
Algorithmica
DOI 10.1007/s00453-011-9499-0

On Space Efficient Two Dimensional Range Minimum Data
Structures

Gerth Stølting Brodal · Pooya Davoodi ·
S. Srinivasa Rao

March 18, 2011

Abstract The two dimensional range minimum query problem is to preprocess a
staticm by n matrix (two dimensional array)A of sizeN = m· n, such that subse-
quent queries, asking for the position of the minimum element in a rectangular range
within A, can be answered efficiently. We study the trade-off betweenthe space and
query time of the problem. We show that every algorithm enabled to accessA during
the query and using a data structure of sizeO(N/c) bits requiresΩ(c) query time,
for anyc where 1≤ c≤ N. This lower bound holds for arrays of any dimension. In
particular, for the one dimensional version of the problem,the lower bound is tight
up to a constant factor. In two dimensions, we complement thelower bound with an
indexing data structure of sizeO(N/c) bits which can be preprocessed inO(N) time
to supportO(clog2c) query time. Forc= O(1), this is the firstO(1) query time algo-
rithm using a data structure of optimal sizeO(N) bits. For the case where queries can
not probeA, we give a data structure of sizeO(N ·min{m, logn}) bits withO(1) query
time, assumingm≤ n. This leaves a gap to the space lower bound ofΩ(N logm) bits
for this version of the problem.

Keywords Range minimum query, Cartesian tree, Time-space trade-off, Indexing
model, Encoding model

1 Introduction

In this paper, we study time-space trade-offs for the two dimensional range mini-
mum query problem (2D-RMQ). The input is anm by n matrix (two dimensional

Gerth Stølting Brodal· Pooya Davoodi
MADALGO (Center for Massive Data Algorithmics, a Center of the Danish National Research Founda-
tion), Department of Computer Science, Aarhus University,IT Parken,Åbogade 34, DK-8200̊Arhus N,
Denmark E-mail:{gerth,pdavoodi}@cs.au.dk

S. Srinivasa Rao
School of Computer Science and Engineering Seoul National University, 599 Gwanakro, Gwanak-Gu,
Seoul 151-744, S. Korea E-mail: ssrao@cse.snu.ac.kr

2

array) A of total of N = m · n elements from a totally ordered set. A query asks
for the position of the minimum element in a query rangeq= [i1 · · · i2]× [j1 · · · j2],
where 1≤ i1 ≤ i2 ≤ m and 1≤ j1 ≤ j2 ≤ n, i.e., RMQ(A,q) = argmin(i, j)∈qA[i, j].
W.l.o.g., we assume thatm≤ n and that all the entries ofA are distinct (identical
entries ofA are ordered lexicographically by their index).

Applications.The 2D-RMQ problem has applications in computer graphics, image
processing (e.g., finding the lightest/darkest point in a range; dilate/erode filters),
computational Biology (e.g., finding min/max number in an alignment tableau; genome
sequence analysis), and databases (e.g., range min/max query in OLAP data cubes
[25]). The 1D-RMQ problem has applications in e.g., range queries [28], text in-
dexing [1,16,26], text compression [11], document retrieval [24,27,30], flowgraphs
[19], and position-restricted pattern matching [22].

Näıve structures.A naı̈ve solution for the RMQ problem is to perform a brute force
search through all the entries of the query in worst caseΘ(N) time. Preprocess-
ing A can reduce the query time. A naı̈ve preprocessing is to storethe answers to
all theO(N2) possible queries in a lookup table of sizeO(N2 logN) bits. The query
time becomesO(1) with no probe intoA.

The focus of this paper is to study the time-space trade-offsbetween the space
usage of the data structure and the query time in the two settings, where the query
algorithm can access the input arrayA and where the query algorithm do not have
access toA.

1.1 Previous Work

1.1.1 One Dimensional RMQ.

The 1D-RMQ problem is the special case of the two dimensionalversion wherem= 1.
It has been studied extensively. Several solutions achieveO(1) query time using a data
structure of sizeO(nlogn) bits, by transforming RMQ queries into lowest common
ancestor (LCA) queries [2] on theCartesian tree[31] of A, see [17,21,29,9,7]. Al-
strup et al. [3] solved the problem with the same bounds but without using Cartesian
trees. Sadakane [27] gave the firstO(n)-bit structure for the problem. In particular, his
structure has size 4n+o(n) bits, achievesO(1) query time, and moreover its query
algorithm does not accessA during the query. Later, Fischer and Heun [15] improved
the problem by presenting a structure of size 2n+o(n) bits with O(1) query time,
while its query algorithm accesses the input. Their structure uses a Cartesian tree but
makes no use of the LCA structure, and gives a simple solutionfor the static LCA
problem1. Recently, Fischer [13] gave another structure of size 2n+o(n) bits, where
its O(1)-time query algorithm does not access the input. He introduced a new data
structure named 2d-Min-Heap instead of using the Cartesiantree. Table 1 summarizes
these results along with the results of this paper.

1 Fischer and Heun [15] claim a 2n−o(n) bits lower bound for the size of the data structure, however
their proof is incorrect which, e.g., follows from Theorem 2.

3

Table 1 Results for the 1D-RMQ problem for an input array ofn elements. The parameterc is an integer,
where 1≤ c≤ n. The term|A| denotes the size of the inputA in bits. The results that|A| is included in their
space bound, construct a data structure of size smaller than|A|, althoughA is also stored and their query
algorithm requiresA. The last line is a lower bound result.

