Amortized Analysis of \((a, b)\)-Trees

Gerth Stølting Brodal and Rolf Fagerberg

BRICS
Department of Computer Science
University of Aarhus

Draft Manuscript
September 7, 2000

1 \((a, b)\)-trees

In the following we consider the class of height balanced trees denoted \((a, b)\)-trees. For the special \(b = 2a - 1\), \((a, b)\)-trees are also known as B-trees. More extensive descriptions of \((a, b)\)-trees can be found in standard text books, e.g. [1, 2].

In the following we let the depth of a node in a tree be the number of edges on the shortest path from the node to the root, i.e. the root has depth zero. The degree of a node is the number of children of the node. The height of a tree is the maximal depth of a leaf in the tree, and the height of a node in a tree is the height of the subtree rooted at the node. We let \(\log x\) denote the logarithm with base two of \(x\).

Definition 1 Let \(a\) and \(b\) be integers where \(a \geq 2\) and \(b \geq 2a - 1\). A tree is an \((a, b)\)-tree if and only if

1. All leaves have the same depth.
2. All internal nodes have degree at most \(b\).
3. All internal nodes except the root have degree at least \(a\).
4. The root has degree at least two.

From the above constraints of the structure of an \((a, b)\)-tree we have the following bounds on the height of an \((a, b)\)-tree.

Theorem 1 An \((a, b)\)-tree with \(n\) leaves has height between \(\lfloor \frac{\log n}{\log b}\rfloor\) and \(\lfloor \frac{(\log n - 1)}{\log a}\rfloor + 1\).

Proof. For a tree with \(n\) leaves and height \(h\) we have by Definition 1 that \(2 \cdot a^{h-1} \leq n \leq b^h\), and the theorem follows.

An \((a, b)\)-tree can be used to store a sorted set, by storing the elements of the set at the leaves in sorted order from left-to-right, and by letting each internal node of degree \(k\) store \(k\) pointers to its children and \(k - 1\) keys, such that \(i\)-th key is larger than all elements stored in the subtree rooted at the \(i\)-th child and smaller than or equal to all elements stored in the subtree rooted at the \((i + 1)\)-st child. Figure 1 shows a \((2, 4)\)-tree having 10 leaves and height
two. Searching for a leaf can be done by a top-down traversal of the path from the root to the appropriate leaf by using the stored keys. By performing a binary search among the keys at each node this takes time $O(\log b \cdot \frac{\log n}{\log b})$, which is $O(\log n)$ for $b = a^{O(1)}$.

2 Inserting and deleting leaves

Important operations on (a,b)-trees are the insertion and deletion of leaves. After having inserted a leaf into or deleted a leaf from an (a,b)-tree, i.e., created or removed a child of a node with height one, the tree might not satisfy the constraints on the shape of an (a,b)-tree.

If an insertion causes the node with height one to get $b+1$ children, we perform a node splitting (see Figure 3). First a new node is created which is made the sibling of the node with $b+1$ children (creating a new root if necessary). The $b+1$ children are then distributed evenly among the two siblings such that they get respectively $\lfloor (b+1)/2 \rfloor$ and $\lceil (b+1)/2 \rceil$ children. Note that the degree of the parent increases by one. If the parent now has degree $b+1$, a recursive node splitting is performed at the parent.

If a deletion causes the node with height one to get $a-1$ children and the node is not the root, we either perform a node sharing or node fusion (see Figure 3). If the node is not the root it must have a parent with at least two children, i.e., there exists an immediate sibling to the left or right with between a and b children. If the sibling has at least $a+1$ children, the closest child of the sibling is moved to the node with $a-1$ children such that the node gets a children (sharing). If the sibling has a children we fusion the two siblings into one node with $2a-1$ children. This decreases the number of children at the parent by one (fusion). If the parent now has $a-1$ children and is not the root we recursively perform a node fusion or node sharing at the parent. If the root after the deletion has only one child, the root is deleted.
Figure 3: Node splitting, node fusion, and node sharing in $(2,5)$-trees.

3 Analysis

We first analyze the case where no deletions are performed on an (a, b)-tree. This implies that all rebalancing is done by node splittings.

Theorem 2 In a sequence of n insertions on an initial empty (a, b)-tree, where $a \geq 2$ and $b \geq 2a - 1$, the total number of node splittings at height h is at most $n/\lfloor (b + 1)/2 \rfloor^h$.

Proof. The first node created at height h is created by a node splitting at height $h - 1$. Each node splitting at height h increases the number of nodes at height h by one. By a simple induction it follows that after the first node splitting at height h all nodes at height h have at least $\lfloor (b + 1)/2 \rfloor$ children. Since there are at most $n/\lfloor (b + 1)/2 \rfloor^h$ nodes at height h in a tree with n leaves and height at least $h + 1$, the theorem follows. \hfill \Box

Corollary 1 In a sequence of n insertions on an initial empty (a, b)-tree, where $a \geq 2$ and $b \geq 2a - 1$, the total number of node splittings is at most $4n/b$.

