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Weak persistent memory (a.k.a. non-volatile memory) is an emerging technology that o�ers fast byte-

addressable durable main memory. A wealth of algorithms and libraries has been developed to explore

this exciting technology. As noted by others, this has led to a signi�cant veri�cation gap. Towards closing

this gap, we present Spirea, the �rst concurrent separation logic for veri�cation of programs under a weak

persistent memory model. Spirea is based on the Iris and Perennial veri�cation frameworks, and by combining

features from these logics with novel techniques it supports high-level modular reasoning about crash-safe

and thread-safe programs and libraries. Spirea is fully mechanized in the Coq proof assistant and allows

for interactive development of proofs with the Iris Proof Mode. We use Spirea to verify several challenging

examples with modular speci�cations. We show how our logic can verify thread-safety and crash-safety of

non-blocking durable data structures with null-recovery, in particular the Treiber stack and the Michael-Scott

queue adapted to persistent memory. This is the �rst time durable data structures have been veri�ed with a

program logic.
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1 INTRODUCTION

In the traditional storage hierarchy programmers can choose between fast, but volatile, main
memory and non-volatile, but slower, secondary storage. Persistent memory (a.k.a. non-volatile
memory) is an exciting emerging technology that, uniquely, o�ers both fast random access at byte
granularity and persistence of data in the absence of power and across system crashes. It thus
shakes up the traditional storage hierarchy with a new abstraction: storage that is suitable both as
main memory and as durable storage of data.

A wealth of algorithms, libraries, and tools have been developed for persistent memory, exploring
the new potential. This includes durable data structures [Cai et al. 2021; Friedman et al. 2018],
memory allocators [Schwalb et al. 2015], garbage collectors [Cai et al. 2020], transactions [Ramalhete
et al. 2021; Volos et al. 2011], key-value stores [Chen et al. 2020; Kaiyrakhmet et al. 2019], and
language-level support for persistent memory [George et al. 2020], just to mention a few. An
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important class of data structures that is new and unique to persistent memory is durable data-
structures with null-recovery [Izraelevitz et al. 2016]. These reside in persistent memory and are
preserved across crashes with no recovery being needed after a crash to maintain their consistency.

Ensuring correctness when programming for persistent memory is, however, extremely challeng-
ing. Since data stored in persistent memory is expected to be permanent, programs for persistent
memory must be crash-safe. Thus, programmers must ensure that if the system crashes (which
can happen non-deterministically at any time, e.g., due to power failure) then, after the crash, the
content of the persistent memory should be in a consistent state from which recovery is possible.
Moreover, due to the volatile caches on contemporary CPUs, writes to persistent memory are

bu�ered. They occur asynchronously and may reach persistent memory in a di�erent order than the
one in which they were carried out. This persistent memory order (or persist order) does not coincide
with the weak memory order, the order in which the CPU guarantees that writes by one thread are
made visible to other threads. Hence, a program can be correct for weak memory (by taking into
account the weak memory order), but not correct for persistent memory (by failing to take the
persistent memory order properly into account). To tame this non-determinism, modern instruction
sets such as x86 and ARM o�er various �ush and fence instructions, which programmers can insert
between writes to enforce a desired persist order. These instructions are expensive, though, and
should only be used when necessary.

One solution to ensure correctness in the presence of these challenges is, of course, to formally
verify programs for persistent memory using a program logic. However, as Raad et al. [2020a]
identi�ed, there is a signi�cant veri�cation gap: The development of algorithms and libraries for
persistent memory is far ahead of formal veri�cation techniques for persistent memory. As a �rst
step towards closing this gap two program logics have been developed: Persistent Owicki-Gries
(POG) [Raad et al. 2020a] and Pierogi [Bila et al. 2022]. Both are adaptations of the Owicki-Gries
proof system and for reasoning about programs under the machine-level x86-TSO memory model.
However, since these logics are based on Owicki-Gries they only support a very simple �rst-order
sequential programming language and do not include features such as separation, (user de�ned)
ghost state, higher-order reasoning, and abstract speci�cations. This results in a lack of modularity
that is evident, for instance, in [Raad et al. 2020a], where to verify an example using a lock, the lock
and the client of the lock are veri�ed together using a global invariant with knowledge about the
internals of both. It is not possible to give the lock an abstract speci�cation, verify it in isolation,
and reuse the speci�cation with multiple clients. In contrast, modern concurrent separation logics
(CSLs), such as Iris [Jung et al. 2018], scale to much richer programming languages and support
the aforementioned features. We thus think that the next step to closing the veri�cation gap is to
develop a CSL for persistent memory, and that is exactly what we do in this paper.

1.1 Challenges

Prior work has explored the application of CSL to weak memory and to persistency individually.
The RSL and GPS logics has spawned a line of logics for weak (but not persistent) memory [Doko
and Vafeiadis 2016; Kaiser et al. 2017; Turon et al. 2014; Vafeiadis and Narayan 2013]. The Perennial
logic, which is a state-of-the-art CSL for reasoning about crash-safety, and its predecessor Crash
Hoare Logic applies to programs that use durable secondary storage (but without any weak
behaviors) [Chajed 2022; Chajed et al. 2019, 2021; Chen et al. 2016]. These logics have been
successful in their respective domains but no CSL has been developed for the weak persistency

found in persistent memory. As persistent memory combines challenging aspects from both weak
memory and persistency a natural approach is to learn from the above-mentioned logics and try
to adapt their techniques into a logic for persistent memory. As it turns out, there are however
serious obstacles to such an endeavor:
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Non-deterministic crashes. In a strong persistency model, such as the one considered for Crash
Hoare Logic and Perennial, crashes are deterministic. This means that if a crash occurs at a given
program point the state of the machine after the crash is uniquely determined by its state before the
crash at that program point. The durable storage is completely una�ected by the crash whereas the
content of volatile memory is entirely lost. At the program logic level this means that some logical
resources are kept unchanged at a crash while others are discarded. Perennial includes a post-crash
modality, 〈PC〉, that carries out this transformation. All rules for their post-crash modality have
the form ' ` 〈PC〉 ', which means that the resource ' is preseved during a crash. If a resource % is
lost at a crash this is simply encoded by having no such rule for % .

For persistent memory the persistency model is weak due to the asynchronous nature of writes
and fences. This means that the crash step is non-deterministic. As such, resources are not merely
kept or lost at a crash; instead they are non-deterministically kept, discarded, or changed. Hence,
the straightforward behavior of Perennial’s post-crash modality is no longer su�cient and its
model, which relies on changing ghost names for lost resources, is not applicable either! We thus
introduce a more sophisticated post-crash modality and prove it sound using a more subtle model.

Sound invariants. It is well-known that Iris-style invariants are unsound for weak memory.
To overcome this, CSLs for weak memory have had to restrict invariants in various ways. One
approach taken by GPS, iGPS and iRC11 is to associate invariants with speci�c locations and only
allow access to their content when physically synchronizing with the location. We observe that
in a persistent memory setting even these restricted invariants allows for resource transfer that
is unsound for persistent memory. In particular, in weak memory if a RMW (read-modify-write)
operation is successful then the overwritten value can never be read again by another RMW
operation. The weak memory invariants rely on this property for certain types of resource transfer.
But, in persistent memory, a write made by an RMW operation might be lost at a crash, and the
overwritten value will then be observable again after the crash.

Additionally, we want invariants that are strong enough to handle durable data structures with
null-recovery. The obvious way to encode at the logic level that a data-structure is preserved across
crashed is to say that its invariant (inside its representation predicate) is preserved under the
post-crash modality. However, it is not clear how an Iris invariant can soundly interact with a
post-crash modality. Indeed, in Perennial, which uses Iris invariants, one cannot use the post-crash
modality to establish that an invariant holds after a crash. Instead, Perennial relies on recovery
code to establish new invariants after a crash, but this approach does not work for null-recovery
where there is no recovery code.

A somewhat subtle point is that the issues with reconciling Iris invariants and crashes also
pose challenges regarding modeling of the logic. Prior Iris-based logics for weak memory use Iris
invariants internally to model their more restrictive user-level invariants. But if invariants can not
survive crashes, then they can not be used in the model either.

Persistent memory instructions. Persistent memory models usually involve some combination
of �ushes and fences to restrict the persist order when necessary. These instructions are speci�c
to persistent memory and are not addressed by prior separation logics. We consider a weak �ush
instruction that may be reordered with respect to other instructions up to a fence. As noted by
Raad et al. [2020a] such a �ush instruction is di�cult to reason about as its e�ect does not take
place at the program point of the �ush. As for fences we consider both asynchronous fences and
synchronous fences.
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1.2 Our Contributions

This paper contributes Spirea, the �rst CSL for weak persistency in general and persistent memory
in particular. We use the explicit epoch persistency model by Izraelevitz et al. [2016].1 This model
is a slight generalization of the x86 and the ARM persistency models which can be e�ciently
implemented on both processors. As the model is slightly weaker than x86 and ARM, programs that
are proven correct for this model are correct for both x86 and ARM. Similarly, reasoning principles
that apply for this model are more general and are sound also for x86 and ARM. As such, the ideas
in Spirea are generally applicable and can also be used, for instance, in logics speci�cally for x86 and
ARM. In §2 we give an intuitive account of the persistency model as well as the consistency model
and explain the veri�cation challenges in more detail. Izraelevitz et al. [2016] de�ne the explicit
epoch persistency model in a declarative style, as a number of ordering constraints on abstract
histories. Such a formulation is not well-suited for reasoning in a CSL, so we recast their model as
a view-based small-step operational semantics (see §5.1) that can be used with the Perennial and
Iris logical frameworks. As our focus in this paper is squarely on the logic we do not establish a
formal correspondence between Izraelevitz et al.’s formulation and ours but instead leave this to
future work.
Our logic improves the state-of-the-art both in terms the programming language features it

supports, the expressivity and power of the logic, and in the scope of the case studies we have
veri�ed. Our programming language _pmem includes many features that are not supported by the
Owicki-Gries based logics, most importantly: dynamic allocation of references, dynamic forking of
threads, functions (including higher-order recursive functions and closures), and compound data
types. As for the logic, Spirea is a higher-order separation logic and includes all the usual features
in Iris based separation logics (except for those that are unsound in our setting). For reasoning
about crashes Spirea contains features equivalent to those of Perennial. We cover this background
in §3.
To tackle the above-mentioned challenges, Spirea includes the following key innovations:

(1) A resource changing posts crash modality that can account for the non-deterministic changes
in resources at crashes under weak persistency. Our post-crash modality supports rules of
the form ' ` 〈PC〉 '′, where '′ re�ects how ' is non-deterministically a�ected by the crash.
We make this possible by modelling our post-crash modality using an exchange resource. This
can be seen as a generalization of the model of Perennial’s post-crash modality: the Perennial
model is the special case where the exchange resource is the empty resource.