Reference
Using Using LCA

Space (bits) Query TimeCartesian tree
[17,21,29,9,7] Yes Yes O(nlogn) O(1)

[3,14] No No O(nlogn) O(1)
[27] Yes Yes 4n+o(n) O(1)
[15] Yes No 2n+o(n)+ |A| O(1)
[13] No Yes 2n+o(n) O(1)

Theorem 2 Yes Yes O(n/c)+ |A| O(c)

Theorem 1 - - O(n/c)+ |A| Ω (c)

1.1.2 Multidimensional RMQ.

Gabow et al. [17] considered a problem where the input is ad-dimensional point
set containingN points and the query is finding the point with minimum value in
a rectangular range. They utilized the range trees [8] to make a data structure of
sizeO(N logd N) bits in O(N logd−1N) preprocessing time to achieveO(logd−1N)
query time. Their structure can be used to solve thed-dimensional RMQ problem
by mapping theN elements of the input array toN points in ad-dimensional grid.
Chazelle and Rosenberg [10] gave a data structure for the Partial-sums problem in
a multidimensional array ofN elements. Since their structure is in the semigroup
model, it also solves thed-dimensional RMQ problem in the semigroup model.
Their structure has sizeO(M logN) bits, constructed inO(M) preprocessing time,
and achievesO((α(M,N))d) query time for anyM, whereM ≥ 14dN, andα(M,N) is
the functional inverse of Ackermann’s function. Amir et al.[4] considered the two di-
mensional version of the problem. They presented a data structure of sizeO(kNlogN)

bits constructed inO(N log(k+1)N) preprocessing time, which achievesO(1) query
time for anyk > 1, where log(k+1)N is the result of applying the log functionk+1
times onN. Recently, Atallah and Yuan [5] gave the first linear time preprocess-
ing algorithm ford-dimensional RMQ. Their structure has sizeO(N logN) bits and
achievesO(1) query time.

Demaine et al. [12] proved that the number of differentn by n 2D-RMQ matrices
is Ω((n

4!)n/4), where two 2D-RMQ matrices are considered different only iftheir
range minima are in different locations for some rectangular range. For the 2D-RMQ
problem, if the query algorithm cannot access the input matrix, the above bound im-
plies a lower bound ofΩ(n2 logn) for both the number of preprocessing comparisons
and the number of bits required for the data structure.

Table 2 summarizes the above results along with the results of this paper.

1.2 Our Results

We consider the 2D-RMQ problem in the following two models: 1) indexing model
in which the query algorithm has access to the input matrix inaddition to the data

4

Table 2 Results for the 2D-RMQ problem for anm by n input matrix, wherem·n = N, andm≤ n. The
parameterc is an integer, where 1≤ c≤ n. The lower bound of [12] is for ann by n input matrix, where
n2 = N. The processing time of [10] is for anyM, whereM ≥ 142 ·N. The term|A| denotes the size of the
input matrixA in bits. The results that include|A| in their space bound, store|A| and their query algorithms
accessA. The contributions of [17,10,5] and Theorem 1 can be generalized to the multidimensional version
of the problem. The last three lines are lower bound results.

Reference Query time Space (bits) Preprocessing time
[17] O(logN) O(N log2 N) O(N logN)

[10] O((α(M,N))2) O(M logN) O(M)

[4] O(1) O(kNlogN) O(N log(k+1) N)
[5] O(1) O(N logN) O(N)

Theorem 3 O(1) O(N)+ |A| O(N)

Theorem 4 O(clog2 c) O(N/c)+ |A| O(N)
Section 3.1 O(1) O(N ·min{m, logn}) O(N)

Theorem 1 Ω (c) O(N/c)+ |A| -
[12] - Ω (n2 logn) (m= n) -

Theorem 5 - Ω (N logm) -

structure constructed by preprocessing the input. In this case, the data structure is
called anindex, and its size is referred to as theadditional space; and 2)encoding
modelin which the query algorithm has no access to the input matrixand can only
access the data structure constructed by preprocessing theinput. In this case, the data
structure is called anencoding2.

In the indexing model, we initiate the study of the trade-offbetween the query
time and the additional space for the 2D-RMQ problem. We prove the lower bound
trade-off thatΩ(c) query time is required if the additional space isO(N/c) bits, for
anyc where 1≤ c≤ N. The proof is in a non-uniform cell probe model [23] which is
more powerful than the indexing model. Our lower bound proofis similar to the proof
of Theorem 3.1 of Golynski [20]. We complement the lower bound with an upper
bound trade-off: using an index of sizeO(N/c) bits we can achieveO(clog2c) query
time. Note that, for the time-space product, there remains agap of log2c between
the upper and lower bounds. For the indexing model, this is the firstO(N)-bit index
which answers queries inO(1) time.

In the encoding model, the only earlier result on the 2D-RMQ problem is the
information-theoretic lower bound of Demaine et al. [12] who showed a lower bound
of Ω(N logn) bits for n by n matrices. We generalize their result tom by n (rectan-
gular) matrices to show a lower bound ofΩ(N logm) bits, assumingm≤ n. We also
present an encoding structure of sizeO(N ·min{m, logn}) bits withO(1) query time.
Note that the upper and lower bounds are not tight for non-constantm= no(1): the
lower bound states that the space requirement per element isΩ(logm) bits, whereas
the upper bound requiresO(min{m, logn}) bits per element.

2 Gál and Miltersen [18], and Fischer [13] suggest the names systematic and non-systematic schemes
for the indexing and the encoding models respectively.

