
Towards Univalent Reference Types
The Impact of Univalence on Denotational Semantics

Jonathan Sterling #

University of Cambridge, UK

Daniel Gratzer #

Aarhus University, Denmark

Lars Birkedal #

Aarhus University, Denmark

Abstract
We develop a denotational semantics for general reference types in an impredicative version of
guarded homotopy type theory, an adaptation of synthetic guarded domain theory to Voevod-
sky’s univalent foundations. We observe for the first time the profound impact of univalence on the
denotational semantics of mutable state. Univalence automatically ensures that all computations are
invariant under symmetries of the heap – a bountiful source of program equivalences. In particular,
even the most simplistic univalent model enjoys many new equations that do not hold when the
same constructions are carried out in the universes of traditional set-level (extensional) type theory.

2012 ACM Subject Classification Theory of computation → Denotational semantics; Theory of
computation → Categorical semantics; Theory of computation → Type structures; Theory of
computation → Type theory

Keywords and phrases univalent foundations, homotopy type theory, impredicative encodings,
synthetic guarded domain theory, guarded recursion, higher-order store, reference types

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.47

Related Version Full Version: https://arxiv.org/abs/2307.16608

Funding This work was supported in part by a Villum Investigator grant (no. 25804), Center for
Basic Research in Program Verification (CPV), from the VILLUM Foundation.
Jonathan Sterling: Jonathan Sterling was funded in part by the European Union under the Marie
Skłodowska-Curie Actions Postdoctoral Fellowship project TypeSynth: synthetic methods in program
verification, and in part by AFOSR under grant FA9550-23-1-0728, New Spaces for Denotational
Semantics (Tristan Nguyen, program manager). Views and opinions expressed are however those
of the authors only and do not necessarily reflect those of the European Union, the European
Commission, nor AFOSR. Neither the European Union nor the granting authority nor AFOSR can
be held responsible for them.

Acknowledgements We are thankful to Carlo Angiuli, Steve Awodey, and Robert Harper for teaching
us the importance of realizability methods in homotopy type theory. We thank Zhixuan Yang for
proof-reading. Finally, we are grateful to the anonymous referees for their comments and suggestions.

1 Introduction

Moggi [32] famously distinguished three semantics-based approaches to proving equivalences
between programs: operational, denotational, and logical. Operational semantics studies
programs indirectly by investigating the properties of a transition function that executes
programs qua code on a highly specific idealized computer; in contrast, denotational semantics
views programs directly as functions on highly specialized kinds of spaces, without making
any detour through transition functions. Moggi’s departure is to advance a logical approach
to program equivalence, in which a programming language is an equational theory equipped
with a category of denotational models for which it is both sound and complete.

© Jonathan Sterling, Daniel Gratzer, and Lars Birkedal;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 47; pp. 47:1–47:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:js2878@cl.cam.ac.uk
https://orcid.org/0000-0002-0585-5564
mailto:gratzer@cs.au.dk
https://orcid.org/0000-0003-1944-0789
mailto:birkedal@cs.au.dk
https://orcid.org/0000-0003-1320-0098
https://doi.org/10.4230/LIPIcs.CSL.2024.47
https://arxiv.org/abs/2307.16608
https://doi.org/10.3030/101065303
https://doi.org/10.3030/101065303
http://www.jonmsterling.com/jms-008K.xml
http://www.jonmsterling.com/jms-008K.xml
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Towards Univalent Reference Types

Moggi’s logical approach to program equivalence therefore subsumes traditional denota-
tional semantics: both the general and the particular necessarily exude their own depth and
sophistication, but they are now correctly situated in relation to each other so that workers
in semantics can reap the greatest benefits from the theory–model dialectic:
1. Even if there is a distinguished “standard” model of a given programming language (e.g.

the Scott model of PCF), any non-trivial investigation of the syntax of that language
necessarily involves non-standard models – if only because induction can always be seen
as a model construction. These non-standard models include the generic model, built
from the theory itself, as well as models based on logical relations; thus the need for clear
thinking about many models via logical semantics cannot be bypassed.

2. Conversely, the discovery of a new model of a programming language can inspire and
justify the refinement of its equational theory: for instance, parametric models have been
used to justify equational theories for data abstraction and local store. In the other
direction, the discovery of a “non-model” that nonetheless has desirable properties can
open up new semantic vistas by motivating a relaxed equational theory.

1.1 State and reference types: static and dynamic allocation
One of the oldest programming constructs is state: the ability to read from and write to
the computer’s memory as a side effect. Theories of state delineate themselves along two
axes: (1) the kinds of data that can be stored, and (2) the kinds of allocations allowed. On
the first axis, languages range from being able to store integers and strings (first-order
store) all the way to being able to store elements of arbitrary types, including closures
(higher-order store). On the second axis, we have static allocation on one end, where
the type of a function specifies exactly what kind of state it uses, and dynamic allocation
on the other end, where the types and quantity of memory cells allocated are revealed only
during execution. Under dynamic allocation, one has reference types whose elements are
pointers to memory cells storing elements of a given type.

1.2 Equational theories of dynamic storage: between local and global
The semantics of state are only difficult under dynamic allocation; indeed, computations that
interact with a statically known heap configuration ℓi : σi can be classified by Moggi’s state
monad σ → σ ×− where σ :≡

∏
i σi, and it is reasonable to define the equational theory of

static allocation by means of this interpretation. The equational theory of dynamic storage is
by contrast far from solidified: the introduction of dynamic allocation opens up a spectrum
of abstraction between what may be called local store and global store.

Global store is the least abstract theory of dynamic allocation: in a model of global
store, it is permitted that allocations be globally observable regardless of their impact on
the results of computations. For instance, global store models are allowed to distinguish the
program (ℓ← alloc “hello”; ret 10) from the simpler program ret 10. By contrast, models of
local store validate equations resembling an idealized garbage collector, in which the heap
is only observable through its abstract read/write interface; in a model of local store, we
necessarily have (ℓ← alloc “hello”; ret 10) = ret 10 as well as many other equations.

The abstraction offered by local store is highly desirable. Moreover, Staton [42] has
shown that Plotkin and Power’s algebraic theory of first-order local store [38] is complete
in the extremely strong sense that it derives any consistent equation. Beyond first-order
references, the very definition of the local store theory becomes less clear, and so a landscape

J. Sterling, D. Gratzer, and L. Birkedal 47:3

of intermediate theories has emerged in the search for well-behaved models. For example,
Kammar et al. [27] have constructed a compelling model of local full ground store, going
beyond first-order store by allowing pointers to pointers. On the other hand, Levy [28, 29, 30]
has given a domain theoretic model of the global allocation theory of higher-order store.

1.3 Semantic worlds and guarded models of higher-order store

Denotational models of full dynamic allocation, such as those of Plotkin and Power [38],
Levy [28], and Kammar et al. [27], tend to share an important limitation: in the model, a
semantic program can only allocate a memory cell with a syntactic type. This restriction is
quite unnatural and impractical in the context of higher-order store, where many important
program equivalences actually follow from the presence of exotic semantic types lying outside
the image of the interpretation function (e.g. in relational models à la Girard and Reynolds).

The search for models of general references closed under allocation of cells with semantic
types has been major motivation of current work in guarded domain theory, expressed in
operational semantics by step-indexing [8, 3] and in denotational semantics by means of
various generalizations of metric space [10, 6, 21, 17]. The problem solved by guarded domain
theory is the following famous circularity described in several prior works [3, 9, 17]:
1. A semantic type needs to be some kind of covariant family of predomains indexed in the

possible configurations of the heap (“worlds”); a single predomain won’t do, because the
elements of type IORef σ vary depending on what cells have been allocated.

2. A semantic world should be a finite mapping from memory locations to semantic types.

Guarded domain theory approximates a solution to the domain equation evoked above
by decreasing precision at every recursive occurrence. Although it may be possible to find a
fully precise solution to this domain equation using traditional domain theory, Birkedal et
al. [18, §5] have presented evidence that such a fixed point will not brook the interpretation of
reference types by a continuous function on the domain of all types, ruling out semantics for
recursive types. Thus guarded domain theory or step-indexing would seem to be mandatory
for functional models of general reference types with semantic worlds.1

Models of guarded domain theory can be embedded into topoi whose internal language is
referred to as synthetic guarded domain theory or SGDT ; the most famous of these topoi
is the topos of trees [17] given by presheaves on ω. The idea of using synthetic guarded
domain theory as a setting for the naïve denotational semantics of programming languages
with general recursion was first explored by Paviotti, Møgelberg, and Birkedal [36, 31, 35].

