Data Structures

ing

t

Self-Adjus




Self-Adjusting Data Structures
OO0 On im0 026

Search(2), Search(2), Search(2), Search(5), Search(5), Search(5)

Lists

[D.D. Sleator, R.E. Tarjan, Amortized Efficiency of List Update Rules, Proc. 16" Annual ACM Symposium on
Theory of Computing, 488-492, 1984]

Dictionaries
[D.D. Sleator, R.E. Tarjan, Self-Adjusting Binary Search Trees, Journal of the ACM, 32(3): 652-686, 1985]
— splay trees

move-to-front

Priority Queues

[C.A. Crane, Linear lists and priority queues as balanced binary trees, PhD thesis, Stanford University, 1972]
[D.E. Knuth. Searching and Sorting, volume 3 of The Art of Computer Programming, Addison-Wesley, 1973]
— leftist heaps

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Heaps, SIAM Journal of Computing, 15(1): 52-69, 1986]
— skew heaps

[C. Okasaki, Alternatives to Two Classic Data Structures, Symposium on Computer Science Education, 162-
165, 2005]
— maxiphobix heaps

Okasaki: maxiphobix heaps are an alternative to leftist heaps ... but without the “magic”



Hea PS (via Binary Heap-Ordered Trees)
MakeHeap, FindMin, Inﬁert, Meld, Dele”teMin

. Meld Cut root + Meld
Leftist Heaps

[C.A. Crane, Linear lists and priority queues as balanced binary
trees, PhD thesis, Stanford University, 1972]
[D.E. Knuth. Searching and Sorting, volume 3 of
The Art of Computer Programming,
Addison-Wesley, 1973]

Each node distance to empty leaf |
Inv. Distance right child < left child (13)

— rightmost path <[ log n+1 | nodes
Time O(log n) .

Maxiphobic Hea PS [C. Okasaki, Alternatives to Two Classic Data Structures,

) Symposium on Computer Science Education,
! ° 162-165, 2005]
= () Meld ( , )
ﬁ Max size n — %n
X<y T. T .
[ 4 Time O(log;,, n) 3

largest size two smallest




Skew Heaps

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Heaps, SIAM Journal of Computing, 15(1): 52-69, 1986] (2)

"= Heap ordered binary tree with no balance information
= MakeHeap, FindMin, Insert, Meld, DelﬁteMin

Meld Cut root + Meld

vheavyif |T,| > [T, [/2, otherwise light

— any path <log n light nodes

Potential @ = # heavy right children in tree

O(log n) amortized Meld

Heavy right child on merge path before meld — replaced by light child
—> 1 potential released for heavy node

—> amortized cost 2- # light children on rightmost paths before meld

4



Skew Heaps — O(1) time Meld

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Heaps, SIAM Journal of Computing, 15(1): 52-69, 1986]

= Meld = Bottom-up merg of rightmost paths + swap all siblings on merge path

® = # heavy right children in tree + 2 - # light children on minor & major path

O(1) amortized Meld

Heavy right child on merge path before meld — replaced by light child = 1 potential released
Light nodes disappear from major paths (but might — heavy) = > 1 potential released
@ and@ become a heavy or light right children on major path = potential increase by < 4

O(log n) amortized DeleteMin
Cutting root = 2 new minor paths, i.e. < 2:log n new light children on minor & major paths 5



Splay Trees

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Binary Search Trees, Journal of the ACM, 32(3): 652-686, 1985]

" Binary search tree with no balance information
= splay(x) = rotate x to root (zig/zag, zig-zig/zag-zag, zig-zag/zag-zig)
Zig-zag

= Search (splay), Insert (splay predecessor+new root), Delete (splay+cut root+join),
Join (splay max, link), Split (splay+unlink)

zag-zag
Zig-zig




Splay Trees

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Binary Search Trees, Journal of the ACM, 32(3): 652-686, 1985]

"= The access bounds of splay trees are amortized

(1) O(log n)

(2) Static optimal

(3) Static finger optimal

(4) Working set optimal (proof requires dynamic change of weight)

= Static optimality: ® = ZV log |T,|