5

110111111111111111 111111111111111011111111110111111111

110111111111111111 111111111111111011111101111111111111

c

· · ·

· · ·

q2

Fig. 1 Two arrays fromC , each one hasn/c blocks. In this examplec= 18. The queryq2 has different
answers for these arrays.

2 Indexing Model

2.1 Lower Bound

In the indexing model, we prove a lower bound for the query time of the 1D-RMQ
problem where the input is a one dimensional array ofn elements, and then we show
that the bound also holds for the RMQ problem in any dimension. The proof is in the
non-uniform cell probe model [23]. In this model, computation is free, and time is
counted as the number of cells accessed (probed) by the queryalgorithm. The algo-
rithm is also allowed to be non-uniform, i.e., for differentvalues of input parametern,
we can have different algorithms.

For integersn andc, where 1≤ c ≤ n, we define a set of arraysC , and a set
of queriesQ. W.l.o.g., we assume thatc dividesn. We will argue that for any 1D-
RMQ algorithm which has access to an index of sizen/c bits (in addition to the
input arrayA), there exists an array inC and a query inQ for which the algorithm
performsΩ(c) probes intoA.

Definition 1 Let n andc be two integers, where 1≤ c≤ n andc dividesn. The setC
contains the arraysA[1· · ·n] such that the elements ofA are from the set{0,1}, and
in each blockA[(i −1)c+1· · · ic] for all 1≤ i ≤ n/c, there is exactly a single zero
element (see Fig. 1).

The number of possible data structures of sizen/c bits is 2n/c, and the number of
arrays inC is cn/c. By the pigeonhole principle, for any algorithmG there exists a
data structureDG which is shared by at least(c

2)
n/c input arrays inC . Let CDG

⊆ C

be the set of these inputs.

Definition 2 Let qi = [(i−1)c+1· · · ic]. The setQ = {qi | 1≤ i ≤ n/c} containsn/c
queries, each covering a distinct block ofA.

For algorithmG and data structureDG , we define a binary decision tree capturing
the behavior ofG on the inputs fromCDG

to answer a queryq∈ Q.

Definition 3 Let G be a deterministic algorithm. For each queryq∈ Q, we define a
binary decision treeTq(DG). Each internal node ofTq(DG) represents a probe into a
cell of the input arrays fromCDG

. The left and right edges correspond to the output
of the probe: left for reading a zero and right for reading a one. Each leaf is labelled
with the answer toq, i.e., the position of the zero within the block covered byq.

6

Tqn/c
(DG)

composing

j1, j2, · · · , jn/c

pn/c

label of pn/c:

pn/c

p2

j1

p1

p2

p1

Tq1(DG)

Tq2(DG)

j2

jn/c

Fig. 2 Composing then/c decision trees to obtain the large decision treeTQ(DG). Each leaf is labeled
with a vector of positions of zeros in the input.

For each algorithmG , we have definedn/c binary trees depicting the probes of
the algorithm into the inputs fromCDG

to answer then/c queries inQ. Note that
the answers to all thesen/c queries uniquely determine the input. We compose all
then/c binary trees into a single binary treeTQ(DG) in which every leaf determines
a particular input. To obtainTQ(DG), we first replace each leaf ofTq1(DG) with the
whole Tq2(DG), and then replace each leaf of the obtained tree withTq3(DG), and
so on (see Fig. 2). Every leaf ofTQ(DG) is labelled with the answers to all then/c
queries inQ which were replaced on the path from the root to the leaf. Every two
input arrays inCDG

correspond to different leaves ofTQ(DG). Otherwise the answers
to all the queries inQ are the same for both the inputs which is a contradiction.
Therefore, the number of leaves ofTQ(DG) is at least(c

2)
n/c, the minimum number

of inputs inCDG
.

We next pruneTQ(DG) as follows: First we remove all nodes not reachable by any
input fromCDG

. Then we repeatedly replace all nodes of degree one with their single
child. Since the inputs fromCDG

correspond to only reachable leaves, the number
of leaves becomes equal to the number of inputs fromCDG

which is at least(c
2)

n/c.
Note that the result of arepeatedprobe is known already, because the probe has been
performed before. Therefore, before pruning, one child of the node corresponding to
a repeated probe is unreachable, and after pruning where allthe unreachable nodes
are pruned, there is no repeated probe on a root to leaf path. Every path from the root
to a leaf has at mostn/c left edges (zero probes), since the number of zero elements
in each input fromC is n/c. Each of these paths represents a binary sequence of
length at mostd containing at mostn/c zeros, whered is the depth ofTQ(DG) after
pruning. By padding each of these sequences with further 0s and 1s, we can ensure
that each sequence has length exactlyd+n/c and contains exactlyn/c zeros. The
number of such binary sequences is

(d+n/c
n/c

)

, which becomes an upper bound for the
number of leaves in the tree after prunning.

7

Lemma 1 For all n and c, where1≤ c≤ n, the worst case number of probes required
to answer a query inQ over the inputs fromC using a data structure of size n/c bits
is Ω(c).

Proof First, we prove a lower bound ford, the depth ofTQ(DG) after pruning. Then,
we divide the lower bound byn/c, the number of binary trees, to prove the lower
bound for the number of probes.

In the above discussion, we obtained the following upper bound for the number
of leaves ofTQ(DG) after pruning.

(

d+ n
c

n
c

)

=
(d+ n

c)!

(n
c)! · (d+

n
c −

n
c)!

≤
(d+ n

c)
(n

c)

(n
c)!