Sterling, Gratzer, and Birkedal [43] have recently extended the program of Paviotti et al. to
the general case of full higher-order store with polymorphism and recursive types: in particular,
op. cit. have shown how to model general reference types in synthetic guarded domain theory
assuming an impredicative universe (as can be found in realizability models [25, 26]). This
model is the starting point of the present paper: by adapting the construction of Sterling et
al. to the setting of univalent foundations, we obtain a new suite of equational reasoning
principles that we refer to as the theory of univalent reference types.

1 A non-functional approach to compositionality for reference types would be the expression of Reynolds’
capability interpretation of references [39] in game semantics by Abramsky, Honda, and McCusker [2].

CSL 2024

47:4 Towards Univalent Reference Types

1.4 Univalent reference types and data abstraction in the heap

The thesis of this paper is that Voevodsky’s univalence principle leads to simpler models of
general reference types that nonetheless validate extraordinarily strong equations between
stateful programs. To examine this claim, we consider the type of object-oriented counters
in a Haskell-like language:

Counter :≡ {incr : IO (); read : IO Int}

The most obvious implementation of the Counter interface simply allocates an integer
and increments it in memory as follows:

posCounter : IO Counter
posCounter :≡ ℓ← alloc 0; ret {incr ↪→ i← get ℓ; set ℓ (i+ 1), read ↪→ get ℓ}

Another implementation might count backwards and then negate the stored value on read
using the functorial action map of IO on neg : Int→ Int:

negCounter :≡ ℓ← alloc 0; ret {incr ↪→ i← get ℓ; set ℓ (i− 1), read ↪→ map neg (get ℓ)}

By intuition, the posCounter and negCounter implementations of the counter interface
should be “observationally equivalent” in the sense that no context of ground type should be
able to distinguish them: indeed, even though negCounter is writing negative numbers to the
heap instead of positive numbers, the only way a context can observe the allocated cell is
using the read method. The observational equivalence posCounter ≃ negCounter is typically
proved using a relational model, as both Birkedal et al. [18, §6.3] and Sterling et al. [43] did.

Observational equivalence is not the same as equality, neither in syntax nor semantics.
Indeed, typical equational theories of (local or global) dynamic allocation do not derive the
equation ⊢ posCounter ≡ negCounter, as can be seen easily by means of a countermodel: we
have JposCounterK ̸= JnegCounterK in both the relational models of op. cit., although it is true
that JposCounterK RIO Counter JnegCounterK holds. The observational equivalence posCounter ≃
negCounter is deduced in the relational models because the relation on observations is discrete.

What distinguishes our univalent reference types from ordinary reference types is
that the former actually derive equations like ⊢ posCounter ≡ negCounter, as shown in
Theorem 2.1. We substantiate this equational theory by constructing a model (Theorem 3.27)
in univalent foundations [46] in which the equation ⊢ posCounter ≡ negCounter follows
immediately from the univalence principle of the metalanguage. Although it may be possible
to validate this equation using non-standard parametric models (or less scrupulously by an
extensional collapse), our contribution is to show that it also holds in a “standard” model,
provided that this standard model is constructed in a univalent metatheory.

2 A higher-order language with (univalent) reference types

We begin by giving a description of the syntax and the equational theory of a simple language
with references. The language is meant to be as simple as possible, but no simpler. In
particular, it contains several problematic constructs (higher-order store, dynamic allocations,
etc.) that have been historically difficult to model in denotational semantics.

J. Sterling, D. Gratzer, and L. Birkedal 47:5

types τ, σ ::= σ → τ | IO τ | IORef τ | . . .

terms e, e′ ::= x | rec f x in e | ret e | x← e; e′ | alloc e | get e | set e e′ | step | . . .

Γ ⊢ e : σ

Γ ⊢ alloc e : IO (IORef σ)
Γ ⊢ e : IORef σ

Γ ⊢ get e : IO σ

Γ ⊢ e : IORef σ Γ ⊢ e
′ : σ

Γ ⊢ set e e
′ : IO () Γ ⊢ step : IO ()

Γ, f : σ → IO τ, x : σ ⊢ e : IO τ

Γ ⊢ rec f x in e : σ → IO τ

Γ, f : σ → IO τ, x : σ ⊢ e : IO τ Γ ⊢ e
′ : σ

Γ ⊢ (rec f x in e) e
′ ≡ step; [(rec f x in e)/f, e

′
/x]e : IO τ

e : IORef σ, e
′ : σ ⊢ set e e

′; get e ≡ step; set e e
′; ret e

′ : IO σ

e : σ, e
′ : σ ⊢ (x← alloc e; set x e

′; ret x) ≡ alloc e
′ : IO (IORef σ)

e : IORef σ, e
′ : σ, e

′′ : σ ⊢ set e e
′; set e e

′′ ≡ set e e
′′ : IO ()

e : IORef σ, e
′ : IORef τ ⊢ (x← get e; y ← get e

′; ret ⟨x, y⟩) ≡ (y ← get e
′; x← get e; ret ⟨x, y⟩) : IO (σ × τ)

e : IORef σ ⊢ (x← get e; set e x; ret x) ≡ get e : IO σ

e : IORef σ, e
′ : IO τ ⊢ get e; e

′ ≡ step; e
′

Figure 1 Syntax and selected typing and equational rules for a higher-order monadic language
with general reference types. We assume standard notational conventions for monadic programming,
e.g. writing e; e′ for _ ← e; e′. We assume the standard β/η-equational theory of function and
product types, as well as the monadic laws. We also assume that step lies in the center [22] of the
monad IO, i.e. commutes with all monadic operations.

2.1 The equational theory of monadic general reference types
Although there are many different ways to present programming languages with side effects,
for the sake of familiarity we have chosen to focus on a variant of Moggi’s monadic met-
alanguage [32].2 Essentially, this is a simply-typed lambda calculus supplemented with a
strong monad IO and further equipped with a type of references IORef τ along with a suite
of effectful operations for interacting with references. Like in Haskell, all side effects are
confined to the monad; unlike Haskell, general recursion is treated as a side effect.

One non-standard aspect of our language bears special attention, namely the nullary side
effect step : IO (). This effect can be thought of as the “exhaust” left behind in the equational
theory by unfolding any kind of recursively defined construct, including not only the unfolding
of recursive functions but also accesses to the heap. In particular, for a given recursive function
g :≡ rec f x in e, we do not have ⊢ g e′ ≡ [g/f, e′/x]e but rather only ⊢ g e′ ≡ step; [g/f, e′/x]e.
Likewise, our equational theory does not equate ⊢ (ℓ← alloc e; get ℓ) ≡ ret e but rather only
⊢ (ℓ← alloc e; get ℓ) ≡ step; ret e. The presence of step in our equational theory is forced by
the guarded denotational semantics that we will later employ in Section 3 and Theorem 3.27.

2.2 The equational theory of univalent reference types
The equational theory of univalent reference types strengthens Figure 1 by quotienting
under symmetries of the heap, expressed in the two rules depicted in Figure 2.

2 When developing our denotational semantics in Section 3, we will refine the monadic point of view by
passing to an adjoint call-by-push-value resolution of the computational monad [29].

CSL 2024

47:6 Towards Univalent Reference Types

allocation permutation
Γ ⊢ e : σ Γ ⊢ e′ : τ

Γ ⊢ ℓ← alloc e; ℓ′ ← alloc e′; ret ⟨ℓ, ℓ′⟩ ≡ ℓ′ ← alloc e′; ℓ← alloc e; ret ⟨ℓ, ℓ′⟩ : IO (IORef σ × IORef τ)

representation independence
Γ ⊢ e : σ Γ ⊢ f+ : σ → τ Γ ⊢ f− : τ → σ

Γ, x : τ ⊢ f+(f−x) ≡ x : τ Γ, x : σ ⊢ f−(f+x) ≡ x : σ

Γ ⊢ ℓ← alloc e; ret ⟨get ℓ, set ℓ⟩ ≡ ℓ← alloc (f+e); ret ⟨map f− (get ℓ), set ℓ ◦ f+⟩ : IO (Cell σ)

Figure 2 The equational theory of univalent reference types, extending that of Figure 1; we
define Cell σ :≡ IO σ × (σ → IO ()) to be the “abstract interface” of a reference cell. Here we write
map f : IO A→ IO B for the functorial action of IO on a function f : A→ B.

1. The allocation permutation rule states that the order in which references are allocated
does not matter; this is a kind of nominal symmetry built into the theory of univalent
reference types, expressing that the layout of the heap is viewed up to isomorphism.

