Algorithmica
DOI 10.1007/s00453-011-9499-0

On Space Efficient Two Dimensional Range Minimum Data
Structures

Gerth Stglting Brodal - Pooya Davoodi-
S. Srinivasa Rao

March 18, 2011

Abstract The two dimensional range minimum query problem is to pregss a
staticm by n matrix (two dimensional arrayA of sizeN = m-n, such that subse-
guent queries, asking for the position of the minimum eletirea rectangular range
within A, can be answered efficiently. We study the trade-off betwikerspace and
guery time of the problem. We show that every algorithm eadbd accesa during
the query and using a data structure of S¢@l/c) bits requires2(c) query time,
for any c where 1< ¢ < N. This lower bound holds for arrays of any dimension. In
particular, for the one dimensional version of the probléme, lower bound is tight
up to a constant factor. In two dimensions, we complementotiver bound with an
indexing data structure of siZ&(N/c) bits which can be preprocessediN) time

to supporiO(clog?c) query time. Foc = O(1), this is the firsO(1) query time algo-
rithm using a data structure of optimal si2¢N) bits. For the case where queries can
not probeA, we give a data structure of sigéN - min{m, logn}) bits withO(1) query
time, assumingn < n. This leaves a gap to the space lower boun@@f logm) bits

for this version of the problem.

Keywords Range minimum query, Cartesian tree, Time-space tradéraféxing
model, Encoding model
1 Introduction

In this paper, we study time-space trade-offs for the twoedigional range mini-
mum query problem (2D-RMQ). The input is amby n matrix (two dimensional

Gerth Stglting Brodal Pooya Davoodi

MADALGO (Center for Massive Data Algorithmics, a Center bétDanish National Research Founda-
tion), Department of Computer Science, Aarhus UniversityParken,Abogade 34, DK-820@rhus N,
Denmark E-mail{gerth,pdavoodi@cs.au.dk

S. Srinivasa Rao
School of Computer Science and Engineering Seoul Natiomardisity, 599 Gwanakro, Gwanak-Gu,
Seoul 151-744, S. Korea E-mail: ssrao@cse.snu.ac.kr

array) A of total of N = m-n elements from a totally ordered set. A query asks
for the position of the minimum element in a query ramge [i1---i2] X [j1--- j2],
where 1<i; <ip<mand 1< j; < jo <n, i.e., RMQA,q) = argmiqiyj)qu[i,j].
W.l.o.g., we assume tha < n and that all the entries ok are distinct (identical
entries ofA are ordered lexicographically by their index).

Applications. The 2D-RMQ problem has applications in computer graphiogge
processing (e.g., finding the lightest/darkest point in rgea dilate/erode filters),
computational Biology (e.g., finding min/max number in ag@ent tableau; genome
sequence analysis), and databases (e.g., range min/maxiqueLAP data cubes
[25]). The 1D-RMQ problem has applications in e.g., rangergps [28], text in-
dexing [1, 16, 26], text compression [11], document retig¢?4,27,30], flowgraphs
[19], and position-restricted pattern matching [22].

Naive structures.A naive solution for the RMQ problem is to perform a brutector
search through all the entries of the query in worst c@$H) time. Preprocess-
ing A can reduce the query time. A naive preprocessing is to sher@answers to
all the O(N?) possible queries in a lookup table of si2éN?logN) bits. The query
time become®(1) with no probe intoA.

The focus of this paper is to study the time-space tradebaftareen the space
usage of the data structure and the query time in the twangsttivhere the query
algorithm can access the input arrAyand where the query algorithm do not have
access taé\.

1.1 Previous Work
1.1.1 One Dimensional RMQ.

The 1D-RMQ problemiis the special case of the two dimensiegrzion wheren= 1.

It has been studied extensively. Several solutions ackdétequery time using a data
structure of sizéd(nlogn) bits, by transforming RMQ queries into lowest common
ancestor (LCA) queries [2] on theartesian treg31] of A, see [17,21,29,9,7]. Al-
strup et al. [3] solved the problem with the same bounds biltoaui using Cartesian
trees. Sadakane [27] gave the fitgh)-bit structure for the problem. In particular, his
structure has sizend+ o(n) bits, achieve©(1) query time, and moreover its query
algorithm does not acce#sduring the query. Later, Fischer and Heun [15] improved
the problem by presenting a structure of sizet+(n) bits with O(1) query time,
while its query algorithm accesses the input. Their stmgctises a Cartesian tree but
makes no use of the LCA structure, and gives a simple solditiothe static LCA
problent. Recently, Fischer [13] gave another structure of size 2(n) bits, where
its O(1)-time query algorithm does not access the input. He intredwnew data
structure named 2d-Min-Heap instead of using the CartéanTable 1 summarizes
these results along with the results of this paper.

1 Fischer and Heun [15] claim an2- o(n) bits lower bound for the size of the data structure, however
their proof is incorrect which, e.g., follows from Theorem 2

Table 1 Results for the 1D-RMQ problem for an input arrayroélements. The parameteis an integer,
where 1< ¢ < n. The term|A| denotes the size of the inpétin bits. The results tha#\| is included in their
space bound, construct a data structure of size smaller{#aalthoughA is also stored and their query
algorithm require\. The last line is a lower bound result.