.

Comparing this upper bound with the lower bound for the number of leaves ofTQ(DG),
we have

(c
2

)n/c
≤

(d+ n
c)

(n
c)

(n
c)!

.

By Stirling’s formula, we obtain the following:

c
2
≤

(d+ n
c)e

n
c

,

and therefored ≥ n(1
2e −

1
c). For any arbitrary algorithmG , the depthd of TQ(DG)

is at most the sum of the depths of then/c binary trees composed intoTQ(DG). By
the pigeonhole principle, there exists an inputx∈ CDG

and ani, where 1≤ i ≤ n/c,
such that the queryqi on x requires at leastd/(n/c) = Ω(c) probes into the array
maintaining the input. ⊓⊔

Theorem 1 Any algorithm that uses N/c bits additional space to solve the RMQ
problem for an input array of size N (in any dimension), requiresΩ(c) query time,
for any c, where1≤ c≤ N.

Proof Lemma 1 gives the lower bound for the 1D-RMQ problem. The proof for
the 2D-RMQ is a simple extension of the proof of Lemma 1. The set C consists of
matrices, each composed ofmn/c submatrices[ic1+1· · ·(i+1)c1]× [jc2+1· · · (j +
1)c2] of sizec1 by c2, for 1≤ i < m/c1 and 1≤ j < n/c2, wherec= c1 ·c2 (w.l.o.g.,
assuming thatc1 dividesm, andc2 dividesn). Each submatrix has exactly one zero
element, and all the others are one. There areN/c queries inQ, each one asks for
the minimum of each submatrix. As in the proof of Lemma 1, we can argue that
there exists a query requiringΩ(c) probes by utilizing the methods of decision trees,
composing and pruning them, and bounding the number of leaves. The proof can be
generalized straightforwardly to higher dimensional versions of the RMQ problem.

⊓⊔

The following theorem shows that the lower bound result of Theorem 1 is optimal
for the 1D-RMQ problem.

8

qℓ

qm

qr

q

1 n/c

block minima

Fig. 3 The input is partitioned inton/c blocks of sizec. The 1D-RMQ encoding structureD of sizeO(n/c)
bits is built for the list of the block minima. The queryq is divided into three subqueriesqℓ, qm, andqr .

Theorem 2 The 1D-RMQ problem for a one dimensional input array of size nis
solved in O(n) preprocessing time and optimal O(c) query time using O(n/c) addi-
tional bits.

Proof Partition the input array inton/cblocks of sizec. Construct a 1D-RMQ encod-
ing structureD for the list ofn/c block minima (minimum elements of the blocks)
in O(n/c) bits [27]. The query is decomposed into three subqueriesqℓ, qm, andqr

(see Fig. 3). The subqueryqm contains all the blocks fully spanned by the query. To
solveqm, we first find the block containing the answer by querying the data structure
D in O(1) time, and then scan that block inO(c) time to find the answer. Each of the
subqueriesqℓ andqr , which is contained within a single block, is answered inO(c)
time by scanning the respective block. ⊓⊔

2.2 Linear Space Optimal Data Structure

2.2.1 Preliminaries

We introduce some terminology that we use to describe an indexing data structure for
the 2D-RMQ problem in the following sections. Ablock is a rectangular range in a
matrix. LetB be a block of sizem′ by n′. For the blockB, the list MinColList[1· · ·n′]
contains the minimum element of each column ofB and MinRowList[1· · ·m′] con-
tains the minimum element of each row ofB. For integerℓ where 1≤ ℓ ≤ m′/2,
let TopSuffixes(B, ℓ) be the set of blocksB[m′/2− iℓ+ 1· · ·m′/2]× [1· · ·n′], and
BottomPrefixes(B, ℓ) be the set of blocksB[m′/2+1· · ·m′−(i−1)ℓ]× [1· · ·n′], for 1≤
i ≤ m′/(2ℓ) (w.l.o.g., assuming that 2ℓ dividesm′).

2.2.2 Data Structure and Querying

In the following, we present an indexing data structure of size O(N) bits achiev-
ing O(1) query time to solve the 2D-RMQ problem for anm by n input matrixM of
sizeN = m·n. The basic idea of the construction is to solve the problem with four
levels of recursion, reducing the queries to subqueries of size log logm by log logn,
which are solved by a tabulation idea of Atallah and Yuan [5].We partition the in-
put matrixM into m/ logm blocksB = {b1, . . . ,bm/ logm} of size logm by n by cut-
ting the input matrix at every logm’th row. If a query is contained in a blockbi , the
problem is solved recursively for this block. Otherwise, the queryq is divided into

9

subqueriesq1, q2 andq3 such thatq1 is contained inb j andq3 is contained inbk,
andq2 spans overb j+1, . . . ,bk−1 vertically, where 1≤ j < k≤ m/ logm (see Fig. 4).
Sinceq1 andq3 are range minimum queries in the submatricesb j andbk respectively,
they are answered recursively. The subqueryq2 is handled as described below. Lastly,
the answers toq1, q2 andq3, which are indices into three matrix elements, are used
to find the index of the smallest element inq.

A binary tree structure is utilized to answerq2. This binary tree hasm/ logm
leaves, one for each block inB. W.l.o.g., we assume thatm/ logm is a power of 2.
Each leaf maintains a 1D-RMQ structure [27] for MinColList of its corresponding
block bi . Each internal nodev with 2k leaf descendants corresponds to a subma-
trix M composed of 2k consecutive blocks ofB, for 1≤ k≤ m/(2logm). These
2k blocks correspond to the 2k leaf descendants ofv. Note that each of the sets
TopSuffixes(M, logm) and BottomPrefixes(M, logm) containsk blocks. For each of
these 2k blocks, the internal nodev stores a 1D-RMQ structure that is constructed for
the MinColList of the block.