2. The representation independence rule states that the observable interface of a
reference cell is invariant under isomorphisms of that cell’s contents.

The allocation permutation rule is common to theories of local dynamic allocation,
but less common in theories of global dynamic allocation. The representation indepen-
dence rule is, however, a new feature of univalent reference types that goes beyond existing
local theories of dynamic allocation: as we have discussed in Section 1.4, such a law typically
holds up to observational equivalence but almost never “on the nose” at higher type. It is
therefore worth going into more detail.

The idea of representation independence is that allocating a cell of type σ and then
only interacting with it by means of its (get, set) methods should be the same as allocating a
cell of a different type τ and interacting with it by conjugating its (get, set) interface by an
isomorphism e : σ ∼= τ . In particular, it is allowed that σ ≡ τ and e : σ ∼= σ be nonetheless a
non-trivial automorphism: and so we may derive from representation independence our
case study involving imperative counters that count forward and backwards.

▶ Theorem 2.1. Let Counter, posCounter, and negCounter be as in Section 1.4:

Counter :≡ {incr : IO (); read : IO Int}
posCounter :≡ ℓ← alloc 0; ret {incr ↪→ i← get ℓ; set ℓ (i+ 1), read ↪→ get ℓ}
negCounter :≡ ℓ← alloc 0; ret {incr ↪→ i← get ℓ; set ℓ (i− 1), read ↪→ map neg (get ℓ)}

We may derive ⊢ posCounter ≡ negCounter : Counter.

Proof. The function neg : Int→ Int sending an integer to its negation is a self-dual automor-
phism; we therefore calculate from left to right.

ℓ← alloc 0; ret {incr ↪→ i← get ℓ; set ℓ (i+ 1), read ↪→ get ℓ}
by representation independence
≡ ℓ← alloc (neg 0); ret {incr ↪→ i← map neg (get ℓ); set ℓ (neg (i + 1)), read ↪→ map neg (get ℓ)}
by simplification and neg 0 ≡ 0
≡ ℓ← alloc 0; ret {incr ↪→ i← get ℓ; set ℓ (neg (neg i+ 1)), read ↪→ map neg (get ℓ)}
by neg (neg i+ 1) ≡ neg (neg i) + neg 1 ≡ i− 1
≡ ℓ← alloc 0; ret {incr ↪→ i← get ℓ; set ℓ (i− 1), read ↪→ map neg (get ℓ)}

Thus we have posCounter ≡ negCounter. ◀

J. Sterling, D. Gratzer, and L. Birkedal 47:7

3 Denotational semantics in univalent foundations

We now turn to the construction of a model of univalent reference types. At the coarsest
level, this model follows the standard template for a model with mutable state: types are
interpreted by covariant presheaves on a certain category of worlds with each world describing
the collection of references available and the (semantic) type associated to each. The type of
references IORef τ assigns each world to the collection of locations of appropriate type while
the monad IO is then interpreted by a certain store-passing monad.

This simple picture is quickly complicated by the need to model general store: semantic
types must reference worlds which in turn reference semantic types. This naturally leads
us to synthetic guarded domain theory (SGDT) in order to cope with the circularity. This
alone, however, is insufficient. While SGDT allows us to define the category of worlds, the
resulting solution is a large type – at least the size of the universe of semantic types. This
becomes a problem when it comes time to model the state monad, which must quantify
over all possible worlds for its input and return a new world for its output. To model these
large products and sums of worlds, we will base our model on an impredicative universe:
impredicativity implies that the category of covariant presheaves on our large category of
worlds is (locally) cartesian closed and supports all the structure of our language.

We present some of the prerequisites for our model in Section 3.1. In Section 3.2 we
construct the model of univalent reference types.

3.1 Univalent impredicative synthetic guarded domain theory
We work informally in the language of homotopy type theory [40, 46]; in this section, we
briefly describe some of our preferred conventions. When we speak of “existence”, we shall
always mean mere existence. Categories are always assumed to be univalent 1-categories;
given a category X, we will write |X| for its underlying 1-type of objects. Rather than fixing
a global hierarchy of universes, we assume universes locally where needed. In this paper, all
universes are assumed to be univalent; when we wish to assume that a universe is closed
under the connectives of Martin-Löf type theory (dependent products, dependent sums,
finite coproducts, W-types, etc.) we will refer to it as a Martin-Löf universe. We will not
belabor the difference between codes and types.

3.1.1 Impredicative subuniverses in univalent foundations
Recall that a type A is called U-small if and only if there exists a (necessarily unique)
code Â : U together with an equivalence [Â] ≃ A, and a family is U-small when each of its
fibers are. A reflection of A in a universe U is, by contrast, defined to be a (necessarily
unique) function η : A→ AU with AU ∈ U such for any type C ∈ U , the precomposition map
Cη : CAU → CA is an equivalence. When a reflection of A in U exists (necessarily uniquely),
we shall say that A is reflected in U .

A subuniverse of a universe U is defined to be a dependent type A : U ⊢ PA type
such that each PA is a proposition. We may write UP for the universe

∑
A:U PA obtained

by restricting U to the elements satisfying P . We will frequently abuse notation implicitly
identifying the predicate coding a subuniverse with its comprehension as an actual type. A
subuniverse S ⊆ U is said to be reflective if every A : U is reflected in S. A subuniverse of
U is said to be “small” when its comprehension as a type is U-small.

Let U be a universe closed under dependent products. A subuniverse S ⊆ U is said to
be a dependent exponential ideal if for every A : U and B : A → S, the dependent
product

∏
x:A Bx lies in S. An impredicative subuniverse of U is defined to be a small,

CSL 2024

47:8 Towards Univalent Reference Types

dependent exponential ideal S ⊆ U . It is proved by Rijke, Shulman, and Spitters [41] that
any reflective subuniverse of U is a dependent exponential ideal of U . We will refer to a
subuniverse S such that SetS is impredicative in U as set-impredicative; we will refer to
S ⊆ U as set-reflective when SetS is reflective in U . Under suitable assumptions, these two
conditions are in fact equivalent:

▶ Theorem 3.1. A small Σ-closed subuniverse S of a Martin-Löf universe U is set-
impredicative and closed under identity types if and only if it is set-reflective.

Proof. This can be shown using the methods of Awodey, Frey, and Speight [13]. ◀

By virtue of Theorem 3.1, we see that small reflective subuniverses are just another
presentation of the impredicative universes that appear in the Calculus of Constructions.

3.1.2 The Hofmann–Streicher universe
Let S be a small subuniverse of a Martin-Löf universe U , and let X be a U-small category;
we can define the Hofmann–Streicher lifting [24, 12] of SetS as co-presheaf of 1-types on
X. Formally, this means constructing a functor from the 1-category X to the (2,1)-category
1TypeU of 1-types in U ; thus we depend technically on the account of bicategories in univalent
foundations due to Ahrens et al. [4].3

▶ Remark 3.2. The purpose of introducing the Hofmann–Streicher lifting in such detail is
give some structure to the otherwise bewildering Construction 3.4, which plays a crucial
technical role in the definition of univalent reference types.

▶ Construction 3.3 (The Hofmann–Streicher lifting). Let S be a small subuniverse of a
Martin-Löf universe U , and let X be a U-small category. We may define a 2-functor
⌊SetS⌋ : X→ 1TypeU called the Hofmann–Streicher lifting of SetS as follows:

⌊SetS⌋U :≡ |Fun(U/X,SetS)|
⌊SetS⌋(f : U → V) (E : U/X→ SetS) :≡ E ◦ (f/X)

When X is viewed as a 2-category, the 2-cells are given by identifications. Thus the
2-functoriality of ⌊SetS⌋ and all related coherences are defined by path induction.

▶ Construction 3.4 (Restricting co-presheaves). Let S be a small subuniverse of a Martin-Löf
universe U , and let X be a U-small category. Every co-presheaf E : X→ SetS determines a
global element 1→ ⌊SetS⌋ of the Hofmann–Streicher universe; in particular, we may define
⌈E⌉U : ⌊SetS⌋U natural in U ∈ X by setting ⌈E⌉U (f : U → V) :≡ EV .

3.1.3 (Higher) synthetic guarded domain theory
We adapt Birkedal et al.’s formulation [19] of dependently typed guarded recursion to the
setting of homotopy type theory. In particular, we introduce a new syntactic sort of delayed
substitutions ⊢ ξ ⇝ Ξ simultaneously with a new type former ⊢ ▶[ξ].A type called the later

3 We differ from the conventions of Ahrens et al. [4]: we will say “2-category” to mean univalent bicategory
in the sense of op. cit., as we are not at all concerned with the strict notions considered there. Therefore,
a “(2,1)-category” in our sense refers to a 2-category whose 2-cells are given by identifications.

