored strings of lengthn, the stringd 2 f0; 1gn defined byd[i℄ :=f(~si�log�N�6; : : : ; ~si+4), where~sj = s[j℄ for all j with 1 � j � n and~sj = �1 otherwise, satisfies:

1. d[i℄ + d[i+ 1℄ � 1 for 1 � i < n ,
2. d[i℄ + d[i+ 1℄ + d[i+ 2℄ + d[i+ 3℄ � 1 for 1 � i < n� 3 ,

i.e., among two adjacentd[i℄’s there is at most one 1, and among four adjacentd[i℄’s there is at least one 1.
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Proof. Here we only give the constructive algorithm for generatingd. For the proof of correctness we refer
to [23].

The construction ofd proceeds in three phases. First a 6-coloring is constructed. In the second phase the
6-coloring is converted to a 3-coloring, which then in the third phase is used to constructd.

In the first phase we construct a sequence of coloringsX0;X1; : : : of s, whereX0 = s andXi for i > 0
is inductively defined by Xi[j℄ = � bit(Xi�1[j℄; 0) if j = 1 ,bit(Xi�1[j℄; p) + 2p otherwise,

wherep = minfqjbit(Xi�1[j℄; q) 6= bit(Xi�1[j � 1℄; q)g. It is straightforward to prove that ifXi is k-
colored thenXi+1 is (1+2blog k
)-colored, andXi[j℄ only is a function ofs[j� i::j℄. It follows that ifX0
isN -colored, thenX log�N+2 is 6-colored [23]. LetY 6 = X log�N+2 be the 6-coloring ofs.

In the second phase 5-, 4-, and 3-coloringsY 5, Y 4 andY 3 of s are constructed byY i[j℄ = � minf0; 1; 2g n fY i+1[j � 1℄; Y i+1[j + 1℄g if Y i+1[j℄ = i ,Y i+1[j℄ otherwise,

assumingY i+1[0℄ = Y i+1[n + 1℄ = 1. It is straightforward to prove thatY 3[j℄ only is a function ofY 6[j � 3; j + 3℄, i.e., of s[j � log�N � 5; j + 3℄.
Finally letd[j℄ = 1 if only if Y 3[j℄ is a local maximum. Formally,d[j℄ = � 1 if 1 < j < n andY 3[j � 1℄ < Y 3[j℄ > Y 3[j + 1℄ ,0 otherwise.

Again, it is straightforward to prove thatd[j℄ only is a function ofY 3[j � 1; j + 1℄, i.e., of s[j � log�N �6; j + 4℄.
Note that the algorithmic construction in the proof of Lemma6 requires time�(n log�N) to compute

the stringd (assumingXi[j℄ can be computed inO(1) time fromXi�1[j � 1::j℄). In Lemma 7 we prove
that the construction can be done in linear time, provided a small table has been precomputed.

Lemma 7. The construction ofd in Lemma 6 can be done inO(n) time, provided a table of sizeo(logN)
has been precomputed.

Proof. The construction proceeds exactly as in the proof of Lemma 6,except that we in linear time constructX log�N+2 directly fromX2, i.e.,X3; : : : ;X log�N+1 are not constructed. This reduces the total construction
time toO(n).

The computation ofXi[j℄ for i = 1; 2 can be done inO(1) time as follows. Letz = Xi�1[j �1℄ XOR Xi�1[j℄. Note thatp is the index of the first nonzero inz. Let z0 = ((z � 1) XOR z) AND z) = 2p.
Thenbit(Xi�1[j℄; p) = 1 if and only if Xi�1[j℄ AND z0 6= 0. The extraction ofp from z0 = 2p can be
done inO(1) time by either convertingz0 into a floating pointer number and extracting the exponent by
shifting [26], by a constant number of multiplications [16], or by a table lookup. See [16, 26] for further
discussion.

The elements ofX2 are onlyw = 2 + dlog logdlogNee bit integers andX log�N+2[j℄ depends only onX2[j � log�N::j℄, i.e., X log�N+2[j℄ is a function ofw(1 + log�N) bits. Letg denote this function. The
function g will be stored as a precomputed table of size2w(1+log�N) = o(logN). Because each entry ofg can be constructed in timeO((log�N)2) as in the proof Lemma 6, we have thatg can be constructed in
timeO((log�N)22w(1+log�N)) = o(logN) time.

In linear time we construct a strinĝX such thatX̂[i℄ corresponds to the concatenation of the bits in the
substringX2[i� log�N::i℄ byX̂[0℄ = X2[0℄ "w ORX2[0℄ ;X̂[i℄ = (X̂ [i� 1℄ "w ORX2[i℄) AND 1w(1+log�N) :
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Note that to mark the beginning of the string we prependX2[0℄ by itself. BecauseX2 is repetition-free this
representation is unique.

