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Abstract. We extend our light Dialectica interpretation [10] to usualand light
modal formulas and prove it sound for pseudo-modal arithmetics based on Gödel’s
T and classicalS4. The range of thislight modal Dialecticainterpretation is the
usual (non-modal) classical Arithmetic in all finite types.We also illustrate the
use of the new tools for optimized program synthesis with newexamples.

This recent work comes in addition to the program extractiontechnology outlined
in our previous paper [10] by adding a useful device for combining the effect of pre-
vious optimizations by semi- and non-computational quantifiers in a compact one-
stepcontent eraser , namely the modal operator✷ (and its weak co-modality
✸
c≡¬✷¬). Beside the seemingly cosmetic improvement, we bring the following new

result:while the modal propositional axioms of systemS4 are realizable, the defining
axiom ofS5 is generally not realizable under (light) modal Dialectica.

The use and interpretation of modal operators in this paper were inspired by work of
Oliva (partly joint with the first author, see [9]) at the linear logic sublevel, see [14,15].
It is no coincidence that, at formulas level, our interpretation of✷A is syntactically the
same as Oliva’s modified realizability interpretation of!A in intuitionistic linear logic.
However, a bureaucratic detour would be needed in order to simulate✷A in terms of
!A, which seems less suitable for an efficient computer implementation.

The second author independently noticed the possibility ofusing the same supra-
linear modal operators for light program extraction in [18], see also [19]. However, the
initiative of studying the full employment of✷ for more efficient program synthesis in
the formal context of a classical first-order modal logic (inthe sense of Schütte, [16])
belongs to the first author. As we will see, for our extractivepurposes it is useful to de-
part from Schütte’s original semantics for quantified modal logic. E.g., the propositional
fragments of our first-order modal systems are no longer modal, but purely boolean, as

⋆ In the present paper we give a more detailed treatment of the induction for naturals and we
correct thetypo in the definition of the weak compatibility ruleCMP: on page 1382 of [10], it
is s instead ofx andt instead ofy; we also give the treatment ofCMP under Dialectica light.
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✷p ≡ p ≡ ✸
cp for propositional atomsp. We thus designpseudo(i.e., non-standard)

modal arithmetics for program extraction, with relative soundness syntactically given
via our (light) modal functional interpretation by the target system, namely classical
predicate Arithmetic with higher-type functionals, in a Natural Deduction presentation.

We stress the fact that we are only concerned with fragments of Arithmetics without
undecidable predicates:all propositional atoms of our systems are a priori decidable.

For an easier presentation we will give up the ‘pseudo’ prefix. Throughout the paper,
our modal Arithmetics are pseudo-modal. Note that soundness of Schütte’s predicate
modal logics (e.g.,S⋆

4 ) is proved non-constructively, using models, see [16].

1 Arithmetical systems for Modal Dialectica extraction

We build upon functional arithmetical systemsNA and (the light annotated)NAl from
[10]. While verifying systemNA basically is the ArithmeticZ of Berger, Buchholz and
Schwichtenberg [4] in a slightly different presentation which is more suitable for light
functional synthesis and features full classical logic (without strong existence) and full
extensionality3, its light counterpartNAl is only partly classical. Moreover, theinput
systemNAl is weakly extensional and its contraction (and hence also induction) rule
is restricted for soundness of the (light) functional interpretation ofNAl into NA. In
computing terms, the program synthesis algorithm providedby the light Dialectica (of
[10], as inherited from the one4 of [7]) terminates without error only modulo the above-
mentioned restrictions on Extensionality and Contraction5.

For (light) modal functional synthesis we will use the same verifying systemNA.
The simpler input systemNAm is obtained by adding✷ to a restricted variant ofNA.
This modal Arithmetic will be proved sound via themodal Dialectica interpretation.
The fully-fledged input systemNAml adds toNAm all light universal quantifiers and is
a modal extension ofNAl; its soundness will be given by the light modal Dialectica
interpretation. We will not detail here the arithmeticsNA andNAl, but rather refer the
reader to [10]. We mostly enumerate the new items that are added in order to getNAm

and respectivelyNAml . (SystemsNA andNAl are retaken in the Appendix section 5.)

3 As inherited from systemZ, our NA is mostly a Natural Deduction presentation of the so-
called ‘negative arithmetic’ from [20], basically a double-negation, Gödel-Gentzen embedding
of classical into Heyting ArithmeticHAω.

4 The restriction on extensionality is at its turn inherited from the pure Gödel’s functional in-
terpretation [1,6], whereas the restriction on contraction was first added by Hernest, as it was
imposed by the necessity of decidability of the translationof light contraction formulas.

5 These restrictions are more relaxed than those from the firstauthor’s PhD thesis and weaker
than Gödel’s restriction on extensionality, Kreisel’s avoiding of contraction in his Modified
Realizability [12] and Girard’s total elimination of contraction in his original Linear Logic [5].
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The sets of finite typesT , termsT (of Gödel’sT), formulasF (of NA) and, with
the addition of✷, formulasFm of NAm andFm

l of NAml are defined as follows:

T ρ, σ ::= ι | o | (ρσ)

T s, t ::= xρ | To | Fo | 0ι | Sιι | Ifoρρρ | Rιρ(ιρρ)ρ | (λxρ. tσ)ρσ | (tρσsρ)σ

F A,B ::= at(to) | A → B | A ∧B | ∀xρA | ∃̃xρA :≡ ¬∀xρ¬A

Fm A,B ::= at(to) | A → B | A ∧B | ∀xρA | ✷A | ✸cA :≡ ¬✷¬A

Fm
l A,B ::= at(to) | A → B | A ∧B | ∀xρA | ✷A | ∀{∅,+,−,±}x

ρA

Recall that we employ just two basic types: integersι and booleanso, and useρστ for
(ρ(στ)). Building blocks for terms are the usual constructors for booleans (T, F) and
integers (0, S), case distinctionIf and Gödel recursionR.

The operatorFV(·) returns the set of free variables of its argumentt ∈ T orA ∈ F .
Atomic formulas are decidable by definition, as they are identified with boolean terms.
In particular, we have decidable falsity⊥ :≡at(F) and truth⊤ :≡at(T). As usual, we
abbreviateA → ⊥ by¬A.

For the necessity operator✷ we have the followingenhancedintroduction rule,
which applies to many more premise sequents than usual (as the contextΓ may be
inhabited, see also Remark 4 in Section 2 for an extended motivation):

✷
i :

Γ ⊢ A

Γ ⊢ ✷A
,

whereΓ is restricted depending on the translation of the (sub)proof
of the premise sequent, in ways that will be described below for
each of the two proof translations: modal and light modal.