Reference CartUeSslir;% tree Using LCA Space (bits) | Query Time
[17,21,29,9,7] Yes Yes O(nlogn) 0(1)
[3,14] No No O(nlogn) 0O(1)
27 Yes Yes 4n+o(n) 0(1)
15 Yes No 2n+o(n) + |A| 0(1)
[13] No Yes 2n-+o(n) 0O(1)
Theorem 2 Yes Yes Oo(n/c) +|A] O(c)

[Theorem1 | - | - | Oo(n/o)+]Al] Q) |

1.1.2 Multidimensional RMQ.

Gabow et al. [17] considered a problem where the input dsdamensional point
set containing\ points and the query is finding the point with minimum value in
a rectangular range. They utilized the range trees [8] toenmklata structure of
size O(Nlog?N) bits in O(Nlog?*N) preprocessing time to achie@{log”*N)
qguery time. Their structure can be used to solvedidimensional RMQ problem
by mapping theN elements of the input array f8 points in ad-dimensional grid.
Chazelle and Rosenberg [10] gave a data structure for th&Psrms problem in
a multidimensional array ol elements. Since their structure is in the semigroup
model, it also solves thd-dimensional RMQ problem in the semigroup model.
Their structure has siz&(MlogN) bits, constructed ifO(M) preprocessing time,
and achieve®((a(M,N))?) query time for anyM, whereM > 149N, anda (M, N) is
the functional inverse of Ackermann’s function. Amir et[dl] considered the two di-
mensional version of the problem. They presented a datatsteuof sizéO(kNlogN)
bits constructed ifO(Nlog™*Y N preprocessing time, which achiev@$l) query
time for anyk > 1, where lo§% N is the result of applying the log functido 1
times onN. Recently, Atallah and Yuan [5] gave the first linear timepozess-
ing algorithm ford-dimensional RMQ. Their structure has si2éNlogN) bits and
achievesD(1) query time.

Demaine et al. [12] proved that the number of diffenebly n 2D-RMQ matrices
is Q((g!)“/“), where two 2D-RMQ matrices are considered different onlghdir
range minima are in different locations for some rectangalage. For the 2D-RMQ
problem, if the query algorithm cannot access the inputimatre above bound im-
plies a lower bound o2 (n?logn) for both the number of preprocessing comparisons
and the number of bits required for the data structure.

Table 2 summarizes the above results along with the reduttésopaper.

1.2 Our Results

We consider the 2D-RMQ problem in the following two modelsiridexing model
in which the query algorithm has access to the input matriaddition to the data

Table 2 Results for the 2D-RMQ problem for an by n input matrix, wheren-n = N, andm < n. The
parametec is an integer, where &£ ¢ < n. The lower bound of [12] is for an by n input matrix, where
n? = N. The processing time of [10] is for aiy, whereM > 14?-N. The term|A| denotes the size of the
input matrixA in bits. The results that includd\| in their space bound, stof8| and their query algorithms
acces\. The contributions of [17,10,5] and Theorem 1 can be geizedhto the multidimensional version
of the problem. The last three lines are lower bound results.

Reference Query time Space (bits) Preprocessing time
[17] O(logN) O(Nlog®N) O(NlogN)
[10] O((a(M,N))%) O(MIogN) oM)

4 0o(1) O(kNlogN) O(Nlog®*+D N)
5 0o(1) O(NIogN) O(N)

Theorem 3 0(1) O(N) + |A] O(N)

Theorem 4 O(clog®c) O(N/c) + |A| O(N)

Section 3.1 0o(1) O(N-min{m,logn}) O(N)

Theorem 1 Q(c) O(N/c)+|A] -

[12] - Q(r?logn) m=n

Theorem 5 - Q(Nlogm)

structure constructed by preprocessing the input. In thée cthe data structure is
called anindex and its size is referred to as thdditional spaceand 2)encoding
modelin which the query algorithm has no access to the input matitk can only
access the data structure constructed by preprocessiingptiteln this case, the data
structure is called aancoding.

In the indexing model, we initiate the study of the tradetwdfween the query
time and the additional space for the 2D-RMQ problem. We ettty lower bound
trade-off thatQ(c) query time is required if the additional spaceédéN/c) bits, for
anycwhere 1< ¢ < N. The proofis in a non-uniform cell probe model [23] which is
more powerful than the indexing model. Our lower bound pissimilar to the proof
of Theorem 3.1 of Golynski [20]. We complement the lower bdwvith an upper
bound trade-off: using an index of sigZgN /c) bits we can achiev®(clog?c) query
time. Note that, for the time-space product, there remaigagaof lod c between
the upper and lower bounds. For the indexing model, thisaditbt O(N)-bit index
which answers queries @(1) time.

In the encoding model, the only earlier result on the 2D-RM@Qbfem is the
information-theoretic lower bound of Demaine et al. [12]ordhowed a lower bound
of Q(Nlogn) bits for n by n matrices. We generalize their resultrtoby n (rectan-
gular) matrices to show a lower bound@f{Nlogm) bits, assumingn < n. We also
present an encoding structure of sZEN - min{m,logn}) bits with O(1) query time.
Note that the upper and lower bounds are not tight for norstaomm = n°V): the
lower bound states that the space requirement per elem>agm) bits, whereas
the upper bound requir€¥min{m,logn}) bits per element.