(2) Crash-aware invariants, which, in contrast to Iris-style and GPS-style invariants, are sound
under weak persistency. Soundness of Spirea crash-aware invariants relies on having novel
proof rules for transfer of resources in and out of invariants. Our Spirea invariants are crash-
aware, meaning that they can be preserved under our post-crash modality and thus facilitate
resource transfer between code executing before and after a crash. This is the �rst time a
separation logic contains invariants that can be used to this end. We devise a novel model for
our invariants that does not rely on Iris invariants.

(3) An assortment of features to handle persistent memory instructions: Post-fence modalities,
a post-crash �ush modality, and state lower-bounds w.r.t. fences. These work in tandem to
reason about weak �ushes and synchronous and asynchronous fences.

We explain these in depth in §4 where we give a high level introduction to Spirea, explain its design,
and present several examples.

1Not to be confused with the (implicit) epoch persistency model which cannot be e�ciently implemented on x86 or ARM.
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E ∈ Val ::= () | 8 ∈ Z | ℓ ∈ !>2 | true | false | (E, E) | inj1 E | inj2 E | rec 5 (G) = 4 | · · ·

4 ∈ Exp ::= G | E | if 4 then 4 else 4 | (4, 4) | c1 4 | c2 4 | inj1 4 | inj2 4 | 4 4 | · · ·

| match 4 with inj1 G ⇒ 4 | inj2 G ⇒ 4 | fork {4} | ref0 4 | !0 4 | 4 B0 4

| CAS 4 4 4 | FAA 4 4 4 | flush 4 | fence | fencesync for 0 ∈ {na, at}

Fig. 1. The syntax of _pmem

G Bna 37;

~ Bat 1










if !at ~ = 1

then

assert (!na G = 37)

(a) Message passing (MP)

G Bna 37;

flush G ;

fence;

~ Bat 1












if !at ~ = 1

then

fence;

I Bna 1

	

if !at I = 1

then

assert (!na G = 37)

(b) Durable MP

G Bna 37;

flush G ;

fence;

~ Bna 1

	

if !na ~ = 1

then

assert (!na G = 37)

(c) Flush and fence

G Bna 37;

~ Bat 1












if !at ~ = 1

then flush G ;

fence;

I Bna 1

	

if !at I = 1

then

assert (!na G = 37)

(d) Optimized durable MP

Fig. 2. Examples of programs that use weak and persistent memory operations

Spirea and its high-level reasoning rule aremodelled on top of a lower-level logic called BaseSpirea.
This logic, in turn, is modelled using an instantiation of the Perennial program logic and using
the Iris base logic. In §5 we state the soundness result in terms of the operational semantics. We
also give an overview of the semantic model and the proof of soundness to the extent that space
permits. For the full details regarding the model and the soundness proof we refer the reader to our
mechanization.
Spirea and all our results are fully mechanized in the Coq proof assistant. The mechanization

allows for interactive development of proofs using the Iris proof mode. The development is available
online at https://github.com/logsem/spirea and as an artifact accompanying this paper [Vindum
and Birkedal 2023a]. We have used the mechanization of our logic to formally verify a range
of examples and case studies. We cover a number of these in §6. The case studies demonstrate
how our logic is capable of verifying tricky synthetic examples, that it can give modular and
compositional speci�cations to thread-safe and crash-safe libraries, and even verify entire durable
data structures with null-recovery. For the latter we have veri�ed crash-safety and thread-safety
of both a durable version of the Treiber stack and the Michael-Scott queue. This is the �rst time
durable data structures have been veri�ed with a program logic.
In §7 we discuss related and future work.

2 PERSISTENT MEMORY VERIFICATION CHALLENGES

Before we can introduce Spirea we must �rst understand the kinds of programs that it aims to
verify correctness of and the challenges involved in this. To this end we introduce our programming
language _pmem. Its syntax is seen in Fig. 1. We use highlighted text to indicate the parts of the
language that are related to persistent memory only. Loosely speaking, if we erased those parts we
would get a language for weak, but not persistent, memory.

_pmem is a lambda-calculus with standard features (recursive functions, booleans, products, sums,
etc.), fork-based concurrency, references with dynamic allocation, and operations for weak persistent
memory. The expression fork {4} spawns a new thread that evaluates 4 in parallel with existing
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threads. We use the notation 41 ‖ 42 for the parallel execution of 41 and 42, which is derivable from
fork. We de�ne assert to be function that is unsafe (gets stuck) if its argument is not true. The
language features a weak persistent memory model. The full formal operational semantics appears
in the appendix [Vindum and Birkedal 2023b]. In this section we give an intuitive explanation of
the memory model illustrated by the examples in Fig. 2. But �rst we �x some terminology.
A consistency model speci�es the semantics of shared memory by restricting the weak memory

order, the order of memory operations across threads. A concurrent program that correctly accounts
for interleavings and the weak memory order is thread-safe. A persistency model speci�es the
semantics of persistent memory by restricting the persist order, the order in which writes may reach
the persistent memory[Pelley et al. 2014]. A program using durable storage that correctly accounts
for crashes and the persist order is crash-safe. The mentioned orders are de�ned using the program
order, the order in which memory operations are issued by the program.

2.1 Release-Acquire and Non-Atomic Consistency

We use a highly relaxed consistency model closely resembling the release-acquire and non-atomic
fragment of C11.2 The memory operations for allocations (ref0), writes (B0), and reads (!0) are
annotated with a memory access mode 0 ∈ {na, at}. Allocations are considered a form of writes in
the memory model. The access modes na and at are non-atomic and atomic access, respectively.
Non-atomic access is to be used when there are no races on data. For instance, when a thread

uses a location exclusively or when synchronization has been established through other means,
e.g., through a lock or atomic operations (explained below). Non-atomic writes (Bna) performed by
one thread give no guarantees on the order in which other threads may see them. This implies that
it would be unsafe to use a non-atomic write to ~ in the example in Fig. 2a. The right thread might
read 1 from ~ without also reading 37 from G .

To ensure a desired weak memory order across threads, atomic access must be used. An atomic
write (Bat) is called a release-write and an atomic read (!at) is called an acquire-read. If an acquire-
read reads a value written by a release-write we say that the acquire-read synchronizes with
the release-write. In this case, the write is ordered before the read in the weak memory order.
Furthermore, a release-write is ordered after all preceding (in program order) memory operations,
and an acquire-read is ordered before all succeeding (in program order) reads and writes. Together,
this means that when a thread, call it C1, performs an acquire-read and synchronizes with a release-
write of another thread, say C2, then C1 becomes “aware of” (or acquires) all the writes that C2 was
aware of at the time of writing. This is exempli�ed by the message passing (MP) example in Fig. 2a
where the use of atomic operations make the assertion safe. When the sender thread writes 1 to ~
it is aware of the write of 37 to G (since it wrote it itself, program order). Hence, if the receiving
thread reads 1 from ~ it also becomes aware of the write to G , thus the following read of G is certain
to yield 37, and the assert will succeed.

The read-modify-write (RMW) operations CAS (compare-and-set) and FAA (fetch-and-add) count
as both an acquire-read and a release-write at the same time.

2.2 Explicit Epoch Persistency

We use the examples in Figs. 2b to 2d to explain the memory model we use. The notation 4 	 4A
denotes execution of 4 with 4A con�gured as recovery code.3 We use the explicit epoch persistency

model by Izraelevitz et al. [2016]. As they argue this persistency model is a slight generalization

2The largest deviation from C11 is that we make no attempt to rule out data races on non-atomics which is unde�ned

behavior in C11. This can be done with a race-detector [Dang et al. 2020; Kaiser et al. 2017]—we avoid that here for simplicity.
3Note, that this is not syntax in the programming language.
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of the x86 and ARM machine level persistency models. The model includes three operations to
manage the persist order: an explicit �ush, flush (also called a write-back), an asynchronous fence,
fence, and a synchronous fence, fencesync. In the absence of these instructions, no guarantees are
given on the persist order. For instance, it is not safe to run the left-hand side of Fig. 2a with the
recovery code in Fig. 2b. As there are no �ushes or fences, the two writes might persist in any
order: after a crash the recovery code might see ~ being 1 and G still being 0, even though, during
normal execution, this would never be observable due to the release-write.
To enforce a certain persist order one must explicitly �ush writes and then end an epoch with

a fence. An asynchronous fence ensures that all writes that have been �ushed before the fence
persist prior to any writes after the fence. The asynchronous fence does not ensure that the �ushed
writes have actually been persisted; hence, if a crash happens after the fence, the writes �ushed
prior to it might still be lost. But, when a certain persist order has been established, recovery code
can perform a kind of “backwards reasoning”. For instance, in Fig. 2c the �ush and fence implies
that the write to G persists before the write to ~. Hence the recovery code can read ~, and then, if
the read yielded 1, reason backwards through the persist order and conclude that it is now certain
to read 37 from G . This makes the assertion in Fig. 2c safe. A synchronous fence, is stronger, but
also potentially slower, than an asynchronous fence. It additionally blocks execution until all �ushed
writes have actually reached persistent memory. This means that had Fig. 2c used a synchronous
fence, then the write to G would have been persisted with certainty after executing the program.
Flushes and fences interact with release-writes and acquires-reads as a way to “connect” the

weak memory order and the persist order. If an acquire-read synchronizes with a release-write then
anything �ushed and fenced prior to the release-write is guaranteed to persist before anything
following a fence after the acquire-read. In the durable MP example in Fig. 2b this ensures that
the write to I in the right thread must persist after the write to G in the left thread and hence that
the assertion made at recovery is safe. Note that the fence after the acquire-read of ~ is necessary.
When performing an acquire-read a thread immediately gains knowledge of the writes the releasing
thread know about. But, only after a fence does it gain knowledge about �ushed and fenced writes
known to the releasing thread. Note also that �ushes without fences provide no ordering guarantees
with respect to atomic operations.