The following axioms of modal propositional logicS4 are part ofNAm andNAml :

AxT : ✷A → A AxTc : A → ✸
cA

Ax4 : ✷A → ✷✷A Ax4c : ✸c
✸
cA → ✸

cA

AxK : [✷(A → B) ∧ ✷A] → ✷B

In fact onlyAxT is needed as axiom of our non-standard modal systems. Of course,AxTc

andAx4c were syntactically deducible fromAxT and respectivelyAx4 already in the
propositional modal systemS4, only using minimal logic (the proof ofAx4c also uses
AxK and the empty-context✷i). It turns out that alsoAx4 andAxK are easily deducible
in NA

m/NAml just from AxT (and only using minimal logic), given our very liberal
necessity introduction rule, see Definition 3 below. Note that Stability¬¬B → B needs
to be restricted already forNAm, due to the necessary restriction on Contraction, see
Remark 3 further below, Remark 5 in Section 2 and Section 3.1 of [10].

We denote byA →k B :≡ ✷A → B the so-called ‘Kreisel implication’, since its
translation by modal Dialectica coincides with its ModifiedRealizability interpretation.
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Definition 1 (modal Dialectica interpretation). The interpretation does not change
atomic6 formulas, i.e.,|at(to)| :≡ at(to). Assuming|A|xy and|B|uv are already defined,

|A ∧B|x,uy,v :≡ |A|xy ∧ |B|uv |∀zA(z)|fz,y :≡ |A(z)|fzy

|A → B|f ,g
x,v :≡ |A|xfxv → |B|gxv |✷A|x :≡ ∀y|A|xy

As an immediate consequence,

|✸cA ≡ (¬✷¬A)|f ≡ ∃̃x|A|xfx

|A →k B ≡ (✷A → B)|gx,v ≡ ∀y|A|xy → |B|gxv

|∃̃zA(z) ≡ (¬∀z¬A(z))|Z,f
g ≡ ¬¬|A(Zg)|fg

g(Zg)(fg)

Definition 2 (light modal Dialectica interpretation). The following are added to the
above (the deduced translation of∃̃∅z is outlined below for use at the end of Section 2):

|∀+zA(z)|fy :≡ ∀z |A(z)|fzy |∀−zA(z)|xz,y :≡ |A(z)|xy

|∀∅zA(z)|
x
y :≡ ∀z |A(z)|xy |∃̃∅zB(z)|fg ≡ ∃̃z |B(z)|fg

g(fg)

Remark 1.The light modal translation of formulas only adds|✷A|x :≡∀y|A|xy to our
light functional translation from [10].

The definition ofcomputation relevanceof (light) modal formulasA is basically the
same as for non-modal formulas, relative to the enhanced syntactic context. Namely,
A is realization relevantalso under (light) modal Dialectica if the tuple of witness
variablesx of its translation|A|xy is not empty and similarlyA is refutation relevant
if the tuple of challenge variablesy is not empty. See Remark 1 in Section 3 of [10].
Correspondingly,A is realization irrelevantif it is not realization relevant (i.e.,x is an
empty tuple), andA is refutation irrelevantif it is not refutation relevant (i.e.,y is an
empty tuple), see also the more technical Definition 1 in Section 2 of [10].

Definition 3 (Necessity Introduction). The restriction on✷i depends on programs
synthesized from the proof of the premiseA of this rule, unless all formulas in the
contextΓ are refutation irrelevant orA is refutation irrelevant, see the paragraph fol-
lowing Theorem 1 in Section 2 below.Thus input proofs are inductively defined together
with their extracted programs (and their corresponding output proofs).

Remark 2 (restriction violation for✷i). In an automated interactive search for modal
input proofs of a given specification, we can temporarily allow ✷

i and postpone the
validity check for when the proof of its premise is fully constructed. This approach
would be similar to the ‘nc-violations’ check in the actual MinLog system, see [17],
and to the so-called ‘computationally correct proofs’ from[19].

6 Any decidable formula can (and should) be given via its associated boolean term, e.g., one
should rather useat(Odd(x)) instead of the more verbose∀y(2y 6= x), which is refutation
relevant in a somewhat artificial and probably unintended way.
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For efficiency reasons, we recommend the use of modal operators whenever pos-
sible instead of the above partly (or non) computational quantifiers∀+, ∀−, ∀∅ and∃̃∅.
Thus it makes sense to study the (pure) modal Dialectica in itself, as the use of such
light quantifiers may not be necessary in many cases of interest. It should be much eas-
ier to construct a purely modal (i.e., without light quantifiers) input proof, also for a
(semi) automated proof-search algorithm. Nevertheless, it is the light variant of modal
Dialectica which provides the larger range of possibilities, particularly for situations
where the simpler, ‘heavier’ modal Dialectica does not suffice.

Remark 3 (Contraction restriction). We upgrade the⋆ restriction from [10] on the
computationally relevant contractions(those on refutation relevant open assumptions
A), such that the interpretation|A| must be decidable (rather than strictly quantifier-
free). In the new modal context one needs to take into accountalso the translation
of the necessity operator, as this introduces new quantifiers. These may alter the de-
cidability of the translated formula (relative to the corresponding non-modal formula
obtained by wiping out all instances of✷). E.g., letT (x, y, z) be a decidable predi-
cate s.t.H(x, y) :≡ ∃̃zT (x, y, z) is not decidable (take Kleene’sT predicate which is
expressible in Peano Arithmetic, hence also inNA, so thatH expresses the Halting
Problem “program with codex halts on inputy”). ThenP (x) :≡ ∀y∀z¬T (x, y, z) can
be a contraction formula, whereasP✷(x) :≡ ∀y✷∀z¬T (x, y, z) cannot, as its transla-
tion is∀z¬T (x, y, z), an undecidable formula, sinceNA ⊢ |P✷(x)|y ↔ ¬H(x, y).

On the other hand, both∀z(3z 6= x) ∧ ∀y(2y 6= x) and∀z(3z 6= x) ∧ ✷∀y(2y 6= x)
can be contraction formulas, since∀y(2y 6= x) is decidable.

2 Modal and light modal functional interpretations

The following metatheorem gives the general pattern in which soundness theorems for
Dialectica-based interpretations can be expressed, in a Natural Deduction setting.