J. Sterling, D. Gratzer, and L. Birkedal 47:9

ξ ⇝ Ξ A type
▶[ξ].A type

ξ ⇝ Ξ a : A
next[ξ].a : ▶[ξ].A ·⇝ ·

ξ ⇝ Ξ a : ▶[ξ].A
(ξ, x← a)⇝ Ξ, x : A

f : ▶A→ A

fix▶ f : A
f : ▶A→ A

fix▶ f ≡ f (next (fix▶ f))

Figure 3 Summary of delayed substitutions and the later modality; there are a number of
equational rules governing the delayed substitutions, e.g. ▶[ξ, x← a].A ≡ ▶[ξ].A for any A in which
x does not appear; we also assume (▶[ξ].a = b) ≃ (next[ξ].a = next[ξ].b), making ▶ left exact. We
will write ▶A and next a for ▶[·].A and next[·].a respectively. For the remaining rules, we refer the
reader to the description of Bizjak and Møgelberg [20].

modality,4 whose introduction form is written next[ξ].a; we summarize the rules for the
later modality in Figure 3. The raison d’être for the later modality is to form guarded
fixed points: in particular, if we have f : ▶A→ A, there is a unique element fix▶f : A such
that f (next (fix▶f)) = fix▶f . In particular, this gives unique fixed points for any function
f : A→ A factoring on the left through next : A→ ▶A.

▶ Definition 3.5. A guarded (n-)domain is an (n-)type A equipped with the structure of
a ▶-algebra, i.e. a function ϑA : ▶A→ A.

We will refer to a (sub)universe closed under later modalities as a guarded (sub)universe.
For any universe S, we may consider the category 0DomS of guarded 0-domains in S, i.e.
sets A : SetS equipped with a mapping ϑA : ▶A→ A.

▶ Lemma 3.6. If S is a guarded universe closed under binary coproducts, then the forgetful
functor R : 0DomS → SetS has a left adjoint L : SetS → 0DomS .

Proof. We define LA by solving the domain equation LA ∼= A+▶LA via the following guarded
fixed point construction in SetS , using both guarded structure and binary coproducts:

LA :≡ fix▶(λX : ▶SetS .A+▶[Y ← X].Y) ◀

▶ Notation 3.7. We will write now : A→ RLA for the unit of the adjunction L ⊣ R.

▶ Lemma 3.8 (Later modality in presheaves). Given a guarded set-reflective small subuniverse
S ⊆ U and a U-small category X, the later modality from S lifts (with all its operations) into
Fun(X,SetS) pointwise, i.e. for any A ∈ Fun(X,SetS) we may define (▶A)U :≡ ▶(AU).

3.2 Models of univalent general reference types
To construct our model of higher-order store (Section 3.2.3), we must construct a suitable
category of recursively defined semantic worlds (Section 3.2.1) whose co-presheaves admit
reference types (Construction 3.13) and a strong monad for higher-order store (Section 3.2.2).

4 The “later modality” is not a modality in the sense of Rijke, Shulman, and Spitters [41], but rather in
the older and more general sense of modality in type theory or logic.

CSL 2024

47:10 Towards Univalent Reference Types

3.2.1 Worlds as univalent heap configurations

Let Inj be the category of finite sets and embeddings; by univalence, any two equipollent
finite sets are identified. We now define the basic elements of worlds qua heap configurations.

▶ Definition 3.9 (The displayed category of families). For any 1-type X, we define the
displayed category [5] IFamX of Inj-families in X over Inj as follows:
1. over a finite set I : Inj, a displayed object of IFamX is a function ∂I : I → X;
2. over a function f : I → J between finite sets, a displayed morphism from ∂I to ∂J is a

path ∂f : ∂J ◦ f = ∂I in I → X.

▶ Definition 3.10 (The category of bags). For any 1-type X, the category of Inj-bags in
X is defined to be the total category IBagX :≡

∫
Inj IFamX of the displayed category of finite

families in X. We will write U ≡ (|U |, ∂U) for an object of IBagX .

▶ Definition 3.11. For a universe S, we define the category CS of worlds simultaneously
with its category of SetS-valued co-presheaves on CS to be the unique solution to the guarded
recursive domain equation CS = IBag▶|Fun(CS ,SetS)|.

Construction. The system of equations above is solved internally [16] by Löb induction in
any guarded Martin-Löf universe S+ containing S.

E :≡ fix▶(λR : ▶S+.|Fun(IBagϑS+ R,SetS)|) CS :≡ IBag▶E

Of course, E is the 1-type of objects of the functor category Fun(CS ,SetS). ◀

We shall require the following technical observation:

▶ Lemma 3.12 (Structure identity principle for presheaves). Let S be a universe and let X

be a category; for any A,B : Fun(X,SetS), let A ∼= B be the type of natural isomorphisms
between presheaves. Then the canonical map A = B → A ∼= B is an equivalence.

We now come to the construction of the univalent reference type constructor.

▶ Construction 3.13 (Univalent references). Let S be a small, guarded, Σ-closed set-reflective
subuniverse of a guarded Martin-Löf universe U containing Inj. We define the univalent
reference type constructor as a mapping IORef : |Fun(CS ,SetS)| → |Fun(CS ,SetS)|:

IORef : |Fun(CS ,SetS)| → |Fun(CS ,SetS)|
IORef AU :≡

∑
ℓ:|U |▶[X ← ∂U ℓ]. ⌈X⌉U = ⌈A⌉U

Above, we have used the ⌈−⌉ operator from Construction 3.4. We define the functorial
action of IORef A on f : U → V by path induction on the identification ∂f : ∂V ◦ |f | = ∂U :

IORef A (|f |, refl) (ℓ, ϕ) :≡ (|f |ℓ, next[X ← ∂V (|f |ℓ), ψ ← ϕ]. ap⌊SetS⌋fψ)

Proof. That the identification ⌈X⌉U = ⌈A⌉U is S-small follows from Lemma 3.12, using the
fact that U/CS is U-small because S is assumed U-small. ◀

J. Sterling, D. Gratzer, and L. Birkedal 47:11

3.2.2 A strong monad for general store
Rather than constructing the monad for general store all at once by hand, we take a more
bite-sized approach by decomposing it into a simpler call-by-push-value adjunction following
Levy [29]. In fact, we go quite a bit further than this and decompose the call-by-push-
value adjunction itself into three separate and simpler adjunctions; the advantage of our
decomposition is that it reveals the simple and elegant source of the admittedly complex
explicit constructions of op. cit. All these adjunctions will be suitably enriched so as to
give rise to a strong monad.5 To get started, we will first require the concept of a heaplet,
which is the valuation of a heap configuration at a particular world, assigning each specified
location to an element of the prescribed semantic type at that world.

▶ Construction 3.14 (The heaplet distributor). Let S be guarded universe closed under finite
products. We may define a distributor HS : Cop

S × CS → SetS like so:

HS : Cop
S × CS → SetS

HS (U, V) :≡
∏

ℓ:|U | ϑ|Fun(CS ,SetS)| (∂U ℓ)V

Then we will write H̃S for the dependent sum
∑

U :|CS |HS U U classifying heaps. We will
write πH : H̃S → |CS | for the first projection of a packed heap; given H : H̃S and ℓ : |πHH|,
we will write H @ ℓ : ▶[X ← ∂πHHℓ]X(πHH) for the element stored by H at location ℓ.

Presheaf categories and unenriched adjunctions

Let S be a guarded universe closed under finite products. As H̃S is a 1-type, we can equally
well view it as a category whose hom sets are given by identity types, i.e. a groupoid. From
this point of view, the projection πH : H̃S → |CS | extends to functors πH : H̃S → CS and
π̄H : H̃S ∼= H̃S

op
→ C

op
S . We will use these projections to construct a network of adjunctions

between the following presheaf categories:

PS :≡ Fun(CS ,SetS)
P̄S :≡ Fun(Cop

S ,SetS)
NS :≡ Fun(Cop

S , 0DomS)
QS :≡ Fun(H̃S ,SetS)

▶ Exegesis 3.15. PS is the category on which our higher-order state monad is defined; this
monad arises from a call-by-push-value adjunction [29] in which PS is the category of “value
types and pure functions” and NS is the category of “computation types and stacks”. A
computation type differs from a value type in two ways, as it is both contravariantly indexed
in worlds and valued in 0-domains rather than sets. We will treat these differences modularly
by factoring the adjunction F ⊣ U : NS → PS through further adjunctions. Our first adjoint
resolution, to deal strictly with variance, is described in Lemma 3.16; later on in Lemma 3.19,
we will lift the adjunction between sets and 0-domains to the world of presheaves.

