Self-Adjusting Data Structures

Self-Adjusting Data Structures

Lists

[D.D. Sleator, R.E. Tarjan, *Amortized Efficiency of List Update Rules*, Proc. 16th Annual ACM Symposium on Theory of Computing, 488-492, 1984]

Dictionaries

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Binary Search Trees, Journal of the ACM, 32(3): 652-686, 1985] → splay trees

Priority Queues

[C.A. Crane, Linear lists and priority queues as balanced binary trees, PhD thesis, Stanford University, 1972] [D.E. Knuth. Searching and Sorting, volume 3 of The Art of Computer Programming, Addison-Wesley, 1973] → leftist heaps

[D.D. Sleator, R.E. Tarjan, *Self-Adjusting Heaps*, SIAM Journal of Computing, 15(1): 52-69, 1986] → skew heaps

[C. Okasaki, *Alternatives to Two Classic Data Structures*, Symposium on Computer Science Education, 162-165, 2005]

→ maxiphobix heaps

Heaps (via Binary Heap-Ordered Trees)

MakeHeap, FindMin, Insert, Meld, DeleteMin

Meld

Cut root + Meld

Leftist Heaps

[C.A. Crane, Linear lists and priority queues as balanced binary trees, PhD thesis, Stanford University, 1972]
[D.E. Knuth. Searching and Sorting, volume 3 of The Art of Computer Programming, Addison-Wesley, 1973]

Each node distance to empty leaf

Inv. Distance right child \leq left child \Rightarrow rightmost path $\leq \lceil \log n + 1 \rceil$ nodes

Maxiphobic Heaps

[C. Okasaki, Alternatives to Two Classic Data Structures, Symposium on Computer Science Education, 162-165, 2005]

Max size $n \rightarrow \frac{2}{3}n$

Time $O(\log_{3/2} n)$

Skew Heaps

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Heaps, SIAM Journal of Computing, 15(1): 52-69, 1986]

- Heap ordered binary tree with no balance information
- MakeHeap, FindMin, Insert, Meld, DeleteMin Meld Cut root + Meld
- Meld = merge rightmost paths + swap all siblings on merge path

v heavy if $|T_v| > |T_{p(v)}|/2$, otherwise light ⇒ any path $\leq \log n$ light nodes

Potential Φ = # heavy right children in tree

O(log n) amortized Meld

Heavy right child on merge path before meld \rightarrow replaced by **light** child

- \Rightarrow 1 potential released for heavy node
- ⇒ amortized cost 2· # light children on rightmost paths before meld

Skew Heaps – O(1) time Meld

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Heaps, SIAM Journal of Computing, 15(1): 52-69, 1986]

Meld = Bottom-up merg of rightmost paths + swap all siblings on merge path

 Φ = # heavy right children in tree + 2 · # light children on minor & major path

O(1) amortized Meld

Heavy right child on merge path before meld \rightarrow replaced by light child \Rightarrow 1 potential released Light nodes disappear from major paths (but might \rightarrow heavy) $\Rightarrow \ge 1$ potential released 4 and 5 become a heavy or light right children on major path \Rightarrow potential increase by ≤ 4

O(log n) amortized DeleteMin

Cutting root \Rightarrow 2 new minor paths, i.e. \leq 2·log *n* new light children on minor & major paths

Splay Trees

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Binary Search Trees, Journal of the ACM, 32(3): 652-686, 1985]

- Binary search tree with no balance information
- splay(x) = rotate x to root (zig/zag, zig-zig/zag-zag, zig-zag/zag-zig)

Search (splay), Insert (splay predecessor+new root), Delete (splay+cut root+join),
 Join (splay max, link), Split (splay+unlink)

Splay Trees

[D.D. Sleator, R.E. Tarjan, Self-Adjusting Binary Search Trees, Journal of the ACM, 32(3): 652-686, 1985]

- The access bounds of splay trees are amortized
 - $(1) O(\log n)$
 - (2) Static optimal
 - (3) Static finger optimal
 - (4) Working set optimal (proof requires dynamic change of weight)
- Static optimality: $\Phi = \sum_{v} \log |T_{v}|$