Approximating the Diameter of Large Graphs

Large Graphs

Large graphs arise naturally in many application domains, such as network analysis.

- Social Networks
- Yeast Protein Interaction Network

Diameter of a Graph

The diameter is the length of the longest shortest path between any two nodes in a graph. For instance, in the graph below, diameter = 6.

![Graph](image)

Computing the diameter is a fundamental step in network analysis.

Heuristics to Reduce Spanning Tree Diameter

- Assign random weights to the graph edges
- Compute a minimum spanning tree
- For each node, select an incident edge to the lowest depth node
- Selected edges form a new spanning tree
- Repeat the above iteration till some convergence threshold

Parallel Cluster Growing Algorithm

- Choose n/k random master nodes plus O(n/k) deterministic ones (Euler tour)
- Grow clusters around master nodes in parallel (local BFS runs)
- Each node gets labelled with its cluster index and distance from its master after O(k) phases
- Form a new graph G'

 - Each node represents a cluster in the original graph
 - Edge (C(u), C(v)) exists in G' if the edge {u, v} exists in G
 - Edge weight: \(\text{dist}(u, u') + 1 + \text{dist}(v, v') \), where \(u' \) and \(v' \) are master nodes in \(C(u) \) and \(C(v) \), respectively

- Compute single-source shortest paths from an arbitrary node in the smaller graph G'

 - The heuristic approach is quite fast and requires only 2-3 iterations to get a 1.5-approximation of graph diameter
 - With multiple disks, the heuristic approach becomes computation bound

Breadth-First Search Tree

- Height of a Breadth-First Search tree gives a 2-approximation to the diameter of the graph
- Computing Breadth-First Search requires days for large graphs with billions of edges, even with the most efficient external memory algorithms
- Need to approximate the diameter even faster than the Breadth-First Search traversal of the graph
- We perform an empirical study to compare the running time and approximation quality of different algorithms

Euler Tour Based Algorithm

- Compute a spanning tree of the input graph
- Build an Euler tour around it and chop it into O(n/k) clusters of length k
- Eliminate duplicates by keeping only the first occurrence
- Form a new (smaller) graph G'

 - Each node represents a non-empty cluster in the original graph
 - Edge (C(u), C(v)) exists in G' if the edge \{u, v\} exists in G
 - Run Breadth-First Search on G’ starting from an arbitrary node

References