
Diameter Approximation

We want to approximate the diameter of large graphs. The diameter is the
length of the longest shortest path between any two vertices in a graph.

The diameter of this graph is determined by the red path

One application of the diameter approximation is to select suitable
algorithms for BFS computation. Knowing the diameter the number of I/Os
can be reduced in some cases (in particular for real world graphs like web
or social network graphs which usually have a small diameter).

Social networks usually have a small diameter in O(log(N))

Some important facts
�ƒ Computation of the exact diameter in main memory is very expensive

with O(N²).
�ƒ Approximation using a single BFS with approximation factor ½.
�ƒ The I/O complexity of external-memory BFS is �Ÿ(N/�¥B) I/Os.
�ƒ Trade-off: Diameter approximation using Parallel Cluster Growing

Algorithm [1] with I/Os.

Parallel Cluster Growing Algorithm Further Improvements & Results

To approximate the diameter with less I/Os than BFS we shrink the input
size by selecting randomly O(N/k) master vertices with probability O(1/k)
and run local BFS in parallel. Each master vertex is a source of such a
local BFS.

After clustering we run a single-source shortest path. We try to shrink the
graph so that it fits into main memory. However, a small amount of master
vertices can result into a large I/O complexity for graph classes with larger
diameter [2]. To avoid this negative behaviour we decided to develop a
recursive version.

Hierarchical Diameter Approximation

�ƒUses main idea from parallel cluster growing but shrinks the graph
several times (in our experiment two shrinking steps were enough even
for 128 GB graph data).

�ƒThe worst case guarantee is now �Ÿ(k4/3-�0) instead of O(k1/2�l̃og(k)).
�ƒExperimental results are much better than the pessimistic bound

predicts [3].
�ƒTo improve our results we developed some heuristics.

Main memory M is too small for the big data. Therefore shrink the data
until it fits into the main memory for fast computation.

References

[1] Ulrich Meyer. On Trade-Offs in External-Memory Diameter-
Approximation. SWAT 2008.

[2] Deepak Ajwani, Andreas Beckmann, Ulrich Meyer, David Veith.
I/O-efficient approximation of graph diameters by parallel cluster
growing – a first experimental study. PASA 2012.

[3] Deepak Ajwani, Ulrich Meyer, David Veith. I/O-efficient Hierarchical
Diameter Approximation. ESA 2012.

I/O-efficient Hierarchical Diameter Approximation

MADALGO – Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation

David Veith
Goethe University

For the hierarchical diameter approximation we have developed several
heuristics to improve the result:

�ƒ Break ties that the path length is kept small in the shrunken graph

�ƒ Move masters to the cluster centre to counterbalance weights

Results

Ulrich Meyer
Goethe University

Shrink Graph Fits into M?
Compute
IM-SSSP

store edges/ weights in
two files

Preprocessing with
EM-BFS Phase I

Semi-external
SSSP

Approximated
Diameter

Yes

No

M M M

1

3

102

1

3

102
12

6

12

14

Without TIE breaking

The master is at the
border of its cluster.

The master is in the
centre of its cluster.
So, we achieve
counterbalanced
distances to all adjacent
clusters.

Size [GB] HIER-time ratio DSLB-BFS-time (single) ratio

web graph 27 0.6 h 3.3 5.6 h (3.2 h) ~ 1.0

�¥n-level graph 128 9.0 h ~1.0 56.6 h (37.3 h) 1.0

n-level graph 83.8 3.6 h ~1.0 27.8 h (19.0 h) 1.0

worse 2step 31.9 1.4 h 3.1 15.3 h (11.6 h) 1.0

Deepak Ajwani
Bell Labs, Ireland

