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Abstract. We extend our light Dialectica interpretatidn [10] to usaad light
modal formulas and prove it sound for pseudo-modal aritleaéased on Godel's
T and classicabs. The range of thisight modal Dialecticainterpretation is the
usual (non-modal) classical Arithmetic in all finite typ&¥e also illustrate the
use of the new tools for optimized program synthesis with agamples.

This recent work comes in addition to the program extractiéminology outlined
in our previous papel [10] by adding a useful device for carimgj the effect of pre-
vious optimizations by semi- and non-computational gqdigns in a compact one-
stepcontent eraser , namely the modal operatér (and its weak co-modality
<&f=-0-). Beside the seemingly cosmetic improvement, we bring eleviing new
result: while the modal propositional axioms of systémare realizable, the defining
axiom ofSj5 is generally not realizable under (light) modal Dialectica

The use and interpretation of modal operators in this papee mspired by work of
Oliva (partly joint with the first author, segl[9]) at the lendogic sublevel, see [14,15].
It is no coincidence that, at formulas level, our interptietaof O A is syntactically the
same as Oliva’s modified realizability interpretation éfin intuitionistic linear logic.
However, a bureaucratic detour would be needed in ordemalateC A in terms of
1A, which seems less suitable for an efficient computer impleat®n.

The second author independently noticed the possibilitysirig the same supra-
linear modal operators for light program extractionin/[1€3e also [19]. However, the
initiative of studying the full employment afi for more efficient program synthesis in
the formal context of a classical first-order modal logicttie sense of Schutte, [16])
belongs to the first author. As we will see, for our extracpiueposes it is useful to de-
part from Schitte’s original semantics for quantified madaigic. E.g., the propositional
fragments of our first-order modal systems are no longer mbdapurely boolean, as

* In the present paper we give a more detailed treatment ofntiection for naturals and we
correct thetypoin the definition of the weak compatibility ruleMP: on page 1382 of [10], it
is s instead ofr andt instead ofy; we also give the treatment 0fP under Dialectica light.
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for Scientific Research grant PN-II-RU-TE-2011-3-0122.
*** The second author gratefully acknowledges the financigb@upf the Bulgarian National
Science Fund within project DTK 02/69-2009.
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Op = p = <fp for propositional atomg. We thus desigpseudd(i.e., non-standard)
modal arithmetics for program extraction, with relativeisdness syntactically given
via our (light) modal functional interpretation by the tatgystem, namely classical
predicate Arithmetic with higher-type functionals, in attdal Deduction presentation.

We stress the fact that we are only concerned with fragméritsthmetics without
undecidable predicateatl propositional atoms of our systems are a priori decidabl

For an easier presentation we will give up the ‘pseudo’ préfixoughoutthe paper,
our modal Arithmetics are pseudo-modal. Note that sourslogSchitte’s predicate
modal logics (e.g.5}) is proved non-constructively, using models, see [16].

1 Arithmetical systems for Modal Dialectica extraction

We build upon functional arithmetical systefi# and (the light annotatedyA; from
[10]. While verifying systenNA basically is the Arithmeti& of Berger, Buchholz and
Schwichtenberd |4] in a slightly different presentationiethis more suitable for light
functional synthesis and features full classical logidifeut strong existence) and full
extensionalitE, its light counterparNA; is only partly classical. Moreover, theput
systemNA; is weakly extensional and its contraction (and hence aldadtion) rule

is restricted for soundness of the (light) functional iptetation ofNA; into NA. In
computing terms, the program synthesis algorithm proviaethe light Dialectica (of
[1Q], as inherited from the ofef [7]) terminates without error only modulo the above-
mentioned restrictions on Extensionality and Contraftion

For (light) modal functional synthesis we will use the saneeifying systemNA.
The simpler input systeNA™ is obtained by addin@ to a restricted variant dflA.
This modal Arithmetic will be proved sound via tineodal Dialectica interpretation
The fully-fledged input systerNA}* adds toNA™ all light universal quantifiers and is
a modal extension dflA;; its soundness will be given by the light modal Dialectica
interpretation. We will not detail here the arithmetidA andNA;, but rather refer the
reader to[[10]. We mostly enumerate the new items that arechiidorder to geNA™
and respectivel]NA}*. (System&lA andNA, are retaken in the Appendix sectign 5.)

8 As inherited from systen¥, our NA is mostly a Natural Deduction presentation of the so-
called ‘negative arithmetic’ fromi [20], basically a doutriegation, Godel-Gentzen embedding
of classical into Heyting ArithmetielA“.

4 The restriction on extensionality is at its turn inheritednfi the pure Godel’s functional in-
terpretation[[IL.6], whereas the restriction on contracti@s first added by Hernest, as it was
imposed by the necessity of decidability of the translatiblight contraction formulas.

® These restrictions are more relaxed than those from theafitsior's PhD thesis and weaker
than Godel’s restriction on extensionality, Kreisel'mling of contraction in his Modified
Realizability [12] and Girard’s total elimination of coatttion in his original Linear Logic [5].
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The sets of finite type%’, terms7 (of Godel'sT), formulasF (of NA) and, with
the addition ofd, formulas7™ of NA™ and. 7" of NA}* are defined as follows:

T p,o == |o](po)
T st u= af |[T°|F°|0"| 8" | I£PPP | RPUPPP | (AzP t7)P7 | (t775°)7
F AB = at(t’)|A— B|AAB|VaPA| JaPA = —VaP-A

F™  AB = at(t’)|A—> B|AANB|VzPA| OA|<CFA = -0-A

F" AB u= at(t’)|A—= B|AANB|V2?A|OA| Vi 4 — 1127 A

Recall that we employ just two basic types: integeasd booleans, and usepor for
(p(oT)). Building blocks for terms are the usual constructors forleaos €, F) and
integers ¢, S), case distinctiorlf and Godel recursioR.