The optimized durable MP example in Fig. 2d is similar to the durable MP example except that
the left thread does not �ush the write to G before sending it through ~. Hence, when the right
threads read 1 from ~ it is still certain to know about the write to G (as in Fig. 2a), but it no longer
receives knowledge about the write being �ushed. Hence, the right thread must �ush G . With this
being done it is still the case that the write to I persists after the write to G . But, it is no longer
the case that the write to G will persist before the write to ~. This brings us to the crucial point
regarding this example: reading 1 from ~ carries with it di�erent information to a concurrent thread
(which gains knowledge that G holds 37) than it does to recovery code (which gains nothing). In
Fig. 2b it would also have been safe for the recovery code to read ~ instead of I, but here this would
not be safe. At the logic level, this means that the resources associated with the write to ~ in Fig. 2d
must change at a crash, but it need not change in Fig. 2b.
The next section introduces Spirea. Readers who �rst want to see the full formal operational

semantics can �nd these in the appendix [Vindum and Birkedal 2023b] before proceeding.

3 BACKGROUND: CRASH REASONING FEATURES IN PERENNIAL

Perennial extends Hoare logic with a crash Hoare quadruple of the form {%} 4 {&}{&2 } . Here %
and & are standard pre- and postconditions. The fourth component &2 is a crash condition that
must hold during every step of execution of 4 . Since &2 holds at every step, if a crash occurs at
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244:8 Simon Friis Vindum and Lars Birkedal

Htc-atomic
atomic(4) % −∗ &2

{%} 4 {& ∧&2 } ` {%} 4 {&}{&2 }

Htr-idempotence
{%} 4 {&}{&A } &A −∗ 〈PC〉 ' {'} 4A {&A }{&A }

{%} 4 	 4A {&}{&A }

Fig. 3. Key rules for quadruples in Perennial

some point, then &2 will necessarily hold at that point. Hence, the crash-condition is a property
that recovery code can rely on after a crash.

In addition to standard language independent structural rules (a frame rule, a bind rule, etc.), the
key rule for deriving a crash Hoare quadruple is Htc-atomic seen in Fig. 3. The rule states that to
prove a crash Hoare quadruple for an atomic expression 4 , it su�ces to prove that the pre-condition
implies &2 and an ordinary Hoare triple for 4 with &2 added to the postcondition. Since 4 is atomic
and can take only a single step, it su�ces to show the crash condition before and after this single
step. Note the use of the standard (non-separating) conjunction ∧. This makes it possible to use all
the resources one has at hand to show both & and &2 . This is a crucial aspect of crash conditions:
they can be established without losing the resources necessary to show them.4 The use of ∧ is
sound since, when the program runs, it will either take a normal step of execution (in which case
the proof of & is needed) or crash (in which case the proof of &2 is needed). Since both cannot
happen at the same time, it is not necessary to show the two conjuncts for disjoint resources. The
Htc-atomic rule is important since it, in combination with the structural rules, allows us to show a
crash Hoare quadruple by showing a normal Hoare triple at each step. This explains why we show
rules for normal Hoare triples later in §4.

To show crash-safety Perennial o�ers recovery Hoare quadruples of the form {%} 4 	 4A {&}{&A } .
The intuitive reading is: given that % holds initially, it is safe to execute 4 with the recovery program
4A . If 4 terminates in a value E without crashing then & (E) holds. If, on the other hand, one or more
crashes occur during execution (of 4 and 4A ) and 4A terminates in a value E , then &A (E) holds.
Per the idempotence rule Htr-idempotence one can show a recovery Hoare quadruple for a

program 4 and recovery program 4A by showing a crash Hoare quadruple for 4 and one for 4A . In
both cases the crash condition is &A , such that 4A can rely on this resource; not directly though,
as the crash itself might change &A , hence the inclusion of the post-crash modality. Since 4A itself
maintains the crash condition &A , any number of crashes during 4A are still safe.
In summary, the proof burden for proving crash-safety is to pick a crash condition and apply

Htr-idempotence. Then one veri�es two crash Hoare quadruples. The veri�cation of these is similar
to using normal Hoare triples except that the crash condition must be shown at every step.5

4 SPIREA

Spirea is a CSL based on the Iris separation logic framework. As such it contains all the standard
connectives from Iris-based separation logics such as the separating conjunction, ghost state,
higher-order quanti�ers, etc. For reasoning about programs it o�ers Hoare triples, recovery Hoare
quadruples, and crash Hoare quadruples. The latter two support the same rules as they do in
Perennial. In this section we explain the novel aspects of Spirea. Throughout the section we cover
the veri�cation of the two examples from Fig. 2a and Fig. 2c; proof outlines are shown in Fig. 7 and
Fig. 8.

Knowledge vs. resources. In Iris a persistent proposition is one that does not entail ownership
but only represents duplicable knowledge. � % means that % always holds, and a proposition % is

4This is in contrast to normal Iris invariants, where one has to sacri�ce ownership of the resources necessary to show the

invariant.
5Showing the crash condition is usually trivial and can be automated with a Coq tactic.
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mod-sep

〈M〉 % ∗ 〈M〉& ` 〈M〉(% ∗&)

mod-mono
% ` &

〈M〉 % ` 〈M〉&

mod-intro

% ` 〈M〉 %

mod-idemp

〈M〉 〈M〉 % a` 〈M〉 %

mod-elim

〈M〉 % ` %

Fig. 4. General rules for modalities

lb-knowledge
; ∈ {p, f, s}

ℓ %l f ` � ℓ %l f

lb-persistent-flush-store

ℓ %p f ` ℓ %f f ` ℓ %s f

obj-noflush-nobuffer

〈obj〉 % ` 〈NF〉 % ` 〈NB〉 %

mapsto-store-lb

ℓ ↩→0 ®ff ` ℓ %s f

mapsto-lb-pers
f2 @ f1 ℓ %p f2 ℓ ↩→na f1 ®f

ℓ ↩→na ®f

mapsto-na-store-lb
ℓ %s f1 ℓ ↩→na ®ff2

f1 v f2

post-fence-no-flush

〈PF〉 〈NF〉 % ` %

pfs-pf

〈PF〉 % ` 〈PFS〉 %

rec-in-if-rec

crashedIn(ℓ, f) ∗ 〈ifRec〉ℓ % ` %

Rules for the post-crash modality

PC-na-mapsto

ℓ ↩→na f1f2 · · ·f= ` 〈PC〉 〈ifRec〉ℓ ∃8 ≤ =. ℓ ↩→na k (f1)k (f2) · · ·k (f8 ) ∗ crashedIn(ℓ, f8 )

PC-at-mapsto

ℓ ↩→at f ` 〈PC〉 〈ifRec〉ℓ ∃fA . ℓ ↩→at k (fA ) ∗ crashedIn(ℓ, fA )
PC-invariant
ℓ c ` 〈PC〉 〈ifRec〉ℓ ℓ c

PC-PCF

〈PC〉 % ` 〈PCF〉 %

PC-persist-lb

ℓ %p f ` 〈PC〉 ℓ %p k (f) ∗ ∃fA w f. crashedIn(ℓ, fA )

PCF-flush-lb

ℓ %f f ` 〈PCF〉 ℓ %p k (f) ∗ ∃fA w f. crashedIn(ℓ, fA )
rec-in-agree

crashedIn(ℓ, f) ∗ crashedIn(ℓ, f′) ` f = f′

Fig. 5. Selected rules for assertions and modalities in the logic

persistent if % ` � % . To avoid confusion with the di�erent notions of "persistent" we use the word
"knowledge" to mean persistent propositions. For example, = = 37 is knowledge and ℓ ↩→ 37 is not.

Conventions for modalities. As we will see, Spirea contains a healthy number of modalities. In
order to avoid having to introduce a plethora of symbols, we denote modalities (except already
well-known ones) as 〈M〉 where M is a mnemonic for the modality. All of our modalities satisfy
basic structural rules such as mod-sep and mod-mono seen in Fig. 4. Additionally, some modalities
are monadic (they satisfy mod-intro, etc.) or comonadic (they satisfy mod-elim, etc.).

Crash-Aware Invariants. As mentioned, one of the key innovations in Spirea is crash-aware
invariants (or just invariants for short when it is clear from the context that we are not talking
about Iris invariants). We start things o� with the de�nition. The de�nition uses concepts in Spirea
that we have yet to see, but these can be ignored for now. We will refer back to, and provide
explanations of, the de�nition throughout the section.

De�nition 4.1. A crash-aware invariant c consists of: a set of states Σ, a preorder v on Σ, a write
assertion q : Σ × Val → dProp (dProp is the type of propositions in Spirea), and a state-change
functionk : Σ → Σ that is monotone w.r.t. v. The data must satisfy the following two conditions:

(1) ∀f ∈ Σ, E ∈ Val. q (f, E) ` 〈NB〉 q (f, E)
(2) ∀f ∈ Σ, E ∈ Val. q (f, E) ` 〈PCF〉 q (k (f), E).