2 Gal and Miltersen [18], and Fischer [13] suggest the nargstematic and non-systematic schemes
for the indexing and the encoding models respectively.

c

() R

110111111111111111}111111110111111111 ‘ o ‘ 111111111111111011‘

110111111111111111 111101111111111111‘“-‘ 111111111111111011‘
q2

Fig. 1 Two arrays fronf¢, each one has/c blocks. In this example = 18. The query, has different
answers for these arrays.

2 Indexing Model
2.1 Lower Bound

In the indexing model, we prove a lower bound for the quenetmhthe 1D-RMQ
problem where the input is a one dimensional array efements, and then we show
that the bound also holds for the RMQ problem in any dimensgitwe proof is in the
non-uniform cell probe model [23]. In this model, computatis free, and time is
counted as the number of cells accessed (probed) by the glgemithm. The algo-
rithm is also allowed to be non-uniform, i.e., for differeaiues of input parameter
we can have different algorithms.

For integersn andc, where 1< c < n, we define a set of arrays, and a set
of queries2. W.l.o.g., we assume thatdividesn. We will argue that for any 1D-
RMQ algorithm which has access to an index of gize bits (in addition to the
input arrayA), there exists an array i and a query in2 for which the algorithm
performsQ(c) probes intoA.

Definition 1 Letnandc be two integers, where<d ¢ < nandc dividesn. The sets’
contains the array4[1- - -n] such that the elements éfare from the sef0,1}, and
in each blockA[(i —1)c+1---ic] for all 1 <i <n/c, there is exactly a single zero
element (see Fig. 1).

The number of possible data structures of sizebits is 2/¢, and the number of
arrays in% is c/°. By the pigeonhole principle, for any algorith#h there exists a
data structur®y which is shared by at Ieasg)”/C input arrays ir¢’. Letép,, C ¢
be the set of these inputs.

Definition 2 Letqgi =[(i—1)c+1---ic]. The set2 = {q; | 1 <i < n/c} containg/c
gueries, each covering a distinct blockf

For algorithm¥ and data structuri®y, we define a binary decision tree capturing
the behavior of¢ on the inputs fron¥p,, to answer a quergj € 2.

Definition 3 Let¥ be a deterministic algorithm. For each querg 2, we define a
binary decision tre@qy(Dy). Each internal node dfy(Dy) represents a probe into a
cell of the input arrays frorép,,. The left and right edges correspond to the output
of the probe: left for reading a zero and right for reading a.dfach leaf is labelled
with the answer ta, i.e., the position of the zero within the block coveredipy

~ Ty (D)~

~ Ty (Deg)—~

c ompobmﬂ

Tq,,.

label of p, /.:

J1,92, 057

Fig. 2 Composing then/c decision trees to obtain the large decision ffe€Dy). Each leaf is labeled
with a vector of positions of zeros in the input.

For each algorithn¥, we have defined/c binary trees depicting the probes of
the algorithm into the inputs frorap,, to answer then/c queries in2. Note that
the answers to all thes®/c queries uniquely determine the input. We compose all
then/c binary trees into a single binary trdg (D) in which every leaf determines
a particular input. To obtaifig(Dg), we first replace each leaf f, (Dy) with the
whole Tg,(Dy), and then replace each leaf of the obtained tree WjtkDy), and
so on (see Fig. 2). Every leaf df(Dy) is labelled with the answers to all thgc
queries in2 which were replaced on the path from the root to the leaf. &0
input arrays irép,, correspond to different leaves ©5(Dy). Otherwise the answers
to all the queries in2 are the same for both the inputs which is a contradiction.
Therefore, the number of leaves B (Dy) is at least($)"/, the minimum number
of inputs in%p,, .

We next prund »(Dg) as follows: First we remove all nodes not reachable by any
input from%p,, . Then we repeatedly replace all nodes of degree one withgimgjle
child. Since the inputs frorgp,, correspond to only reachable leaves, the number
of leaves becomes equal to the number of inputs fagp which is at Ieas(g)”/c.

Note that the result of epeatedorobe is known already, because the probe has been
performed before. Therefore, before pruning, one childhefrtode corresponding to

a repeated probe is unreachable, and after pruning whettgealinreachable nodes
are pruned, there is no repeated probe on a root to leaf patiny Rath from the root

to a leaf has at most/c left edges (zero probes), since the number of zero elements
in each input front¢ is n/c. Each of these paths represents a binary sequence of
length at mostl containing at most/c zeros, wherel is the depth off 4 (Dy) after
pruning. By padding each of these sequences with furthen@d.s, we can ensure
that each sequence has length exadtlyn/c and contains exactlg/c zeros. The
number of such binary sequenceﬁ§”/° which becomes an upper bound for the
number of leaves in the tree after prunning.

Lemma 1 Forallnand c, wherd < ¢ < n, the worst case number of probes required
to answer a query i2 over the inputs fron¥” using a data structure of size/a bits
is Q(c).

Proof First, we prove a lower bound fai, the depth off (D«) after pruning. Then,
we divide the lower bound by/c, the number of binary trees, to prove the lower
bound for the number of probes.

In the above discussion, we obtained the following uppemidar the number
of leaves ofT »(Dg) after pruning.

