Certifying Algorithms

Correctnesss of algorithms?

- Formal proof of algorithm correctness
 - only simple problems?
 - implementation ≠ algorithm

- Compare output of two algorithms
 - one algorithm often simple and slow (only small input)

- Assertions / exceptions

- Unit testing
 - systematic testing, random input
Certifying Algorithm

- **Algorithms output proof** \(w \) of **correctness** or **illegal input**
- **Strongly certifying** \(\Rightarrow \) halts on all input; identifies illegal input
- **Certifying** \(\Rightarrow \) halts on all input; illegal input or correct output
- **Weakly certifying** \(\Rightarrow \) halts on valid input; if halts, correct output
- **Motivation**: Ensure correctness of algorithms in the *Library of Efficient Data Types and Algorithms*
Sorting ?

- **Input**: Unsorted array
- **Output**: Input elements in sorted order

- **Checker**:
 - Verify output sorted
 - Verify output = input elements
Greatest Common Divisor - GCD

- **Input**: Positive integers \(a \) and \(b \)
- **Output**: \(g = \gcd(a, b) \)
- **Certificate**:
 - Integers \(x, y \): where \(g = ax + by \)
- **Checker**:
 - Check \(g \uparrow a, \ g \uparrow b, \text{ and } g = ax + by \)
 - Sufficient by [MMNP11, Lemma 1]
Bipartite Graph?

- **Input:** Undirected Graph \(G=(V,E) \)
- **Output:** Boolean, is the graph bipartite

- **Certificate:**
 - True: Partition of the vertices, \(V = V_1 \cup V_2 \)
 - False: Odd length cycle

- **Checker:**
 - Verify partition or cycle
Connected Components ?

- **Input**: Undirected graph $G = (V, E)$
- **Output**: Partition of V into the c.c.
- **Certificate**:
 - Each vertex labeled (i, j), where i = component number, j = the nodes number in the component, such that all nodes except one in a c.c. have a neighbor with smaller j (e.g., BFS numbering)
- **Checker**:
 - Edges connect identical i
 - Mark non-root nodes (j larger than a neighbor)
 - Check roots different labels
Shortest Path $s \rightarrow t$?

- **Input:** Directed weighted graph $G = (V, E)$, $s, t \in V$
- **Output:** Shortest distance $s \rightarrow t$
- **Certificate:**
 - Distance vector D, with distances from s to all nodes
 - Shortest path tree
- **Checker:**
 - Check shortest path tree implies D
 - Check that no edge can improve any distance
Planarity Graph?

- **Input**: An undirected graph G
- **Output**: Boolean, is G planar
 - Can G be drawn without edges intersecting?
- **Certificate**:
 - Yes = (Combinatorial) Embedding (twin edges, face information)
 - No = $K_{3,3}$ og K_5 (Kuratowski subgraphs)
- **Checker**:
 - Yes: Check if $n+f=m+2$, $n=$#nodes, $m=$#edges, $f=$#boundary cycles (sufficient by [MMNS11, Lemma 3])
 - No: Verify Kuratowski subgraphs
Maximum Flow?

- **Input**: Flow network G, with capacity constraints c
- **Output**: Value of maximum flow

- **Certificate**:
 - Flow along each edge
 - Minimum cut, i.e. partition of the vertices

- **Checker**:
 - Check if valid flow
 - Find capacity of cut
 - Check if cut capacity is equal to value of flow
Dynamic Dictionary

- **Operations**: Insert, Delete, Search, ...

- **Checker / Monitor**:
 - Check maintains a doubly-linked list of *handles* into dictionary

- Checker identifies wrong queries immediately
Priority Queue

- **Operations**: Insert, DeleteMin ...
- **Checker / Monitor**: (see figure)
 - check element against lower bound on deletion
- **Checker** identifies wrong queries delayed