▶ Lemma 3.16. Let S be a small, set-reflective, guarded subuniverse of a guarded Martin-Löf
universe U containing Inj. Then the unenriched base change functors ∆πH

: PS → QS and
∆π̄H

: P̄S → QS has left and right adjoints ∃π̄H
⊣ ∆π̄H

and ∆πH
⊣ ∀πH

respectively.

Proof. As H̃S is both discrete and U-small, the Kan extensions exist because SetS has all
U-small coproducts and products as a reflective subuniverse of U . ◀

5 The purpose of strength, as ever, to transform the global Kleisli extension operation of the monad into
a binding-operation that applies in arbitrary contexts.

CSL 2024

47:12 Towards Univalent Reference Types

The unenriched adjunctions of Lemma 3.16 can be computed on objects as follows, where
� : U → SetS is the assumed reflection:

∃π̄H
AU = �

∑
H:H̃S

∑
f :hom

C
op
S

(πHH,U) AH

∀πH
AU =

∏
H:H̃S

∏
f :homCS (U,πHH) AH

We draw attention to the fact that codomain of ∃π̄H
is P̄S while the codomain of ∀π̄H

is
PS , hence the appearance of homC

op
S

in the former and homCS in the latter.

Enrichments and enriched adjunctions

Let S be a guarded universe closed under finite products. We now impose a common
enrichment on PS , P̄S ,NS ,QS so as to lift Lemma 3.16 to the enriched level, making all these
categories locally indexed in PS in the sense of [29]. Given a co-presheaf Γ ∈ PS , we will
write πΓ : Γ̃→ C

op
S for the discrete cartesian fibration corresponding to Γ. With this in hand,

we impose the following additional notations:

PΓ
S :≡ Fun(Γ̃op,SetS)

P̄Γ
S :≡ Fun(Γ̃,SetS)

NΓ
S :≡ Fun(Γ̃, 0DomS)

QΓ
S :≡ Fun(Γ̃op ×CS H̃S ,SetS)

Above, we note that PΓ
S is equivalent to the slice PS/Γ; in the definition of QΓ

S , the

expression Γ̃op ×CS H̃S refers to the pullback of the span {Γ̃op πop
Γ−−→ CS

πH←−− H̃S}. We have
the following base change functors for any co-presheaf Γ ∈ PS :

∆Γ : PS → PΓ
S

∆ΓA (U, γ) :≡ AU

∆Γ : P̄S → P̄Γ
S

∆ΓX (U, γ) :≡ XU

∆Γ : NS → NΓ
S

∆Γ X (U,Γ) :≡ XU

∆Γ : QS → QΓ
S

∆Γ A (U,Γ, H) :≡ A(U,H)

▶ Construction 3.17 (Enrichments). We extend PS , P̄S , NS , and QS to P̂S -enriched categories
PS , P̄S , NS , and QS respectively, regarding P̂S with its cartesian monoidal structure:

homPS (A,B)Γ :≡ homPΓ
S

(∆ΓA,∆ΓB)
homP̄S

(X,Y)Γ :≡ homP̄Γ
S

(∆ΓX,∆ΓY)
homNS (X,Y)Γ :≡ homNΓ

S
(∆ΓX,∆ΓY)

homQS (A,B)Γ :≡ homQΓ
S

(∆ΓA,∆ΓB)

These enrichments agree with those given by Levy [29] in terms of dinatural transforma-
tions as one can see using the formula for a natural transformation as an end. The purpose
of imposing these enrichments was to be able to state Lemmas 3.18 and 3.19 below.

▶ Lemma 3.18. Under the assumptions of Lemma 3.16, the unenriched adjunctions ∆πH
⊣

∀πH
and ∃π̄H

⊣ ∆π̄H
extend to P̂S-enriched adjunctions ∆πH

⊣ ∀πH
and ∃π̄H

⊣ ∆π̄H
.

▶ Lemma 3.19. Let S be a guarded universe closed under binary coproducts. Then the
adjunction L ⊣ R : 0DomS → SetS between sets and guarded 0-domains (Lemma 3.6) can be
lifted pointwise to an enriched adjunction L ⊣ R : NS → P̄S .

J. Sterling, D. Gratzer, and L. Birkedal 47:13

P̄S QS PSNS

∆π̄H
∀πH

∆πH
∃π̄H

R

L
⊥ ⊥⊥

U

F

Figure 4 A diagram of P̂S -enriched adjunctions, together comprising a call-by-push-value adjunc-
tion F ⊣ U : NS → PS resolving an enriched (and thus strong) monad IO = U ◦ F on PS .

The call-by-push-value adjunction and resulting strong monad

Let S be a small, set-reflective, guarded subuniverse of a guarded Martin-Löf universe U
containing Inj. We can compose the enriched adjunctions obtained in Lemma 3.18 to obtain a
single enriched adjunction F ⊣ U : NS → PS , setting F :≡ L◦∃π̄H

◦∆πH
and U :≡ ∀πH

◦∆π̄H
◦R

as depicted in Figure 4. We will write ret for the unit of this adjunction. Our adjunction is
an adjoint decomposition of Levy’s possible worlds model of general storage [29], with Levy’s
syntactic Kripke worlds replaced by recursively defined univalent semantic worlds, as
can be seen from Computation 3.20 below.

▶ Computation 3.20 (Description of adjoints and monad). For the sake of concreteness, we
compute the action of the left and right adjoints on objects as follows:

FAU = L�
∑

H:H̃S

∑
f :homCS (U,πHH) A(πHH)

UX U =
∏

H:H̃S

∏
f :homCS (U,πHH) R(X(πHH))

Composing the above, we describe the action of the monad IO = U ◦ F on objects:

IOAU =
∏

H:H̃S

∏
f :homCS (U,πHH) RL�

∑
H′:H̃S

∑
f :homCS (πHH,πHH′) A(πHH ′)

▶ Lemma 3.21. Under the assumptions of Lemma 3.8, each UX is a guarded domain.

3.2.3 The model of univalent reference types
We have now defined all the basic elements of our model.

3.2.3.1 General recursion and stepping

Let S be a small, set-reflective, guarded subuniverse of a guarded Martin-Löf universe
U containing Inj. Abstract steps in our model are encoded in terms of a global element
step : IO 1, defined using the guarded domain structure of IO 1 as step :≡ ϑIO 1(next (ret ∗)).

▶ Lemma 3.22. For any u : IOA, we have step;u = ϑIO A(nextu).

Proof. By unfolding the definition of the ▶-algebra structure pointwise in the model. ◀

CSL 2024

47:14 Towards Univalent Reference Types

get : IORef A→ IOA

getU (ℓ : |U |, ϕ : ▶[X ← ∂U ℓ].⌈X⌉U = ⌈A⌉U)H (f ≡ (|f |, refl)) :≡
ϑFA (πHH)next[X ← ∂U ℓ, ψ ← ϕ, x← H @ |f | ℓ].
η�(H, 1πHH , ψ∗x)

set : IORef A×A→ IO 1
setU ((ℓ, ϕ), a)H (f ≡ (|f |, refl)) :≡

let Ha/ℓ :≡ H[|f | ℓ ↪→ next[X ← ∂U ℓ, ψ ← ϕ].ψ−1
∗ (Af a)] in

now (η�(Ha/ℓ, 1πHH , ∗))

alloc : A→ IO (IORef A)
allocU aH (f ≡ (|f |, refl)) :≡

let Ha :≡
{

inl ℓ ↪→ next[X ← ∂πHHℓ, x← H @ ℓ]. X inlx
inr ∗ ↪→ next (A inr a)

in

now (η�(Ha, inl, (inr ∗, next refl)))

Figure 5 Summary of the store operations in PS when S is a small, Σ-closed, set-reflective,
guarded subuniverse of a guarded Martin-Löf universe U containing Inj.

Using fix▶, we can define a monadic fixed point combinator satisfying the equation
rech a = step;h (rech) a.

rec : ((A→ IOB)→ A→ IOB)→ A→ IOB

rech :≡ fix▶ (λf. λx. ϑIO B(next[g ← f].h g x))

▶ Lemma 3.23. We have rech a = step;h (rech) a.