(d+’—g)(%) (d+2)! (d+2)

<
WA TRCE S TE:

)(%)
|

C

Comparing this upper bound with the lower bound for the nurbleaves ofl 4 (Dy),
we have

2 - (9
By Stirling’s formula, we obtain the following:

(d+3)e
D b

C

<

NI O

and therefore > n(zie - %). For any arbitrary algorithr#, the depttd of To(Dy)
is at most the sum of the depths of th&c binary trees composed infoy (Dy). By
the pigeonhole principle, there exists an inp@ ¢p,, and ani, where 1<i < n/c,
such that the querg; on x requires at leasti/(n/c) = Q(c) probes into the array
maintaining the input. O

Theorem 1 Any algorithm that uses Jt bits additional space to solve the RMQ
problem for an input array of size N (in any dimension), regsi2(c) query time,
for any c, wherel <c <N.

Proof Lemma 1 gives the lower bound for the 1D-RMQ problem. The pfoo
the 2D-RMQ is a simple extension of the proof of Lemma 1. ThesSeonsists of
matrices, each composedrafi/c submatricegic; +1---(i+1)cy] x [jea+21---(j+
1)cy] of sizec; by ¢y, for 1 <i <m/c; and 1< j < n/cp, wherec=¢; - ¢z (w.l.o.g.,
assuming that; dividesm, andc; dividesn). Each submatrix has exactly one zero
element, and all the others are one. ThereNyfe queries in2, each one asks for
the minimum of each submatrix. As in the proof of Lemma 1, we asgue that
there exists a query requiring(c) probes by utilizing the methods of decision trees,
composing and pruning them, and bounding the number of $ed\ee proof can be
generalized straightforwardly to higher dimensional i@rs of the RMQ problem.

O

The following theorem shows that the lower bound result c¢@riem 1 is optimal
for the 1D-RMQ problem.

- nj/c

~ ~

‘ block minima

Fig. 3 The input is partitioned inta/c blocks of sizec. The 1D-RMQ encoding structur® of sizeO(n/c)
bits is built for the list of the block minima. The quegys divided into three subquerieg, gm, andq;.

Theorem 2 The 1D-RMQ problem for a one dimensional input array of sizs n
solved in @n) preprocessing time and optimal(€) query time using (h/c) addi-
tional bits.

Proof Partition the input array into/c blocks of sizec. Construct a 1D-RMQ encod-
ing structure? for the list ofn/c block minima (minimum elements of the blocks)
in O(n/c) bits [27]. The query is decomposed into three subqueyiegm, andg;
(see Fig. 3). The subqueny, contains all the blocks fully spanned by the query. To
solveqm, we first find the block containing the answer by querying taadtructure

2 in O(1) time, and then scan that block@c) time to find the answer. Each of the
subqueries), andqy, which is contained within a single block, is answeredi(t)
time by scanning the respective block. O

2.2 Linear Space Optimal Data Structure
2.2.1 Preliminaries

We introduce some terminology that we use to describe axingeata structure for
the 2D-RMQ problem in the following sections. #lockis a rectangular range in a
matrix. LetB be a block of sizen' by n’. For the blockB, the list MinColLis{1:--n']
contains the minimum element of each columrBoéind MinRowLisf1---m] con-
tains the minimum element of each row Bf For integer/ where 1< ¢ < /2,
let TopSuffixe$B, /) be the set of block8[n/2 —i¢+1---m'/2] x [1---n], and
BottomPrefixe&B, ¢) be the set of blockB[nT/2+1---m — (i—1)¢] x [1---n'],for 1 <

i <m'/(2¢) (w.l.0.g., assuming that’dividesn).

2.2.2 Data Structure and Querying

In the following, we present an indexing data structure a&€)(N) bits achiev-
ing O(1) query time to solve the 2D-RMQ problem for amby n input matrixM of

sizeN = m-n. The basic idea of the construction is to solve the probleth faur
levels of recursion, reducing the queries to subquerieszefleglogm by loglogn,

which are solved by a tabulation idea of Atallah and Yuan 8¢ partition the in-
put matrixM into m/logm blocks % = {by,...,bm/ogm} Of size logm by n by cut-
ting the input matrix at every lag'th row. If a query is contained in a blodk, the
problem is solved recursively for this block. Otherwises tfueryq is divided into

subqueries);, g2 andgz such thaty; is contained inb; andgz is contained irby,
andg spans ovebj.1,...,bx_1 vertically, where I< j < k < m/logm (see Fig. 4).
Sinceq; andgsz are range minimum queries in the submatrisgandby respectively,
they are answered recursively. The subqupng handled as described below. Lastly,
the answers ta, gz andqgs, which are indices into three matrix elements, are used
to find the index of the smallest elementjn

A binary tree structure is utilized to answes. This binary tree hasn/logm
leaves, one for each block i#. W.l.0.g., we assume that/logm is a power of 2.
Each leaf maintains a 1D-RMQ structure [27] for MinColLidtits corresponding
block bj. Each internal node with 2k leaf descendants corresponds to a subma-
trix M composed of R consecutive blocks of4, for 1 <k <m/(2logm). These
2k blocks correspond to thekdeaf descendants of Note that each of the sets
TopSuffixe$M,logm) and BottomPrefixé#/,logm) containsk blocks. For each of
these R blocks, the internal nodestores a 1D-RMQ structure that is constructed for
the MinColList of the block.