We also construct a 1D-RMQ structure for each of the rows and columns of the
input matrixM.

In the binary tree structure, letp be the lowest common ancestor of the leaves
corresponding tob j+1 andbk−1, and letM be the submatrix corresponding top. The

subqueryq2 is composed of the top partq↑2 and the bottom partq↓2, whereq↑2 andq↓2 are
two blocks in the sets TopSuffixes(M, logm) and BottomPrefixes(M, logm), respec-
tively. Two of the 1D-RMQ structures maintained inp, are constructed for MinColLists
of q↑2 andq↓2. These 1D-RMQ structures are utilized to find two columnsc↑ andc↓

containing the answer toq↑2 andq↓2. The 1D-RMQ structures constructed for these

two columns are utilized to find the answer toq↑2 andq↓2. Then the answer toq2 is

determined by comparing the smallest element inq↑2 andq↓2.
In the second level of the recursion, each block ofB is partitioned into blocks of

size logmby logn. The recursion continues for two more levels until the size of each
block is log logm by loglogn. In the binary tree structures built for all the four re-
cursion levels, we construct the 1D-RMQ structures for the appropriate MinColLists
and MinRowLists respectively. The blocks that are used to make MinRowLists are
defined similarly to TopSuffixes and BottomPrefixes, but for left suffixes and right
prefixes respectively. In the second and fourth levels of recursion, where the binary
tree structure gives two rows containing the minimum elements ofq↑2 andq↓2, the 1D-

RMQ structures constructed for the rows of the matrix are used to answerq↑2 andq↓2.
Similar to the first level of the recursion, in the third level, where the binary tree struc-
ture gives two columns containing the minimum elements ofq↑2 andq↓2, the 1D-RMQ

structures constructed for the columns of the matrix are used to answerq↑2 andq↓2.

We solve the 2D-RMQ problem for a block of size loglogmby loglogn using the
table lookup method given by Atallah and Yuan [5]. Their method preprocesses the
block by making at mostc′G comparisons, for a constantc′, whereG = loglogm·
loglogn, such that any 2D-RMQ can be answered by performing four probes into
the block. Each block is represented by ablock typewhich is a binary sequence of
lengthc′G, encoding the results of the comparisons. The lookup table has 2c

′G rows,

10

p

q1

q
↑
2

q
↓
2

q3

q2

bj

bk

c↑ c↓M

log log n

log log m

1

2

2

3

33

3

4 4

445

5

5

log m

log n

micro block

5

Fig. 4 Top: Partitioning the input and building the binary tree structure. The nodep is the LCA of the
leaves corresponding tobj+1 andbk−1. The columnsc↑ andc↓, which contain the answers toq↑2 andq↓2
respectively, are found using the 1D-RMQ structure stored in p. The minimum element in each of the
columnsc↑ andc↓ is found using the 1D-RMQ structure constructed for that column. Bottom: The numbers
1,2,3,4, and 5 on the subqueries depict the recursion level that answer the corresponding subqueries.

one for each possible block type, andG2 columns, one for each possible query within
a block. Each cell of the table contains four indices to address the four probes into the
block. The block types of all the blocks of sizeG in the matrix are stored in another
tableT. The query within a block is answered by first recognizing theblock type
usingT, and then checking the lookup table to obtain the four indices. Comparing
the results of these four probes gives the answer to the query. For further details, we
refer the reader to [5].

Theorem 3 The 2D-RMQ problem for an m by n matrix of size N= m·n is solved
in O(N) preprocessing time and O(1) query time using O(N) bits additional space.

Proof We first consider the query time. The subqueryq2 is answered inO(1) time
by using a constant query time LCA structure [6], querying the 1D-RMQ structures
in constant time [27], and performingO(1) probes into the input matrix. The number
of recursion levels is four, and for each level, we perform atmost four recursive
subqueries (see Fig. 4). In the last level, the subqueries contained in blocks of sizeG
are also answered inO(1) time by using the lookup table and performingO(1) probes
into the matrix. Therefore the queryq is answered in totalO(1) time.

11

We bound the space of the data structure as follows. The depthof the binary tree,
in the first recursion level, isO(log(m/ logm)). Each level of the tree hasO(m/ logm)
1D-RMQ structures for MinColLists of sizen elements. Since a 1D-RMQ struc-
ture of a list ofn elements is stored inO(n) bits [27], the binary tree can be stored
in O(n ·m/ logm· log(m/ logm)) = O(N) bits. Since the number of recursion lev-
els isO(1), the binary trees in all the recursion levels are stored inO(N) bits. The
space used by them+n 1D-RMQ structures constructed for the columns and rows
of M is O(N) bits. SinceG = o(logN), thenG ≤ c′′ logN for any constantc′′ >
0, and sufficiently largeN. We can therefore bound the size of the lookup table
by O(2c′c′′ logNG2 logG) = o(N) bits whenc′′ < 1/c′. The size of tableT is O(N/G ·

log(2c′G)) = O(N) bits. Hence the total additional space isO(N) bits.
Finally, we consider the preprocessing time. In the binary tree, in the first level of

the recursion, each leaf maintains a 1D-RMQ structure constructed for a MinColList
of sizen elements. Thesem/ logm lists are constructed inO(N) time by scanning
the whole matrix. Each MinColList in the internal nodes is constructed by comparing
the elements of two MinColLists built in the lower level inO(n) time. Therefore
constructing these lists, for the whole tree, takesO(N+n·m/ logm· log(m/ logm)) =
O(N) time. Since a 1D-RMQ structure can be constructed in linear time [27], the 1D-
RMQ structures in all the nodes of the binary tree are constructed in totalO(N) time.
The LCA structure is also constructed in linear time [6]. Therefore the binary tree is
built in O(N) time. Since the number of recursion levels isO(1), all the binary trees
are built inO(N) time. The lookup table and tableT are also constructed inO(N)
time, see Sections 3.2 and 5 in [5]. ⊓⊔