Proof. We compute as follows:

rech a

by unfolding definitions
≡ fix▶ (λf. λx. ϑIO B(next[g ← f].h g x)) a
by fix▶ computation rule
≡ ϑIO B(next[g ← next (rech)].h g a)
by rules of delayed substitutions
≡ ϑIO B(next (h (rech) a))
by Lemma 3.22
= step;h (rech) a

We are done. ◀

3.2.3.2 Store operations: getting, setting, and allocation

Let S be a small, Σ-closed, set-reflective, guarded subuniverse of a guarded Martin-Löf
universe U containing Inj. In this section, we explicitly construct the store operations in PS ,
which we summarize in Figure 5.

J. Sterling, D. Gratzer, and L. Birkedal 47:15

▶ Construction 3.24 (Detailed construction of the getter). For any A ∈ PS , we can interpret
the getter as a natural transformation get : IORef A→ IOA in PS . Because the definition is
a little subtle, we will do it step-by-step.

get : IORef A→ IOA

getU (ℓ : |U |, ϕ : ▶[X ← ∂U ℓ].⌈X⌉U = ⌈A⌉U)H f :≡ ? : FA (πHH)

We proceed by based path induction on the singleton (∂U , ∂f : ∂πHH ◦ |f | = ∂U), setting
U :≡ (|U |, ∂πHH ◦ |f |) and f :≡ (|f |, refl):

getU (ℓ : |U |, ϕ : ▶[X ← ∂U ℓ].⌈X⌉U = ⌈A⌉U)V (f ≡ (|f |, refl)) :≡ ? : FA (πHH)

Next, we use the guarded domain structure of the goal:

getU (ℓ : |U |, ϕ : ▶[X ← ∂U ℓ].⌈X⌉U = ⌈A⌉U)H (f ≡ (|f |, refl)) :≡
ϑFA (πHH) ? : ▶FA (πHH)

Using the introduction rule for the later modality, we may unwrap the delayed identification
ϕ to assume ψ : ⌈X⌉U = ⌈A⌉U , as well as the delayed element H@|f | ℓ to assume x : X(πHH):

getU (ℓ : |U |, ϕ : ▶[X ← ∂U ℓ].⌈X⌉U = ⌈A⌉U)H (f ≡ (|f |, refl)) :≡
ϑFA (πHH)next[X ← ∂U ℓ, ψ ← ϕ, x← H @ |f | ℓ]. ? : FA (πHH)

Applying the unit of the reflection � : U → SetS and splitting the resulting goal, we have
three holes:

getU (ℓ : |U |, ϕ : ▶[X ← ∂U ℓ].⌈X⌉U = ⌈A⌉U)H (f ≡ (|f |, refl)) :≡
ϑFA (πHH)next[X ← ∂U ℓ, ψ ← ϕ, x← H @ |f | ℓ].

η�(?0 : H̃S , ?1 : homCS (πHH,πH?0) , ?2 : A(πH?0))

A read-operation does not change the heap; therefore, we fill in the first hole with the
existing heap H and the second hole with the identity map.

getU (ℓ : |U |, ϕ : ▶[X ← ∂U ℓ].⌈X⌉U = ⌈A⌉U)H (f ≡ (|f |, refl)) :≡
ϑFA (πHH)next[X ← ∂U ℓ, ψ ← ϕ, x← H @ |f | ℓ].
η�(H, 1πHH , ? : A(πHH))

Recall that we have an identification ψ : ⌈X⌉U = ⌈A⌉U in the type ⌊SetS⌋U of co-
presheaves on U/CS ; transporting by this identification in the family Z : ⌊SetS⌋U ⊢
Z (πHH) f : SetS , we have a mapping from ⌈X⌉U (πHH) f ≡ X(πHH) to ⌈A⌉U (πHH) f ≡
A(πHH), which we use to fill the final hole:

getU (ℓ : |U |, ϕ : ▶[X ← ∂U ℓ].⌈X⌉U = ⌈A⌉U)H (f ≡ (|f |, refl)) :≡
ϑFA (πHH)next[X ← ∂U ℓ, ψ ← ϕ, x← H @ |f | ℓ].
η�(H, 1πHH , ψ∗x)

This completes the definition of the getter.

▶ Construction 3.25 (Detailed construction of the setter). For each A ∈ PS , we define the
setter as a natural transformation IORef A×A→ IO 1 in PS .

set : IORef A×A→ IO 1
setU ((ℓ, ϕ), a)H (f ≡ (|f |, refl)) :≡ ? : F1 (πHH)

CSL 2024

47:16 Towards Univalent Reference Types

We apply the unit now of the lifting monad, followed by the unit of the reflection
� : U → SetS , and then split the goal:

set : IORef A×A→ IO 1
setU ((ℓ, ϕ), a)H (f ≡ (|f |, refl)) :≡

now (η�(?0 : H̃S , ?1 : homCS (πHH,πH?0) , ∗))

We want to replace the contents of H at the location |f | ℓ with the reindexed element
next(Af a) : ▶A(πHH); for this to make sense, we need to transport along the (delayed)
identification ϕ : ▶[X ← ∂U ℓ].⌈X⌉U = ⌈A⌉U . We define the updated heap as follows, noting
that ∂U ℓ ≡ ∂πHH |f | ℓ:

?0 :≡ H[|f | ℓ ↪→ next[X ← ∂U ℓ, ψ ← ϕ].ψ−1
∗ (Af a)]

The updated heap can be so-defined because its set of locations is finite, and thus has
decidable equality. Because the updated heap has the same underlying configuration, we can
fill our remaining hole ?1 :≡ 1πHH , completing the definition of the setter as follows:

set : IORef A×A→ IO 1
setU ((ℓ, ϕ), a)H (f ≡ (|f |, refl)) :≡

let Ha/ℓ :≡ H[|f | ℓ ↪→ next[X ← ∂U ℓ, ψ ← ϕ].ψ−1
∗ (Af a)] in

now (η�(Ha/ℓ, 1πHH , ∗))

▶ Construction 3.26 (The allocator). For each A ∈ PS , we define the allocator as a natural
transformation A→ IO (IORef A) in PS .

alloc : A→ IO (IORef A)
allocU aH (f ≡ (|f |, refl)) :≡

let Ha :≡
{

inl ℓ ↪→ next[X ← ∂πHHℓ, x← H @ ℓ]. X inlx
inr ∗ ↪→ next (A inr a)

in

now (η�(Ha, inl, (inr ∗, next refl)))

Above, we have defined a new heap Ha whose underlying finite set of locations is the
coproduct |πHH|+ 1, filling the new location with a and return the pointer to this location.

3.2.3.3 The main theorem

We now come to the main result of this paper, which obtains a model of univalent reference
types from a suitably structured small set-reflective subuniverse.

▶ Theorem 3.27. Let S be a small, Σ-closed, set-reflective, guarded subuniverse of a guarded
Martin-Löf universe U containing Inj such that S is additionally closed under the type of
natural numbers. Then there is a model of the monadic language from Section 2 satisfying
the equational theory of univalent reference types (Figures 1 and 2), in which:
1. contexts, types, and terms are interpreted in the category PS = Fun(CS ,SetS);
2. the reference type connective is interpreted as in Construction 3.13;
3. the computational monad is given by IO = U ◦ F as defined in Figure 4;
4. general recursion and the store operations are interpreted as in Sections 3.2.3.1 and 3.2.3.2.

J. Sterling, D. Gratzer, and L. Birkedal 47:17

Proof. We note that PS = Fun(CS ,SetS) is locally cartesian closed in spite of the fact
that CS is as large as SetS is: local cartesian closure nonetheless follows because SetS is
reflective in U and CS is U-small. Everything except the two laws of univalent reference
types (Figure 2) follows in the same way as in the non-univalent model given by Sterling et
al. [43]. The allocation permutation law holds under the interpretations given because
the two heaps resulting from allocations in different orders are identified under univalence.
The representation independence law holds for similar reasons, considering the effect of
transporting along an identification between equivalent heaps on the getter and the setter. ◀

4 Models of guarded HoTT with impredicative universes

Our main result (Theorem 3.27) is contingent on there existing a model of guarded homotopy
type theory in which there can be found a suitably small, Σ-closed, set-reflective, guarded
subuniverse of a guarded Martin-Löf universe containing Inj. It is by no means obvious that
such a model exists, but in this section we will provide some preliminary evidence.

1. Sterling, Gratzer, and Birkedal [43] have constructed models of impredicative guarded
dependent type theory (iGDTT), a non-univalent version of our metalanguage.