Theorem 1 (general soundness for Dialectica interpretations; [ ISys, VSys ]).
LetA0, A1, . . . , An be a sequence of formulas ofISys with w all their free variables.
If the sequenta1 :A1 , . . . , an :An ⊢lA0 is provable inISys, then termst0, . . . , tn
can be automatically synthesized from its formal proof, such that the translated se-
quenta1 : |A1|

x1

t1
, . . . , an : |An|

xn

tn
⊢ |A0|t0x0

is provable inVSys, where the following
free variable condition (c)holds:FV(ti) ⊆ {w,x0, . . . ,xn} andx0 6∈ FV(t0). Here
x0, . . . ,xn are tuples of fresh variables, s.t. equal avars share a common such tuple.

In [10] the above was thoroughly proved forISys ≡ NAl andVSys ≡ NA. Below
we prove that (meta)Theorem 1 remains valid also for the pairs [NAm,NA] (modal
Dialectica) and[NAml ,NA] (light modal Dialectica), which share the sameVSys ≡ NA.

We can now complete the definition of✷i: the restriction is thatx0 6∈ ∪n
i=1FV(ti)

in the translated premise sequenta1 : |A1|
x1

t1
, . . . , an : |An|

xn

tn
⊢ |A0|t0x0

. This ensures
that the introduction rule∀i can be applied for variablesx0 and thus the conclusion
sequenta1 :A1 , . . . , an :An ⊢l✷A0 is witnessed by the same realizers as the premise.

Lemma 1 (interpretation of S4 modal axioms).AxiomsAxT, AxTc, Ax4, Ax4c and
AxK are realizable inNA under the (light) modal Dialectica translation.
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Proof: The translation ofAxT is |✷A → A|gx,y ≡ ∀v|A|xv → |A|gxy and we can
takeg to be the identityλx.x. Similarly, the translation ofAxTc is |A → ✸

cA|fx,y ≡

|A|xfxy → ∃̃u|A|uy and we can takef to be the projectionλxy.y. ForAx4 andAx4c it
is immediate that|✷A| ≡ |✷✷A| and also|✸cA| ≡ |✸c

✸
cA|, thus the realizer is again

the identity in both cases. In the translation ofAxK below, we takeU :≡λf , g,x. gx,
which can easily be proved to be a realizer.

|AxK| ≡ [ ∀x,v(|A|xfxv → |B|gxv ) ∧ ∀y|A|x
′

y ]f ,g,x
′

→ ∀v′|B|u
v′ ≡

≡ [ ∀x,v(|A|xfxv → |B|gxv ) ∧ ∀y|A|x
′

y → ∀v′|B|
U(f ,g,x′)

v′ ]U
f ,g,x′

Given the above Lemma and comments, we have completely established the following:

Theorem 2 (soundness of modal Dialectica).Theorem 1[ NAm, NA ].

Theorem 3 (soundness of light modal Dialectica).Theorem 1[ NAml , NA ].

The next result pictures the limits of our modal extension ofDialectica interpretation.

Theorem 4 (unrealizability of S5 defining axiom). AxiomAx5 : ✸cA → ✷✸
cA is

generally not realizable under the (light) modal Dialectica translation.

Proof: The translation ofAx5 is a formula of shapeB(x) → ∀yB(y) which only
holds true whenx is the empty tuple, special case whenAx5 requires no realizer at all.

Notice that✸c∃̃xA is akin to Berger’s uniform existence{∃x}A from [2], where
one does not care about the witness for∃x (which is actually deleted from the extrac-
tion). We can thus see✸c as an extension of Berger’s tool to more general formulas
than just existential ones. On the other hand there are situations when✷ and✸c are
too general tools and separate annotations for each quantifier are a better answer for
the problem at hand. In some of these cases it may still be possible to use the modal
operators if one changes the input specification and its proof.

Remark 4 (Necessity Introduction revisited).The usual restriction on the introduction
rule for the necessity operator✷i is thatΓ ≡ ∅. In the natural deduction presentation
of modal logic,✷i cannot be unrestricted orA → ✷A becomes a theorem, thus all
occurrences of✷ becoming redundant. Our restriction on✷i is strictly weaker, as, e.g.,
allows any contextΓ whose formulas are all refutation irrelevant and any context at all
if the conclusion is refutation irrelevant. Thus,A → ✷A not only is possible in our
pseudo-modal systems, it even defines a very interesting class of formulas, see below.

Definition 4 (necessary formulas).FormulasA s.t. ⊢ A → ✷A in NA
m or NAml .

Also due toAxT, it follows that ⊢ A ↔ ✷A for any necessary formula, thus placing
✷ in front of suchA would be logically redundant. We say that an occurrence of✷ is
meaningful(i.e., non-redundant) in front of any formula that is not necessary.

Note that all refutation irrelevant formulas are necessaryformulas. It is easy to see
that some of the refutation relevant formulas are necessary, e.g.,∀x⊥ and∀x⊤ (in fact
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anyA s.t. ⊢ A or ⊢ ¬A in NA
m or NAml ). However, even if such formulas syntac-

tically do require challengers, these functionals turn outto be redundant and can be
soundly discarded by a✷, without the need to change any other component of the input
proof. In fact,a formulaA is necessary iff it can be proved equivalent (inNA

m or NAml )
to a refutation irrelevant formulaB. Indeed, for a necessaryA takeB :≡✷A. For the
converse we can use the long implicationA → B → ✷B → ✷A, where for the last
implication a contextless✷i together withAxK was used.

Therefore, the ‘necessary’ class captures those formulas whose negative computa-
tional content can always be erased regardless of the context in which they are used.
On the other hand, there are cases when✷ can soundly be applied to a non-necessary
formula, leading to cleaner and more efficient extracted programs (see Section 3 below).

Remark 5 (modal vs. pseudo-modal).It would appear that our input ArithmeticNAm

is able to prove new modal theorems and even sentences that are invalid in Schütte’s
semantics. On the other hand, our⋆ restriction on contraction is not present in the
usual first-order modal logic systems, thus some of the classical modal theorems will
no longer be theorems ofNAm. Therefore,we say that our input systems are ‘pseudo-
modal’ rather than modal. See [13] for extensive comments on the design of formalisms
for predicate modal logic, particularly on the yet-unsatisfactory definition of necessity
introduction in Natural Deduction systems. Contraction restriction notwithstanding, we
give the optimal restriction for✷i in view of automated program synthesis. However,
this does not solve the issue for general, fully-fledged first-order modal logics.

