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Overview 

Our context is standard programming languages used to query XML data. We are 
interested in “typeful” programming, by which we mean programming with regular 
structures used to model categories in the real world. Real-world entities are 
intuitively modelled in XML as labelled trees; however when these trees are presented 
to the programmer, as in various standards such as DOM, SAX, XLST and 
XQUERY, only the structure of the tree itself, rather than the real-world structure it is 
used to represent, is given. The entity modelling that has been used must be 
discovered through dynamic interpretation within the tree structure. 

The XML namespace (xmlns) standard allows the effective introduction of some 
“type” knowledge for the programmer, albeit by convention rather than by guarantee. 
However this still leaves much to be desired for programmers trying to recreate the 
higher-level conceptual structures from labelled trees as presented. The namespace 
mechanism is relatively heavyweight for many purposes, and may require explicit 
structural checking within the program logic to ensure that conventions are obeyed. 
As well as these, it has the established disadvantages that “name equivalence” type 
systems suffer in comparison with “structural equivalence” over distributed 
programming systems, in particular with respect to evolution and version control. 

We examine the addition of a structural equivalence mechanism into the framework. 
Through a scheme of type projection, we allow structural type assertions to be tested 
during program execution; this allows fragments of that code to be statically checked 
based on the type hypothesis coded in the projection. Our prototype language 
Projector is an extension of the ECMA-262 (“JavaScript”) standard, and allows an 
interesting mix of typed and untyped code within a single context. 

Introduction 

We have previously worked on type projections over semistructured data, with the 
aim of allowing standard statically typed programming languages to bind, in a 
semantically intuitive way, to semistructured data emanating from outside their 
context. We now report a different application of this work, where the type projection 
algebra is embedded within a statically untyped programming language, giving a 
language which can query and manipulate its values in both typed and untyped 
algebras. When this is applied to the DOM standard as an XML query interface, we 
can use type projection to search via navigation for sub-trees that conform to a 
particular type’s semantics, and thence provide a generic typed interface to a 
programmer. 
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The type projection mechanism gives several advantages over the basic DOM 
abstraction. As well as safety issues normally associated with type systems, the 
descriptive power of the type system can be used to handle cycles and shared 
subgraph components within the XML. While these are, by necessity, handled 
through interpretation, this happens at an earlier stage and is cleanly separated from 
the application logic rather than being intermingled. 

While of course our language has no more descriptive power than the standard DOM 
interface, we believe that the effective encoding of a part of the language algebra 
within a type system framework gives clear succinctness to certain classes of 
computation. We use the type system framework in a very non-standard manner; 
rather than being primarily a static mechanism to ensure the partial safety of 
programs, we also use it to allow the programmer to express certain computation 
against the input data. We strongly believe that type system concepts are the best way 
to describe structural requirements that are normally expressed by fragments of 
computation. 

Incorporation of static typing into ECMA-262 

Our prototype language, Projector, is an extension of the language defined by the 
December 1999 ECMA-262 standard of JavaScript/JScript1. We chose this language 
for a number of important reasons: first, it is statically completely untyped, which 
suits our experimental purposes. Despite this, it is well-defined and in fact, being an 
evolved form of LISP, contains an elegant functional core, and a pure object model of 
prototype-based inheritance over aggregations of first-class functions. The language is 
actually defined on the basis of a type system, but this features only in the definition 
of semantics rather than in any static framework. Finally, it has a standard binding to 
XML via the DOM interface. 

To this language we have added some standard syntactic forms for defining types, 
comprising object and array constructors over the scalar types int, string and bool, and 
a syntax for aliasing [SYN]. Type expressions are added to the standard syntax as an 
optional feature within the parameter list of functions. The language remains largely 
untyped: a single static restriction has been added, that where a formal parameter is 
typed in a function body, and that function is manifest2, then the corresponding actual 
parameter at a call must be appropriately statically typed. 

In itself, this partially typed version of JavaScript opens many questions about the 
integration of typed and untyped programming algebras; however many of these 
issues are parallel to the topic of this paper. Here we concentrate on the application of 
this paradigm to programming over XML data as presented to the system via the 
DOM. 

Figure 1 shows the essential features of the extended language, and also hints at the 
motivation for adding a type system to a language which remains largely untyped. 

                                                 
1 We will subsequently refer to this language as JavaScript, forsaking both political and technical 
correctness for the sake of readability! 