Finally,X log�N+2 is computed in timeO(n) from X log�N+2[i℄ = g(X̂ [i℄).
Lemma 6 can be used to construct the block decompositionen
blo
k (s) of anN -colored strings by

letting eachd[j℄ = 1 mark the beginning of a new blockbi, where the first block always containss[1℄.
Lemma 8. Let s be anN -colored string anden
blo
k (s) = b1 : : : bk the block decomposition ofs defined
above, then

1. 1 � b1 � 4, and2 � jbij � 4 for all 2 � i � k ,
2. k � djsj=2e .

APPENDIX B. SPLIT AND CONCATENATE

The implementation of SPLIT and CONCATENATE described below is similar to the implementation given
in Section 4.2 of [23], but the implicit representation of persistent strings implies that the implementation
details become very different. Lemma 9 below is an extensionof Lemma 11 in [23].

Lemma 9. Lets1; s2 ands3 = s1s2 be strings inF . Let integersD1i , D2i , I1i , andI2i be given byshrink i(s3) = prefD1i (shrink i(s1)) wi sufD2i (shrink i(s2)) ;
wherewi 2 E�, jwij = I1i + I2i , s1 is a prefix ofshrink i(s3)[::jshrink i(s1)j �D1i + I1i ℄, andD1i , D2i , andI1i are chosen as small as possible.

ThenD1i � �R+ 2, D2i � �L + 2, I1i � �R + 3, andI2i � �L + 1.

Proof. The proof is by induction. Fori = 0 the lemma trivially holds becauseD10 = D20 = Ii = 0.
For i > 0 considershrink i(s1). By the induction hypothesis at most a suffix of lengthD1i�1 ofshrink i�1(s1) can change when concatenatings1 and s2. Then at most a suffix of length1 + D1i�1

of pow i�1(s1) changes. The marking in the block decomposition ofpow i�1(s1) can then only be dif-
ferent in a suffix of length�R + 1 + D1i�1. Finally, only signatures inshrink i(s1) can change which
span a signature from the last2 + �R + D1i�1 signatures ofpow i�1(s1). We have the constraint that2(D1i � 1) � 1 +�R +D1i�1, implyingD1i � �R + 5=2, i.e., D1i � �R + 2.

Symmetrically it follows that at most a prefix ofpow i�1(s2) with lengthD2i�1 + 1 can change and the
markings at most change for a prefix of lengthD2i�1 + 1 + �L. The signatures inshrink i(s2) which can
change are the signatures spanning signatures from the prefix of pow i�1(s1) of lengthD2i�1 + 1 +�L. We
then get the constraint2(D2i � 2) � D2i�1 + 1 +�L � 2, implyingD2i � �L + 5=2, i.e., D2i � �L + 2.

If shrink i�1(s3) contains a new substringwi�1 of lengthI1i�1 + I2i�1 thenpow i�1(s3) contains a new
substring of length at most(1 + I1i�1) + (I2i�1 + 1) where the first term of each of the sums is the smallest
prefix of the substrings which can spans1[js1j℄. Thenwi at most spans this substring plus1+�R signatures
to the left of this string of which�R get new markings and the�L signatures to the right with new markings.
The following constraints follow2(I1i � 2) � �R + 1 + I1i�1 � 1 and2(I2i � 1) � I2i�1 + 1 + �L � 1,
implying I1i � �R + 7=2 andI2i � �L + 3=2, i.e., I1i � �R + 3 andI2i � �L + 1.

Lemma 10. CONCATENATE(s1; s2) can be supported in timeO((�L +�R) log(js1j+ js2j).
Proof. Using Lemma 9 we can computes3 = CONCATENATE(s1; s2) by only recomputing the encoding
of the concatenation of the the last�R + 2 signatures ofshrink i(s1) with the first�L + 2 signatures ofshrink i(s2). We do this by a recursive procedure that takes two argumentsx1 andx2. For the call at leveli of the encodings,x1 is the suffix ofshrink i(s1) of length�L +�R + 2 (or the complete signature string
if it is shorter) andx2 is the prefix ofshrink i(s2) of length�L +�R + 2 (or the complete signature string
if it is shorter), i.e., x1x2 contains the signature substring to be recomputed and the left and right contexts

