Optimization
Spring 2006 (Third Quarter)

Some practical remarks
- Homepage: www.daimi.au.dk/dOpt
- Exam: Written, 3 hours.
- There will be three compulsory assignments. If you want to transfer credit from last year, let me know as soon as possible and before March 1.
- The solution to the compulsory assignments should be handed in at specific exercise sessions and given to the instructor in person.
- Text: “Kompendium” available at GAD.

Frequently asked questions about compulsory assignments
- Q: Do I really have to hand in all three assignments?
 - A: YES!
- Q: Do I really have to hand in all three assignments on time?
 - A: YES!
- Q: What if I can’t figure out how to solve them?
 - A: Ask your instructor. Start solving them early, so that you will have sufficient time.
- Q: What if I get sick or my girlfriend breaks up or my hamster dies?
 - A: Start solving them early, so that you will have sufficient time in case of emergencies.
- Q: Do I really have to hand in all three assignments?
 - A: YES!

The Max Flow Problem

Flow networks
- **Flow networks** are the problem instances of the max flow problem.
- A flow network is given by
 1) a **directed graph** \(G = (V,E) \)
 2) **capacities** \(c: E \rightarrow \mathbb{R}^+ \).
 3) The **source** \(s \in V \) and the **sink** \(t \in V \).
- **Convention**: \(c(u,v) = 0 \) for \((u,v) \) not in \(E \).
Flows

- Given flow network, a flow is a **feasible solution** to the max flow problem.
- A flow is a map \(f : V \times V \rightarrow \mathbb{R} \) satisfying
 - capacity constraints: \(\forall (u, v): f(u, v) \leq c(u, v) \).
 - Skew symmetry: \(\forall (u, v): f(u, v) = -f(v, u) \).
 - Flow conservation: \(\forall u \in V - \{s, t\}: \sum_{v \in V} f(u, v) = 0 \)

A Flow

![Flow Diagram](image)

Skew Symmetry

Edmonton

Edmonton

is modeled as

Calgary

Calgary

Our flows are **net flows**.

Flow Conservation

\[\sum_{u} f(v_3, u) = 0? \]

\[\sum_{u} f(v_3, u) = (-7)+1+(-5)+11 = 0 \]

Flow entering \(v_3 = 12 \)
Flow leaving \(v_3 = 12 \)
Flow conservation expresses that \(v_3 \) is in **balance**.
Notation

• $f(X,Y) := \sum_{u \in X, v \in Y} f(u,v)$.

• Value of f: $|f| := f(s,V)$.

The Max Flow Problem:
Given a flow network (V,E,c,s,t), find the feasible flow f maximizing $|f|$.

Some facts

• $f(X,X) = 0$,

• $f(X,Y) = -f(Y,X)$,

• $X \cap Y = \emptyset \Rightarrow f(X \cup Y,Z) = f(X,Z) + f(Y,Z)$.

(exercise 26.1-4)

• $|f| = f(V,f)$.

 Modeling with Max Flow:
A scheduling problem

• A set of jobs must be scheduled on M identical machines.

• Each job j has an arrival date r_j, a required delivery date d_j, and a processing time $p_j \leq d_j - r_j$.

• A job can be preemptively moved from one machine to another.

• Can the jobs be scheduled on the machines so that the deadlines are met?

<table>
<thead>
<tr>
<th>Job (j)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing time (p_j)</td>
<td>1.5</td>
<td>1.25</td>
<td>2.1</td>
<td>3.6</td>
</tr>
<tr>
<td>Release time (r_j)</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Due date (d_j)</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>

$M = 3$

• Many natural optimization instances can be expressed using the max flow formalism.

• How do we solve the max flow problem?
Local Search Pattern

LocalSearch(ProblemInstance x)
y := feasible solution to x;
while ∃ z ∈ N(y) : v(z) > v(y) do
 y := z;
 od;
return y;

N(y) is a neighborhood of y.

Local search checklist

Design:
• How do we find the first feasible solution?
• Neighborhood design?
• Which neighbor to choose?

Analysis:
• Partial correctness? (termination correctness)
• Termination?
• Complexity?

The first flow?

Neighborhood design

• Given a flow, how can we find a slightly different (and hopefully slightly better) flow?
The first flow?

Path Flows

Path Flow = flow with positive values only on a simple path from s to t

Idea

• Let $N(y)$ be the flows that can be obtained from y by adding a path flow (without violating the capacity bounds).

• The path flow we add should use some path in (V, E) along which every edge has some unused capacity.

Example
Another Path?

No.

Optimal?

No!

Some remarks

- When designing a local search algorithm, the most obvious neighborhood relation is not necessarily the right one.
- That a solution cannot be improved by using some specified set of changes does not necessarily mean it is globally optimal.

Better Idea

- The graph \((V,E)\) is not really the right one to find paths in.
- The path flow we add should use some path in \((V,E_f)\) where \(E_f\) is the set of edges that has unused capacity under the current flow \(f\).
- \(E_f\) may include edges \((u,v) \in E\) as well as back-edges \((u,v)\) for which \((v,u) \in E\).

The residual network

- Let \(G=(V,E,c,s,t)\) be a flow network and let \(f\) be a flow in \(G\).
- The *residual network* is the flow network with edges and capacities
 \[E_f = \{(u,v) \in V \mid f(u,v) < c(u,v)\} \]
 \[c_f(u,v) = c(u,v) - f(u,v) \]
Lemma 26.2

Let
- \(G=(V,E,c,s,t) \) be a flow network
- \(f \) be a flow in \(G \)
- \(G_r \) be the residual network
- \(f' \) be a flow in \(G_r \)

Then
- \(f + f' \) is a flow in \(G \) with value \(|f|+|f'|\)

Augmenting Paths

- A simple path \(p \) from \(s \) to \(t \) in \(G \), is called an **augmenting** path.
- Let \(c_i(p) = \min (c_i(u,v) : (u,v) \text{ is on } p) \)
- Let \(f_p(u,v) \) be
 - \(c_i(p) \) if \((u,v)\) is on \(p\)
 - \(-c_i(p)\) if \((v,u)\) is on \(p\)
 - 0 otherwise
- Then \(f_p \) is a path flow in \(G \) with value \(c_i(p) \)

Ford-Fulkerson method

Ford-Fulkerson(\(G \))
- \(f = 0 \)
- while (simple path \(p \) from \(s \) to \(t \) in \(G_r \))
 - \(f := f + f_p \)
- output \(f \)

Local search checklist

Design:
- How do we find the first feasible solution? \(\checkmark \)
- Neighborhood design? \(\checkmark \)
- Which neighbor to choose?

Analysis:
- Partial correctness? (termination correctness)
- Termination?
- Complexity?

Cuts

- A **cut** \((S,T)\) in \(G \) is a partition of \(V \) into \(S \) and \(T=V-S \) with \(s \in S \) and \(t \in T \).

- Its **capacity** is
 - \(c(S,T) = \sum_{u \in S, v \in T} c(u,v) \)

- A **minimum cut** is a cut with smallest capacity among all cut.
Max Flow – Min Cut Theorem

Let f be a flow in G. The following three conditions are equivalent:

1. f is a maximum flow
2. G_f contains no augmenting path
3. There is a cut (S,T) so that $|f| = c(S,T)$