For an invariant c we refer to its components, say q , with c.q , but more often we just write q
when it is clear from context which invariant the component is from.
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Ht-flush

{ℓ %s f} flush ℓ
{
〈PF〉(ℓ %f f) ∗ 〈PFS〉(ℓ %p f)

} Ht-fence-sync

{〈PFS〉 %} fencesync {%}

Ht-fence

{〈PF〉 %} fence {%}

Ht-na-alloc

{q (f, E)} refna E
{
ℓ . ℓ c ∗ ℓ ↩→na f

} Ht-at-alloc

{q (f, E)} refat E
{
ℓ . ℓ c ∗ ℓ ↩→at f

}

Ht-na-read



ℓ c ∗ ℓ ↩→na ®ff ∗
(
〈obj〉 ∀E . q (f, E) −∗

& (E) ∗ q (f, E)

)



!na ℓ
{
F. ℓ ↩→na ®ff ∗& (F)

} Ht-na-write{
ℓ c ∗ ℓ ↩→na ®ff ∗

q (fC , EC ) ∗ f v fC

}

ℓ Bna EC
{
ℓ ↩→na ®fffC

}

Ht-at-read{
ℓ c ∗ ℓ ↩→at f ∗

〈obj〉 ∀fA w f, EA . q (fA , EA ) −∗ & (fA , EA ) ∗ q (fA , EA )

}

!at ℓ
{
E . ∃fA w f. ℓ ↩→at fA ∗ 〈PF〉& (fA , E)

}

Ht-at-write{
ℓ c ∗ ℓ ↩→at f ∗ q (fC , EC ) ∗ f v fC ∗

∀f2 w f, E, E2 . q (f, E) −∗ q (fC , EC ) −∗ q (f2 , E2 ) −∗ f2 v fC v f2

}

ℓ Bat EC
{
ℓ ↩→at fC

}

Fig. 6. Selected program rules for memory operations

{
G cG ∗ ~ c~,mp ∗

G ↩→na [⊥] ∗ ~ ↩→at ⊥ ∗ tok1

}

{
G ↩→na [⊥] ∗

~ ↩→at ⊥

}

G Bna 37;
{
G ↩→na [⊥,>]

}

~ Bat 1
{
~ ↩→at >

}




















{
~ ↩→at ⊥ ∗ tok1

}

if !at ~ = 1

then
{
~ ↩→at > ∗

G ↩→na [⊥,>]

}

assert !na G = 37

{True}

{True}

Fig. 7. Proof outline for the message

passing example.





G cG ∗ ~ c~,� ∗

G ↩→na [⊥] ∗ ~ ↩→na [⊥]

~ %p f~ ∗ ~ ↩→na [f~]





G Bna 37;
{
G ↩→na [⊥,>] ∗ G %s >

}

flush G ;

{〈PF〉 G %f >}

fence;

{G %f > ∗ ~ ↩→ [⊥]}

~ Bna 1
{
~ ↩→na [⊥,>]

}

	




∃fG , f~ .

G cG ∗ ~ c~,� ∗

G %p fG ∗ G ↩→na [fG ] ∗

~ %p f~ ∗ ~ ↩→na [f~]




if !at ~ = 1

then
{
f~ = > ∗ G %f >

}

{
G ↩→na [>]

}

assert !na G = 37

{True}

Fig. 8. Proof outline for the asynchronous fence example

In the logic every location ℓ is associated with a speci�c invariant c throughout its lifetime.
This invariant is chosen dynamically when the location is allocated by using the rules Ht-na-alloc

and Ht-at-alloc that appear in Fig. 6. In these rules the invariant assertion ℓ c appears in the
postcondition. It denotes the knowledge that ℓ is associated with c . On the �rst line of the proof
outlines (Fig. 7 and Fig. 8) we see invariant assertions for both G and ~. For such preexisting
locations invariants can be picked at the beginning of the proof (we will see the details in §5.2).
The invariant assertions hold throughout the proofs, but to avoid clutter in the outlines we do not
repeat unchanged resources.

Invariant States. Consider a thread reading ~ in parallel with the sending thread in Fig. 7. Such a
thread can observe the initial value of 0, the �nal value of 1, and once it sees the latter it never sees
the former again. We can represent the situation with a state transition system (STS): ~ can be in
one of the two states ⊥ and > (corresponding to 0 and 1 respectively) and it can transition from ⊥
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to >—we say that > is a greater state and write ⊥ v >. A key insight going back to GPS is that the
above can be put to good use in a logic by letting each location be governed by an STS as part of
its invariant. This is the purpose of Σ and v in Def. 4.1, they represent an STS that the location
must evolve through. In the examples, we use the described STS with two states for G and ~ as
both locations are written exactly once. When writing to a location a state f ∈ Σ must be picked
such that the states grow monotonically with each write. For a single location the memory model
ensures all threads observe writes to it in the same order, and the invariant rules ensure that this
order corresponds to an increasing order of states. Furthermore, while the weak memory order and
the persist order do not agree in general they do coincide for a single location. We hence observe
that we can soundly adopt the use of STSs for persistent memory such that they represent both the
weak memory order (as in GPS) as well as the persist order.

Write Assertions. A release-write can transfer resources from one thread to another, as in Fig. 7
where the write to ~ carries with it the right to access G . The write assertion in invariants describe
such resources. A write assertion, q : Σ×Val → dProp, is parameterized over the invariant’s states
and values. The idea is that for every write to the location governed by the invariant, say with
value E and state f , the assertion q (f, E) holds.

As a simple example, in both Fig. 7 and Fig. 8 we pick the following write assertion for G :

qG (f, E) , (f = ⊥ ∗ E = 0) ∨ (f = > ∗ E = 37). (1)

The write assertion gives meaning to the states by establishing a correspondence between them
and speci�c values. Having the state determine the value in this way is a common pattern. Since G
is not used for resource transfer this su�ces for its write assertion. When we verify the message
passing example below we see an example where resource transfer is needed.

Points-To Predicates. Points-to predicates in Spirea have the form ℓ ↩→0 ®f . Here ®f is a sequence of
states that has been written to ℓ .6 When 0 is na (respectively at) we say that the points-to predicate
is non-atomic (atomic) and the location can then only be accessed using the na (at) access mode.
On the �rst line in Fig. 7 we use a non-atomic points-to predicate for G and an atomic one for ~.
The non-atomic points-to predicate entails exclusive ownership over ℓ and supports fractional

permissions, denoted ℓ ↩→
@
na ®f for a fraction @ ∈ (0; 1]. (As usual, we often omit the fraction @ if it

is 1.) Hence, in Fig. 7 we need to transfer ownership over the points-to predicate for G from the left
thread to the right thread. The sequence ®f contains (at least) all writes that can ever be read again,
both before and after a crash. It may be surprising that we use a sequence of states for non-atomics
as prior logics for weak memory have been able to establish “normal” points-to predicates for
non-atomics that associate a location with a single value, thereby completely hiding the weak
semantics. However, this is not possible in the persistent setting, where the asynchronicity of writes
and the fact that crashes are ever-present (in contrast to data-races that can be avoided) means that
at least some old states must be remembered. For instance, in Fig. 8, at the end of executing the
right thread we have the resource G ↩→na [⊥,>]. This preserves the precise information that after
a crash G can have the value 0 or 37.
The atomic points-to predicate does not entail ownership and is knowledge. Hence, several

threads can access atomic locations in parallel. This is needed for~ in Fig. 7 where both threads own
~ ↩→at ⊥ initially. Since several threads can write to an atomic location without any synchronization
the sequence of states ®f is only partial. Other threads may have performed writes that the current
thread is not aware of and that are thus not in ®f . Hence, for the atomic points-to predicate states
can freely be dropped and, in practice, it often su�ces to remember only the latest write. Therefore,

6By convention, we name sequences with arrows ®f and use juxtaposition for concatenation. For instance, ®ff is a sequence

starting with ®f and ending with f . For a concrete sequence we sometimes use list notation, as in [f1, f2, f3 ].
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and as the rules that take advantage of the entire sequence of states in the atomic case are fairly
involved, in the remainder of the paper we only use the atomic points-to predicate with a single
state and present specialized proof rules for this simpler case.

Message Passing Example. The message passing example contains reads and writes of all kinds.
This makes it a great example to explain the read and write rules in Spirea and to see how invariants
facilitate resource transfer between threads. We start with the write assertion for ~:

q~,mp (⊥, E) , E = 0 ∗ tok0 q~,mp (>, E) , E = 1 ∗ (G ↩→na [⊥,>] ∨ tok1)

The equalities on E should be clear. The two tokens, tok0 and tok1, are exclusive: Only one of each
exist and hence tok= ∗ tok= is a contradiction (i.e., it implies false). This is a standard construction
using Iris ghost state. The purpose of these tokens and the disjunction is best explained in the proof.

Notice how we split the initial resources from the �rst to the second line in Fig. 7. The left thread
gets the non-atomic points-to predicate for G and the right thread gets the token tok1. The rest is
knowledge, so both threads get a copy. We now cover the two writes and the two reads.

Non-atomic write (G Bna 37). The rule Ht-na-write states that to write E to a non-atomic location
one must pick a target state fC . We choose >. The precondition requires an invariant assertion, a
points-to predicate, that the write assertion holds, and that the new state preserves the order of
the states. All of these are trivial: we have an invariant assertion, a points-to predicate ending in
the state ⊥, qG (>, 37) is immediate from the de�nition in eq. (1), and ⊥ v > per de�nition. In the
postcondition we receive an updated points-to predicate with the newly written state appended at
the end. Non-atomic writes are usually this trivial, as precise information about them is known.

Atomic write (~ Bat 1). The �rst line of the precondition of Ht-at-write is similar to what we just
saw for non-atomics. We pick the state > for the write and show the write assertion by choosing
the left side of the disjunction and using our points-predicate for G . That is, we transfer ownership
over G into the invariant. The conjunct on the second line of the precondition of Ht-at-write serves
to maintain the monotone order of writes. Since atomic locations can be shared, we need to account
for potential racy writes to the location. The universally quanti�ed f2 represents such a write and
the obligation is to show that it and the written state fC can transition between each other, f2 v fC
and fC v f2 . This ensures that they are equivalent w.r.t. the preorder and that the order of the states
is preserved no matter which of the two racy writes end up �rst in the memory order. To show this
obligation the writer can assume the assertion of both the original state f , the concurrent state
f2 , and the written state fC . If we look at the whole program we are verifying it is clear that there
are no concurrent writes to ~. But, as we are verifying the left thread modularly in isolation, we
must be able to draw this conclusion based solely on the invariant. To this end, we assume some
concurrent write f2 and must show f2 v > v f2 . If f2 = > the conclusion is trivial. If the f2 = ⊥
the conclusion is impossible. Fortunately, in this case we have the invariant for ⊥ twice, hence we
have the token tok0 twice, which is a contradiction. Intuitively, the token tok0 represents the right
to write ⊥ to G , and since only one token exists, this state can only ever be written once.
Atomic read (!at ~). Now in the right thread we, apply Ht-at-read. At the present time we can

ignore the 〈obj〉 and 〈PF〉 in the rule. We have the invariant and the points-to predicate required
in the precondition. The last conjunct lets us open the invariant, access its content, and potentially
transfer resources in and out of the invariant. The resource & represents the resources that we
want to transfer out of the invariant. We use

& (⊥, E) , E = 0 & (>, E) , E = 1 ∗ G ↩→na [⊥,>] .

