Unified Access Bound

- Dictionary: Insert(x), Delete(x), Search(x)
- Comparison model

Solution 1: Balanced search tree \Rightarrow $O(\log n)$

Solution 2: Unordered linked list \Rightarrow $O(n)$

The paper initiated the study of competitiveness analysis of **online algorithms** for list ordering, search-trees, paging algorithms, ... (move-to-front is 2-competitive)
Access sequences - examples

- $X_1 = 1, 2, 3, \ldots, n, 1, 2, 3, \ldots, n, 1, 2, 3, \ldots$
- $X_2 = 1, n, 1, n, 1, n, \ldots$
- $X_3 = 1, n/2, 2, n/2+1, 3, n/2+2, \ldots, n/2, n, 1, \ldots$
Access sequence $X = (x_1, x_2, \ldots, x_m)$

- Static optimal: $\mathcal{O}(\log (1/p(x_i)))$
- Sequential-access bound: $\mathcal{O}(1)$
- Static finger bound: $\mathcal{O}(\log d_i(f, x_i))$
- Dynamic finger bound: $\mathcal{O}(\log d_i(x_i, x_{i-1}))$
- Working set bound: $\mathcal{O}(\log w_i(x_i))$
- Unified bound: $\mathcal{O}(\min_{y \in S_i} \log(w_i(y) + d_i(x_i, y)))$

Sorted list

Move-to-front list
Splay trees (amortized)

1. Static optimal: $O(\log (1/p(x_i)))$
2. Sequential-access bound: $O(1)$
3. Static finger bound: $O(\log d_i(f, x_i))$
4. Dynamic finger bound: $O(\log d_i(x_i, x_{i-1}))$
5. Working set bound: $O(\log w_i(x_i))$
6. Unified bound: $O(\min_{y \in S_i} \log(w_i(y) + d_i(x_i, y)))$

Static optimality

Construction:

Compute prefix sums + Exponential search \(\Rightarrow O(n)\)

Split decision:

- Split \(\leq \frac{1}{2}\) weight both children
 - Depth \(d\) subtree weight \(\leq (\frac{1}{2})^d\)
 - Depth \(x_i \leq \log(1/p(x_i))\)
 - Static optimal
Working-set structure

- \(L = L_0 + L_1 + \cdots \) = move-to-front list
- \(|L_i| = 2^{2^i} \)
- \(T_i = \text{search tree over } L_i \)
- Insert, Delete = \(O(\log n) \), Search = \(O(\log w_j) \)
Unified structure

Search trees of a **subset** of the elements

Finger search tree over **all** elements

Lemma 7 \(w_i(y) \leq 2^k \) and \(x \) and \(y \) rank distance \(\leq 2^{2k} \), then \(x \) within rank distance \((k+4)2^{2k} \) of some \(y' \in T_0 \cup \cdots \cup T_k \).