2 Functions are first class and we do not, at this point, type them. 
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The two functions getName and getName2 both return the name of their person 
argument. The typed version is checked statically and the function body is therefore 
guaranteed to behave as expected. The untyped version instead has a dynamic check 
to ensure it has been called appropriately. 

 
 
type person = { name : string; age : int } 
 
var getName = function( p : person ) 
{ 
 return( p.name ) 
} 
 
var getName2 = function( p ) 
{ 
 if( p.name != undefined && p.age != undefined && 
 typeof( p.name ) == "string" && typeof( p.age ) == "number" ){ 
  return( p.name ) } 
 else{ 
  error( "getName2: p is not a person" ) } 
} 
 
var richard = { name : "Richard", age : 40 } 
var fabio = { name : "Fabio" } 
 
print( getName( richard ) ) 
print( getName2( fabio ) ) // causes a dynamic error 
//print( getName( fabio ) ) // causes a static error 
 

Figure 1 : structure checking by type and by algorithm 

It is clear that the first function is the preferred form, as the error is caught statically 
instead of dynamically. However total static checking is not possible when some of 
the data is imported into the context during execution. 

The other point to compare is the succinctness of code. If we were to define this 
language in an unorthodox manner, and use the type information to generate dynamic 
rather than static checks (effectively generating the second form from the syntax of 
the first) then there is still an advantage as the syntactic form of the first function 
directly reflects the same structural requirement in a much more succinct manner. The 
program is therefore more likely to reflect the programmer’s intention, irrespective of 
any static consideration. This succinctness, albeit in combination with increased static 
safety, is the main claim we make of our projection mechanism over the DOM. 

By adding explicit projection of types over the DOM structure, we believe we achieve 
both of these advantages in a single mixed-mode programming algebra. 
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Typed projection from DOM 

We start by giving a motivating example drawn from an artificially simple XML data 
collection, valid with respect to the DTD3 given in Figure 2. 

 
 
<!ELEMENT people ( person+ ) > 
<!ELEMENT person ( name, age ) > 
<!ELEMENT name ( #PCDATA ) > 
<!ELEMENT age ( #PCDATA ) > 
 

Figure 2 : example trivial DTD 

A Projector function to calculate the average age of this collection may be written as 
in figure 3. The Collection type describes a JavaScript model of the expected structure 
of the input data, modelled within the XML tree. The project keyword signifies a 
static assertion of the expected structure of the function parameter XMLData, which 
should be a DOM tree conforming to the DTD given in Figure 2. Its use conveys two 
effects: first, it tests the structure of the input, and will throw an exception if this is 
incorrect. Secondly, it results in a reference to a data structure conforming to the 
given type description, Collection, which in this example is assigned to the local 
variable data. From this point onwards, data is statically known to have the type 
Collection. Even in this example, where no mechanical use is made of this fact, the 
implication is that the code in the next line, which relies upon this type structure, is 
known to be type-safe by the programmer and allowance for failure need not be made. 

 
 
type Collection = { people : { $array_person : [ { name : string, age : int } ] } } 
 
var averageAge = function( XMLData ) // should be head of DOM tree 
{ 
 var count = 0; var total = 0 
 var data = project XMLData onto Collection 
 var people = data.people.$array_person 
 for( i in people ){ count++; total += people[ i ].age } 
 return( total / count ) 
} 
 

Figure 3 : succinct structure checking through projection 

This motivating example looks convincing in terms of the succinctness of expression 
it achieves in comparison to code with an equivalent meaning written directly over the 

                                                 
3 XMLSchema gives a tighter definition more fit for our purpose, but currently suffers less general 
support than DTD. 
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structure of the DOM tree. However when the use of the paradigm is extended to non-
trivial examples, which by nature do not fit in academic papers, its use becomes more 
significant. Both DTD and XMLSchema tend to be used to describe general 
grammars, rather than tightly structured types, and typically allow great flexibility in 
conformance. In such cases structural projection looks even more convincing in terms 
of allowing code whose meaning is clear to programmers. This is of course true only 
in cases where a common structure, typically a subset of allowed structures, is the 
target of the computation. 

The projection mechanism 

We have described type projection schemes for semistructured data in detail 
elsewhere [SNAQUE], and give a simple overview here. It is worth noting that our 
motivation has previously been to integrate semistructured data with a statically typed 
context; however in the above example no static typechecking is performed, yet the 
value of the paradigm in terms of succinctness of expression alone is clear. 