The operatoFV(-) returns the set of free variables of its argumeat7 or A € F.
Atomic formulas are decidable by definition, as they are tified with boolean terms.
In particular, we have decidable falsity:= at(F) and truthT :=at(T). As usual, we
abbreviateA — | by —A.

For the necessity operatar we have the followingenhancedntroduction rule,
which applies to many more premise sequents than usual éasotitext/” may be
inhabited, see also Remduk 4 in Secfibn 2 for an extendedatioin):

' A wherel is restricted depending on the translation of the (sub)proo
0o‘: ————, ofthe premise sequent, in ways that will be described betow f

I'-0A  each of the two proof translations: modal and light modal.
The following axioms of modal propositional logit; are part ofNA™ andNA}":

AxT: OA— A AxT: A — <A
Ax4 : OA — OOA Ax4c : OFOPA — COFA
AxK: [0(A— B)ANOA] - OB

In fact onlyAxT is needed as axiom of our non-standard modal systems. Ofeaut

and Ax4¢ were syntactically deducible fromxT and respectively\x4 already in the
propositional modal systet$i,, only using minimal logic (the proof ofx4¢ also uses
AxK and the empty-context?). It turns out that alsax4 andAxK are easily deducible

in NA™/NAT* just from AxT (and only using minimal logic), given our very liberal
necessity introduction rule, see Definit[dn 3 below. Not Btability——B — B needs

to be restricted already foMA™, due to the necessary restriction on Contraction, see
RemarkB further below, Remdrk 5 in Sectidn 2 and Section {10

We denote byd —;, B := OA — B the so-called ‘Kreisel implication’, since its
translation by modal Dialectica coincides with its Modifiedalizability interpretation.
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Definition 1 (modal Dialectica interpretation). The interpretation does not change
atomi@ formulas, i.e.|at(t)| := at(t?). Assuming Alg and| B[} are already defined,

AN Blg Y

|Aly A By VzA(2)|f, = |A(2)lf?
|A— B|g

|AlFzw = [BIS® DA = VylAlg

As an immediate consequence,

A = (-0-A); = Taldlz,

|A =, B=(0A-=B)g, = VYylAly —|Blg*
3 = (4 -/ Z’f = -/ fg
|32 A(z) = (V2 A(ng = |A(Zg)|g(Zg)(fg)

Definition 2 (light modal Dialectica interpretation). The following are added to the
above (the deduced translation4yf: is outlined below for use at the end of Secfidn 2):

Viz AR
vz A(2) 2

VAR MARE, = [AG)E
Vz|A(z)

FezB()l] = 32|B()I,,

¥
Remark 1.The light modal translation of formulas only addsA|® := Vy| Al to our
light functional translation from [10].

The definition ofcomputation relevancef (light) modal formulasA is basically the
same as for non-modal formulas, relative to the enhanceaym context. Namely,
A is realization relevantalso under (light) modal Dialectica if the tuple of witness
variablesz of its translation|A[§ is not empty and similarly is refutation relevant
if the tuple of challenge variablag is not empty. See Remark 1 in Section 3[of|[10].
CorrespondinglyA is realization irrelevanif it is not realization relevant (i.ez is an
empty tuple), andd is refutation irrelevantif it is not refutation relevant (i.ey is an
empty tuple), see also the more technical Definition 1 ini8ea@ of [10].

Definition 3 (Necessity Introduction). The restriction on3? depends on programs
synthesized from the proof of the premideof this rule, unless all formulas in the
context!” are refutation irrelevant oA is refutation irrelevant, see the paragraph fol-
lowing Theoren L in Sectidd 2 beloWwhus input proofs are inductively defined together
with their extracted programs (and their correspondingpuitproofs).

Remark 2 (restriction violation for?). In an automated interactive search for modal
input proofs of a given specification, we can temporarilpwl2? and postpone the
validity check for when the proof of its premise is fully congted. This approach
would be similar to the ‘nc-violations’ check in the actualrdog system, see [17],
and to the so-called ‘computationally correct proofs’ frffif].

5 Any decidable formula can (and should) be given via its dssed boolean term, e.g., one
should rather uset(0dd(z)) instead of the more verbosgy(2y # z), which is refutation
relevant in a somewhat artificial and probably unintended wa
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For efficiency reasons, we recommend the use of modal opsnateenever pos-
sible instead of the above partly (or non) computationahtjtiarsv,, V_, ¥ andﬁm.
Thus it makes sense to study the (pure) modal Dialecticaséifjtas the use of such
light quantifiers may not be necessary in many cases of gttdteshould be much eas-
ier to construct a purely modal (i.e., without light quamtifi) input proof, also for a
(semi) automated proof-search algorithm. Neverthelessthe light variant of modal
Dialectica which provides the larger range of possib#itiparticularly for situations
where the simpler, ‘heavier’ modal Dialectica does not saffi

Remark 3 Contraction restriction). We upgrade thek restriction from [10] on the
computationally relevant contractior{those on refutation relevant open assumptions
A), such that the interpretatigal| must be decidable (rather than strictly quantifier-
free). In the new modal context one needs to take into accalsotthe translation
of the necessity operator, as this introduces new quastifidrese may alter the de-
cidability of the translated formula (relative to the ca@pending non-modal formula
obtained by wiping out all instances of). E.g., letT(x,y, z) be a decidable predi-
cate s.t.H(z,y) := 32T (x,y, ) is not decidable (take KleeneE predicate which is
expressible in Peano Arithmetic, hence alsd\ifi, so thatH expresses the Halting
Problem “program with code halts on input”). Then P(z) := VyVz—T(z,y, z) can
be a contraction formula, where&S'(z) := VyOVz—T(xz,y, z) cannot, as its transla-
tion isVz—T'(z,y, z), an undecidable formula, sind&A + |P° ()|, < = H(z,y).
Onthe other hand, botfx (32 # ) A Vy(2y # x) andvz(3z # z) A OVy(2y # x)
can be contraction formulas, sin¢g(2y # ) is decidable.