13



which influence the block decompositions. Letx3 be the new encoding ofx1x2 which is a substring ofshrink i(s3). The procedure returnsx3.
If i = 0 then x3 = x1x2. Otherwise we compute the strings of signature powersy1 =Sig�1(en
blo
k�1(Sig�1(x1))) and y2 = Sig�1(en
blo
k�1(Sig�1(x2))), where jy1j; jy2j � 4(�L +�R+2). Fromy1 we remove the last�L +�R+2 signatures and fromy2 we remove the first�L +�R+2

signatures. Letx01 respectivelyx02 be the deleted signatures fromy1 andy2. Note thatx01 andx02 are the suffix
respectively the prefix ofshrink i�1(s1) andshrink i�1(s1) of length�L +�R + 2, andx1x2 = y1x01x02y2.
Fromx01 andx02 we recursively compute the new encodingx03. A string of signature powers is created by
concatenatingy1, x03 (by identifying signature powers) andy2. By applyingSig to the resulting string we
get a substringy3 of pow i�1(s3). Let z = Sig(en
blo
k (y3)), thenz = x1x2. Because of the neighbor-
hood dependence of the block decomposition, the prefix and the suffix of z may differ with the encoding
of shrink i(s3). By recycling the block decomposition given bypref�R�2(x1) andsuf�L+2(x2), which by
Lemma 9 should remain invariant under the concatenation, wecan constructx3.

By Lemma 7 the total time required for each of theO(log(js1j+ js2j)) levels of the recurrence isO(�L +�R).
Lemma 11. SPLIT(s; i) can be supported in timeO((�L +�R) log jsj).
Proof. Let s1 = s[::i� 1℄ ands2 = s[i::℄. For levelj, let ij denote the index such thatshrink j(s)[ij ℄ spanss[i� 1℄. Notei0 = i� 1.

The implementation of SPLIT(S; i) is a recursive procedure that for each levelj computes a suffix ofshrink j(s1) and a prefix ofshrink j(s2). The procedure for levelj takes three argumentsx1, x2, and`,
such thatx1 = shrink j(s)[ij � �R � 2 � �L::ij ℄, x2 = shrink j(s)[ij + 1::ij + �L + 1 + �R℄, and` = jshrink j(s)[::ij ℄j, i.e., x1x2 by Lemma 9 spans the substring of signatures that need to be recomputed
plus�L signatures to the left and�R signatures to the right of this substring. The procedure returnsy1 andy2 such thaty1y2 = x1x2 andy1 is the suffix ofshrink j(s1) andy2 is the prefix ofshrink j(s2).

If j = 0, theny1 = x1 andy2 = x2. Otherwise computez1 = Sig�1(en
blo
k�1(Sig�1(x1))) andz2 = Sig�1(en
blo
k�1(Sig�1(x2))), wherejz1j � 4(�L +�R + 3) andjz2j � 4(�L +�R + 1). Move
the rightmost signatures ofz1 which only span substrings ofs2 to z2. At most 4 signature powers need to be
moved, where part of the last signature power may need to remain part ofz1. Let z3 denote the signatures
moved fromz1 to z2. Then letl0 = `� jz3j. Delete fromz1 the rightmost�R + 3 +�L signatures, and letx01 denote the deleted substring. Delete fromz2 the rightmost�R + 1 + �L signatures, and letx02 denote
the deleted substring. Notex1x2 = z1x01x02z2 and`0 = jshrink j�1(s)[::ij ℄j.

We can now for leveli � 1 call the procedure recursively withx01; x02 and `0. Let y01 and y02 be the
returned signatures strings. Thenx1x2 = z1y01y02z2. Let z01 andz02 be the strings of signature powers given
by z01 = z1y01 andz02 = y02z2. Similar to CONCATENATE we can now applyen
blo
k to find the block
decomposition ofz01 andz02. By combining the result with the block decomposition givenby pref�R�3(x1)
andsuf�L+1(x2) and applyingSig we findy1 andy2.

By Lemma 7 the total time required for each of theO(log jsj) levels of the recurrence isO(�L+�R).
APPENDIX C. LONGEST COMMON PREFIX OF TWO STRINGS

Lemma 12. Given two stringss1 and s2, LCPREFIX(s1; s2) and COMPARE(s1; s2) can be supported
in O(log n) time, and LCSUFFIX(s1; s2) can be supported in timeO(log n log�N), where n =maxfjs1j; js2jg.
Proof. To compute LCPREFIX(s1; s2) we compute l
p(s1; s2). The search for l
p(s1; s2) is
done top-down on the signature encodings ofs1 and s2 such that l
p(pow i(s1); pow i(s2)) andl
p(shrink i(s1); shrink i(s2)) are identified for alli = 0; 1; : : : ;minfh(s1); h(s2)g. If we find thatpow i(sj) = l
p(pow i(s1); pow i(s2)) or shrink i(sj) = l
p(shrink i(s1); shrink i(s2)) for j = 1 or 2,
we havesj = l
p(s1; s2) and the search terminates.
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The basic abstract steps of thel
p computation are the following. Assumè =jl
p(shrink i(s1); shrink i(s2))j has been found and let`0 be given byshrink i(s1)[::`℄ = pow i�1(s1)[::`0℄.
In a linear search find the smallestj � `0 such thatpow i�1(s1)[j + 1℄ 6= pow i�1(s2)[j + 1℄.
Then jl
p(pow i�1(s1); pow i�1(s2))j = j. Let (�1; `1) = Sig�1(pow i�1(s1)[j + 1℄) and(�2; `2) = Sig�1(pow i�1(s2)[j + 1℄). Thenjl
p(shrink i�1(s1); shrink i�1(s2))j = � j if �1 6= �2 ,j +minf`1; `2g otherwise.