Theorem 3 In a sequence of i insertions and d deletions on an initial empty (a, b)-tree, where $a \geq 2$ and $b \geq 2a$, the total number of node splittings and node fusions at height h in the tree is $O(\delta^h(i + d))$, where $\delta < 1$ is a constant depending on a and b.

Proof. Let $\alpha = \min\{2a - 1, \lfloor (b + 1)/2 \rfloor\}$ and $\beta = \max\{2a - 1, \lfloor (b + 1)/2 \rfloor\}$. Furthermore let $\delta_1 = 1/(2\alpha - 2a + 1)$, $\delta_2 = (1 + \delta_1)/(b + 1 - \beta)$, and $\delta = \max\{\delta_1, \delta_2\}$. Note that since $a \geq 2$ and $b \geq 2a$, it follows that $a + 1 \leq \alpha \leq \beta \leq b - 1$, $\delta_1 \leq 1/3$, $\delta_2 \leq 2/3$ and $\delta \leq 2/3$.

For each non-root node v we define a potential $\phi(v)$ given by the graph in Figure 4. For the root we define $\phi(v)$ similarly, except that the potential is also zero when the root has degree less than α. Finally we let $\phi_h = \sum_{v : \text{height}(v) = h} \phi(v)$. Intuitively, ϕ_h is a measure of the unbalancedness at height h.

Let SP_h and FS_h denote respectively the number of node splittings and node fusions performed at height h, and $SP_0 = i$ and $FS_0 = d$. By induction on the length of the sequence of operations we will show that the following invariant holds for $h \geq 1$:

$$\phi_h \leq \delta(SP_{h-1} + FS_{h-1}) - (SP_h + FS_h).$$ \hfill (1)
By definition $\phi(v) \geq 0$ and therefore $\phi_h \geq 0$. From (1) we then immediately have $SP_h + FS_h \leq \delta(SP_{h-1} + FS_{h-1})$, i.e. $SP_h + FS_h \leq \delta(SP_0 + FS_0) = \delta(i + d)$.

We now turn to the proof of (1). Initially $\phi_h = SP_h = FS_h = 0$ for all $h \geq 0$, and (1) holds.

Next consider the case where SP_{h-1} has been increased because a leaf has been inserted ($h - 1 = 0$) or there has been a node splitting at height $h - 1$ ($h - 1 > 0$). Then $\Delta \phi_h \leq \delta_2$ and the r.h.s. of (1) increases by δ. Since $\delta \geq \delta_2$, (1) remains valid. If a node with height h should be split because it gets degree $b + 1$, then the splitting creates two nodes v_1 and v_2 with degree $\lfloor (b + 1)/2 \rfloor$ and $\lceil (b + 1)/2 \rceil$, where $\phi(v_1) \leq \delta_1$ and $\phi(v_2) = 0$ (since $\alpha - 1 \leq \lfloor (b + 1)/2 \rfloor \leq \beta$ and $\alpha \leq \lceil (b + 1)/2 \rceil \leq \beta$). It follows that $\Delta \phi_h \leq -(1 + \delta_1) + \delta_1 = -1$ and the r.h.s. of (1) decreases by one, i.e. (1) remains valid.

If FS_{h-1} has been increased because a leaf has been deleted ($h - 1 = 0$) or there has been a node fusion at height $h - 1$, then $\Delta \phi_h \leq \delta_1$ and the r.h.s. of (1) increases by δ. Since $\delta \geq \delta_1$, (1) remains valid. A node fusion at height h fuses two nodes with degree respectively $a - 1$ and a and with potential respectively $1/2 + \delta_1/2$ and $1/2 - \delta_1/2$, i.e. $\Delta \phi_h = -1$. Since the r.h.s. of (1) also decreases by one, (1) remains valid. For a node sharing at height h we have $-(\delta_1 + \delta_2) \leq \Delta \phi_h \leq 0$ and (1) remains valid since the r.h.s. of (1) does not change.

Corollary 2 In a sequence of i insertions and d deletions on an initial empty (a, b)-tree, where $a \geq 2$ and $b \geq 2a$, the total number of node splittings and node fusions is $O(i + d)$. If $b \geq (2 + \epsilon)a$, for some $\epsilon > 0$, the number of node splittings and node fusions is $O(\frac{1}{\epsilon \alpha}(i + d))$.

Proof. Follows from Theorem 3, the definition of δ, and $\sum_{i=1}^{\infty} \delta^i = \frac{\delta}{1 - \delta}$ for $|\delta| < 1$.

The number of node sharings at height h is bounded by the number of node fusions or leaf deletions at height $h - 1$.

References