2 Modal and light modal functional interpretations

The following metatheorem gives the general pattern in tvsmundness theorems for
Dialectica-based interpretations can be expressed, in@&#®eduction setting.

Theorem 1 (general soundness for Dialectica interpretatios; [ ISys, VSys ).

Let Ag, A1, ..., A, be a sequence of formulas&fys with w all their free variables.
If the sequenta;:A;,...,a,: A, A is provable inISys, then termsto,. ...,
can be automatically synthesized from its formal proofhstiat the translated se-
quentay:|[A1|f!, ..., an:|An[f" F |Aol% is provable inVSys, where the following
free variable condition (cholds: FV(¢;) C {w, z¢,...,x,} andx € FV(to). Here
xy, ..., x, are tuples of fresh variables, s.t. equal avars share a comsngh tuple.

In [10] the above was thoroughly proved fiffys = NA; andVSys = NA. Below
we prove that (meta)Theorem 1 remains valid also for thesghiA™ NA] (modal
Dialectica) andNA}", NA] (light modal Dialectica), which share the saiWigys = NA.

We can now complete the definition Bf: the restriction is thatey ¢ U FV(¢;)
in the translated premise sequent: |A; |5}, ..., an:|A, [ F [Aolk . This ensures
that the introduction rul&* can be applied for variables, and thus the conclusion
sequenta; : Ay, ..., an: A, HOAy is witnessed by the same realizers as the premise.

Lemma 1 (interpretation of S, modal axioms). AxiomsAxT, AxT¢, Ax4, Ax4°¢ and
AxK are realizable inNA under the (light) modal Dialectica translation.
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Proof: The translation of\xT is [OA — Al , = Vv|Alg — [A]$® and we can
takeg to be the identity\x. . Similarly, the translation ofxT¢ is |A — <>CA|£7y =
|A|F 5y — §u|A|Z and we can takg to be the projectionzy. y. For Ax4 andAx4°¢ it

is immediate thafJ A| = |O0A| and alsg < A| = |C°<CFA|, thus the realizer is again
the identity in both cases. In the translationask below, we takelU :=\f, g, x. gz,
which can easily be proved to be a realizer.

|AxK| Vo, v(|A[Z,, — |BII®) A VylAlZ 792" — Vo!|BlY, =

= [Va,0(Alf,, = [BIE") A vylAly - v BUSTY

Given the above Lemma and comments, we have completelylisbiththe following:
Theorem 2 (soundness of modal Dialecticalheorenf ] NA™, NA|.

Theorem 3 (soundness of light modal Dialectica)lheorenf Il NAT*, NA].

The next result pictures the limits of our modal extensiobi@iectica interpretation.

Theorem 4 (unrealizability of S5 defining axiom). AxiomAx5 : <A — OCCA s
generally not realizable under the (light) modal Dialecticanslation.

Proof: The translation ofix5 is a formula of shap&(x) — YyB(y) which only
holds true wher is the empty tuple, special case wheets requires no realizer at all.

Notice thatoc3z A is akin to Berger’s uniform existendédx} A from [2], where
one does not care about the witness3ar(which is actually deleted from the extrac-
tion). We can thus seé® as an extension of Berger’s tool to more general formulas
than just existential ones. On the other hand there aretisiisawhend and <¢ are
too general tools and separate annotations for each gearsig a better answer for
the problem at hand. In some of these cases it may still belpede use the modal
operators if one changes the input specification and itsfproo

Remark 4 (Necessity Introduction revisite@he usual restriction on the introduction
rule for the necessity operat@¥ is thatl” = §. In the natural deduction presentation
of modal logic,0° cannot be unrestricted of — OA becomes a theorem, thus all
occurrences of! becoming redundant. Our restriction Gf is strictly weaker, as, e.g.,
allows any context” whose formulas are all refutation irrelevant and any cardaeall

if the conclusion is refutation irrelevant. Thug, — OA not only is possible in our
pseudo-modal systems, it even defines a very interestisg offormulas, see below.

Definition 4 (necessary formulas)FormulasA s.t. - A — 0OA in NA™ or NA}.

Also due toAxT, it follows thatt A «» OA for any necessary formula, thus placing
O in front of suchA would be logically redundant. We say that an occurrends &f
meaningfuli.e., non-redundant) in front of any formula that is note&sary.

Note that all refutation irrelevant formulas are neces$amnulas. It is easy to see
that some of the refutation relevant formulas are necessayyvx L andvx T (in fact
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anyA st A ork —Ain NA™ or NAT'). However, even if such formulas syntac-
tically do require challengers, these functionals turntoube redundant and can be
soundly discarded by @, without the need to change any other component of the input
proof. In fact,a formulaA is necessary iff it can be proved equivalenti{A™ or NA})

to a refutation irrelevant formula. Indeed, for a necessary/take B := O A. For the
converse we can use the long implicatidan— B — OB — OA, where for the last
implication a contextless‘ together withAxK was used.