2.1 Modal induction rule

As first argued in [9], induction (for natural numbers, but more generally also for lists,
as naturalsι are a particular case of inductively defined lists) should rather be treated
in a Modified Realizability style whenever possible under Dialectica extraction. In our
non-standard modal context we can introduce the followingmodal inductionrule of
systemsNAm andNAml , which is defined with a Kreisel implication at the step:

Γ ⊢ ✷A(0) ✷∆ ⊢ ✷A(n) → A(Sn)
Indmι

Γ , ✷∆ ⊢ ✷A(n)

This is an upgrade of the similar rule from [9] (given at the linear logic sublevel, see
also [15]), as it allows for non-empty contexts. While the base contextΓ is unrestricted,
the step context✷∆ is made entirely of refutation irrelevant assumptions of shape✷D.
Thus the step context restriction as forIndιl (see Appendix) is bluntly satisfied, since
this only concerned refutation relevant assumptions (whose translations inNA had to
be quantifier-free, as their decidability was needed for case distinction in their corre-
sponding challenge realizers). Note that ifD already is refutation irrelevant, placing✷
in front of D is somewhat redundant. We could refineIndmι by splitting the step con-
text into∆′ which consists of refutation irrelevant assumptions not ofshape✷D and
∆′′ ≡ ✷∆. Nonetheless such∆′ were made of necessary formulas (cf. Definition 4).

The treatment ofIndmι under (light) modal Dialectica is much easier than the one of
Indιl . In factIndmι is a good simplification ofIndιl for situations when the whole context
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is made entirely of refutation irrelevant assumptions butA(n) is a refutation relevant
formula. The challenger forA(n) in the step conclusion would be unneededly produced
during the treatment of suchIndιl, as it becomes no part of any of the witnesses for the
conclusion sequent. Placing✷ in front of the negatively positionedA(n) thus ensures a
minimal optimization brought byIndmι , in this particular case simply by elimination of
redundancy: the conclusion witnessing terms are the same asfor Indιl.

A more serious optimization concerns the challengers of|C| for refutation relevant
assumptionsC from theΓ context. These are simply preserved byIndmι , while under
Indιl they had to include the challengers for the stepA(n). If A(n) were refutation
irrelevant, it would still make sense to useIndmι instead ofIndιl, if one is not interested
in the challengers for the refutation relevant assumptionsfrom the step context. While
for such particularIndιl we already have the preservation of challengers for refutation
relevant assumptions strictly fromΓ , still challengers for the refutation relevant step
assumptions are more complex in the conclusion sequent (they include a meaningful
Gödel recursion, even though here a challenger for the stepnegativeA(n) is no longer
comprised since it does not exist). ThusIndmι can bring an improvement overIndιl by
wiping out the step challengers altogether, should these not be needed in the global
construction of the topmost realizers for the goal specification.

It turns out thatIndmι strictly optimizesIndιl in many (if not most) situations. Yet
Indιl will have to be used also in our non-standard modal context, practically whenever
Indmι simply cannot be applied for the goal at hand.

3 Examples

The weak extensionality of modal input systemsNA
m andNAml can better be expressed

by means of the followingmodal compatibility axiom(the usual compatibility axiom,
but with the outward implication changed to a Kreisel implication)

CmpAxm : ✷(x =ρ y) → A(x) → A(y)

By straightforward calculations, it is easy to see thatCmpAxm is realizable under (light)
modal Dialectica by simple projection functionals, with the verification in the fully
extensionalNA given by the corresponding compatibility axiomCmpAx, see [10].

In [9] the following class of examples was considered: theorems of the form

∀xA → ∀yB → ∀zC (1)

possibly with parameters, where the negative information on x is irrelevant, while the
one ony is of our interest. Then it must be possible to adapt the proofof (1) to a proof in
NA

m or NAml of (✷∀xA) → ∀yB → ∀zC. As noticed by Oliva in [15], the Fibonacci
example first treated with Dialectica in [8] falls into this category.

Oliva also suggested an interesting example, which motivated the definition of our
positively computational quantifier∀+ (see [10]): “Any infinite setP of natural numbers
contains numbers which are arbitrarily apart”. The claim can be formalized as follows:

∀x∃̃y(y > x ∧ P (y)) → ∀d∃̃n1, n2

(
n2 > n1 + d ∧ P (n1) ∧ P (n2)

)
(2)
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This statement can be proved only via a contraction on the premise, and as a resultx is
refuted by a term involving case distinction on|P |. However, if only the witnesses of
n1 andn2 are needed, then the redundant challenge forx can be discarded by using a
✷ in front of the premise, effectively applying a Kreisel implication. This example is of
the form (1) and can be treated both with the hybrid Dialectica from [9] and with the
extended light Dialectica interpretation from [10].

The example can be extended so that the premise becomes more involved [19]:

∀m(∃̃nQ(n,m) → ∃̃n1 Q(n1, Sm)) → ∃̃n0 Q(n0, 0) → ∃̃n2 Q(n2, SS0) (3)

Again, a contraction must be used, and two semi-computational quantifiers need to be
applied to erase the negative computational content:

∀+m(∃̃+nQ(n,m) → ∃̃n1 Q(n1, Sm)) → ∃̃n0 Q(n0, 0) → ∃̃n2 Q(n2, SS0) (4)

However, this solution is not desirable, as the light annotations would only apply to a
special class of binary relationsQ for which the witnessn1 for Q(n1, Sm) does not
depend computationally on the witnessn for Q(n,m) for anym, hence reducing the
generality of the claim. One of the solutions would be to extend the light annotations
to implications as in [19], however a much simpler and more elegant approach would
be to use a Kreisel implication. The negative content of the premise will be fully erased
and the positive one will be fully preserved, achieving a Modified Realizability effect.

We will consider another relevant case study, known as the “integer root example”,
which was suggested by Berger and Schwichtenberg in [3]: “every unbounded integer
function has an integer root function”. The example can be formalized as follows:

∀x∃̃y(f(y) > x) → ∀m
(
f(0) ≤ m → ∃̃n

(
f(n) ≤ m < f(Sn)

))
(5)

The claim can be proved by contradiction using induction on the formulaf(n) ≤ m.
However, in addition to computing the integer root, the (heavy) Dialectica also extracts
a complicated recursive counterexample forx, with a case distinction on each step [19].
This term challenges the outermost premise, which forms therefutation relevant induc-
tion context shared by the base and the step formulas. The undesired negative content
can be erased by a Kreisel implication, which converts the context to a necessary one,
allowing the application of the modal induction rule. As a result, only the integer root
is extracted, and additional artifacts are omitted. Note that, in contrast to the previous
two examples, this proof is classical, so Modified Realizability is not applicable in this
case. However, using∀+x would still achieve the same cleaning effect [19].