We also construct a 1D-RMQ structure for each of the rows ahahens of the
input matrixM.

In the binary tree structure, lgt be the lowest common ancestor of the leaves
corresponding td; 1 andby,_,, and letM be the submatrix correspondingpoThe

subquenyy, is composed of the top paﬁ and the bottom an}Z, wherqu andqﬁ are
two blocks in the sets TopSuffix@d,logm) and BottomPrefixé#/,logm), respec-
tively. Two of the 1D-RMQ structures maintainedpnare constructed for MinColLists
of qg and qﬁ. These 1D-RMQ structures are utilized to find two colurahandc*
containing the answer tqg and qﬁ. The 1D-RMQ structures constructed for these
two columns are utilized to find the answerdpandgs. Then the answer tq, is
determined by comparing the smallest elemerqgiandqﬁ.

In the second level of the recursion, each blockais partitioned into blocks of
size logm by logn. The recursion continues for two more levels until the sizeazh
block is loglogm by loglogn. In the binary tree structures built for all the four re-
cursion levels, we construct the 1D-RMQ structures for fhgrapriate MinColLists
and MinRowLists respectively. The blocks that are used tkemdinRowLists are
defined similarly to TopSuffixes and BottomPrefixes, but &jt suffixes and right
prefixes respectively. In the second and fourth levels aiingon, where the binary
tree structure gives two rows containing the minimum eletiefg), and, the 1D-
RMQ structures constructed for the rows of the matrix arel msanswqu andqﬁ.
Similar to the first level of the recursion, in the third lewehere the binary tree struc-
ture gives two columns containing the minimum elemen@afndqﬁ, the 1D-RMQ
structures constructed for the columns of the matrix are tsenswery, andgj.

We solve the 2D-RMQ problem for a block of size logtadpy loglogn using the
table lookup method given by Atallah and Yuan [5]. Their noetlpreprocesses the
block by making at most’'G comparisons, for a constadt whereG = loglogm-
loglogn, such that any 2D-RMQ can be answered by performing four gsaito
the block. Each block is represented bhlack typewhich is a binary sequence of
lengthc’G, encoding the results of the comparisons. The lookup tadsef rows,

10

‘M

c! ct
b; T -
@
q2 D
@ b
by g3
logn loglogn .
micro block]
log log m{ I
214 2
logm N 9 N
3 3
1
3 3
2
L 4 5)

Fig. 4 Top: Partitioning the input and building the binary treeusture. The node is the LCA of the
leaves corresponding g 1 andby_;. The columns' andct, which contain the answers té andqﬁ
respectively, are found using the 1D-RMQ structure storeg.iThe minimum element in each of the
columnsc” andc' is found using the 1D-RMQ structure constructed for thaeoi. Bottom: The numbers
1,2,3,4, and 5 on the subqueries depict the recursion leaebhswer the corresponding subqueries.

one for each possible block type, a@@ columns, one for each possible query within
a block. Each cell of the table contains four indices to aslsltee four probes into the
block. The block types of all the blocks of sigein the matrix are stored in another
table T. The query within a block is answered by first recognizing Iteck type
using T, and then checking the lookup table to obtain the four ingi€@mparing
the results of these four probes gives the answer to the geeryurther details, we
refer the reader to [5].

Theorem 3 The 2D-RMQ problem for an m by n matrix of size=Nn-n is solved
in O(N) preprocessing time and(@) query time using ON) bits additional space.

Proof We first consider the query time. The subqugsyis answered irO(1) time
by using a constant query time LCA structure [6], querying 1D-RMQ structures
in constant time [27], and performir@(1) probes into the input matrix. The number
of recursion levels is four, and for each level, we performmatst four recursive
subqueries (see Fig. 4). In the last level, the subquerigmtted in blocks of siz&
are also answered (1) time by using the lookup table and performi@gl) probes
into the matrix. Therefore the queayis answered in totaD(1) time.

11

We bound the space of the data structure as follows. The défitle binary tree,
in the first recursion level, ®(log(m/logm)). Each level of the tree h&(m/logm)
1D-RMQ structures for MinColLists of siza elements. Since a 1D-RMQ struc-
ture of a list ofn elements is stored i®(n) bits [27], the binary tree can be stored
in O(n-m/logm-log(m/logm)) = O(N) bits. Since the number of recursion lev-
els isO(1), the binary trees in all the recursion levels are store@(N) bits. The
space used by the+ n 1D-RMQ structures constructed for the columns and rows
of M is O(N) bits. SinceG = o(logN), thenG < c”logN for any constant” >
0, and sufficiently largeN. We can therefore bound the size of the lookup table
by O(2¢¢"109NG2|ogG) = o(N) bits whenc” < 1/c’. The size of tabld is O(N/G-
log(2°®)) = O(N) bits. Hence the total additional spacedéN) bits.