2. Awodey [11] has constructed a model of impredicative homotopy type theory in cubi-
cal assemblies, i.e. internal cubical sets in the category of assemblies. Uemura [45]
subsequently described a variant of this model in the style of Orton and Pitts [34].

3. Birkedal et al. [15, 14] have constructed an Orton–Pitts model of guarded cubical type
theory in presheaves on the product of a cube category with the ordinal ω. This model
was revisited in the context of multi-modal type theory by Aagaard et al. [1].

The methods of the papers above are essentially modular, and are furthermore not
particularly sensitive to the choice of cube category or ordinal, so long as these can be defined
in assemblies without resorting to quotients.

▶ Conjecture 4.1 (Soundness). There is a non-trivial model of guarded homotopy type theory
in guarded cubical assemblies in which there is a small, set-reflective, guarded Martin-Löf
subuniverse S ⊆ U of a guarded Martin-Löf universe U containing Inj.

5 Conclusions and future work

We have demonstrated the impact of a univalent metalanguage on the denotational semantics
of higher-order store, extending the guarded global allocation model of Sterling et al. [43] with
new program equivalences: invariance under permutation and representation independence
in the heap. We believe that we have only scratched the surface of the potential for univalent
denotational semantics in general, and univalent reference types in particular; we describe a
few potential areas for further development beyond substantiating Conjecture 4.1.

1. Sterling et al. [43] have given non-univalent denotational semantics of polymorphic λ-
calculus with recursive types and general reference types. It is within reach to adapt this
model to the univalent setting, obtaining even more program equivalences than before.
In particular, many data abstraction theorems for existential packages that typically hold
only up to observational equivalence are expected to hold on the nose.

CSL 2024

47:18 Towards Univalent Reference Types

2. Our case study, an equation between two object-oriented counters, involves invariance
of the heap under isomorphisms between data representations – whereas parametricity
is often employed in cases of correspondences that are not isomorphisms. Angiuli et
al. [7] have shown that many such applications of parametricity are nonetheless subsumed
by univalence in the presence of quotient types, and thus many more observational
equivalences can be replaced with honest equations in univalent denotational semantics.
We are eager to put the wisdom of op. cit. into practice in the context of imperative and
object-oriented programming by incorporating quotients into our theory and model.

3. Although our theory validates many more desirable equations than the global store theory
of Sterling et al. [43], we do not come close to modeling full local store: for example, two
programs that allocate different numbers of cells cannot be equal. We hope that it will
be possible to adapt the methods of Kammar et al. [27] to the guarded, univalent, and
impredicative setting in order to develop even more abstract models of mutable state.

4. Our language does not allow for references to be directly compared (nominal references)
and no such equality testing function exists in our model. Prior work [44, 33] has given
models of such references using the theory of nominal sets [23, 37]. We hope that these
methods may be adapted to our model in order to support nominal univalent references.

References

1 Frederik Lerbjerg Aagaard, Magnus Baunsgaard Kristensen, Daniel Gratzer, and Lars Birkedal.
Unifying cubical and multimodal type theory. Unpublished manuscript, 2022. doi:10.48550/
arXiv.2203.13000.

2 S. Abramsky, K. Honda, and G. McCusker. A fully abstract game semantics for general
references. In Proceedings of the 13th Annual IEEE Symposium on Logic in Computer Science,
pages 334–344, USA, 1998. IEEE Computer Society. doi:10.1109/LICS.1998.705669.

3 Amal Jamil Ahmed. Semantics of Types for Mutable State. PhD thesis, Princeton University,
2004. URL: http://www.ccs.neu.edu/home/amal/ahmedthesis.pdf.

4 Benedikt Ahrens, Dan Frumin, Marco Maggesi, Niccolò Veltri, and Niels van der Weide. Bicat-
egories in univalent foundations. Mathematical Structures in Computer Science, 31(10):1232–
1269, 2021. doi:10.1017/S0960129522000032.

5 Benedikt Ahrens and Peter LeFanu Lumsdaine. Displayed categories. Logical Methods in
Computer Science, 15, March 2019. doi:10.23638/LMCS-15(1:20)2019.

6 Pierre America and Jan J. M. M. Rutten. Solving reflexive domain equations in a category of
complete metric spaces. In Proceedings of the 3rd Workshop on Mathematical Foundations of
Programming Language Semantics, pages 254–288, Berlin, Heidelberg, 1987. Springer-Verlag.

7 Carlo Angiuli, Evan Cavallo, Anders Mörtberg, and Max Zeuner. Internalizing representation
independence with univalence.Proceedings of the ACM on Programming Languages, 5(POPL):1–
30, January 2021. doi:10.1145/3434293.

8 Andrew W. Appel and David McAllester. An indexed model of recursive types for foundational
proof-carrying code. ACM Transactions on Programming Languages and Systems, 23(5):657–
683, September 2001. doi:10.1145/504709.504712.

9 Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme Vouillon. A very
modal model of a modern, major, general type system. In Proceedings of the 34th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 109–122,
Nice, France, 2007. Association for Computing Machinery.

10 A. Arnold and M. Nivat. Metric interpretations of infinite trees and semantics of non
deterministic recursive programs. Theoretical Computer Science, 11(2):181–205, 1980. doi:
10.1016/0304-3975(80)90045-6.

https://doi.org/10.48550/arXiv.2203.13000
https://doi.org/10.48550/arXiv.2203.13000
https://doi.org/10.1109/LICS.1998.705669
http://www.ccs.neu.edu/home/amal/ahmedthesis.pdf
https://doi.org/10.1017/S0960129522000032
https://doi.org/10.23638/LMCS-15(1:20)2019
https://doi.org/10.1145/3434293
https://doi.org/10.1145/504709.504712
https://doi.org/10.1016/0304-3975(80)90045-6
https://doi.org/10.1016/0304-3975(80)90045-6

J. Sterling, D. Gratzer, and L. Birkedal 47:19

11 Steve Awodey. Impredicative encodings in HoTT (or: Towards a realizability ∞-topos).
Slides from a talk given the Big Proof meeting, Isaac Newton Institute, Cambridge. URL:
https://www.andrew.cmu.edu/user/awodey/talks/BigProofs.pdf.

12 Steve Awodey. On Hofmann–Streicher universes. Unpublished manuscript, 2022. doi:
10.48550/arXiv.2205.10917.

13 Steve Awodey, Jonas Frey, and Sam Speight. Impredicative encodings of (higher) inductive
types. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, pages 76–85, Oxford, United Kingdom, 2018. Association for Computing Machinery.
doi:10.1145/3209108.3209130.

14 Lars Birkedal, Aleš Bizjak, Ranald Clouston, Hans Bugge Grathwohl, Bas Spitters, and
Andrea Vezzosi. Guarded Cubical Type Theory: Path Equality for Guarded Recursion. In
Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL Annual Conference on Computer
Science Logic (CSL 2016), volume 62 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 23:1–23:17, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.CSL.2016.23.

15 Lars Birkedal, Aleš Bizjak, Ranald Clouston, Hans Bugge Grathwohl, Bas Spitters, and Andrea
Vezzosi. Guarded cubical type theory. Journal of Automated Reasoning, 63(2):211–253, 2019.
doi:10.1007/s10817-018-9471-7.

16 Lars Birkedal and Rasmus Ejlers Møgelberg. Intensional type theory with guarded recursive
types qua fixed points on universes. In Proceedings of the 2013 28th Annual ACM/IEEE
Symposium on Logic in Computer Science, pages 213–222, Washington, DC, USA, 2013. IEEE
Computer Society. doi:10.1109/LICS.2013.27.

17 Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring. First
steps in synthetic guarded domain theory: Step-indexing in the topos of trees. In Proceedings
of the 2011 IEEE 26th Annual Symposium on Logic in Computer Science, pages 55–64,
Washington, DC, USA, 2011. IEEE Computer Society. doi:10.1109/LICS.2011.16.

18 Lars Birkedal, Kristian Støvring, and Jacob Thamsborg. Realisability semantics of parametric
polymorphism, general references and recursive types. Mathematical Structures in Computer
Science, 20(4):655–703, 2010. doi:10.1017/S0960129510000162.

19 Aleš Bizjak, Hans Bugge Grathwohl, Ranald Clouston, Rasmus Ejlers Møgelberg, and Lars
Birkedal. Guarded dependent type theory with coinductive types. In Bart Jacobs and
Christof Löding, editors, Foundations of Software Science and Computation Structures: 19th
International Conference, FOSSACS 2016, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2–
8, 2016, Proceedings, pages 20–35, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.
doi:10.1007/978-3-662-49630-5_2.