4 Conclusions and future work

Modal Dialectica provides the means of using both Modified Realizability and Gödel’s
Dialectica at the same time for more efficient program extraction. This was already the
case for the hybrid Dialectica of [9], but here we eliminate the detour to the linear logic
sublevel. Disregarding the light quantifiers, (pure) modalDialectica represents (directly
at the supra-linear logic level) a good combination of the original proof interpretations,
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with the possibility of carrying out both in a sound way on certain input proofs. All one
needs is that some implications of the input proof can be seenas Kreisel implications.

A natural continuation of the work reported in this paper concerns the addition
to our input systems of strong (intuitionistic) elements. Besides the strong∃ and its
light associated∃∅ (originally from [7] where it was denoted∃, see also [19]),strong
possibility✸ also needs to be considered as the intuitionistic dual of necessity✷.

The following clauses would then be added to Definition 1 for getting thestrong
modal Dialecticainterpretation|∃zA(z)|z,fy :≡ |A(z)|fy and |✸A|y :≡ ∃x|A|xy , and
further |∃∅zA(z)|xy :≡ ∃z |A(z)|xy to Definition 2 in order to obtain thestrong light
modal Dialecticainterpretation.

Intuitionistic (light) modal arithmetical systems will first be considered at input for
‘strong’ program synthesis. Then their enhanced classicalcounterparts will be inter-
preted, modulo some negative translation. Such systems will soundly extendNAm with
✸ and∃, andNAml also with∃∅. Nevertheless certain restrictions may need to be applied
onNAm and/orNAml before attempting such extensions with intuitionistic elements.
Acknowledgements:Our first reading of predicate modal logic was [16], a rare small and complete presentation of the topic,

recommended by Prof. Schwichtenberg, to whom we are grateful. Thanks to Diana Ratiu for providing us a copy of this book.

Many thanks to Paulo Oliva for valuable comments on an early draft of this paper.
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B. Löwe, and W. Merkle, editors,Mathematical Theory and Computational Practice: 5th
“Computability in Europe” conference, Heidelberg, Germany, volume 5635 ofLecture
Notes in Computer Science, pages 467–477. Springer Verlag, 2009.

19. T. Trifonov. Analysis of methods for extraction of programs from non-constructive proofs.
PhD thesis, University of Munich, Germany, 2011.

20. A. S. Troelstra.Metamathematical Investigation of Intuitionistic Arithmetic and Analysis,
volume 344 ofLecture Notes in Mathematics. Springer-Verlag, 1973.

5 Appendix

We use a special Natural Deduction (abbreviated “ND”) presentation of our systems,
where proofs are represented as sequentsΓ ⊢ B, meaning that formulaB is the root of
the ND tree whose leavesΓ are typed assumption variables (abbreviated “avars”)a :A.
Here formulaA is the type of the avara, andΓ is a multiset (since there may be more
leaves labeled with the samea :A).

5.1 The verifying systemNA

The logical rules of systemNA are presented in Table 2, with the usual restriction on
universal quantifier introduction∀i that

z 6∈ FV(Γ ) :≡
⋃

a:A∈Γ FV(A)

At →i , [a : A] denotes the multisubset of all occurrences ofa : A in the multiset of
assumptions of the premise sequent of→i . Thusa :A 6∈ Γ , hencea : A is no longer
an assumption in the conclusion sequent of→i . In the ND tree, this means that all the
leaves labeleda : A are inactivated (or “discharged” as one usually says in Natural
Deduction terminology).

Whereas inNA alone we could have safely let all contractions be handled implicitly
at →i , in relationship with the architecture of input systemNAl (see Section 5.2) we
are compelled to introduce forNA the contraction anti-ruleC in association withCl
of NAl, see Table 4. We refer to contraction as “anti-rule”, ratherthan “rule” because,
despite the sequent-like representation of our calculi, infact our formalisms are ND
and in the ND directed tree the representation of explicit contractions is by convergent
arrows that go in the direction which is reverse to the direction of all the other rules.

http://dx.doi.org/10.1093/logcom/exq007
http://www.math.lmu.de/~logik/minlog/documentation.php
http://www.math.lmu.de/~logik/minlog/documentation.php
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TAx : ⊢ at(T) CmpAx : ⊢ x =ρ y → A(x) → A(y)

Table 1.Basic axioms, withCmpAx replaced byCMP rule inNAl

a :A ⊢ A (id)
Γ, [a :A] ⊢ B

→i

Γ ⊢ A → B

Γ ⊢ A ∆ ⊢ A → B
→e

Γ,∆ ⊢ B

Γ ⊢ A
∀i

Γ ⊢ ∀zA

Γ ⊢ A ∧B
∧el

Γ ⊢ A

∆ ⊢ A ∧B
∧er

∆ ⊢ B

Γ ⊢ A ∆ ⊢ B
∧i

Γ,∆ ⊢ A ∧B

Γ ⊢ ∀zA
∀e

Γ ⊢ A[t/z]

Table 2.Logical rules, withz 6∈ FV(Γ ) at∀i and certain explicit contractions at→e and∧i

Γ ⊢lA
∀i±

Γ ⊢l∀±zA

Γ ⊢lA
∀i+

Γ ⊢l∀+zA

Γ ⊢lA
∀i−

Γ ⊢l ∀−zA

Γ ⊢lA
∀i∅

Γ ⊢l ∀∅zA

Γ ⊢l∀±zA
∀e±

Γ ⊢lA[t/z]

Γ ⊢l∀+zA
∀e+

Γ ⊢lA[t/z]

Γ ⊢l ∀−zA
∀e−

Γ ⊢lA[t/z]

Γ ⊢l ∀∅zA
∀e∅

Γ ⊢lA[t/z]

Table 3.Additional rules forNAl , with extra restrictions on∀i

+ , ∀i

− and∀i

∅

∆, a :A, a :A ⊢ B
C

∆, a :A ⊢ B

∆, a :A, a :A ⊢lB
Cl

∆, a :A ⊢lB

Table 4.Contraction anti-rulesC for NA and (restricted)Cl for NAl

Γ ⊢ A(T) ∆ ⊢ A(F)
Indo

Γ,∆ ⊢ A(b)

Γ ⊢ A(0) ∆ ⊢ A(n) → A(Sn)
Indι

Γ,∆ ⊢ A(n)

Table 5. Induction rules, withΓ ⊎∆ instead of ‘Γ,∆’ and∆ restricted atIndι of NAl
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We find it convenient to introduce induction for booleans andnaturals as the rules
presented in Table 5. Here we assume that the induction variablesbo and respectively
nι do not occur freely inΓ , nor∆, and that they do occur in the formulaA.