Therefore, the ‘necessary’ class captures those formutasevnegative computa-
tional content can always be erased regardless of the ddnteshich they are used.
On the other hand, there are cases whietan soundly be applied to a non-necessary
formula, leading to cleaner and more efficient extracted@ms (see Sectiqh 3 below).

Remark 5 (modal vs. pseudo-modd)would appear that our input ArithmetigA™

is able to prove new modal theorems and even sentences ¢heivalid in Schitte’s
semantics. On the other hand, ofr restriction on contraction is not present in the
usual first-order modal logic systems, thus some of the iclssiodal theorems will

no longer be theorems &fA™. Thereforewe say that our input systems are ‘pseudo-
modal’ rather than modalSee[[13] for extensive comments on the design of formalisms
for predicate modal logic, particularly on the yet-undatitory definition of necessity
introduction in Natural Deduction systems. Contractiastnietion notwithstanding, we
give the optimal restriction for? in view of automated program synthesis. However,
this does not solve the issue for general, fully-fledged-&raer modal logics.

2.1 Modal induction rule

As first argued in[[9], induction (for natural numbers, butreagenerally also for lists,
as naturalg are a particular case of inductively defined lists) shoutdeabe treated
in a Modified Realizability style whenever possible undealBética extraction. In our
non-standard modal context we can introduce the followmaglal inductionrule of
systemaNA™ andNA7*, which is defined with a Kreisel implication at the step:

I + 0OA(0) OA F OA(n) — A(Sn)
I', 0A + OA(n)

Ind}

This is an upgrade of the similar rule froim [9] (given at theefar logic sublevel, see
also [15]), as it allows for non-empty contexts. While thedaontexf " is unrestricted,
the step contexti A is made entirely of refutation irrelevant assumptions @il D.
Thus the step context restriction as fard; (see Appendix) is bluntly satisfied, since
this only concerned refutation relevant assumptions (ehcenslations ilNA had to
be quantifier-free, as their decidability was needed foe distinction in their corre-
sponding challenge realizers). Note thabifalready is refutation irrelevant, placimng

in front of D is somewhat redundant. We could refied? by splitting the step con-
text into A’ which consists of refutation irrelevant assumptions naglaipedD and
A" = 0OA. Nonetheless suci’ were made of necessary formulas (cf. Definifibn 4).

The treatment ofnd? under (light) modal Dialectica is much easier than the one of

Ind;. InfactInd} is a good simplification ofnd; for situations when the whole context
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is made entirely of refutation irrelevant assumptions k(t) is a refutation relevant
formula. The challenger fod(n) in the step conclusion would be unneededly produced
during the treatment of sudmd}, as it becomes no part of any of the witnesses for the
conclusion sequent. Placingin front of the negatively positioned(n) thus ensures a
minimal optimization brought bynd?, in this particular case simply by elimination of
redundancy: the conclusion witnessing terms are the saffiog &sd;.

A more serious optimization concerns the challenget€'ofor refutation relevant
assumptiong” from theI" context. These are simply preservedimd?, while under
Ind} they had to include the challengers for the stém). If A(n) were refutation
irrelevant, it would still make sense to used} instead ofIndj;, if one is not interested
in the challengers for the refutation relevant assumptimom the step context. While
for such particulaind; we already have the preservation of challengers for retutat
relevant assumptions strictly frod, still challengers for the refutation relevant step
assumptions are more complex in the conclusion sequent iftickide a meaningful
Godel recursion, even though here a challenger for therstgptiveA(n) is no longer
comprised since it does not exist). ThIsi} can bring an improvement oveénd; by
wiping out the step challengers altogether, should thesdameeded in the global
construction of the topmost realizers for the goal spetitica

It turns out thatInd? strictly optimizesInd; in many (if not most) situations. Yet
Ind; will have to be used also in our non-standard modal conteattigally whenever
Ind} simply cannot be applied for the goal at hand.

3 Examples

The weak extensionality of modal input systel8™ andNA}* can better be expressed
by means of the followingnodal compatibility axionfthe usual compatibility axiom,
but with the outward implication changed to a Kreisel imation)

CmpAx™ : O(xz =, y) — A(x) — A(y)

By straightforward calculations, it is easy to see thwiAx™ is realizable under (light)
modal Dialectica by simple projection functionals, wittretherification in the fully
extensionaNA given by the corresponding compatibility axiampAx, seel[10].

In [9] the following class of examples was considered: teews of the form

VeA — VyB — VzC (1)

possibly with parameters, where the negative information: d@s irrelevant, while the
one ony is of our interest. Then it must be possible to adapt the pb@) to a proofin
NA™ or NA] of (OVzA) — YyB — VzC. As noticed by Oliva in[[15], the Fibonacci
example first treated with Dialectica inl[8] falls into thiategory.

Oliva also suggested an interesting example, which metil/ttte definition of our
positively computational quantifiet. (see[[10]): “Any infinite sef of natural numbers
contains numbers which are arbitrarily apart”. The claim ba formalized as follows:

Vaz3y(y > x A P(y)) — Yd3ny, ny (n2 > ny +d A P(ni) A P(ns)) 2
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This statement can be proved only via a contraction on theiges and as a resuttis
refuted by a term involving case distinction @R|. However, if only the witnesses of
ny andn, are needed, then the redundant challenge:foan be discarded by using a
O in front of the premise, effectively applying a Kreisel irigaltion. This example is of
the form [1) and can be treated both with the hybrid Dialectiom [S] and with the
extended light Dialectica interpretation from [10].