The basic model comprises a type grammar with two overlapping subsets. These 
subsets are termed the SS and PL type description frameworks; the SS system can be 
used to assign a type to any semistructured collection, and the PL is a standard 
programming language type system. A subtype relation is defined, based on a 
semantics of the type grammar in the domain of the semistructured data. If a PL type 
is a supertype of the SS type assigned to a data collection, then that collection may be 
viewed as the PL type. An underlying mechanism based on either indexing or 
extraction is then used to present the appropriately typed data in the context of the 
high-level language. 

In the context of JavaScript, an appropriate system is shown in Figure 4. The curly 
and square brackets are syntactic forms representing JavaScript object and array type 
constructors. One unusual aspect of the general type grammar T is that repeated label 
names are allowed within object types; when the normal restriction of non-repetition 
is imposed, the PL subset is derived. The SS subset comprises the scalar types with 
the object type constructor, and allows label repetition. 

 
 
T ::= int | string | bool | null | { l1 : T, … , ln : T } | [ T ] 
 
SS ::= int | string | bool | null | { l1 : SS, … , ln : SS } 
 
PL ::= int | string | bool | null | { l1 : PL, … , ln : PL } | [ PL ] li ≠ lj 
 

Figure 4 : The three type grammars for JavaScript/XML projection 

The type assignment from any simple XML document onto SS is straightforward: the 
XML tree is simply typed as a collection of nested objects. Scalar content is typed as 
int, bool, null or string according to its structure, and structured content is typed as an 
object, each tag name being represented by a label. The lack of repetition restriction in 
the definition of object typing deals with the case of repeated tags within a single 
nesting context. Type assignment is extended to cover attributes and mixed content 
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also, by use of the label prefix $attribute_ and the label $mixedContent as used in 
Figure 54. 

 
 
 <person xmlns="person.richard.cis.strath.ac.uk"> 
  <name>Richard</name> 
  <age>40</age> 
  <motto>XML doesn’t care.</motto> 
  <motto><emphatic>Never</emphatic> buy a horse from a bishop.</motto> 
 </person> 
 
 : 
 
 { person : {  $attribute_xlmns : string, name : string, age : int, motto : string, 
      motto : { emphatic : string, $mixedcontent : string } } } 
 

Figure 5 : an example type assignment 

The subtype relation is based on the following semantic interpretation of the type 
grammar within the XML context: 

1. objects are represented by a set of elements at the same level, where the tag 
names represent the object field names. 

2. arrays, which must be contained within objects and labelled with an identifier 
of the form $array_X, are represented by a set of elements at the same level 
which share a common tag name X. 

3. scalar types are represented by text conforming to the structural rules of that 
type, as defined in the microsyntax of the language. 

The subtype relation is informally defined by the rewrite rules given in Figure 6, 
which specify a mechanism for rewriting a given type as a supertype. The reason for 
expressing the relation in this unusual form is that this represents exactly the process 
required when a projection is applied: if the type assigned to the XML can be 
rewritten as the goal type, then the projection is valid. Furthermore, the structure of 
the rewrite rules gives a basis for performing the required extraction or building of 
indexing structures. 

 
 
{ l1 : T1, … , lm : Tm , … , ln : Tn } ⇒ { l1 : T1, … , ln : Tn }  (1) 
 
{ l1 : T1, … , lm : Tm , … , ln : Tn }⇒ { l1 : T1, … , $array_lm : [ Tm ] , … , ln : Tn } (2) 
 

                                                 
4 Variable names starting with $ are legal JavaScript; these are normally reserved for system use and 
are not recommended for use by applications programmers. 
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{ l1 : T1, … , $array_lm : [ Tm ] , … , lm : Tm , …, ln : Tn } ⇒ 
          { l1 : T1, … , $array_lm : [ Tm ] , … , ln : Tn } (3) 
 
int ⇒ string bool ⇒ string  null ⇒ string (4-6) 
 

Figure 6 : The subtype relation expressed by rewrite rules 

The rules given are not formally exhaustive but give the four main axioms of 
subtyping in a readable manner. Rule (1) is standard record subtyping; from any 
object type, a supertype can be obtained by dropping any label : type pair from the 
structure. Rule (2) is an array introduction, which states that any single tag X in an 
object can be viewed as a array, labelled $array_X, with a single element. Rule (3) is 
an array assimilation, which allows other fields with the same label and type to be 
assimilated into such an array once formed. Rules (4-6) are just an admission that the 
eager typing of scalar values according to their structure does not necessarily reflect 
their intended meaning. 