Hence, if we read 1 we transfer the points-to predicate for G out. We need to show the wand in
Ht-at-read. For some read state fA and value EA the reader receives the invariant q (fA , EA ) (the
antecedent of the wand). We now have access to the content of the invariant, but, since the invariant
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also appears in the consequent the access is temporary—we say that we have to close the invariant.
If fA = ⊥ then & (⊥, EA ) is plain knowledge and showing it and the invariant is trivial. If fA = >
then we use G ↩→na [⊥,>] to show& (>, EA ). However, now we can not use this points-to predicate
to close the invariant. Fortunately, the invariant contains a disjunction and we can show the right
disjunct using the tok1 that the right thread owns. That is, we transfer tok1 in to the invariant
in order to transfer G ↩→na [⊥,>] out of the invariant. This sort of reasoning is well-known to
readers familiar with Iris invariants, but it is in fact signi�cantly stronger than the read rule in GPS
and iGPS. In these logics, a read can only transfer knowledge out of the invariant—transferring
ownership over resources is not possible! Returning to the proof, having shown the preconditions
for the read, we now get& in the postcondition. The case where we read 0 is trivial, so we consider
the case where we read 1 and enter the branch. In this case we have the points-to predicate for G
after the read, as shown in the proof outline. All that remains is to show that the read of G yields 37.

Non-atomic read (!na G).We apply Ht-na-read which is much like the read rule for atomics, which
we just went through. The notable di�erence is that for a non-atomic is it certain that the last state
in the points-to predicate (f in the rule) is read. Hence, the rule does not quantify over some read
state. When applying the rule we pick & (E) , E = 37, which is easy to show when opening the
invariant, and which gives us what we need.

RMW Operations. We have now seen the rules for reading and writing. Spirea also contains rules
for the RMW operations CAS and FAA. We do not include these rules for space reasons and since they
are rather complex. Since RMW operations are simultaneously both a read and a write, our rules
for these essentially combine the read and the write rule. The rules require that the write assertion
is shown for the read value (like Ht-at-read) and the written value (like Ht-at-write). This is in
contrast to other CSLs for weak memory, where the equivalent notion to our write assertion would
not have to be shown for the read value. This makes resource transfer through RMW operations
more restricted, but ensures that invariants are sound. In §6.2 we show how to combine Spirea
with BaseSpirea for examples where the CAS rule is not strong enough, in §6.3 we see an example
where the CAS rule is su�cient, and we discuss the limitation further in §7.

Flushes and Fences. To verify programs using �ushes and fences we need assertions that capture
the knowledge gained by these operations. Consider the pre-crash code in Fig. 8. Just after writing
to G the thread merely knows that the write with state > exists (which implies that a successive
read reads this or a more recent state). Knowledge of this form is captured by the store lower bound
assertion ℓ %s f . The program then �ushes G and carries out an asynchronous fence. After this
the thread knows that the write will persist before any succeeding writes. This form of knowledge
is represented by the �ush lower bound ℓ %f f . Suppose the program had instead carried out a
synchronous fence. The thread would then know that the write had been saved to persistent memory.
The persist lower bound ℓ %p f represents this knowledge.

These assertions are lower bounds, in the sense that ℓ %; f implies knowledge of a write in
at least state f but not that this is necessarily the most recent state. This, together with the fact
that states grow monotonically, makes the assertions knowledge (lb-knowledge). The three lower
bound relations are ordered as shown in lb-persistent-flush-store since a state is written before it
is �ushed, and since a synchronous fence is strictly stronger than an asynchronous fence.
Following the above, the e�ect of �ushing a location ℓ and a fence is then that the most recent

write f known to the �ushing thread advances from ℓ %s f to ℓ %f f (in the case of an asynchronous
fence) or to ℓ %p ℓ (in the case of a synchronous). The rules for �ush and fence should achieve
this while taking the following three things into account: (1) flush and fence are two separate
operations and the fence may not necessarily immediately follow the �ush. (2) A fence can apply to
arbitrarily many preceding �ushes. (3) A fence is not only used in combination with a �ush. As in
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Fig. 2b it is also used in combination with an acquire-read to acquire persist information from the
release-write. We want our program rules to support all these usage patterns. To this end Spirea
includes two fence modalities: 〈PF〉 and 〈PFS〉. The assertions 〈PF〉 % and 〈PFS〉 % mean that % holds
after the next asynchronous fence and synchronous fence, respectively.

In Fig. 8 we apply Ht-flush at the flush operation. The precondition takes a store lower bound
that we can extract from G ↩→na [⊥,>] using mapsto-store-lb. The postcondition contains both
a �ush lower bound under 〈PF〉 and a persist lower bound under 〈PFS〉 such that the flush can
later be matched with both types of fences. In our case we only need the �ush lower bound. At
fence we use Ht-fence. This rule (and Ht-fence-sync) exactly matches the intuition of the fence
modalities. If % holds under a fence modality, then executing a fence eliminates the modality. In
our case this means that we have the �ush lower bound after the fence. Note, that since the fence
modalities are modalities and have a separation rule (as mod-sep) the result from several �ushes
can be combined and extracted with a single fence. In the rule Ht-at-read the extracted resource
& is under a fence modality which enforces that a fence be used when necessary. As such, using
modalities for fences neatly achieves the requirements stated above.
To conclude the proof of the pre-crash program in Fig. 8 we de�ne the write assertion for ~

q~,� (f, E) , (f = ⊥ ∗ E = 0) ∨ (f = > ∗ E = 1 ∗ G %f >). (2)

The assertion contains a �ush lower bound for G when ~ has the state >. To prove this at the write
to ~ we use the �ush lower bound gained from the �ush and the fence. In the next section we see
how this is used to verify the recovery code.

Non-Deterministic Post-Crash Modality. To verify the entire �ush and fence example, including
the recovery code, we apply Htr-idempotencewhere we must pick a crash condition&2 . The ' in the
rule is the precondition for the recovery code in Fig. 8. As a crash condition we pick 〈PC〉 '. Using
the post-crash modality directly in the crash condition like this is common in Spirea as it turns
out to be the most convenient approach in practice. Proving the wand for ' in Htr-idempotence

becomes trivial, and the proof e�ort is concentrated on showing the crash condition at every step.
In order to do this, we need to understand how our post-crash modality works. The rules for it
appear in the lower half of Fig. 5.

Consider how an invariant ℓ c should change at a crash. As we have mentioned, our invariants
are crash-aware, and we want them to survive crashes. At the same time our programming language
supports allocation, and since allocations might not persist before a crash, locations can be entirely
lost at crashes. If a location is not lost after a crash, we say that it was recovered after the crash, and
only in this case would it make sense still to have an invariant assertion for it. Such a situation is
common, and we capture it by an if-recovered modality: the assertion 〈ifRec〉ℓ % mean that if the
location ℓ was recovered at the last crash, then % (which would typically mention ℓ) holds. The
rule PC-invariant is now clear: it preserves invariants for locations as long as they are recovered.
The if-recovered modality captures some of the non-determinism at a crash. Additional non-

determinism is present in the rule PC-na-mapsto for non-atomic points-to predicates. Here the
non-determinism is represented by the existential quanti�er. The rule states that, for some 8 , only
the �rst 8 states of the points-to predicate exist after the crash (ignore the k in the rule for now,
it is explained later in the section). For state f8 , the rule contains the assertion crashedIn(ℓ, f8 ).
The meaning of this assertion is that f8 is the most recent recovered state for ℓ , which is exactly
how it is used in the rule. Only one such state exists so two such assertion must agree on the state
rec-in-agree. The crashedIn(ℓ, f8 ) assertion also implies that ℓ was in fact recovered and it can thus
be used to eliminate the if-recovered modality as seen in rec-in-if-rec.
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The only way to know with certainty that a location will be recovered is through a persistent
lower bound ℓ %p f . Per PC-persist-lb a persistent lower bound is preserved across a crash (again,
ignore k ) and the most recent recovered state fA has to be at least f . In contrast, a store lower
bound clearly o�ers no knowledge after a crash as it only deals with the weak memory order. But
what about a �ush lower bound? A �ush lower bound (and the flush and fence it represents)
provides no knowledge of the state of the persistent memory, and as such it too has no meaningful
interaction with the post-crash modality. Its e�ect is more subtle and only restricts the order of
persists, as in the �ush and fence example where the write to G persists before the write to ~. To
tease out this e�ect in the logic we introduce a post-crash-�ush modality: 〈PCF〉 % means that %
holds after a crash if we are in the fortunate scenario where everything �ushed and fenced actually
reached persistent memory before the crash. In this case, a �ush lower bound is just as good as
a persist lower bound, and PCF-flush-lb results in the same resources under the post-crash-�ush
modality as we saw in PC-persist-lb. The post-crash-�ush modality is weaker than the post-crash
modality (PC-PCF) so the rules for the post-crash modality also applies to it.

The single place where we use the post-crash-�ush modality is in the second condition for write
assertions in the de�nition of invariants (Def. 4.1). This condition is necessary to make it possible
to transfer invariants across a crash, i.e., it is used to prove soundness of PC-invariant. During this
proof the write assertion q must be established for the recovered state f . Since f was recovered, it
must have persisted before the crash, and thus anything �ushed and fenced prior to f (that q might
know about) is also guaranteed to have persisted. As such, using the post-crash-�ush modality
in the condition is su�ciently strong, and allows us to use PCF-flush-lb to show that q holds for
the recovered state. We note that, in our example, it is easy to show (using PCF-flush-lb) that the
second condition in Def. 4.1 does indeed hold for qy,� .