The example can be extended so that the premise becomesnvalreed [19]:

Ym(In Q(n,m) — Iny Q(ny,Sm)) — Ing Q(ng, 0) — Iny Q(ns,$80)  (3)

Again, a contraction must be used, and two semi-computtimurantifiers need to be
applied to erase the negative computational content:

V+m(§+n Q(n,m) — Ing Q(n1,Sm)) — Ine Q(no,0) — TInsy Q(n2,880) (4)

However, this solution is not desirable, as the light antiata would only apply to a
special class of binary relatiorfg for which the witness:; for Q(n,,8m) does not
depend computationally on the witnesgor Q(n, m) for anym, hence reducing the
generality of the claim. One of the solutions would be to edtéhe light annotations
to implications as in[[19], however a much simpler and moegaht approach would
be to use a Kreisel implication. The negative content of tieese will be fully erased
and the positive one will be fully preserved, achieving a Mied Realizability effect.
We will consider another relevant case study, known as thedier root example”,
which was suggested by Berger and Schwichtenbeld in [3Erieunbounded integer
function has an integer root function”. The example can bm#dized as follows:

iny(f(y) >x) = Vm(f(o) <m— ﬁn(f(n) <m< f(Sn))) (5)

The claim can be proved by contradiction using inductiontenformulaf(n) < m.
However, in addition to computing the integer root, the (yg®ialectica also extracts
a complicated recursive counterexamplefpwith a case distinction on each stepl[19].
This term challenges the outermost premise, which formsgheation relevant induc-
tion context shared by the base and the step formulas. Thesirad negative content
can be erased by a Kreisel implication, which converts theeod to a necessary one,
allowing the application of the modal induction rule. As auk, only the integer root
is extracted, and additional artifacts are omitted. Nogg, tim contrast to the previous
two examples, this proof is classical, so Modified Realiliigtis not applicable in this
case. However, using, = would still achieve the same cleaning effect|[19].

4 Conclusions and future work

Modal Dialectica provides the means of using both ModifiedIRability and Godel's
Dialectica at the same time for more efficient program eximac This was already the
case for the hybrid Dialectica ofl[9], but here we elimindite tletour to the linear logic
sublevel. Disregarding the light quantifiers, (pure) mddialectica represents (directly
at the supra-linear logic level) a good combination of thginal proof interpretations,
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with the possibility of carrying out both in a sound way ontaér input proofs. All one
needs is that some implications of the input proof can be asédreisel implications.

A natural continuation of the work reported in this paper cams the addition
to our input systems of strong (intuitionistic) elementgesBles the strong and its
light associatedl, (originally from [7] where it was denoted, see also[19])strong
possibility & also needs to be considered as the intuitionistic dual cfssstyO.

The following clauses would then be added to Definifibn 1 fettigg thestrong
modal Dialecticainterpretation3z A(z)|;7 := |A(z)[f and|CAl, := 3x|AlZ, and
further |3pz A(z)[5 := 3z|A(z)[3 to Definition[2 in order to obtain thetrong light
modal Dialecticainterpretation.

Intuitionistic (light) modal arithmetical systems will §irbe considered at input for
‘strong’ program synthesis. Then their enhanced classicahterparts will be inter-
preted, modulo some negative translation. Such systerhsauihdly extendNA™ with
<& and3, andNAT also withdy. Nevertheless certain restrictions may need to be applied
on NA™ and/orNAT* before attempting such extensions with intuitionistiowdats.
Acknowledgements:Our first reading of predicate modal logic was|[16], a rarelsaral complete presentation of the topic,
recommended by Prof. Schwichtenberg, to whom we are gtaléfanks to Diana Ratiu for providing us a copy of this book.

Many thanks to Paulo Oliva for valuable comments on an eadft df this paper.
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5 Appendix

We use a special Natural Deduction (abbreviated “ND”) pnéstgon of our systems,
where proofs are represented as sequEritsB, meaning that formulas is the root of
the ND tree whose leavdsare typed assumption variables (abbreviated “avars}.
Here formulaA is the type of the avat, and " is a multiset (since there may be more
leaves labeled with the sanae A).

5.1 The verifying systemNA

The logical rules of systeNA are presented in Tabfé 2, with the usual restriction on
universal quantifier introductiovt that

z ¢ FV(I) = Ugacr FV(A4)

At —* [a : A] denotes the multisubset of all occurrencesiofA in the multiset of
assumptions of the premise sequent-gf Thusa:A ¢ I', hencea : A is no longer
an assumption in the conclusion sequent#f In the ND tree, this means that all the
leaves labeled: : A are inactivated (or “discharged” as one usually says in féatu
Deduction terminology).

Whereas ifNA alone we could have safely let all contractions be handlgxdiaitly
at —', in relationship with the architecture of input syst&,; (see Sectiof 5l2) we
are compelled to introduce fotA the contraction anti-ruleC in association wittC;
of NA;, see Tabl&€l4. We refer to contraction as “anti-rule”, rathan “rule” because,
despite the sequent-like representation of our calculfaat our formalisms are ND
and in the ND directed tree the representation of expligiti@ctions is by convergent
arrows that go in the direction which is reverse to the dioeotf all the other rules.
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TAx: F at(T) CmpAx: Fz=,y — A(z) = A(y)

Table 1.Basic axioms, witftmpAx replaced byCMP rule inNA;

. Ia:A]FB  T'FA A+-A-DB A
a:AFA (id) — ¢ —e -y
I'-A—nB I'AFB I'FVzA
I'AAB AFAAB I'-A AFB I'EVvzZA v
— N — A _ N _
r-4a AFB 7 IAF AANB I+ Alt/7]