We first prove that the linear search only comparesO(�R) signatures. Assume thatj0 = j�`0 � 5+�R,
i.e., pow i�1(s1)[::l0 + 5 +�R℄ = pow i�1(s2)[::l0 + 5 +�R℄. But then the marking produced by Lemma 6
of pow i�1(s1)[::l0 + 5℄ andpow i�1(s2)[::l0 + 5℄ are identical. This implies that the block decomposition ofpow i�1(s1)[`0+1::l0+5℄ andpow i�1(s2)[`0+1::l0+5℄ are identical, andshrink i(s1)[`+1℄ = shrink i(s2)[`+1℄ contradicting the assumption that` = jl
p(shrink i(s1); shrink i(s2))j. We concludej0 � 4 +�R.

We now give a recursive implementation of LCPREFIX. For each leveli we will not computè explicitly
but only the following three valuesmi = jl
p(shrink i(s1); shrink i(s2))jxi = shrink i(s1)[`+ 1::`+K℄yi = shrink i(s2)[`+ 1::`+K℄
whereK = 6 +�R andm0 = jl
p(s1; s2)j. Note that by definitionxi[1℄ 6= yi[1℄, provided that the search
has not terminated becauses1 or s2 is equal tol
p(s1; s2). Let x0 = Sig�1(xi) andy0 = Sig�1(yi). Note
that j0 = jl
p(x0; y0)j � 4 + �R, (�1; `1) = Sig�1(x0[j0 + 1℄), and(�2; `2) = Sig�1(y0[j0 + 1℄). Letd = minf`1; `2g if �1 = �2, otherwise letd = 0. We can now computemi�1, xi�1 andyi�1 bymi�1 = mi + jl
p(x0; y0)j+ dj�1jxi�1 = takeK((�1; `1 � d)Sig�1(x0[j0 + 2::K℄))yi�1 = takeK((�2; `2 � d)Sig�1(y0[j0 + 2::K℄)) ;
where takeK returns the firstK signatures from a string of signature powers. If the signature powers
represent less thanK signatures,takeK just returns these signatures. To prove that the constructed xi�1 andyi�1 are the required strings there are two cases to consider. Ifjxij < K thenxi�1 is the required string. Ifjxij = K then observe thatjx0j � 2K � 1 and at most(4+�R)+ 1 signatures fromx0 can be matched. We
get the constraint 2K � 1� 5��R � K ;
which is satisfied forK � 6 +�R. Foryi the argument is similar.

Assume w.l.o.g. thats1 6= s2. If the signature encodings ofs1 ands2 have equal height, then the initial
values of the search ismh = 0, andxh andyh are the two root signatures, otherwise we first expand and
applytakeK to the top levels of the highest tree to reach equal height.

When the recursion reaches the leaf level, we have found the position wheres1 ands2 differs, andx0[1℄
andy0[1℄ contain the two characters. By comparing the two characterswe find lexicographical ordering ofs1 ands2. We conclude that LCPREFIX and COMPARE can be done inO(�R logn) time.

The implementation of LCSUFFIX is identical to LCPREFIX except that the expansion and comparison
of signature strings in done from the right. The difference is thatjl
s(x0; y0)j � 3 + �L and we have the
constraint2K � 1 � 4 � �L � K, implying that it is sufficient to havek � 5 + �L when computing
LCSUFFIX. It follows that LCSUFFIX can be done inO(�L log n) time.
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FIGURE 1. The signature encoding of a string of length 54 drawn as a tree, where the
signatures11 = Sig([6; 7℄), 17 = Sig([5; 7; 5; 8℄), 18 = Sig(91) and25 = Sig(105).
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FIGURE 2. The computation of LCPREFIX of two strings.
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FIGURE 3. ForF = ft1; t2g ands, the longest matching prefix ofshrink i(s) with a string
from F is with t2 for i = 0 and witht1 for i = 0.
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