An Optimal Algorithm for the Distinct Elements Problem

Problem and Results

Sequence of integers:

1 17 2 4 17 9 2 5 1 1 4 6

- One pass over a stream of integers each between 1 and \(n \)
- Query() – Output the number of distinct integers seen thus far
- Goals – Use little memory, and process each integer quickly

Applications

<table>
<thead>
<tr>
<th>track spread of Code Red worm</th>
<th>network intrusion detection</th>
<th>database query optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Algorithm Ideas

Balls-and-bins approach

Inspired by [Bar-Yossef et al. 2002]

- Subsample the stream at geometrically decreasing rates
- Perform balls and bins at each level

Balls-and-bins diagram

\[
h: \{1, \ldots, n\} \rightarrow \{1, \ldots, \log n\}
\]

\[
Pr[h(i) = j] = \frac{1}{2^j}
\]

\[
g: \{1, \ldots, n\} \rightarrow \{1, \ldots, 1/\varepsilon^2\}
\]

- When \(i \) appears in stream, put a ball in cell \((g(i), h(i))\)
- For each column, store the largest row containing a ball
- Identify the largest row \(j \) which is at least half full, and count the number of columns with at least \(j \) written. Base estimate on this count.

Memory and Update Time

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Memory</th>
<th>Update Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flajolet, Martin 1983</td>
<td>(O(\log n))</td>
<td>–</td>
</tr>
<tr>
<td>Ailon, Matias, Szegedy 1996</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
</tr>
<tr>
<td>Gibbons, Tirthapura 2001</td>
<td>(O((\log n)/\varepsilon^2))</td>
<td>(O(1/\varepsilon^2))</td>
</tr>
<tr>
<td>Bar-Yossef, Jayram, Kumar, Sivakumar, Trevisan 2002</td>
<td>(O((\log n)/\varepsilon^2))</td>
<td>(O(\log(1/\varepsilon)))</td>
</tr>
<tr>
<td>Bar-Yossef, Jayram, Kumar, Sivakumar, Trevisan 2002</td>
<td>(O((\log \log n + \log(1/\varepsilon))/\varepsilon^2 + \log n))</td>
<td>(O(1/\varepsilon^2))</td>
</tr>
<tr>
<td>Durand, Flajolet 2003</td>
<td>(O((\log \log n)/\varepsilon^2 + \log n))</td>
<td>–</td>
</tr>
<tr>
<td>Kane, Nelson, Woodruff 2010</td>
<td>(O(1/\varepsilon^2 + \log n))</td>
<td>(O(1))</td>
</tr>
</tbody>
</table>

References