Computation inNA is expressed via the usualβ-reduction rule(λx.t)s →֒ t[x 7→ s],
plus rewrite rules defining the computational meaning ofIf andR :

If T s t →֒ s R 0 s t →֒ s

If F s t →֒ t R (Sn) s t →֒ t n (Rn s t)

Since this typed term system is confluent and strongly normalizing (cf. [17]), we are
free not to fix a particular evaluation strategy. For simplicity, we assume that all terms
occurring in proofs are automatically in normal form. In fact, normalization is necessary
only when matching terms in formulas. We only avoid introducing equality axioms
AxEQL as in [7] and skip the corresponding easy applications ofCmpAx. When building
proofs, some computation is thus carried out implicitly, behind the scene.

Using recursion at higher types we can define any provably total function of ground
arithmetic, including decidable predicates such as equality Eqo for booleans andEqι
for natural numbers:

Eqoooo :≡ λx.If x (λy.y) (λy.If y F T)

Eqιιoι :≡ λx.R x
(
λy.R y T (λn, qo.F)

) (
λm, pιo, y.R y F (λn, qo.p n)

)

Theat(·) construction allows us to view boolean programs as decidable predicates.
Given Indo , its logical meaning is settled by the truth axiomTAx, see Table 1. In
this way we can define predicate equality at base types ass =σ t :≡ at(Eq s t) for
σ ∈ {o, ι} and further at higher types extensionally as usuals =ρτ t :≡∀xρ(sx =τ tx).
It is straightforward to prove by induction onρ that=ρ is reflexive, symmetric and
transitive at any typeρ.

To complete our system, we must include inNA also the compatibility (i.e., exten-
sionality) axiomCmpAx, see Table 1. Note that ex falso quodlibet (EFQ) ⊥ → A and
stability (Stab) ¬¬A → A are fully provable inNA (cf. [17], by induction onA, using
TAx andIndo).

5.2 The input systemNAl

Light formulasFl are built over usual formulasF of NA by adding the three light
universal quantifiers: the non-computational∀∅ and the two semi-computational∀+ and
∀− . In order to stress the distinction ofNAl fromNA it is convenient to renameNA’s ∀
to∀± in NAl (which marks the whole computational content, both positive and negative)

Fl A,B ::= at(to) | A → B | A ∧B | ∀⋄ x
ρA for ⋄ ∈ {∅,+,−,±}

Thus, systemNAl refines the clone ofNA (also withCMP for CmpAx andCl for C)
with introduction and elimination rules for the light quantifiers (see Table 3). These
are copies of the clone rules∀e± and∀i± , but with the usual restriction (±) on ∀i± that
z 6∈ FV(Γ ) enhanced with the following conditions referring to the LD-interpretation
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(+) at the∀i+ rule,z may be used computationally only positively, i.e.,
z must not be free in thechallengersof the LD-translation ofΓ .

(−) at the∀i− rule,z may be used computationally only negatively, i.e.,
z must not be free in thewitnessesof the LD-translation ofA.

(∅) at∀i∅ , z may not be used computationally at all, i.e., both (+) and (−).

Notice that the restrictions (+), (−) and (∅) assume knowledge of the LD-interpretation
of whole proofs, in their full depth, thus forcing the definition of NAl proofs to go
inductively in parallel with the LD-extraction of part of their computational content
(namely free variables of the extracted terms). We simultaneously define the classes of
realization irrelevantA⊕ andrefutation irrelevantA⊖ formulas as follows:

A⊕, B⊕ ::= at(t) | A⊕ ∧B⊕ | A⊖ → B⊕ | ∀⋄xA⊕ for ⋄ ∈ {∅,+,−,±}

A⊖, B⊖ ::= at(t) | A⊖ ∧B⊖ | A⊕ → B⊖ | ∀⋄xA⊖ for ⋄ ∈ {∅,+}

One necessary change when adopting principles fromNA is to replaceCmpAx with
a weak compatibility rule. This is because Dialectica is unable to interpret full exten-
sionality (cf. [11,20]). We here employ an upgraded variantof theCMP rule from [7]:

Γ⊖ ⊢l s =ρ t
CMPρ

Γ⊖ ⊢lB(s) → B(t)

where all formulas inΓ⊖ are refutation irrelevant.
The computationally irrelevant contractions inNAl can safely be handled implicitly

at→i . The situation is different for those contractions whose formula is refutation rel-
evant (i.e., the computationally relevant contractions),as we want to automatically en-
sure that their translation is decidable (instead of leaving the task of decidability check
to the user). We achieve this by including inNAl thecontraction anti-ruleCl (see Table
4) for all formulasA that are refutation relevant and (⋆) do not contain any∀+ , nor
∀∅ . This triggers the addition toNA of an explicit (unrestricted) contraction anti-ruleC
which is needed in the construction of the verifying proof (it only applies to quantifier-
free formulas|A|). The restriction⋆ ensures that all contraction formulas that require
at least one challenger term for their LD-interpretation will have quantifier-free (hence
decidable) LD-translations. Their decidability is necessary for attaining soundness. Be-
ing a purely syntactical criterion,⋆ does not admit formulas whose LD-translations
contain quantifiers, but could nevertheless be decidable, e.g.,Odd(x) ≡ ∀y(2y 6= x).

Moreover, in order to avoid having any computationally relevant contractions im-
plicit in →i , we constrain the deduction rules ofNAl to disallow multiple occurrences
of refutation relevant assumptions in any of the premise sequents.Thus, whenever a
double occurrence of a refutation relevant assumption is created in a conclusion se-
quent by one of the binary rules ofNAl , such sequent cannot be directly a premise for
the application of an(other)NAl rule: the anti-ruleCl must be applied first, in order to
eliminate the critical double. If⋆ is not satisfied and yeta :A is a refutation relevant
assumption occurring at least twice in some conclusion sequent, this is a dead end: such
sequent can only be the root of theNAl proof-tree.