A variant of rule (2), which will be used later in the paper, is given in Figure 7. This 
version seems less justifiable, but is useful in conditions where it is sensible for an 
object abstraction to be typed as containing an array of some type even when the 
current manifestation does not do so; logically this assumes the presence of an empty 
array. Whether this is desirable or not depends on the nature of the application; how to 
handle this elegantly is an open issue. 

 
 
{ l1 : T1, … , ln : Tn }⇒ { l1 : T1, … , ln : Tn, $array_lp : [ Tp ]} (2a) 
 

Figure 7 : introduction of “empty” arrays 

Fragment Example 

We now give some more sophisticated examples of the use of the paradigm: XML 
fragments; recursive types, and interpreted references within XML denoting shared 
subgraphs or cycles. For these purposes we modify our earlier DTD to that of Figure 
8. 

 
 
<!ELEMENT person ( name, age, child* ) > 
<!ATTLIST person myid ID #REQUIRED > 
<!ATTLIST person xmlns CDATA #FIXED “person.richard.cis.strath.ac.uk” > 
<!ELEMENT name ( #PCDATA ) > 
<!ELEMENT age ( #PCDATA ) > 
<!ELEMENT child EMPTY > 
<! ATTLIST child childId IDREF #REQUIRED > 
 

Figure 8 : a more realistic DTD 
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An increasing use of XML conforms to the general principle of using the xmlns 
standard as a mechanism akin to name type equivalence matching, therefore allowing 
generic code to be written independently of its context of use. The mandatory 
embedding of a URI in the namespace attribute of person in Figure 8 means that 
general traversal code can be written to locate instances of valid data within arbitrary 
XML collections. 

Projection was originally envisaged as a binding mechanism to allow the 
incorporation of semistructured data into a statically typed programming algebra. In 
this context however it can be useful for the different (navigational versus structured) 
views over the DOM trees to coexist. In the mixed paradigm, for instance, it is 
possible to write an unstructured, navigation-based traversal over the tree and apply 
projections wherever the structured view is more appropriate. This style of 
programming is particularly well-suited to tasks where only partial knowledge of the 
data is available. One common case of this is where fragments of the data are 
governed by a global XML namespace, and code is written over those fragments 
independent of the context in which they occur. 

Code to calculate the average age of all people records embedded in any collection 
can be written using JavaScript first class functions against the standard DOM model 
as in Figure 9; this code abstracts away the test for whether a particular DOM node 
represents a person or not. 

 
 
var applyToDOMTree = function( node, f ) 
{ 
 if( node != undefined ) 
 { 
  f( node ) 
  applyToDOMTree ( node.firstChild, f ) 
  applyToDOMTree ( node.nextSibling, f ) 
 } 
} 
 
var averageAge = function( XMLData ) 
{ 
 var count = 0; var total = 0 
 var accumulate = function( n ) 
 { 
  if( isPerson( n ) ){ count++; total += getAge( n ) } 
 } 
 applyToDOMTree( XMLData, accumulate ) 
 return( total / count ) 
} 
 

Figure 9 : generic traveral of the DOM 
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Minimal JavaScript code for the two functions isPerson and getAge is shown in 
Figure 10. Notice that this code is not guaranteed to succeed structurally, and will 
only do so if the namespace convention is correctly enforced throughout the use of the 
URI; otherwise the getAge function may fail dynamically or, worse, succeed 
mechanically but result in an incorrect answer. Full code for isPerson, which 
guarantees the correct meaning for getAge, must incorporate many more structural 
checks; even so, the onus is still on the programmer to ensure that the data extraction 
expressed within getAge corresponds correctly to the DOM structure corresponding to 
the schema description. 