Corollary 1 The query algorithm performs at most 38 probes into the inputto solve
the query.

Proof As shown at the top of Fig. 4, the subqueryq2 is answered by comparing the
smallest elements inq↑2 andq↓2. To find these two smallest elements, the algorithm
performs two probes into the input. For each of the subqueries solved in different
recursion levels, shown at the bottom of Fig. 4, at most two probes are performed.
As described earlier, to solve the subqueries contained in blocks of size loglogm
by loglogn, four probes are performed. Therefore, the total number of probes in the
recursion levels is the sum: 2+2 ·2+4 ·2+4·2+4·4= 38. ⊓⊔

2.3 Space Time Trade-off Data Structure

We now describe how to use the data structure of Section 2.2 toachieve a trade-
off between the additional space usage and the query time. Wepresent an indexing
data structure of sizeO(N/c · logc) bits additional space solving the 2D-RMQ prob-
lem in O(clogc) query time andO(N) preprocessing time, where 1≤ c ≤ N. The
input matrix is divided intoN/c blocks of size 2i by c/2i, for each integeri in the
range[0· · · logc]; w.l.o.g., assuming thatc is a power of 2. LetMi be the matrix of
sizeN/c containing the minimum elements of the blocks of size 2i by c/2i. Let Di be
the linear space data structure of Section 2.2 applied to thematrix Mi usingO(N/c)
bits. EachDi handles a different ratio between the number of rows and the number of

12

c

c

c
c

q

c
c

A

q0

q1

q2

q3

q4

Fig. 5 Right: The white area of the queryq contains the subqueries which completely span the blocks
of size 2i by c/2i . Left: A corner ofq which is contained in a block of sizec by c. The shaded area
containsO(clogc) elements.

columns of the blocks. Note that the matricesMi are constructed temporarily during
the preprocessing and are not maintained in the data structure.

A queryq is resolved by answering logc+1 subqueries. Letqi be the maximal
subquery ofq spanning blocks of size 2i by c/2i for 0 ≤ i ≤ logc. The minimum
elements of the blocks spanned byqi assemble a query overMi which has the same
answer asqi . Therefore,qi is answered by usingDi . Note that whenever the algo-
rithm wants to perform a probe into a cell ofMi , a corresponding block of sizec of
the input is searched for the minimum (sinceMi is not explicitly stored in the data
structure). The subqueriesqi overlap each other. Altogether, they composeq except
for O(clogc) elements in each of the four corners ofq (see the proof of Theorem 4).
We search these corners for the minimum element. Eventually, we compare the min-
imum elements of all the subqueries to find the answer toq (see Fig. 5).

Theorem 4 The 2D-RMQ problem for a matrix of size N is solved in O(N) prepro-
cessing time and O(clog2c) query time using O(N/c) bits additional space.

Proof The number of linear space data structuresDi is logc+ 1. Each data struc-
tureDi requiresO(N/c) bits. Therefore, the total additional space isO(logc ·N/c)
bits.

The number of subqueriesqi is logc+1. Eachqi is answered by usingDi in O(1)
query time in addition to theO(1) probes intoMi . Since each probe intoMi can be
performed byO(c) probes into the input matrix, the queryqi can be answered inO(c)
time. Each of the four corners of the queryq not covered by theqi queries, is con-
tained in the union of at most logc+1 blocks, at most one block of each size 2i by
c/2i for 0≤ i ≤ logc (see Fig. 5). The four corners are searched inO(clogc) time for
the minimum element. In the end, the minimum elements of the subqueries are com-
pared inO(logc) time to answerq. Consequently, the total query time isO(clogc).

EachDi is constructed inO(N/c) time (Section 2.2) after building the matrixMi .
To be able to make allMi efficiently, we first construct anO(N)-bit space data struc-
ture of Section 2.2 for the input matrix inO(N) time. Then,Mi is built in O(N/c)
time by querying a block of the input matrix inO(1) time for each element ofMi .

13

Therefore, the total preprocessing time isO(logc ·N/c+N) = O(N). Substituting
the parameterc by clogc gives the claimed bounds. ⊓⊔

3 Encoding Model

3.1 Upper Bound

The algorithm described in Section 2.2 can preprocess anm by n input matrixA of
sizeN = m· n into a data structure of sizeO(N) bits in O(N) time. But the query
algorithm in Section 2.2 is required to perform some probes into the input matrix.
SinceA is not accessible in the encoding model, we store another matrix maintaining
the rank of all theN elements usingO(N logN) = O(N logn) bits. Whenever the
algorithm wants to perform a probe intoA, it does it into the rank matrix. Therefore
the problem can be solved in the encoding model usingO(N logn) preprocessing time
(to sortA) andO(1) query time using spaceO(N logn) bits.