Table 2. Logical rules, withz ¢ FV(I") atV* and certain explicit contractions a* and A’

rua rnA rna I'hA
— Yi — Vi _— —_—
I' BVizA I' BV zA I'BV_zA I' HvpzA
I' BVizA e I' BV zA . I'BV_zA e I'HvzA e
FRA[t/2] | TRA[t/2] T T'RARt/2] — ThHAR/2 "

Table 3. Additional rules forNA; , with extra restrictions of., V' andv;

Aa:A,a:AF B c Aya:Aa:AFB
Aa:AFB A,a:AHB

Table 4. Contraction anti-rule€ for NA and (restrictedl; for NA;

'+ A(T) AF A(F) ' A(0) AF A(n) — A(Sn)
TArap LLAF A(n) i

Table 5.Induction rules, withl” & A instead of ', A’ and A restricted atind, of NA;
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We find it convenient to introduce induction for booleans aatlrals as the rules
presented in Tablgl 5. Here we assume that the inductionblesit? and respectively
n* do not occur freely in”, nor A, and that they do occur in the formulga

ComputationirNA is expressed via the usyareduction rulg Az .t)s < t[z — s,
plus rewrite rules defining the computational meaningoandg :

IfTst — s ROst — s
IfFst <t R(Sn)st < tn(Rnst)

Since this typed term system is confluent and strongly nazingl (cf. [17]), we are
free not to fix a particular evaluation strategy. For simpliave assume that all terms
occurring in proofs are automatically in normal form. Intfamrmalization is necessary
only when matching terms in formulas. We only avoid introdgcequality axioms
AxEQL as in [7] and skip the corresponding easy applicatior@npfix. When building
proofs, some computation is thus carried out implicitlyhinel the scene.

Using recursion at higher types we can define any provakdy fienction of ground
arithmetic, including decidable predicates such as etyugdj, for booleans andq,
for natural numbers:

EqQ2° = Ax.Ifx (\y.y) (A\y.IfyFT)

o

Eq® = Az.Rz (A\y.RyT (An,q°F)) (Am,p°,yRyF (An,q°.pn))

L

Theat(-) construction allows us to view boolean programs as decédadeldicates.
Given Ind,, its logical meaning is settled by the truth axidmx, see Tablé]l. In
this way we can define predicate equality at base types-ast¢ := at(Eqst) for
o € {o, ¢} and further at higher types extensionally as usual,, t :=Vz’(sx =, tz).

It is straightforward to prove by induction gnthat =, is reflexive, symmetric and
transitive at any type.

To complete our system, we must includeNA also the compatibility (i.e., exten-
sionality) axiomCmpAx, see Tabl€ll. Note that ex falso quodlibEFg) | — A and
stability (Stab) -—A — A are fully provable ilNA (cf. [17], by induction o4, using
TAx andInd,).

5.2 The input systemNA,

Light formulas F; are built over usual formulag of NA by adding the three light
universal quantifiers: the non-computatiojahnd the two semi-computatiori@l and
V_. In order to stress the distinction BfA; from NA it is convenient to renamdA’s V
to V. in NA; (which marks the whole computational content, both posiind negative)

Fi  AB  u= at(t®)|A— B|AAB|V.aPA foroe {0+, —, %)}

Thus, systenNA, refines the clone oNA (also with CMP for CmpAx and(C; for C)
with introduction and elimination rules for the light qudiers (see Tabl€]3). These
are copies of the clone rul&g andV:, but with the usual restrictiont) on V. that
z ¢ FV(I") enhanced with the following conditions referring to the irderpretation
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(+) attheV: rule,z may be used computationally only positively, i.e.,
z must not be free in thehallengersof the LD-translation of .

(—) atthev: rule,z may be used computationally only negatively, i.e.,
z must not be free in theitnesse®f the LD-translation ofd .

()] atvwi, z may not be used computationally at all, i.e., bot)) &and ().
Notice that the restrictionst), (—) and () assume knowledge of the LD-interpretation
of whole proofs, in their full depth, thus forcing the defiait of NA; proofs to go
inductively in parallel with the LD-extraction of part ofélr computational content
(namely free variables of the extracted terms). We simeliasly define the classes of
realization irrelevantdq andrefutation irrelevantd formulas as follows:
A@,B@ o= at(t) |A@/\B@ |A@ %B@ |V<>IEA@ fOFoG{@,Jr,f,:I:}
A@,B@ o= at(t) |A@/\B@ |A@4)B@ |V<>IEA@ f0r0€{®,+}

One necessary change when adopting principles fiénis to replacempAx with

a weak compatibility rule. This is because Dialectica ishieao interpret full exten-
sionality (cf. [11,20]). We here employ an upgraded varirthe CMP rule from [4]:

Tobs=pt
I's i B(s) = B(1)

MP,,

where all formulas il are refutation irrelevant.

The computationally irrelevant contractiondN,; can safely be handled implicitly
at—'. The situation is different for those contractions whosenfala is refutation rel-
evant (i.e., the computationally relevant contractioas)we want to automatically en-
sure that their translation is decidable (instead of legitfire task of decidability check
to the user). We achieve this by includinghi\; the contraction anti-ruleC; (see Table
[)) for all formulasA that are refutation relevant ansk§ do not contain any’, , nor
V. This triggers the addition thlA of an explicit (unrestricted) contraction anti-rule
which is needed in the construction of the verifying proobfily applies to quantifier-
free formulag A]). The restrictionk ensures that all contraction formulas that require
at least one challenger term for their LD-interpretatiot hvéve quantifier-free (hence
decidable) LD-translations. Their decidability is ne@ggdor attaining soundness. Be-
ing a purely syntactical criteriork does not admit formulas whose LD-translations
contain quantifiers, but could nevertheless be decidalepad(x) = Vy(2y # z).