By using the rules for the post-crash modality it is now quite trivial to show the crash condition
at every program point in the pre-crash code. And with the resources after the crash established,
proving the recovery code is also straightforward. If reading 1 from ~ the recovery code learns
that f~ = > and acquires the resource G %f > from the invariant. The �ush lower bound can
be weakened to G %s > per lb-persistent-flush-store, and combined with G ↩→na [fG ] the rule
mapsto-na-store-lb implies that > v fG , which in turn means that fG = >. With that established
reading G is sure to result in 37 just as what we saw in the message passing example.

Subjectivity. We now take a step back and consider an issue that we have so far swept under the
rug. Propositions in Spirea can be subjective. That is, describe facts that are true from one thread’s
perspective, but that are not necessarily true from the point of view of other threads. For instance,
after the left thread in Fig. 8 has �ushed G it knows 〈PF〉 G %f >. But, as a �ush by one thread
provides no orderings across threads, it would be unsound to transfer this resource to another
thread. We thus need to make certain restrictions on resource transfer. We accomplish this with
three comonadic modalities. The no-bu�er modality, 〈NB〉 % , means that % does not contain any of
the post-fence modalities.7 The �rst condition in Def. 4.1 uses this modality to ensures that the
described unsound transfer is not possible. Write assertions that invole 〈PF〉 or 〈PFS〉 do not pass
this requirement. The no-�ush modality, 〈NF〉 % , adds the requirement that % does not contain
knowledge of �ushes ℓ %f f . Assertions of the form 〈NF〉 % are of interest as they can safely be
extracted from the post-fence modality per post-fence-no-flush. This is what allowed us to ignore
the 〈PF〉 modality when we applied Ht-at-read in Fig. 7 as the & we picked did not use �ush lower
bounds. Finally, the objectively modality, 〈obj〉 % , means that % holds at all points of view of the
memory and thus that it is always sound to transfer % between threads. Examples are ℓ %p f and

7The name refers to the fact that �ushes use a bu�er in the operational semantics.
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ℓ c . One use of this modality is in Ht-at-read where it ensures that the reading thread can not
transfer subjective resources to other reading threads.

State-Change Function. The �nal component of invariants that we still have not seen is state-
change functions. To understand the need for these, consider how we would verify the optimized
message passing example in Fig. 2d. Similar to the veri�cation in Fig. 8, the write to I need
to carry with it the knowledge G %f >. In order for the left thread to have this knowledge it
must acquire G %s > when reading ~. As such, the write assertion for ~ must have the form
q~ (>, E) , E = 1 ∗ G %s >. However, as there are no fences between the writes to G and ~, if the
recovery code were to read ~ it would be unsound for it to gain the knowledge G %s >. In other
words, the write to ~ serves to transfer a resource to concurrently running threads that should not
be available to recovery code. To capture this, a monotone state-change functionk can change the
state of a write after a crash. The idea is that if a write corresponds to the state f before a crash,
it then corresponds to k (f) after the crash. This is evident by looking at the crash related rules
in Fig. 5 where states under the post-crash modality always havek applied to them. In examples
where the above issue does not arise, the state-change function can simply be the identity function,
and then theks can be ignored as we have done so far.
In order to verify the optimized message passing example we can extend the set of states for ~

with an additional state fpc that is below the two other states. The state-change function transitions
every write into this state at a crash: k (f) , fpc . The write assertion for this state is simply
q~ (fpc, E) , E = 0 ∨ E = 1. This ensures that if the recovery code were to read ~ it would gain no
information whatsoever while still allowing for the desired resource transfer to work.

Summary. We have now completed our tour of Spirea. We hope it has become clear that it
supports thread-local modular reasoning by extending ideas from separation logic, in particular
ownership and resource transfer, with a range of modalities, which allow us to capture the subtle
conditions under which resource transfer is sound.

5 SOUNDNESS

In this section we present an overview over the operational semantics of _pmem, state the soundness
theorem of Spirea, and give an overview of the model, including some of the details. Readers who
are more interested in seeing Spirea applied to examples can proceed to our case studies in §6.

5.1 Operational Semantics

The semantics of _pmem is a small-step interleaving operational semantics. Like prior such semantics
for weak memory, it is based on views. For instance, Bila et al. created a view-based operational
semantics for the x86 and ARM persistency models [Bila et al. 2022].

The small-step semantics is lifted to a big-step recoverable execution relation of the form 4A ; d ⇒r

d ′; B . Here, 4A is the recovery expression to execute after a crash, d and d ′ are machine con�gurations,
and B ∈ {NotCrashed,Crashed} is a crash-status. A machine con�guration contains the state of
entire machine, in particular the memory and all threads. The meaning of the relation is then: a
machine in state d can execute to state d ′ with zero or more crashes along the way where 4A is
executed after every crash. The crash-status indicates whether the execution has been crash free or
not. If B = NotCrashed the execution was crash free and otherwise if B = Crashed then one or more
crashed occurred. As we see below the soundness theorem is stated in terms of the recoverable
execution relation.
The full operational semantics appears in the appendix [Vindum and Birkedal 2023b].
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5.2 Soundness

Before we state the soundness theorem we de�ne the safety result that the soundness theorem
implies.

De�nition 5.1 (safe). For expressions 4 and 4A , memory con�gurationM , and meta-level predicates
on values Φ and ΦA , safe(4, 4A ,M,Φ,ΦA ) holds if, for any recoverable execution

4A ; 〈M, [〈4, 〈⊥,⊥,⊥〉〉]〉 ⇒r 〈M, ®C〉; B

it is the case that: (1) For every thread 〈4,T〉 ∈ ®C , if 4 is not a value then the thread is not stuck.
(2) For 〈4′,T〉 = (®C)1, if 4

′ is a value E (i.e., the initial expression 4 terminated) then Φ(E) holds if
B = NotCrashed and ΦA (E) holds if B = Crashed.

Theorem 5.2 (soundness). Given expressions 4 and 4A , meta-level predicates on values Φ and ΦA ,

a �nite set of location !, and for each ℓ ∈ !: an access mode 0ℓ , an invariant cℓ , a state fℓ ∈ cℓ .q ( i.e.,
an element of the state of the invariant cℓ ). Let ' be the resource

∗
ℓ∈dom(ℎ)

ℓ cℓ ∗ ℓ %p fℓ ∗ ℓ ↩→0ℓ
fℓ .

If ' −∗ ∗ℓ∈dom(ℎ) cℓ .q (fℓ , Eℓ ) and the recovery Hoare triple {'} 4 	 4A {Φ}{ΦA } are provable in
Spirea then safe(4, 4A , 〈ℎ,P〉,Φ,ΦA ) holds where ℎ(ℓ) = 〈Eℓ ,⊥,⊥,⊥〉 and where P(ℓ) = 0 for all ℓ ∈ !.

This theorem applies to a memory that is not necessarily empty to begin with. When applying
the soundness theorem one then gets to pick, for each location, its access mode, invariant, initial
state, etc. The resource ' then contains the resources for all locations. It must then be shown that
the invariants hold for the initial states, and to do this one can use '. This is such that the initial
invariants can use resources (persistent lower bounds, points-to predicates, etc.) for other locations.

5.3 Model

We give a brief overview of the model of Spirea and highlight some of the underlying key ideas.

Overall Structure. Spirea is modeled atop a lower-level logic that we call BaseSpirea. BaseSpirea is
constructed as an instantiation of Perennial’s program logic framework based on the Iris base logic.
This framework gives BaseSpirea basic de�nitions of the three Hoare triples/quadruples. Based
on these we de�ne various assertions to represent the physical state, de�ne a post-crash modality,
and prove program rules. However, these program proof rules directly expose the intricacies of the
operational semantics, such as views, timestamps, and histories, and thus, while perfectly capable
of verifying programs, BaseSpirea is quite tedious to use. We explain BaseSpirea in more detail
in the appendix [Vindum and Birkedal 2023b]. To provide the more abstract reasoning rules of
Spirea, we use BaseSpirea to model Spirea. It is at this level that we add crash-aware invariants,
the facilities for handling persistent memory instructions without explicit mention of views, and a
post-crash modality that works for the higher-level assertions.

Crash-Aware Invariants. As mentioned in the introduction, a key challenge w.r.t. the model of
Spirea’s crash-aware invariants is that it is not clear how Iris invariants can be reconciled with
crashes. We therefore take a di�erent approach to invariants than other Iris-based logics for weak
memory in that we do not model our crash-aware invariants using Iris invariants. Instead our
model includes the resources for invariants inside the state interpretation. The state interpretation
is a resource that is threaded through Hoare triples/quadruples in the program logic. With this
approach the content of invariants is only available in the context of a Hoare triple/quadruple (as
opposed to Iris invariants that can be accessed independently of a program). However, this is the
case already in prior logics for weak memory, as accessing invariants in a weak memory model
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needs physical synchronization. The bene�t of our approach is that when a crash occurs (more
precisely, when proving soundness of Htr-idempotence), the resources belonging to all invariants
are found inside the state interpretation, and can then be systematically updated to account for the
crash.

Post-Crash Modality. We explain our post-crash modality with a simpli�ed sketch of its model
that highlights the key ideas.