Another solution in the encoding model is the following. Foreach of then columns
of A, we build a 1D-RMQ structure using spaceO(m) bits [27], in total usingO(mn)=
O(N) bits. Furthermore, for each possible pair of rows(i1, i2), i1 ≤ i2, we construct
a 1D-RMQ structure for the MinColListLi1,i2 of A[i1 · · · i2]× [1· · ·n], i.e.,Li1,i2[j] =
mini1≤i≤i2 A[i, j], using spaceO(n) bits. Note that we only store the 1D-RMQ struc-
ture forLi1,i2, but notLi1,i2 itself. In total we use spaceO(m2n) = O(Nm) bits. The
column j containing the answer to a queryq= [i1 · · · i2]× [j1 · · · j2] is found by query-
ing for the range[j1 · · · j2] in the 1D-RMQ structure forLi1,i2. The queryq is answered
by querying for the range[i1 · · · i2] in the 1D-RMQ structure for columnj. Since both
1D-RMQ queries takeO(1) time, the total query time isO(1).

Selecting the most space efficient solution of the above two solutions gives an
encoding structure of sizeO(N ·min{m, logn}) bits withO(1) query time.

3.2 Lower Bound

To prove a lower bound for the space required in the encoding model, we generate
a large class of input matrices which are distinguishable bythe queries. We consider
two matricesA1 andA2 differentif there exists a 2D-RMQ with different answer for
A1 andA2. We present a set ofΩ((m!)n) matrices which are pairwise different. The
elements of the matrices are from the set{1, . . . ,mn}. In every matrixA of the set, the
smallestmn′ elements ofA are placed in two partsA′ = A[1· · ·m/2]× [1· · ·n′] andA′′

containing all the anti-diagonals of lengthm/2 within the blockA[m/2+ 1· · ·m]×
[n′ + 1· · ·n] wheren′ = ⌊(n−m/2+ 1)/2⌋, w.l.o.g., assuming thatm is even (see
Fig. 6). The odd numbers from the set{1, . . . ,mn′} are placed inA′ in increasing
order from left to right and then top to bottom, i.e.A′[i, j] = 2((i−1)n′+ j)−1. The
even numbers of{1, . . . ,mn′} are placed inA′′ such that the elements of each anti-
diagonal are not sorted but are larger than the elements of the anti-diagonals to the
right. The total number of matrices constructed by permuting them/2 elements of
each of then′ anti-diagonals ofA′′ is (m

2 !)n′ .

14

j1 n

m

2

n′

n′ m

2
− 1

q
m

2

i1

A′

A′′

i2

j2

Fig. 6 All the elements in the dotted area are greater than the elements in the white area. The rectangle
drawn with dashed line shows the queryq. The smallest entry inA′ ∩q is A[i1, j1] and the smallest entry
in A′′ ∩q is A[i2, j2].

For any two matricesA1 andA2 in the set, there exists an index[i2, j2] in the
anti-diagonals ofA′′ such thatA1[i2, j2] 6= A2[i2, j2]. W.l.o.g., assume thatA1[i2, j2]<
A2[i2, j2]. Let [i1, j1] be the index of an arbitrary odd number inA′ betweenA1[i2, j2]
andA2[i2, j2]. The queryq= [i1 · · · i2]× [j1 · · · j2] has different answers forA1 andA2:
ForA1 the answer is[i2, j2] whereas the answer forA2 is [i1, j1] (see Fig. 6). It follows
that any two matrices in the set are different.

Theorem 5 The minimum space required to store an encoding data structure for the
2D-RMQ problem isΩ(mnlogm) bits, assuming that m≤ n.

Proof Since the number of different matrices in the set is(m
2 !)n′ , the space for a data

structure encoding these matrices isΩ(log(m
2 !)n′) = Ω(mn′ logm) = Ω(mnlogm)

bits, sincen′ ≥ (n− m
2)/2≥ n/4, where the last inequality follows fromm≤ n. ⊓⊔

4 Conclusion and open problems

We studied the range minimum query (RMQ) problem in the indexing and encoding
models and showed various time-space trade-offs for the problem in one and two
dimensions. For the 1D-RMQ problem we obtained an optimal trade-off result in the
indexing model by showing that any algorithm that has accessto an index of size
O(n/c) bits has query complexityΘ(c), wheren is the size of the input array,c is any
parameter, andc≤ n. The lower bound also holds for the higher dimensional versions
of the RMQ problem.

15

The upper bound for the 2D-RMQ problem in the indexing model supports queries
in O(clog2c) time with access to an index of sizeO(N/c) bits, whereN is the size of
the input matrix. This leaves a gap ofO(log2c) factor between the upper and lower
bounds, and closing this gap is an interesting open problem.

For the 2D-RMQ problem in the encoding model we obtained an upper bound of
O(mn·min{m, logn}), and a lower bound ofO(mnlogm). It would be interesting to
settle the space complexity for this problem by closing thisgap.

Acknowledgements

We wish to thank Rajeev Raman for fruitful discussions on this problem. We would
also like to thank the anonymous referees for their helpful comments.

References

1. M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with enhanced suffix arrays.
Journal of Algorithms of Discrete Algorithms, 2(1):53–86, 2004.

2. A. Aho, J. Hopcroft, and J. Ullman. On finding lowest commonancestors in trees. InProc. 5th Annual
ACM Symposium on Theory of Computing, pages 253–265. ACM, 1973.