Moreover, in order to avoid having any computationally vale contractions im-
plicit in —*, we constrain the deduction rules Nf\; to disallow multiple occurrences
of refutation relevant assumptions in any of the premisaisets.Thus, whenever a
double occurrence of a refutation relevant assumptiondated in a conclusion se-
quent by one of the binary rules bfA;, such sequent cannot be directly a premise for
the application of an(othelyA; rule: the anti-ruleC; must be applied first, in order to
eliminate the critical double. Bk is not satisfied and yet: A is a refutation relevant
assumption occurring at least twice in some conclusionesgigthis is a dead end: such
sequent can only be the root of tNé; proof-tree.

While EFQ : | — A remains fully provable also iNA; (for all formulasA € F;)
the situation changesf@tab : -——A — A inthe case of many formulasthat feature
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light quantifiers in certain places. As notedlin [7], the ugquraof in NA of Stab (con-
structed by induction o) makes unavoidably use of contractions over(B A C)
for subformulag B A C) of A, and these are subject to therestriction for refutation
relevantB A C. Even when suclB A C' obey %, they may lead to the failure of re-
strictions {+), (—) or (#). On the other handtab is provable inNA; for A € F or A
conjunction-free.

5.3 The light Dialectica interpretation (LD-interpretati on)

With each formulad of NA; we associate its LD-translation: a not necessarily quantifi
free formulal A[j of NA wherex, y are tuples of fresh variables, not appearinglin
The variablese in the superscript are called tidtness variableswhile the subscript
variablesy are called thehallenge variablesTermst substituting witness variables
(like |A%) are calledealizing termsor “witnesses” and terms substituting challenge
variables (like|A|?) are calledrefuting termsor “challengers”. Intuitively, the LD-
interpretation ofd can be viewed as a game in which first EloiSggnd then Abelard
(V) make one move each by playing type-corresponding objeatsl s for the tuples
x and respectively. Formula|A|3 specifies the “adjudication relation”, here not nec-
essarily decidable: Eloise wins ifflA - | AJ%. In our light context as well, Eloise has
a winning move whenevet is provable inNA; : the LD-interpretation will explicitly
provide it from the inpulNA; proof of A as a tuple of witnessedqs.t.FV(t) C FV(A))
together with theverifying proofin NA of Vy|A|§ (Eloise wins byt regardless of the
instances for Abelard'sy).

Definition 5 (LD-translation of formulas). The interpretation does not change atomic
formulas, i.e.|at(t?)|:=at(t°). Assuming| A7 and| B[, are already defined,

|AANBlgy = |Al5 AN|Bly
A= BlZg = |A,, = B¢

The interpretation of the four universal quantifiers is (upenaming, we assume that
guantified variables occur uniquely in a formula):

Mez A(2)lf, = AR Mz A(2)lf = Vz]A()f?
|V72’A(Z)f_’y = |A(z)|$ |V@2A(z)|$ = Vz|A(z)|$
Since| L|=1, we get
_ x — f
A = AR, oA = AP

It is straightforward to compute that

Bz AR)Z = |AZ9) 1300 e 1Pz AGRIS = 321AR)IIY )

Boz AR)|S = 32]A(2) |79

13-z A(2)|ZT .= ——|A(Zg)| g(fg)

fa
g(fg)
The length and types of the witnessing and challenging s.gnle uniquely determined.
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5.4 Light Dialectica treatment of extensionality
We here give the LD-interpretation of the weak compatipilitle

I'ohs=,r
I's b B(s) = B(r)

CMP,

where all formulas iy are refutation irrelevant, i.e., the negative positiorhieit LD-
translation is empty. By definition of equality at higherégps =, risVz.sz =rz, a
purely universal formula. We are given that

a1:|A1|tm11,...,an:|An|tm: = |A0 ;00

where|Ig|={a1,...,an}, to=ti=...t, =L (empty tuple),Ay iS s =, r andxg
corresponds te, thus the above is more conveniently rewritten as

a1:|A1|w1,...,an:|An|w” F STy = Trxo

To this we can apply the generalization rule,agsare not free in the translated con-
text |I'5|; indeed,zo are fresh variables and they could have appeared free oaly vi
termst,,... t,, were these not empty tuples (hence the need for restrittangriginal
context). We thus obtaiff's| F s = r and further apply the extensionality Axiom
to get|I5| + |B|(s) — |B|(r). Note that the Axiom is required here, %| may
contain general formulas. With:= Au. v andf := Au, v. v we have thus constructed
a verifying proof

ay:[Arl® o anc [ Al B B(S)[H, = B [= [B(s) = B ]

The new realizing termg, g are closed, hence the free variable condition triviallydsol

5.5 Light Dialectica treatment of induction for naturals

Since the induction rule (for naturals) corresponds to tualty unbounded number of
contractions of each assumption from the step confefdf. [7], see Tablgls), its clone
in the systenNA; is subject to a restriction like the one @f. Namely, we need to re-
quire thatall refutation relevant avars i\ satisfys. Moreover, since the contractions
ona € I' N A will be handled differently than for simple binary rulesdiks¢ or A’

it is more convenient to require that naturals inductioiNiy, implicitly contracts all
its refutation relevant assumptions (instead of using #tpict C;) . We will use the
notation” W A for a special multiset union in which refutation relevarguwaaptions
appear only once, even if they appear in botland A. Thus theInd; rule of NA; is
finally obtained by replacingl”, A’ with * I" & A’ in the conclusion sequent ahd, .