Finally, we consider the preprocessing time. In the binag,tin the first level of
the recursion, each leaf maintains a 1D-RMQ structure coctgtd for a MinColList
of sizen elements. Thesm/logm lists are constructed i®(N) time by scanning
the whole matrix. Each MinColList in the internal nodes isstucted by comparing
the elements of two MinColLists built in the lower level @(n) time. Therefore
constructing these lists, for the whole tree, ta®¢s +n-m/logm-log(m/logm)) =
O(N) time. Since a 1D-RMQ structure can be constructed in linese [27], the 1D-
RMQ structures in all the nodes of the binary tree are coogdlin totalO(N) time.
The LCA structure is also constructed in linear time [6]. fidfere the binary tree is
builtin O(N) time. Since the number of recursion level$igl), all the binary trees
are built inO(N) time. The lookup table and table are also constructed iB(N)
time, see Sections 3.2 and 5 in [5]. O

Corollary 1 The query algorithm performs at most 38 probes into the inpsblve
the query.

Proof As shown at the top of Fig. 4, the subquepyis answered by comparing the
smallest elements iq; and qﬁ. To find these two smallest elements, the algorithm
performs two probes into the input. For each of the subgsiesadved in different
recursion levels, shown at the bottom of Fig. 4, at most twabps are performed.
As described earlier, to solve the subqueries containedoickb of size loglogn

by loglogn, four probes are performed. Therefore, the total numberaligs in the
recursion levels is the sum+22-24+4-2+ 4.2+ 4-4=38. O

2.3 Space Time Trade-off Data Structure

We now describe how to use the data structure of Section 2a2Zh@ve a trade-
off between the additional space usage and the query timgré¢ent an indexing
data structure of siz&(N/c-logc) bits additional space solving the 2D-RMQ prob-
lem in O(clogc) query time andO(N) preprocessing time, whered ¢ < N. The
input matrix is divided intdN/c blocks of size 2by ¢/2, for each integer in the
range[0---logc]; w.l.o.g., assuming that is a power of 2. Let; be the matrix of
sizeN/c containing the minimum elements of the blocks of sizby2c/2'. Let D be
the linear space data structure of Section 2.2 applied tentiteix M; usingO(N/c)
bits. EachD; handles a different ratio between the number of rows anduher of

12

c A

N\

Q
S

)
]

WAL Y

=
w

=
B

Fig. 5 Right: The white area of the querycontains the subqueries which completely span the blocks
of size 2 byc/2'. Left: A corner ofg which is contained in a block of size by c. The shaded area
containsO(clogc) elements.

columns of the blocks. Note that the matridésare constructed temporarily during
the preprocessing and are not maintained in the data steuctu

A queryq is resolved by answering lag+ 1 subqueries. Leg; be the maximal
subquery ofg spanning blocks of size' Dy ¢/2' for 0 < i < logc. The minimum
elements of the blocks spanneddpyassemble a query ovéf; which has the same
answer agy. Thereforeg; is answered by usinB;. Note that whenever the algo-
rithm wants to perform a probe into a cell B, a corresponding block of sizeof
the input is searched for the minimum (sindg is not explicitly stored in the data
structure). The subqueriggoverlap each other. Altogether, they compqgsexcept
for O(clogc) elements in each of the four cornersypfsee the proof of Theorem 4).
We search these corners for the minimum element. Eventuadlgompare the min-
imum elements of all the subqueries to find the answer(see Fig. 5).

Theorem 4 The 2D-RMQ problem for a matrix of size N is solved ifNp prepro-
cessing time and @log?c) query time using N/c) bits additional space.

Proof The number of linear space data structubgss logc+ 1. Each data struc-
ture D; requiresO(N/c) bits. Therefore, the total additional spaceddogc- N/c)
bits.

The number of subqueriggis logc+ 1. Eachg; is answered by usinD; in O(1)
query time in addition to th€©(1) probes intoM;. Since each probe intdl; can be
performed byO(c) probes into the input matrix, the quegycan be answered iD(c)
time. Each of the four corners of the quarynot covered by the; queries, is con-
tained in the union of at most lag+ 1 blocks, at most one block of each siZebg
¢/2 for 0<i <logc (see Fig. 5). The four corners are searche@(iologc) time for
the minimum element. In the end, the minimum elements of tiejseries are com-
pared inO(logc) time to answeg. Consequently, the total query time@clogc).

EachD; is constructed ifO(N/c) time (Section 2.2) after building the matii;.
To be able to make alj; efficiently, we first construct a®(N)-bit space data struc-
ture of Section 2.2 for the input matrix i@(N) time. Then,M; is built in O(N/c)
time by querying a block of the input matrix @(1) time for each element d¥;.

13

Therefore, the total preprocessing timedglogc- N/c+ N) = O(N). Substituting
the parameter by clogc gives the claimed bounds. O

3 Encoding Model
3.1 Upper Bound

The algorithm described in Section 2.2 can preprocess by n input matrixA of
sizeN = m-n into a data structure of sizZ®(N) bits in O(N) time. But the query
algorithm in Section 2.2 is required to perform some proloés the input matrix.
SinceAis not accessible in the encoding model, we store anothepamadintaining
the rank of all theN elements using@(NlogN) = O(Nlogn) bits. Whenever the
algorithm wants to perform a probe infg it does it into the rank matrix. Therefore
the problem can be solved in the encoding model uSifiglogn) preprocessing time
(to sortA) andO(1) query time using spad®(Nlogn) bits.