While EFQ : ⊥ → A remains fully provable also inNAl (for all formulasA ∈ Fl)
the situation changes forStab : ¬¬A → A in the case of many formulasA that feature
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light quantifiers in certain places. As noted in [7], the usual proof in NA of Stab (con-
structed by induction onA) makes unavoidably use of contractions over¬¬(B ∧C)
for subformulas(B ∧ C) of A, and these are subject to the⋆ restriction for refutation
relevantB ∧C. Even when suchB ∧C obey⋆, they may lead to the failure of re-
strictions (+), (−) or (∅). On the other handStab is provable inNAl for A ∈ F or A
conjunction-free.

5.3 The light Dialectica interpretation (LD-interpretati on)

With each formulaA ofNAl we associate its LD-translation: a not necessarily quantifier-
free formula|A|xy of NA wherex,y are tuples of fresh variables, not appearing inA.
The variablesx in the superscript are called thewitness variables, while the subscript
variablesy are called thechallenge variables. Termst substituting witness variables
(like |A|ty) are calledrealizing termsor “witnesses” and termss substituting challenge
variables (like|A|xs ) are calledrefuting termsor “challengers”. Intuitively, the LD-
interpretation ofA can be viewed as a game in which first Eloise (∃) and then Abelard
(∀) make one move each by playing type-corresponding objectst ands for the tuples
x and respectivelyy . Formula|A|xy specifies the “adjudication relation”, here not nec-
essarily decidable: Eloise wins iffNA ⊢ |A|ts . In our light context as well, Eloise has
a winning move wheneverA is provable inNAl : the LD-interpretation will explicitly
provide it from the inputNAl proof ofA as a tuple of witnessest (s.t.FV(t) ⊆ FV(A))
together with theverifying proof in NA of ∀y |A|ty (Eloise wins byt regardless of the
instancess for Abelard’sy).

Definition 5 (LD-translation of formulas). The interpretation does not change atomic
formulas, i.e.,|at(to)|:≡at(to). Assuming|A|xy and|B|uv are already defined,

|A ∧B|x,uy,v :≡ |A|xy ∧ |B|uv

|A → B|f ,gx,v :≡ |A|xfxv → |B|gxv .

The interpretation of the four universal quantifiers is (upon renaming, we assume that
quantified variables occur uniquely in a formula):

|∀±zA(z)|fz,y :≡ |A(z)|fzy |∀+zA(z)|fy :≡ ∀z |A(z)|fzy

|∀−zA(z)|xz,y :≡ |A(z)|xy |∀∅zA(z)|
x
y :≡ ∀z |A(z)|xy

Since|⊥|≡⊥, we get

|¬A|fx ≡ ¬|A|xfx |¬¬A|fg ≡ ¬¬|A|fg

g(fg)

It is straightforward to compute that

|∃̃±zA(z)|Z,f
g :≡ ¬¬|A(Zg)|fg

g(Zg)(fg) |∃̃+zA(z)|fg :≡ ∃̃z |A(z)|fg

gz(fg)

|∃̃−zA(z)|Z,f
g :≡ ¬¬|A(Zg)|fg

g(fg) |∃̃∅zA(z)|
f
g :≡ ∃̃z |A(z)|fg

g(fg)

The length and types of the witnessing and challenging tuples are uniquely determined.
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5.4 Light Dialectica treatment of extensionality

We here give the LD-interpretation of the weak compatibility rule

Γ⊖ ⊢l s =ρ r
CMPρ

Γ⊖ ⊢lB(s) → B(r)

where all formulas inΓ⊖ are refutation irrelevant, i.e., the negative position in their LD-
translation is empty. By definition of equality at higher types,s =ρ r is ∀z. sz = rz, a
purely universal formula. We are given that

a1 : |A1|
x1

t1
, . . . , an : |An|

xn

tn
⊢ |A0|t0x0

where|Γ⊖|≡ {a1, . . . , an}, t0≡t1≡ . . . tn≡⊔ (empty tuple),A0 is s =ρ r andx0

corresponds toz, thus the above is more conveniently rewritten as

a1 : |A1|x1 , . . . , an : |An|xn ⊢ sx0 = rx0

To this we can apply the generalization rule, asx0 are not free in the translated con-
text |Γ⊖|; indeed,x0 are fresh variables and they could have appeared free only via
termst1,. . . ,tn, were these not empty tuples (hence the need for restrictingthe original
context). We thus obtain|Γ⊖| ⊢ s = r and further apply the extensionality Axiom
to get |Γ⊖| ⊢ |B|(s) → |B|(r). Note that the Axiom is required here, as|Γ⊖| may
contain general formulas. Withg :≡ λu.u andf :≡ λu,v.v we have thus constructed
a verifying proof

a1 : |A1|x1 , . . . , an : |An|xn ⊢ |B(s)|ufuv → |B(r)|guv [≡ |B(s) → B(r)|f,gu,v ]

The new realizing termsf, g are closed, hence the free variable condition trivially holds.

5.5 Light Dialectica treatment of induction for naturals

Since the induction rule (for naturals) corresponds to a virtually unbounded number of
contractions of each assumption from the step context∆ (cf. [7], see Table 5), its clone
in the systemNAl is subject to a restriction like the one ofCl . Namely, we need to re-
quire thatall refutation relevant avars in∆ satisfy⋆. Moreover, since the contractions
on a ∈ Γ ∩ ∆ will be handled differently than for simple binary rules like→e or ∧i ,
it is more convenient to require that naturals induction inNAl implicitly contracts all
its refutation relevant assumptions (instead of using the explicit Cl) . We will use the
notationΓ ⊎ ∆ for a special multiset union in which refutation relevant assumptions
appear only once, even if they appear in bothΓ and∆. Thus theIndιl rule ofNAl is
finally obtained by replacing ‘Γ,∆’ with ‘ Γ ⊎∆’ in the conclusion sequent ofIndι .

Γ ⊢l A(0) ∆ ⊢l A(n) → A(Sn)
Indιl

Γ ⊎∆ ⊢l A(n)
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We are given

|Γ |uγ[y] ⊢ |A(0)|ry (6)

and

|∆|zδ[x;v] ⊢ |A(n)|xtxv → |A(Sn)|sxv (7)

We show that

∀v
(
|Γ ⊎∆|u⊎z

ζ[n]v → |A(n)|t
′[n]
v

)
(8)

is a theorem ofNA , where

t′[n] :≡ Rn r (λn.s) (9)

for every corresponding pair〈r ∈ r/s ∈ s〉 and ζ[n] will be constructed as functional
terms depending onv . We here intentionally use the same variablen that occurs freely
in s and t . Implicitly, just t′ denotest′[n] . Also ζ will be constructed as the collec-
tion of all ζ′ (corresponding toΓ \∆ ) and ζ′′ (corresponding to∆ ).