3. S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe. Nearest common ancestors: a survey and a new dis-
tributed algorithm. InProc. 14th Annual ACM Symposium on Parallel Algorithms and Architectures,
pages 258–264. ACM, 2002.

4. A. Amir, J. Fischer, and M. Lewenstein. Two-dimensional range minimum queries. InProc. 18th
Annual Symposium on Combinatorial Pattern Matching, volume 4580 ofLNCS, pages 286–294.
Springer-Verlag, 2007.

5. M. J. Atallah and H. Yuan. Data structures for range minimum queries in multidimensional arrays. In
Proc. 20th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 150–160. SIAM, 2010.

6. M. Bender and M. Farach-Colton. The LCA problem revisited. In Proc. 4th Latin American Theoret-
ical Informatics Symposium, volume 1776 ofLNCS, pages 88–94. Springer-Verlag, 2000.

7. M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P. Sumazin. Lowest common ances-
tors in trees and directed acyclic graphs.Journal of Algorithms, 57(2):75–94, 2005.

8. J. L. Bentley. Decomposable searching problems.Information Processing Letters, 8(5):244–251,
1979.

9. O. Berkman, Z. Galil, B. Schieber, and U. Vishkin. Highly parallelizable problems. InProc. 21st
Annual ACM Symposium on Theory of Computing, pages 309–319. ACM, 1989.

10. B. Chazelle and B. Rosenberg. Computing partial sums in multidimensional arrays. InProc. 5th
Annual Symposium on Computational Geometry, pages 131–139. ACM, 1989.

11. G. Chen, S. J. Puglisi, and W. F. Smyth. Lempel-Ziv factorization using less time and space.Mathe-
matics in Computer Science, 1:605–623, 2008.

12. E. D. Demaine, G. M. Landau, and O. Weimann. On cartesian trees and range minimum queries.
In Proc. 36th International Colloquium on Automata, Languages and Programming, volume 5555 of
LNCS, pages 341–353. Springer-Verlag, 2009.

13. J. Fischer. Optimal succinctness for range minimum queries. InProc. 9th Latin American Theoretical
Informatics Symposium, volume 6034 ofLNCS, pages 158–169. Springer-Verlag, 2010.

14. J. Fischer and V. Heun. Theoretical and practical improvements on the rmq-problem, with applications
to lca and lce. InProc. 17th Annual Symposium on Combinatorial Pattern Matching, volume 4009 of
LNCS, pages 36–48. Springer-Verlag, 2006.

15. J. Fischer and V. Heun. A new succinct representation of rmq-information and improvements in the
enhanced suffix array. InProc. 1st International Symposium on Combinatorics, Algorithms, Prob-
abilistic and Experimental Methodologies, volume 4614 ofLNCS, pages 459–470. Springer-Verlag,
2007.

16

16. J. Fischer, V. Mäkinen, and G. Navarro. An(other) entropy-bounded compressed suffix tree. InProc.
19th Annual Symposium on Combinatorial Pattern Matching, volume 5029 ofLNCS, pages 152–165.
Springer-Verlag, 2008.

17. H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques for geometry problems.
In Proc. 16th Annual ACM Symposium on Theory of Computing, pages 135–143. ACM, 1984.

18. A. Gál and P. B. Miltersen. The cell probe complexity of succinct data structures.Theoretical Com-
puter Science, 379(3):405–417, 2007.

19. L. Georgiadis and R. E. Tarjan. Finding dominators revisited: extended abstract. InProc. 15th Annual
ACM-SIAM symposium on Discrete algorithms, pages 869–878. SIAM, 2004.

20. A. Golynski. Optimal lower bounds for rank and select indexes. Theoretical Computer Science,
387(3):348–359, 2007.

21. D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors.SIAM Journal on
Computing, 13(2):338–355, 1984.

22. C. S. Iliopoulos, M. Crochemore, M. Kubica, M. S. Rahman,and T. Walen. Improved algorithms for
the range next value problem and applications. InProc. 25th International Symposium on Theoretical
Aspects of Computer Science, volume 1 ofLeibniz International Proceedings in Informatics, pages
205–216. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2008.

23. P. B. Miltersen. Cell probe complexity - a survey. Advances in Data Structures Workshop (Pre-
workshop of FSTTCS), 1999.http://www.daimi.au.dk/~bromille/Papers/survey3.ps.

24. S. Muthukrishnan. Efficient algorithms for document retrieval problems. InProc. 13th Annual ACM-
SIAM symposium on Discrete algorithms, pages 657–666. SIAM, 2002.

25. C. K. Poon. Dynamic orthogonal range queries in OLAP.Theory of Computing Systems, 296(3):487–
510, 2003.

26. K. Sadakane. Compressed suffix trees with full functionality. Theory of Computing Systems,
41(4):589–607, 2007.

27. K. Sadakane. Succinct data structures for flexible text retrieval systems.Journal of Discrete Algo-
rithms, 5(1):12–22, 2007.

28. S. Saxena. Dominance made simple.Information Processing Letters, 109(9):419–421, 2009.
29. B. Schieber and U. Vishkin. On finding lowest common ancestors: simplification and parallelization.

SIAM Journal on Computing, 17(6):1253–1262, 1988.
30. N. Välimäki and V. Mäkinen. Space-efficient algorithms for document retrieval. InProc. 18th Annual

Symposium on Combinatorial Pattern Matching, volume 4580 ofLNCS, pages 205–215. Springer-
Verlag, 2007.

31. J. Vuillemin. A unifying look at data structures.Communications of the ACM, 23(4):229–239, 1980.