Another solution in the encoding model is the following. Each of then columns
of A, we build a 1D-RMQ structure using spaoém) bits [27], in total usingdd(mn) =
O(N) bits. Furthermore, for each possible pair of rofisis), i1 < i», we construct
a 1D-RMQ structure for the MinColLidt;j, j, of Ali1---ip] x [1---n], i.e.,Liji,[j] =
mini, <i<i, Ali, j], using spac®(n) bits. Note that we only store the 1D-RMQ struc-
ture forLi, j,, but notL;, j, itself. In total we use spad®(nm?n) = O(Nm) bits. The
columnj containing the answer to a query= [i1---i2] X [j1--- j2] is found by query-
ing for the rangéj: - - - j] in the 1D-RMQ structure fok;, ;,. The quenygis answered
by querying for the rangg; - - - i»] in the 1D-RMQ structure for colump Since both
1D-RMQ queries tak©(1) time, the total query time i©(1).

Selecting the most space efficient solution of the above wlatisns gives an
encoding structure of siZ8(N - min{m,logn}) bits with O(1) query time.

3.2 Lower Bound

To prove a lower bound for the space required in the encodiodety we generate
a large class of input matrices which are distinguishablthbyqueries. We consider
two matricesA; andA, differentif there exists a 2D-RMQ with different answer for
A1 andA,. We present a set @@ ((m!)") matrices which are pairwise different. The
elements of the matrices are from the &kt .., mn}. In every matrixA of the set, the
smallesimn elements ofA are placed in two par&y’ = A[1---m/2] x [1---n'] andA”
containing all the anti-diagonals of lengthy2 within the blockA[m/2+1---m] x

[+1---n] wheren' = [(n—m/2+1)/2], w.l.o.g., assuming than is even (see
Fig. 6). The odd numbers from the sgt,...,mn’} are placed inA in increasing
order from left to right and then top to bottom, i&[i, j] =2((i—1)n'+ j) — 1. The
even numbers of1,...,mr} are placed in\” such that the elements of each anti-
diagonal are not sorted but are larger than the elementsedriti-diagonals to the
right. The total number of matrices constructed by perngutive m/2 elements of
each of thev anti-diagonals oA is (1)".

14

w3

SE

Fig. 6 All the elements in the dotted area are greater than the aksnire the white area. The rectangle
drawn with dashed line shows the quegyThe smallest entry i\ Nq is Ali1, j1] and the smallest entry
in A’ Nqis Aliz, j2]-

For any two matriced\; andA; in the set, there exists an indd, jo] in the
anti-diagonals o&” such thai\; [io, jo| # Agliz, j2|- W.l.0.9., assume thay[iz, j2] <
Apliz, jo]. Let[i1, j1] be the index of an arbitrary odd numberdhbetweer[iz, jo]
andAy[ip, jo]. The queng = [i1---i2] X [j1--- j2] has different answers fdéy andA;:
ForA; the answer isio, jo] whereas the answer fég is [i1, j1] (see Fig. 6). It follows
that any two matrices in the set are different.

Theorem 5 The minimum space required to store an encoding data streiftu the
2D-RMQ problem i€2 (mnlogm) bits, assuming that it n.

Proof Since the number of different matrices in the se{t%";*,)”/, the space for a data
structure encoding these matricemlog(%‘!)”/) = Q(mrflogm) = Q(mnlogm)
bits, sincen’ > (n— ') /2 > n/4, where the last inequality follows from<n. O

4 Conclusion and open problems

We studied the range minimum query (RMQ) problem in the imagand encoding
models and showed various time-space trade-offs for thblgmoin one and two
dimensions. For the 1D-RMQ problem we obtained an optinaaldroff result in the
indexing model by showing that any algorithm that has actess) index of size
O(n/c) bits has query complexit®(c), wheren is the size of the input arrag,is any

parameter, and< n. The lower bound also holds for the higher dimensional eaisi
of the RMQ problem.

15

The upper bound for the 2D-RMQ problem in the indexing modpp®rts queries

in O(clog? c) time with access to an index of sigéN /c) bits, whereN is the size of
the input matrix. This leaves a gap @(Iog2 c) factor between the upper and lower
bounds, and closing this gap is an interesting open problem.

For the 2D-RMQ problem in the encoding model we obtained greupound of

O(mn-min{m,logn}), and a lower bound o®(mnlogm). It would be interesting to
settle the space complexity for this problem by closing ¢faip.

Acknowledgements

We wish to thank Rajeev Raman for fruitful discussions os tiroblem. We would
also like to thank the anonymous referees for their helpfatiments.

References

10.

11.

12.

13.

14.

15.

M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacinfj>strees with enhanced suffix arrays.
Journal of Algorithms of Discrete Algorithm2(1):53—-86, 2004.

. A. Aho, J. Hopcroft, and J. Ullman. On finding lowest comnaosestors in trees. Froc. 5th Annual

ACM Symposium on Theory of Computipgges 253-265. ACM, 1973.

. S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe. Nearestroon ancestors: a survey and a new dis-

tributed algorithm. IrProc. 14th Annual ACM Symposium on Parallel Algorithms anchitectures
pages 258-264. ACM, 2002.

. A. Amir, J. Fischer, and M. Lewenstein. Two-dimensioraige minimum queries. IRroc. 18th

Annual Symposium on Combinatorial Pattern Matchirglume 4580 ofLNCS pages 286-294.
Springer-Verlag, 2007.