 
 
var isPerson = function( node ) // node is a DOM tree node 
{ 
 try{ 
  var isInNamespace = node.attributes[ 1 ].nodeName = "xmlns" && 
   node.attributes[ 1 ].nodeValue == "person.richard.cis.strath.ac.uk" 
  return( isInNamespace ) 
 } 
 catch( e ){ return( false ) } 
} 
 
var getAge = function( p ) // p is a DOM tree node 
{ 
 return( p.firstChild.nextSibling.nodeValue ) 
} 
 

Figure 10 : “dynamically typed” DOM code 

Figure 11 shows the equivalent Projector code for the two functions. Once again two 
significant advantages are highlighted. First is the succinctness of expression of the 
specification of the dynamic structural test, as seen in the isPerson function. The 
isPerson function in Projector is no harder to read than that of Figure 10, even 
although the latter does not perform any structural checks; the equivalent JavaScript 
code to perform the same degree of structural checking is given in Figure 12. 
Secondly is the static safety shown in the getAge function, giving the programmer 
confidence that the extraction expression is the correct one as a static error would 
otherwise be reported. 

 
 
type Person = { $attribute_xmlns : string, name : string, age : int } 
 
var isPerson = function( node ) // node is a DOM tree node 
{ 
 try{ 
  var p = project node onto Person 
  return( p. $attribute_xmlns == "person.richard.cis.strath.ac.uk" ) 
 } 
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 catch( e ){ return( false ) } 
} 
 
var getAge = function( p ) // p is a DOM tree node 
{ 
 var p = project node onto Person 
 return( p.age ) 
} 
 

Figure 11 : the same example expressed in Projector 

 
 
function isPerson() 
{ 
 if( node!= undefined && 
  node.attributes != undefined && 
  node.attributes[ 1 ] != undefined && 
  node.attributes[ 1 ].nodeName == "xmlns" && 
  node.attributes[ 1 ].nodeValue == " person.richard.cis.strath.ac.uk " && 
  node.firstChild != undefined && 
  node.firstChild.nodeName == "name" && 
  node.firstChild.nextSibling != undefined && 
  node.firstChild.nextSibling.nodeName == "age" 
 ) 
  return( true ) 
 else 
  return( false ) 
} 

 Figure 12 : the full structural test coded against the DOM 

Recursive types, shared subgraphs and cycles 

The representation of references within XML data is achieved by interpretation over 
the data content rather than by a defined semantic mechanism within the definition of 
XML itself. Metadata descriptions do allow the specification of references and, in 
conjunction with a schema, references may be deterministically identifiable within a 
data collection. However the DOM is defined only over the XML structure, and 
therefore handling of references to denote both shared subgraphs and cycles must be 
achieved by interpretation of these within the application code. 

Recursive types are in any case required to capture regular data where references are 
not explicitly modelled but are represented by nesting. Figure 13 shows some 
example XML and a Projector program using a recursive typing and algorithm. (In 
this case we require to use type rule (2a) to deduce the empty array which occurs 
logically in the child object representations.) 
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<person> 
 <name>Richard</name> 
 <age>40</age> 
 <child> 
  <person> 
   <name>Thomas</name> 
   <age>5</age> 
  </person> 
 </child> 
 <child> 
  <person> 
   <name>Elizabeth</name> 
   <age>1</age> 
  </person> 
 </child> 
</person> 
 
type Person = { name : string, age : int, $array_child : [ Person ] } 
type Data = { person : Person } 
 
var listFamily = function( p : Person ) 
{ 
 print( p.name ) 
 for( i in p.$array_child ){ listFamily( p.$array_child[ i ] ) } 
} 
 
listFamily( ( project XMLData onto Data).person ) 
 

Figure 13: use of recursion over nested data 

However if the same code is used against data conforming to the DTD given in Figure 
8 it will not work properly as the references modelled within the data attributes will 
not be detected during the type projection. To achieve the same effect, the untyped 
tree would need to be traversed and the references interpreted before projection onto 
the simple Person type could occur, thus mixing the structural checking code with the 
application logic. However avoidance of such mixing is the primary intention for the 
Projector language. 

To solve this the observation is required that the dynamic type projection already 
performs a traversal of the relevant data, and that the requirement is for this traversal 
to somehow incorporate the semantics of references within that data. This can be 
achieved by the incorporation of a “reference following” functionality into the 
projection operation. 

To find the DOM nodes representing a person’s children requires the following steps: 

1. form a list of tokens by extracting the appropriate IDREF from each <child> 
node 
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2. form a list to contain DOM node references corresponding to these, with each 
node initially set to null 

3. traverse the entire DOM tree; for each <person> node encountered, extract its 
ID. If this matches an entry in the list of tokens, then update the corresponding 
element in the node list. 