J〈PC〉 %K , _T , ®Wold .∀®Wnew . '(®Wold, ®Wnew) −∗ '(®Wold, ®Wnew) ∗ J%K(〈⊥,⊥,⊥〉, ®Wnew)

The semantic domain of propositions in Spirea is monotone predicates over thread views and a
record of ghost names (denoted ®W ). This explains why the model of the modality is a function taking
two such arguments. Since resources are changed by a crash, new ghost resources along with new
ghost names are introduced after a crash. The universal quanti�er is over any such new record of
new ghost names. However, the new resources are, to some extent, related to the old resources.
The relationship is represented by the exchange resource ', which makes it possible to exchange old
resources (valid before the crash) into new resources (valid after the crash). This works through
rules of the form %old ∗ '(®Wold, ®Wnew) −∗ %new ∗ '(®Wold, ®Wnew). Here %old could be a points-to predicate
before the crash and %new would then be an updated points-to predicate corresponding to the
physical state after the crash. When proving soundness of a rule such as PC-na-mapsto we then use
the exchange resource to acquire the updated points-to predicate. Note that as ' appears in the
conclusion, it can perform these exchanges without being consumed itself. This is necessary to
prove rules such as mod-sep for the post-crash modality. The de�nition of ' is rather extensive as it
must allow for resource exchanges for all the various resources used in the model. Establishing '
is done in the soundness proof of Htr-idempotence. This rule is given an assumption involving a
post-crash modality, and to extract the resource under it, ' must be procured.

6 CASE STUDIES

In order to demonstrate the usefulness of our logic we have used it to verify several case studies.

6.1 Read-Optimized Reference

To show how Spirea supports modular speci�cations, we give in Fig. 9 a speci�cation of a library
implementing what we call read-optimized references. This module implements an interface that
appears to clients as a single reference that can be read and writen. The implementation however
optimizes the performance of reads. It does this by storing the content of the reference redundantly
both in a “volatile” location (one can imagine it being stored in faster volatile memory) and in a
persistent location (in the slightly slower persistent memory). When a client writes to the read-
optimized reference the value it is saved to both locations, but when reading only the volatile
reference is consulted for improved performance.

In the speci�cation, an abstract (existentially quanti�ed) predicate isRR(vr, E) is used to abstract
over (hide from clients) the concrete data representation used by the library implementation;
intuitively, it means that the value vr is a read optimized value with value E . After a crash, the
volatile location might be lost and hence the reference needs to be recovered before it can be used
after a crash. The abstract predicate recRR(vr, E) intuitively means that vr needs recovery. Just like
in the veri�cation of the �ush and fence example we choose a crash condition that directly contains
the post-crash modality. This simpli�es the speci�cation, in particular, in the crash condition for
write. During the execution of write, after updating the volatile location but before updating
the persistent location, the read-optimized reference is in an inconsistent state where it satis�es
neither isRR for the old value nor the new value. Instead of trying to express this intermediate state

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 244. Publication date: October 2023.



Spirea: A Mechanized Concurrent Separation Logic for Weak Persistent Memory 244:19

init , _v.

let per = refna v in

flush per; fencesync;

let vol = refna v in

(per, vol)

read , _vr. !na (c2 vr)

write , _vr, v.

(c1 vr) Bna v;

flush (c1 vr); fencesync;

(c2 vr) Bna v

recover , _vr.

let per = c1 vr in

let vol = refna (!na per) in

(per, vol)

{True} init E {vr . isRR(vr, E)}{True} {isRR(vr, E)} read vr {F. E = F ∗ isRR(vr, E)}{〈PC〉 recRR(vr, E)}

{isRR(vr, E)} write vr F {D. isRR(vr,F)}{〈PC〉 ∃D ∈ {E,F}. recRR(vr, D)}

{recRR(vr, E)} recover vr
{
vr′ . isRR(vr′, E)

}
{〈PC〉 recRR(vr, E)} isRR(vr, E) ` 〈PC〉 recRR(vr, E)

Fig. 9. Implementation and specification of the read-optimized reference

makeStack , __.

let node = refna nil in

flush node;

fence;

refat node

sync , _toHead.

flush toHead;

fencesync;

nil , inj1 ()

cons v toNext , inj2 (v, toNext)

pop , rec loop toHead =

let head = !at toHead in

fence;

match !na head with

inj1 _ ⇒ inj1 ()

inj2 pair ⇒

let next = !na (c2 pair) in

if CAS toHead head next

then inj2 (c1 pair)

else loop toHead

push , _toHead, val.

let toNext = refna () in

let newNode =

refna (cons val toNext) in

flush newNode;

(rec loop () =

let head = !at toHead in

toNext Bna head;

flush toNext; fence;

if CAS toHead head newNode

then () else loop ()) ()

Fig. 10. Implementation of the durable Treiber stack

we give the client what they actually need: the information that after a crash the read-optimized
reference is recoverable in either the old or the new state.
Our Coq mechanization contains the full proof of the speci�cation.

6.2 Atomic Persists

Raad et al. [2020a] used the POG logic to verify an example where one thread writes to two locations,
�ushes and fences the writes, and transfers the information to a second thread through a spin lock.
They call this example the atomic persists example. Due to the limitations of the CAS rule in Spirea
we can not verify the spin lock in Spirea. Instead we verify the spin lock in BaseSpirea but give
it a speci�cation inside Spirea. We give the lock a crash-aware lock speci�cation, similar to the
one found in Perennial [Chajed 2022, Chapter 3]. With the lock veri�ed in BaseSpirea we can then
verify the rest of the example purely in Spirea. This demonstrates both how to use BaseSpirea in
combination with Spirea and modularity. In the proof given by Raad et al. [2020a] the lock and the
clients are veri�ed together using one global invariant that contains knowledge about the locations
used both internally in the lock and in the two clients. Hence, if the lock implementation is changed,
the entire proof is a�ected. In our proof the lock is given a modular speci�cation and a change in
the lock implementation will only a�ect this proof and not the veri�cation of the clients. For more
details see appendix or the full proof in our Coq mechanization.
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{True} makeStack () {ℓ . isStack(ℓ, q)} {isStack(ℓ, q) ∗ q (F)} push ℓ F {True}

{isStack(ℓ, q)} pop ℓ {E . E = inj1 () ∨ ∃G . E = inj2 G ∗ q (G)} {isStack(ℓ, q)} sync ℓ {synced(ℓ)}

isStack(ℓ, q) −∗ 〈PCF〉 isStack(ℓ, q) isStack(ℓ, q) ∗ synced(ℓ) −∗ 〈PC〉 isStack(ℓ, q)

Fig. 11. Specification of the durable Treiber stack

6.3 Durable Data-Structures With Null-Recovery

Concurrent non-blocking data structures have the property that they can be made durable and
crash-safe by appropriately inserting �ushes and fences [Friedman et al. 2020; Izraelevitz et al.
2016]. They furthermore enjoy null-recovery. As mentioned, this is the property that no recovery
code is needed after a crash to restore the consistency of the data structure. Data structures with
this property are by construction always in a consistent state—even after a crash. This makes them
particularly well suited in a persistent setting and easier to use as clients of such data structures
do not need to carry out recovery procedures (in contrast to, for instance, the read optimized
reference). One would therefore hope to be able to derive similarly easy to use CSL speci�cations
for such data structures. In this section we show how this is the possible in Spirea and explain
how to specify and verify safety (including thread-safety and crash-safety) of non-blocking data
structures with null-recovery. In our Coq mechanization we have veri�ed durable implementations
of both the Treiber stack and the Michael-Scott queue. These case studies show that our crash-aware
invariants are su�ciently expressive to capture representation predicates for durable concurrent
data structures and capable of handling null-recovery.

For space reasons we cover only the Treiber stack in this section. We focus on the resulting spec-
i�cation and sketch the proof. The full veri�cation of both examples appears in our mechanization.

6.3.1 Implementation. The Treiber stack consists of a pointer to a linked list where, for thread-
safety, the pointer is updated with CAS. The implementation of the stack appears in Fig. 10. We use
pointers to sums to represent nodes in the linked list: inj1 () represents a nil-node and inj2 (E, ℓ)
represents a cons-node with value E and with ℓ pointing to the succeeding node. In order to make
the stack crash-safe we have inserted �ushes and fences appropriately.
Our implementation is bu�ered durable linearizable, which means that it never waits (with

fencesync) for an operation to reach persistent memory, but only ensures (with fence) that opera-
tions persist in the order in which they linearize. This improves performance but means that at a
crash some returned operations might be lost. As is common for such data structures we include a
sync operation that explicitly makes sure that the stack is persisted by using fencesync.

6.3.2 Specification. The speci�cation (in Fig. 11) enforces that a predicate q : Val → dProp holds
for each item in the stack. The speci�cations make use of an abstract (existentially quanti�ed)
representation predicate isStack, which is persistent, in the Iris sense, and hence duplicable, so
that several threads can access the stack concurrently. Since isStack is persistent it does not need
to appear in crash-conditions and hence we can use normal Hoare triples instead of crash Hoare
triples. As such, the non-highlighted part forms a completely typical per-item CSL speci�cation for
a concurrent stack. This is exactly what we want, as it implies that a client can use the durable
stack as they would a normal stack. Note that our speci�cation does not imply linearizability or
the LIFO property of the stack, but it does imply thread-safety and crash-safety.

The three highlighted rules are speci�c for persistent memory. The �rst of these shows that by
running sync ℓ one gets the resource synced(ℓ) which is evidence that the stack has been persisted.
The two last rules concern the interaction between isStack and the post-crash modalities. The �rst
rule states that if ℓ is a stack before a crash then after a crash it is still a stack, but only under the
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synced(ℓ) , ℓ %p ★

isStack(ℓ, q) , ℓ cstack (q) ∗ ℓ ↩→at ★

qstack (q) (_, E) , ∃ℓℎ, xs ∈ List(Val). E = ℓℎ ∗∗
G∈xs

q (G) ∗ isNode(ℓ, xs)

isNode(ℓnode, []) , ∃@. ℓnode inj1 () ∗ ℓnode ↩→
@
na ★ ∗ ℓnode %f ★

isNode(ℓnode, G :: xs) , ∃ℓtoNext , ℓnext , @1, @2, ®f, 8 . ℓnode inj2 (G, ℓtoNext ) ∗ ℓnode ↩→
@1
na ★ ∗ ℓnode %f ★ ∗

ℓtoNext ctoNext ∗ ℓtoNext ↩→
@2
na ®f (8, ℓnext ) ∗ ℓtoNext %f (8, ℓnext ) ∗ isNode(ℓnext , xs)

Fig. 12. Invariants and definitions used in the proof of durable concurrent stack

〈PCF〉 modality since the stack is bu�ered. The second rule applies if the stack is certain to have
been persisted, as witnessed by synced; in this case the stack is preserved under the 〈PC〉 modality.
The last two rules capture not only crash-safety but also the null-recovery property of the

stack. They imply that with no recovery code needed, the isStack representation predicate can be
reclaimed after a crash, and thus that a client can safely keep using the stack after a crash.