. M. J. Atallah and H. Yuan. Data structures for range mimmgueries in multidimensional arrays. In

Proc. 20th Annual ACM-SIAM Symposium on Discrete Algorttpages 150-160. SIAM, 2010.

. M. Bender and M. Farach-Colton. The LCA problem revisitedProc. 4th Latin American Theoret-

ical Informatics Symposiunvolume 1776 of. NCS pages 88-94. Springer-Verlag, 2000.

. M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiemé,PaSumazin. Lowest common ances-

tors in trees and directed acyclic grapfisurnal of Algorithms57(2):75-94, 2005.

. J. L. Bentley. Decomposable searching problerirdormation Processing Letter8(5):244-251,

1979.

. 0. Berkman, Z. Galil, B. Schieber, and U. Vishkin. Highlgrallelizable problems. Ifroc. 21st

Annual ACM Symposium on Theory of Computjpages 309-319. ACM, 1989.

B. Chazelle and B. Rosenberg. Computing partial sumsulidimensional arrays. Ifroc. 5th
Annual Symposium on Computational Geomgtages 131-139. ACM, 1989.

G. Chen, S. J. Puglisi, and W. F. Smyth. Lempel-Ziv fag&tion using less time and spaddathe-
matics in Computer Sciencé:605-623, 2008.

E. D. Demaine, G. M. Landau, and O. Weimann. On cartese®s tand range minimum queries.
In Proc. 36th International Colloquium on Automata, Languaged Programmingvolume 5555 of
LNCS pages 341-353. Springer-Verlag, 2009.

J. Fischer. Optimal succinctness for range minimumigsiemProc. 9th Latin American Theoretical
Informatics Symposiupwolume 6034 o£ NCS pages 158-169. Springer-Verlag, 2010.

J. Fischer and V. Heun. Theoretical and practical imgments on the rmg-problem, with applications
to Ica and Ice. IrProc. 17th Annual Symposium on Combinatorial Pattern Matghvolume 4009 of
LNCS pages 36-48. Springer-Verlag, 2006.

J. Fischer and V. Heun. A new succinct representatiomgfinformation and improvements in the
enhanced suffix array. IRroc. 1st International Symposium on Combinatorics, Athars, Prob-
abilistic and Experimental Methodologiegolume 4614 ofLNCS pages 459-470. Springer-Verlag,
2007.

16

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

J. Fischer, V. Makinen, and G. Navarro. An(other) gmtrbounded compressed suffix tree.Rroc.
19th Annual Symposium on Combinatorial Pattern Matchiraume 5029 of NCS pages 152-165.
Springer-Verlag, 2008.

H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling ateted techniques for geometry problems.
In Proc. 16th Annual ACM Symposium on Theory of Compupiages 135-143. ACM, 1984.

A. Gal and P. B. Miltersen. The cell probe complexity o€ainct data structuresCheoretical Com-
puter Science379(3):405-417, 2007.

L. Georgiadis and R. E. Tarjan. Finding dominators iads extended abstract. Rroc. 15th Annual
ACM-SIAM symposium on Discrete algorithmages 869-878. SIAM, 2004.

A. Golynski. Optimal lower bounds for rank and selecteixes. Theoretical Computer Science
387(3):348-359, 2007.

D. Harel and R. E. Tarjan. Fast algorithms for finding asecommon ancestor&IAM Journal on
Computing 13(2):338-355, 1984.

C. S. lliopoulos, M. Crochemore, M. Kubica, M. S. Rahrmeamg T. Walen. Improved algorithms for
the range next value problem and applicationsPioc. 25th International Symposium on Theoretical
Aspects of Computer Sciena®lume 1 ofLeibniz International Proceedings in Informatigzages
205-216. Schloss Dagstuhl - Leibniz-Zentrum fuer Infoiky&008.

P. B. Miltersen. Cell probe complexity - a survey. Adwesiin Data Structures Workshop (Pre-
workshop of FSTTCS), 199%ttp://www.daimi.au.dk/~bromille/Papers/survey3.ps.

S. Muthukrishnan. Efficient algorithms for documentiestll problems. IProc. 13th Annual ACM-
SIAM symposium on Discrete algorithnpages 657-666. SIAM, 2002.

C. K. Poon. Dynamic orthogonal range queries in OLAReory of Computing Systen296(3):487—
510, 2003.

K. Sadakane. Compressed suffix trees with full functigna Theory of Computing Systems
41(4):589-607, 2007.

K. Sadakane. Succinct data structures for flexible &txiewal systemsJournal of Discrete Algo-
rithms, 5(1):12-22, 2007.

S. Saxena. Dominance made simpigormation Processing Letterd09(9):419-421, 2009.

B. Schieber and U. Vishkin. On finding lowest common atweessimplification and parallelization.
SIAM Journal on Computindl7(6):1253-1262, 1988.

N. Valimaki and V. Makinen. Space-efficient algonith for document retrieval. IRroc. 18th Annual
Symposium on Combinatorial Pattern Matchinglume 4580 ofLNCS pages 205-215. Springer-
Verlag, 2007.

J. Vuillemin. A unifying look at data structureSommunications of the ACN23(4):229-239, 1980.