Let b :B be a refutation relevant avar inΓ ⊎∆ . Let γ′ ∈ γ and/orδ′ ∈ δ be the
challengers forb in Γ and/or∆ . If b appears only inΓ (hence not in∆ ) we define

ζ′[n] :≡ Rn (λv.γ′[v])
(
λn, p,v.p(t t′v)

)
(10)

If b appears in∆ , then the decidability of|B| is needed at each recursive step to
equalize the termsp(t t′v) obtained by the recursive call with the corresponding terms
δ′ . Thus the right stop point of the backwards construction is provided. In fact an im-
plicit contraction overb happens at each inductive step and⋆ guarantees that|B| is
decidable. Forb ∈ Γ ∩∆ let

ζ′′[n] :≡ Rn (λv.γ′[v])
(
λn, p,v.If(|B|z

′

δ′[t′;v])
(
p(t t′v)

)
δ′[t′;v]

)
(11)

and for b ∈ ∆ \ Γ we define itsζ′′[n] by replacing in (11) theγ′ with canonical
zeros. Herez′ are the challenge variables corresponding to formulaB . Notice that

⊢ t′[Sn] = st′[n] (12)

⊢ ζ′[Sn]v = ζ′[n](t t′v) (13)

⊢ ζ′′[Sn]v = If (|B|z
′

δ′ [t′;v])
(
ζ′′[n](t t′v)

)
δ′[t′;v] (14)

We attempt to extend (13) to the wholeζ by proving from (14) the following

|B|z
′

ζ′′[Sn]v ⊢ ζ′′[Sn]v = ζ′′[n](t t′v) (15)

We obtain this as an immediate consequence of

|B|z
′

ζ′′[Sn]v ⊢ |B|z
′

δ′[t′;v] (16)
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Assuming¬|B|z
′

δ′ [t′;v]
by (14) we getζ′′[Sn]v = δ′[t′;v] hence¬|B|z

′

ζ′′[Sn]v
and

thus (16) follows viaStab (which is fully available in the verifying system).
We now prove (8) by an assumptionless induction onn . Let ζ∗ be the collection

of all ζ′ and thoseζ′′ corresponding toΓ ∩∆ . For n ≡ 0 it is sufficient that

|Γ |uζ∗[0]v ⊢ |A(0)|t
′[0]
v

which follows from (6) since by definition (9) we have⊢ t′[0] = r and by defini-
tions (10) and (11) we have⊢ ζ∗[0] = λv.γ[v] . Now given (8) we want to prove

|Γ ⊎∆|u⊎z
ζ[Sn]v ⊢ |A(Sn)|t

′[Sn]
v (17)

To (8) we apply∀e
[v 7→ t t′v]

and via easy deductions inNA we get

|Γ ⊎∆|u⊎z
ζ[n](t t′v) ⊢ |A(n)|

t′[n]

t t′v
(18)

With (13) and (15) we can rewrite (18) to

|Γ ⊎∆|u⊎z
ζ[Sn]v ⊢ |A(n)|

t′[n]

t t′v
(19)

In (7) we substitutex 7→ t′[n] and get

|∆|zδ[t′;v] ⊢ |A(n)|
t′ [n]

tt′v
→ |A(Sn)|st

′[n]
v

which gives (17) by means of easyNA deductions using (12), (16) and (19).
We have treated the most general situation, with all contextsets Γ \∆ , Γ ∩∆

and ∆ \ Γ inhabited by refutation relevant assumptions, and conclusion formula A
accepting both witnesses and challengers. Many particularsituations amount to easier
treatments, with simpler extracted terms. These can be obtained as simplifications of the
general witnesses and challengers presented above, by means of the reduction properties
of the empty tuple, which was denotedǫ in [17]. We outline below only those particular
cases which are relevant in connection with the modal induction ruleIndmι .

– If Γ ∪∆ contains no refutation relevant assumption, butA(n) is refutation rele-
vant, then termst are no part of the realizers for the conclusion sequent, in this
case onlyt′ . Hencet would be redundantly produced and a mechanism is needed
to prevent their construction. This is ensured by✷ in front of the stepA(n) atIndmι .

– If A(n) is refutation relevant,∆ has no refutation relevant element butΓ is
refutation relevant inhabited, thenδ and ζ′′ are empty. Yetζ∗ ≡ ζ′ has to be
produced as (10) and includest[n] , which is no longer the case forIndmι .

– If A(n) is refutation irrelevant thenv , t and t t′v are empty tuples. Thusζ′ ≡ γ′

and (11) simplifies to (recalln 6∈ FV(γ′) , n ∈ FV(t′) , and possiblyn ∈ FV(δ′))

ζ′′[n] ≡ R n γ′

(
λn, p . If (|B|z

′

δ′[t′]) p δ
′[t′]

)
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Modal induction rule - technical details

Γ ⊢ ✷A(0) ✷∆ ⊢ ✷A(n) → A(Sn)
Indmι

Γ , ✷∆ ⊢ ✷A(n)

We are given

|Γ |uγ ⊢ ∀y |A(0)|ry (20)

and

|✷∆|z ⊢ ∀y′ |A(n)|xy′ → |A(Sn)|sxv

Sincev 6∈ FV(|✷∆|z) and v 6∈ FV(∀y′ |A(n)|x
y′ ) from the latter we easily obtain

|✷∆|z ⊢ ∀y′ |A(n)|xy′ → ∀v |A(Sn)|sxv (21)

With t[n] :≡ Rn r (λn.s) for every corresponding pair〈r ∈ r/s ∈ s〉 we show by
induction onn in NA with base context|Γ |uγ and step context|✷∆|z that

|Γ |uγ , |✷∆|z ⊢ ∀v |A(n)|t[n]v

As t[0] ≡ r the base is given by (20) and the step follows from (21) withx 7→ t[n]
since t[Sn] ≡ s t[n] . Thus challengersγ are simply preserved for|Γ | and witnesses
t[n] are easily constructed for|✷A(n)| in the conclusion sequent ofIndmι .

Remark 6.Our modal induction rule is equivalent to a special case ofIndι , since a✷
can be placed in front ofA(Sn) from the step sequent ofIndmι . The equivalence of the
two formulations for the step sequent can easily be proved using AxT , Ax4 , AxK and
✷

i . Extracted terms are the same and the verifying proof only gets more direct.
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