For the speci�cation to be sound in our weak persistent memory setting, the per-item predicate
q must satisfy that for all E ∈ Val it is the case that (1) q (E) ` 〈NB〉 q (E), (2) q (E) ` 〈PCF〉 q (E),
and (3) q (E) ` �q (E). The �rst two requirements are necessary to make q safe to transfer between
threads and across crashes. The third requirement expresses that q must be persistent (in the Iris
sense). This is required for a subtle reason: Since the stack is bu�ered, operations might return
before they persist. Therefore, a value E can be popped from the stack (at which point the client is
given q (E)), and then a crash can happen before the changes by the pop persist. Then, after the
crash, E is still present in the stack, and thus it can be popped again (at which point the client is
given q (E) once more). In summary, due to crashes, the same value can be popped several times
and hence the resource must be duplicable, i.e., persistent. This requirement holds, for instance, for
simple properties such as E being an even number and for assertions about atomic locations. Had
the implementation been non-bu�ered, i.e., implemented using the synchronous fence, then this
requirement could be removed.

6.3.3 Proof (sketch). The proof proceeds by de�ning the predicates synced and isStack and then
verifying that the speci�cations hold. The de�nition of synced expresses that ℓ has been persisted.
For isStack we use three invariants. In all three thek function is the identity function. Two of the
invariants use the abstract state set 1 = {★}. Elements of this abstract state carry no information,
but lower bounds are still meaningful, e.g., ℓ %f ★means that location ℓ has certainly been �ushed.
For a node the pointer to the sum never changes. For these locations we use the constant

invariant. Given a value E the constant invariant cconst (E) has the abstract state 1 and the invariant
qconst (_, E

′) , E = E ′. We use the notation ℓ E for ℓ cconst (E) .
The pointer from a cons-node to its successor potentially changes many times in push if the CAS

in push fails. For this location we use the invariant ctoNext . Its abstract state is N × Val ordered by
the natural numbers in the �rst component. The invariant is qtoNext = _(=, E), E ′ . E = E ′.
For the stack itself (the pointer to the head of the linked list) we use the invariant cstack (q). Its

abstract state is 1 and the invariant qstack (q) appears in Fig. 12. It states that there exists a logic-level
list xs, all of whose elements satisfy q , and it uses isNode to recursively express that the structure
of the linked list corresponds to xs.

With these de�nitions and invariants in place the proof that the code satis�es the speci�cation
is fairly straightforward; see our Coq mechanization for the details.
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We �nally remark that a similar (non-persistent, non-weak memory) concurrent stack can be
veri�ed in standard Iris [Birkedal and Bizjak 2020]. The Iris proof uses an Iris invariant to de�ne
the isStack representation predicate.

7 RELATED AND FUTURE WORK

We now discuss aspects of related work that have not already been treated in the paper.

Logics for Persistent Memory. To our knowledge, there are only two prior program logics for
persistent memory, namely Persistent Owicky-Gries (POG) [Raad et al. 2020a] and Pierogi [Bila
et al. 2022]. Both POG and Pierogi focus on the persistent memory model of the x86 architecture
[Raad et al. 2020a], which is stronger, both in terms of weak and persistent memory, than our
memory model, which does not include details speci�c for any one architecture; instead it is a slight
generalization of the persistent memory models in x86 and ARM. The programming languages
covered by POG and Pierogi are much simpler than ours, _pmem; the languages in op. cit. support
only a static number of threads running sequential commands, and a static number of memory
locations. In contrast, _pmem includes more high-level features such as higher-order functions and
dynamic allocation of threads and locations.

Both POG and Pierogi are Owicki-Gries-style program logics. POG makes use of rely-guarantee
style reasoning to support composition of threads that do not interfere, whereas Pierogi does not
support thread-local reasoning. In contrast, Spirea is a separation logic and hence it supports frame
rules and thread-local reasoning. Moreover, since Spirea is built on top of Iris, it includes advanced
features such as user-de�neable ghost state and higher-order quanti�cation, which are not present
in POG or Pierogi but which are important for modular speci�cation and veri�cation of libraries,
such as the stack case study we considered in §6.3. From Perennial we gain the ability to reason
about durable resources in a convenient fashion using normal separation logic ownership.
In contrast to POG but similarly to Pierogi, our Spirea logic is mechanized in a proof assistant.

Pierogi has been mechanized in Isabelle/HOL and its authors report that the Sledgehammer tool
can be used to search automatically for program proof rules to apply. In contrast, we make use of
the Iris Proof Mode [Krebbers et al. 2017] to support interactive development of program proofs in
the Coq style, which works well for our higher-order logic and larger examples.
Similarly to Pierogi, Spirea supports reasoning directly about optimized �ushes (write-backs)

(flush) and the use of fences. In contrast, POG only supports reasoning about a stronger operation
that combines the write back and the fence. To handle other programs they instead o�er a translation
that in some cases can translate a program with the weaker, and more tricky to reason about,
instructions into equivalent programs. This translation only works for programs that use these
instructions in a certain pattern, and programs that do not adhere to this pattern can not be reasoned
about using their logic. Since we handle these operations directly we can verify such programs.

Finally, POG and Pierogi have, to the best of our knowledge, only been applied to reason about
very small programs consisting of only a few lines, whereas we have used Spirea to verify larger
programs, in particular entire data structures. Additionally we have shown how to give such data
structures modular speci�cations as extensions of traditional CSL speci�cations.

Separation Logic for Weak Memory. GPS [Turon et al. 2014] is a program logic for the release-
acquire and non-atomic fragment of the C11 weak memory model. The logic introduced protocols

to reason about atomic location, the inspiration for our crash-aware invariants. GPS does not use
protocols for non-atomic locations, but instead a standard points-to predicate. As mentioned, this
approach is not su�cient in a persistent setting. The CAS rule in GPS does not require that (what
we call) the invariant for the read value is preserved. When reading E1 and simultaneously writing
E2 with a CAS, the CAS rules in GPS allows one to use the invariant for E1 to show the invariant
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for E2 and keep any additional resources without reestablishing the invariant for E1. This is sound
because the C11 semantics ensures that no CAS operation will ever read E1 again. While this is
also the case in our semantics, after a crash, the write for E1 might have been persisted while the
write for E2 has not been persisted. Then another CAS operation might read E1 again. Hence, in
the presence of crashes the GPS CAS rule is unsound. Our rule for CAS requires that the invariant
still holds for the read value, ensuring that the invariant always holds for all writes. This is sound
even with crashes but is signi�cantly more limiting than the GPS CAS rule. Essentially, the GPS
CAS rule is sound for transferring resources between concurrently running CAS-operations, but
not across crashes. Our CAS rule is sound for transferring resources across crashes, but only in a
limited way between concurrent CAS’es. Creating a CSL rule that is simultaneously sound for both
is very challenging and something that we would like to explore in future work. The CAS rule in
BaseSpirea does not su�er from this limitation, and as demonstrated in §6.2, it can be used together
with Spirea for cases where a stronger CAS rule would otherwise be needed.

The read rule for atomic locations in GPS does not make it possible to transfer exclusive resources
out of the invariant for the value read. Our read rule makes it possible to extract exclusive resources
as long as the invariant still holds (for instance by transferring other resources into the invariant).
We make use of this capability to verify the message passing examples. In GPS an additional feature,
escrows, is needed to verify the message passing examples.
Our use of modalities to reason about fences is inspired by Fenced Separation Logic (FSL), a

program logic that supports reasoning about the release and acquire memory fences in the C11
memory model [Doko and Vafeiadis 2016]. FSL includes two fence modalities to describe resources
that have been prepared for release or acquire by a release or acquire fence. The release and
acquire fences in C11 serve a di�erent purpose than those in _pmem and the modalities in FLS are
correspondingly di�erent as well.
Recently, in the context of weak memory we have seen logics that support speci�cations that

go beyond safety. Compass [Dang et al. 2022] and Cosmos [Mével and Jourdan 2021] are both
capable of showing stronger correctness results by using logically atomic triples as speci�cations. In
contrast, our speci�cation for the durable stack only implies safety. We think it would be interesting
to investigate how ideas from these logics apply in our setting and we believe that a stronger CAS
rule (per the discussion above) is necessary to achieve this.

Separation Logics for Durable Storage. CrashHoare Logic [Chen et al. 2016] and themore advanced
Perennial [Chajed 2022; Chajed et al. 2019, 2021] are separation logics capable of verifying crash-
safety. In contrast to our work, Crash Hoare Logic and prior work using Perennial has only
considered sequentially consistent memory and synchronously persisting writes without any weak
behavior. When writes persist synchronously/atomically the content of durable storage is always
in a single certain state. Therefore, rules for the post-crash modality include no non-determinism
and are simpler “either/or” rules where some (volatile) resources are entirely lost at a crash and
other (non-volatile) resources are preserved unchanged after a crash. In our setting, since the crash
step is non-deterministic, the rules for the post-crash modality are signi�cantly more involved.
Consider for instance a rule such as PC-na-mapsto which illustrates that the post-crash modality
both introduces non-determinism (the quanti�ed 8), potentially takes resources away (represented
both by 〈ifRec〉 and the lost states), and potentially adds new resources (the crashedIn(ℓ, f8 )).

Persistency Models. While our focus in this paper is on the logic, we remark on related work
on persistency models. As mentioned, persistency models of the x86 and ARM architecture have
been formalized [Khyzha and Lahav 2021; Raad et al. 2020b, 2019]. In parallel with our work, new
variants of these that, like our semantics, are based on views have been presented [Cho et al. 2021].
It would be interesting to formally verify a correspondence between the explicit epoch persistency
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model and the x86 and ARM persistency models. We believe that our operational semantics could be
used for this purpose. It would also be worthwhile to show an equivalence between our operational
model and a model in a declarative or axiomatic style.
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