20 Aleš Bizjak and Rasmus Ejlers Møgelberg. Denotational semantics for guarded dependent
type theory. Mathematical Structures in Computer Science, 30(4):342–378, 2020. doi:10.
1017/S0960129520000080.

21 Franck Breugel and Jeroen Warmerdam. Solving domain equations in a category of compact
metric spaces. Technical report, CWI (Centre for Mathematics and Computer Science), NLD,
1994.

22 Titouan Carette, Louis Lemonnier, and Vladimir Zamdzhiev. Central submonads and notions
of computation: Soundness, completeness and internal languages. In 2023 38th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–13, Los Alamitos, CA,
USA, June 2023. IEEE Computer Society. doi:10.1109/LICS56636.2023.10175687.

23 Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax with
variable binding. Formal Aspects of Computing, 13(3):341–363, July 2002. doi:10.1007/
s001650200016.

24 Martin Hofmann and Thomas Streicher. Lifting Grothendieck universes. Unpublished note,
1997. URL: https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf.

CSL 2024

https://www.andrew.cmu.edu/user/awodey/talks/BigProofs.pdf
https://doi.org/10.48550/arXiv.2205.10917
https://doi.org/10.48550/arXiv.2205.10917
https://doi.org/10.1145/3209108.3209130
https://doi.org/10.4230/LIPIcs.CSL.2016.23
https://doi.org/10.1007/s10817-018-9471-7
https://doi.org/10.1109/LICS.2013.27
https://doi.org/10.1109/LICS.2011.16
https://doi.org/10.1017/S0960129510000162
https://doi.org/10.1007/978-3-662-49630-5_2
https://doi.org/10.1017/S0960129520000080
https://doi.org/10.1017/S0960129520000080
https://doi.org/10.1109/LICS56636.2023.10175687
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/s001650200016
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf

47:20 Towards Univalent Reference Types

25 J. M. E. Hyland. The effective topos. In A. S. Troelstra and D. Van Dalen, editors, The L.E.J.
Brouwer Centenary Symposium, pages 165–216. North Holland Publishing Company, 1982.

26 J. M. E. Hyland, E. P. Robinson, and G. Rosolini. The Discrete Objects in the Effective
Topos. Proceedings of the London Mathematical Society, s3-60(1):1–36, January 1990. doi:
10.1112/plms/s3-60.1.1.

27 Ohad Kammar, Paul B. Levy, Sean K. Moss, and Sam Staton. A monad for full ground reference
cells. In Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
Reykjavik, Iceland, June 2017. IEEE Press. doi:10.1109/LICS.2017.8005109.

28 Paul Blain Levy. Possible world semantics for general storage in call-by-value. In Julian
Bradfield, editor, Computer Science Logic, pages 232–246, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg.

29 Paul Blain Levy. Adjunction models for call-by-push-value with stacks. Electronic Notes in
Theoretical Computer Science, 69:248–271, 2003. CTCS’02, Category Theory and Computer
Science. doi:10.1016/S1571-0661(04)80568-1.

30 Paul Blain Levy. Call-by-Push-Value: A Functional/Imperative Synthesis. Kluwer, Semantic
Structures in Computation, 2, January 2003.

31 Rasmus Ejlers Møgelberg and Marco Paviotti. Denotational semantics of recursive types in
synthetic guarded domain theory. In Proceedings of the 31st Annual ACM/IEEE Symposium
on Logic in Computer Science, pages 317–326, New York, NY, USA, 2016. Association for
Computing Machinery. doi:10.1145/2933575.2934516.

32 Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1):55–
92, 1991. Selections from 1989 IEEE Symposium on Logic in Computer Science. doi:
10.1016/0890-5401(91)90052-4.

33 Andrzej Murawski and Nikos Tzevelekos. Nominal game semantics. Foundations and Trends
in Programming Languages, 2(4):191–269, 2016. doi:10.1561/2500000017.

34 Ian Orton and Andrew M. Pitts. Axioms for modelling cubical type theory in a topos. In
Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL Annual Conference on Computer
Science Logic (CSL 2016), volume 62 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 24:1–24:19, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.CSL.2016.24.

35 Marco Paviotti. Denotational semantics in Synthetic Guarded Domain Theory. PhD thesis,
IT-Universitetet i København, Denmark, 2016.

36 Marco Paviotti, Rasmus Ejlers Møgelberg, and Lars Birkedal. A model of PCF in Guarded
Type Theory. Electronic Notes in Theoretical Computer Science, 319(Supplement C):333–349,
2015. The 31st Conference on the Mathematical Foundations of Programming Semantics
(MFPS XXXI). doi:10.1016/j.entcs.2015.12.020.

37 Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, New York, NY, USA, 2013.

38 Gordon D. Plotkin and John Power. Notions of computation determine monads. In Proceedings
of the 5th International Conference on Foundations of Software Science and Computation
Structures, pages 342–356, Berlin, Heidelberg, 2002. Springer-Verlag.

39 John C. Reynolds. The essence of algol. In Peter W. O’Hearn and Robert D. Tennent,
editors, Algol-like Languages, pages 67–88. Birkhäuser Boston, Boston, MA, 1997. doi:
10.1007/978-1-4612-4118-8_4.

40 Egbert Rijke. Introduction to homotopy type theory. To appear, Cambridge University Press,
2022. doi:10.48550/arXiv.2212.11082.

41 Egbert Rijke, Michael Shulman, and Bas Spitters. Modalities in homotopy type theory. Logical
Methods in Computer Science, 16, January 2020. doi:10.23638/LMCS-16(1:2)2020.

42 Sam Staton. Completeness for algebraic theories of local state. In Luke Ong, editor, Foundations
of Software Science and Computational Structures, pages 48–63, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

https://doi.org/10.1112/plms/s3-60.1.1
https://doi.org/10.1112/plms/s3-60.1.1
https://doi.org/10.1109/LICS.2017.8005109
https://doi.org/10.1016/S1571-0661(04)80568-1
https://doi.org/10.1145/2933575.2934516
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1561/2500000017
https://doi.org/10.4230/LIPIcs.CSL.2016.24
https://doi.org/10.1016/j.entcs.2015.12.020
https://doi.org/10.1007/978-1-4612-4118-8_4
https://doi.org/10.1007/978-1-4612-4118-8_4
https://doi.org/10.48550/arXiv.2212.11082
https://doi.org/10.23638/LMCS-16(1:2)2020

J. Sterling, D. Gratzer, and L. Birkedal 47:21

43 Jonathan Sterling, Daniel Gratzer, and Lars Birkedal. Denotational semantics of general store
and polymorphism. Unpublished manuscript, July 2022. doi:10.48550/arXiv.2210.02169.

44 Nikos Tzevelekos. Full abstraction for nominal general references. Logical Methods in Computer
Science, Volume 5, Issue 3, September 2009. doi:10.2168/LMCS-5(3:8)2009.

45 Taichi Uemura. Cubical Assemblies, a Univalent and Impredicative Universe and a Failure of
Propositional Resizing. In Peter Dybjer, José Espírito Santo, and Luís Pinto, editors, 24th
International Conference on Types for Proofs and Programs (TYPES 2018), volume 130 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 7:1–7:20, Dagstuhl, Germany,
2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.TYPES.2018.
7.

46 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

CSL 2024

https://doi.org/10.48550/arXiv.2210.02169
https://doi.org/10.2168/LMCS-5(3:8)2009
https://doi.org/10.4230/LIPIcs.TYPES.2018.7
https://doi.org/10.4230/LIPIcs.TYPES.2018.7
https://homotopytypetheory.org/book

	1 Introduction
	1.1 State and reference types: static and dynamic allocation
	1.2 Equational theories of dynamic storage: between local and global
	1.3 Semantic worlds and guarded models of higher-order store
	1.4 Univalent reference types and data abstraction in the heap

	2 A higher-order language with (univalent) reference types
	2.1 The equational theory of monadic general reference types
	2.2 The equational theory of univalent reference types

	3 Denotational semantics in univalent foundations
	3.1 Univalent impredicative synthetic guarded domain theory
	3.1.1 Impredicative subuniverses in univalent foundations
	3.1.2 The Hofmann–Streicher universe
	3.1.3 (Higher) synthetic guarded domain theory

	3.2 Models of univalent general reference types
	3.2.1 Worlds as univalent heap configurations
	3.2.2 A strong monad for general store
	3.2.3 The model of univalent reference types

	4 Models of guarded HoTT with impredicative universes
	5 Conclusions and future work