I' 5 A0) A H A(m) — A(Sn)
I'wA H A(n)

Ind;
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We are given

5y B Ay (6)
and
Alfzw) B AT — [AGSR)[S” )
We show that
Vo (e A[E, — [Am)EM) ®
is a theorem ofNA, where
t[n] =  Rnr(in.s) 9

for every corresponding paifr € /s € s) and ¢[n] will be constructed as functional
terms depending o . We here intentionally use the same variabléhat occurs freely
in s and¢. Implicitly, just ' denotest’[n]. Also ¢ will be constructed as the collec-
tion of all ¢’ (correspondingtd”\ A)and ¢” (correspondingtaA).

Let b: B be arefutation relevantavar il A. Let 4/ € v and/oré’ € § be the
challengersforb in I and/orA.If b appearsonlyin” (hence notinA) we define

¢'ln] = Rn(vAy[v]) (An,p,v.p(ttv)) (10)

If b appears inA, then the decidability of|B| is needed at each recursive step to
equalize the termg(t t'v) obtained by the recursive call with the corresponding terms
&’. Thus the right stop point of the backwards construction @avigied. In fact an im-
plicit contraction overb happens at each inductive step agdguarantees thatB| is
decidable. Forb € I'N A let

¢"In] = Rn(wA'v]) ()\n,p, v.If(|B|§:[t,;v]) (p(tt'v)) &'[t'; v]) (11)

and for b € A\ I' we define its¢”’[n] by replacing in [(Ill) they’ with canonical
zeros. Herez’ are the challenge variables corresponding to formmilaNotice that

F o t'[Sn] = st'[n] (12)
= {snjv = ('[n](tt'v) (13)
Fo ¢snfv = £ (Bl ) (¢ II(EE)) &t v) (14)

We attempt to extend (13) to the wholeby proving from [I4) the following

’

1Blzrne B ¢[BnJv = ("n](tt'v) (15)

We obtain this as an immediate consequence of

|BIZ, F 1Bl (16)

Sn]v
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Assumingﬂ|B|§f[t,_v} by (I4) we get¢”[Sn]v = &' [t; v] henceﬁ|B|zf,[Sn]v and
thus [16) follows viastab (which is fully available in the verifying system).
We now prove[(B) by an assumptionless inductionrariet ¢* be the collection

of all ¢’ and those¢”” correspondingtd” N A. For n = 0 itis sufficient that
Mg 1A

which follows from [6) since by definition {9) we have ¢’[0] = » and by defini-
tions [10) and[(11) we have ¢*[0] = Av.~[v]. Now given [8) we want to prove

FwAlgEn, AR an
To (8) we applyv[zﬁtt,v] and via easy deductions iINA we get
uyz t'[n]
FAC A|¢[L7Jl](tt'v) + |A(n)|tt,v (18)
Wwith (I3) and [(I5) we can rewrité (118) to
FwAlgEn, + AW (19)

In (@) we substituter — t’'[n] and get

Aljr b A - A0
which gives [IV) by means of ea$yA deductions using (12)[(1L6) and {19).

We have treated the most general situation, with all corgeiga I"\ A, I'n A
and A\ I' inhabited by refutation relevant assumptions, and coraiu®rmula A
accepting both witnesses and challengers. Many partisitlaations amount to easier
treatments, with simpler extracted terms. These can béaotas simplifications of the
general withesses and challengers presented above, by ofgha reduction properties
of the empty tuple, which was denotedn [17]. We outline below only those particular
cases which are relevant in connection with the modal indoctile Indy.

— If " U A contains no refutation relevant assumption, Ait) is refutation rele-
vant, then termg are no part of the realizers for the conclusion sequent,ig th
case onlyt’. Hencet would be redundantly produced and a mechanism is needed
to prevent their construction. This is ensuredbin front of the stepd(n) atInd?.

— If A(n) is refutation relevant,A has no refutation relevant element biit is
refutation relevant inhabited, thef and ¢’ are empty. Yet(* = ¢’ has to be
produced a§(10) and includeB:], which is no longer the case fdnd™.

— If A(n) isrefutationirrelevantthew, t andtt’v are emptytuples. Thu¢’ =~/
and [11) simplifies to (recalt ¢ FV(y’), n € FV(t'), and possiblyn € FV(4"))

"] = Rny(mmxuqmgﬂmywn
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Modal induction rule - technical details

I + 0OA(0) OA F OA(n) — A(Sn)
I', 0A + OA(n)

Ind}

We are given
Iy = vy lAQ)l (20)
and
DA = vy Ay = [ASn)”
Sincev ¢ FV(|OA?) andv ¢ FV(Vy'|A(n)|§,) from the latter we easily obtain
oA = vy [A(n)], — Y |A(Sn)[5" (21)

With t[n] := Rnr (An.s) for every corresponding paifr € r/s € s) we show by
induction onn in NA with base context/’|% and step contexA|* that

L5, 104+ Yo A(n))"

As t[0] = r the base is given by (20) and the step follows from (21) with- ¢[n]
sincet[Sn] = st[n]. Thus challengersy are simply preserved foil’| and witnesses
t[n] are easily constructed fgEdA(n)| in the conclusion sequent @hnd®.

Remark 6.0ur modal induction rule is equivalent to a special casémf, , since aO
can be placed in front ofi(Sn) from the step sequent adnd™. The equivalence of the
two formulations for the step sequent can easily be provedyusxT, Ax4, AxK and
O°. Extracted terms are the same and the verifying proof ortly me@re direct.
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