 
 
type Child = { $attribute_IDREF : string } 
type Person = { $attribute_ID : string, name : string, age : int, $array_child :[ Child ] } 
 
var findIDToken = function( n ) 
{ 
 try{ return( ( project n onto Child ).$att_IDREF ) } 
 catch( e ){ return( "" ) } 
} 
 
var resolveIDToken = function( n, t ) 
{ 
 try{ 
  var p = project n onto Person 
  return( p.$att_IDREF == t ) 
 } 
 catch( e ){ return( false ) } 
} 
 

Figure 14: resolution of references 

A solution to this coded in Projector gives rise to the functions shown in Figure 14. 
Although this will lead to a relatively elegant implementation of the above algorithm, 
it remains unsatisfactory as the typing of Child and Person captures their 
implementation rather than the semantics of the model. The solution to this is to 
perform the algorithm at the time of projection, and allow the type projection to occur 
over the resulting logical graph, rather than the simple tree of the DOM. This is 
achieved by an extension of the syntax of project to include generic “find” and 
“resolve” functions as illustrated in Figure 15. 

 
type Person = { name : string, age : int, $array_child : [ Person ] } 
 
var listFamily = function( p : Person ) 
{ 
 print( p.name ) 
 for( i in p.$array_child ){ listFamily( p.$array_child[ i ] ) } 
} 
 
listFamily( project XMLData onto Person using findIDToken, resolveIDToken ) 
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Figure 15 : type projection over interpreted references 

During traversal of the DOM tree, the find and resolve functions will be used 
wherever appropriate to present a transformed tree to the projection algorithm. The 
result in this case will be the building of a tree structure corresponding to that of 
Figure 13, even although the data is presented in a flat list, allowing the recursive 
algorithm to operate correctly. XML data representing shared subgraphs and cycles 
are translated into the corresponding JavaScript data structures via type projection. 

The find and resolve functions are in general programmer provided, and so the string 
token passed from one to the other can be used to model arbitrary structures in cases 
where the reference is resolved by more than a simple token, or when many different 
types of reference may occur using intersecting sets of tokens; however such cases are 
probably rare. It is straightforward to generate the functions automatically in cases 
where a DTD is available, yet the mechanism is also sufficiently flexible to allow 
other conventions to be coded if unique references are coded in the XML in a non-
standard manner. 

Related work 

Computations over XML data can be specified in a variety of paradigms, models and 
languages. Two kinds of approaches, however, appear to prevail: dedicated query 
languages and bindings to programming languages, typically object-oriented ones. 

The first resort to regular expressions to match data with irregular or partially known 
structure (e.g. XML-QL, XQL, LOREL). They also include Turing-complete and/or 
strongly typed functional languages, which exploit structural regularity to ensure 
correctness of arbitrary computations (e.g. XQuery, XSLT, Xduce, TeQuyLA). 

Language bindings are instead defined by implementing programming interfaces to an 
in-memory representations of the data. Differences between our and approach and the 
DOM approach has been largely discussed in the paper, and the main observations 
can be immediately extended to the SAX approach [SAX]. 

The novel Sun's JAXB [JAXB] binding model is instead more similar in spirit to ours, 
in that relies on static type information to preserve the semantics of real-world 
entities. However, JAXB bindings are automatically defined from XML document 
descriptions. This complicates their definitions, limits their granularity with respect to 
the target data, and restricts their ability to evolve within heterogeneous and 
distributed systems.  The Ozone system [OZONE] combines structured and 
unstructured query approaches to semistructured data. 

Implementation status 

Projector is a new language specification and at time of writing a full and rigorous 
implementation does not yet exist. Various partial systems have been built and some 
are available on the web [IMPL]; it is implemented in, and compiles to, ECMA-262, 
and so can be executed in a standard browser. Every example given in this paper has 
been implemented and seen to work. 
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The projection algorithms themselves are robust and have been extensively 
investigated, and proofs of soundness and completeness have been performed. Two 
robust implementations exist and have been used to solve real-world problems; one is 
CORBA-based and projects via IDL, the other is a Java language version. Anyone 
interested in using any of these systems should get in touch with the authors. 

Conclusions 

A new programming language Projector has been introduced largely by motivating 
examples. The particular paradigm of mixing typed and untyped program segments 
against XML data looks novel and exciting; however the project is at an early stage 
and the language has not yet been used “in anger” against real world data collections 
or problems. There are very many unresolved issues to be investigated. 
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