
Controlling unfolding in type theory

Daniel Gratzer1[0000−0003−1944−0789], Jonathan Sterling1[0000−0002−0585−5564],
Carlo Angiuli2[0000−0002−9590−3303], Thierry Coquand3[0000−0002−5429−5153], and

Lars Birkedal1[0000−0003−1320−0098]

1 Aarhus University
2 Carnegie Mellon University

3 Chalmers University

Abstract. We present a novel mechanism for controlling the unfolding
of definitions in dependent type theory. Traditionally, proof assistants
let users specify whether each definition can or cannot be unfolded in
the remainder of a development; unfolding definitions is often necessary
in order to reason about them, but an excess of unfolding can result in
brittle proofs and intractably large proof goals. In our system, definitions
are by default not unfolded, but users can selectively unfold them in a
local manner. We justify our mechanism by means of elaboration to a
core type theory with extension types, a connective first introduced in the
context of homotopy type theory. We prove a normalization theorem for
our core calculus and have implemented our system in the cooltt proof
assistant, providing both theoretical and practical evidence for it.

1 Introduction

In dependent type theory, terms are type checked modulo definitional equality,
a congruence generated by α-, β-, and η-laws, as well unfolding of definitions.
Unfolding definitions is to some extent a convenience that allows type checkers
to silently discharge many proof obligations, e.g . a list of length 1 + 1 is without
further annotation also a list of length 2. It is by no means the case, however,
that we always want a given definition to unfold:

– Modularity : Dependent types are famously sensitive to the smallest changes
to definitions, such as whether (+) recurs on its first or its second argument.
If we plan to change a definition in the future, it may be desirable to avoid
exposing its implementation to the type checker.

– Usability : Although unfolding has the potential to simplify proof states, it also
has the potential to dramatically complicate them, resulting in unreadable
subgoals, error messages, etc. A user may find that certain definitions are
likely to be problematic in this way, and thus opt not to unfold them.

Many proof assistants accordingly have implementation-level support for marking
definitions opaque (unable to be unfolded), including Agda’s abstract key-
word [36] and Coq’s Qed command [38].

2 D. Gratzer et al .

But unfolding definitions is not merely a matter of convenience: to prove a
property of a function, we must unfold it. For example, if we make the definition
of the (+) function opaque, then (+) is indistinguishable from a variable of type
N→ N→ N and so cannot be shown to be commutative, satisfy 1 + 1 = 2, etc.

In practice, proof assistants resolve this contradiction by adopting an inter-
mediate stance: definitions are transparent (unfolded during type checking) by
default, but users are given some control over their unfolding. Coq provides
conversion tactics (cbv, simpl, etc.) for applying definitional equalities, each
of which can be annotated with a list of definitions to unfold; its Opaque and
Transparent commands toggle the default unfolding behavior of a transparent
definition; and the SSReflect tactic language natively supports a “locking”
idiom for controlling when definitions unfold [17]. Agda allows users to group
multiple definitions into a single abstract block, inside of which the definitions
are transparent and outside of which they are opaque; this allows users to define
a function, prove all lemmas that depend on how the function was defined, and
then irreversibly make the function and lemmas opaque.

These mechanisms for controlling unfolding are more subtle than they may at
first appear. In Agda, definitions within abstract blocks are transparent to other
definitions in the same block, but opaque to the types of those definitions; without
such a stipulation, those types may cease to be well-formed when the earlier
definition is made opaque. Furthermore, abstract blocks are anti-modular,
requiring users to anticipate all future lemmas about definitions in a block—
indeed, the Agda standard library [37] uses abstract exactly once at the time of
writing. Coq’s conversion tactics are more flexible than Agda’s abstract blocks,
but being tactics, their behavior can be harder to predict. The lock idiom in
SSReflect is more predictable because it creates opaque definitions, but comes
in four different variations to simplify its use in practice.

Contributions We propose a novel mechanism for fine-grained control over the
unfolding of definitions in dependent type theory. We introduce language-level
primitives for controlled unfolding that are elaborated into a core calculus with
extension types [30], a connective first introduced in the context of homotopy
type theory. We justify our elaboration algorithm by establishing a normalization
theorem (and hence the decidability of type checking and injectivity of type
constructors) for our core calculus, and we have implemented our system for
controlled unfolding in the experimental cooltt proof assistant [29].

Definitions in our framework are opaque by default, but can be selectively
and locally unfolded as if they were transparent. Our system is finer-grained and
more modular than Agda’s abstract blocks: we need not collect all lemmas that
unfold a given definition into a single block, making our mechanism better suited
to libraries. Our primitives have more predictable meaning and performance
than Coq’s unfolding tactics because they are implemented by straightforward
elaboration into the core calculus (via new types and declaration forms); we
anticipate that this type-theoretic account of controlled unfolding will also provide
a clear path toward integrating our ideas with future language features.

Controlling unfolding in type theory 3

Our core calculus is intensional Martin-Löf type theory extended with proof-
irrelevant proposition symbols p, dependent products {p}A over those proposi-
tions, and extension types {A | p ↪→ a} whose elements are the elements of A
that are definitionally equal to a under the assumption that p is true. Extension
types are similar to the path types (Path A a0 a1) of cubical type theory [9,3,2],
which classify functions out of an abstract interval I that are definitionally equal
to a0 and a1 when evaluated at the interval’s respective endpoints 0, 1 : I.

To justify our elaboration algorithm, we prove a normalization theorem for
our core calculus, characterizing its definitional equivalence classes of types and
terms and as a corollary establishing the decidability of type checking. Our
proof adapts and extends Sterling’s technique of synthetic Tait computability
(STC) [34,31], which has previously been used to establish parametricity for an
ML-style module calculus [34] and normalization for cubical type theory [33] and
multimodal type theory [18]. Our proof is fully constructive, an improvement on
the prior work of Sterling and Angiuli [33]; we have also corrected an error in the
handling of universes in an earlier revision of Sterling’s doctoral dissertation [31].

Outline In Section 2 we introduce our controlled unfolding primitives by way of
examples, and in Section 3 we walk through how these examples are elaborated
into our core language of dependent type theory with proposition symbols
and extension types. In Section 4 we present our elaboration algorithm, and
in Section 5 we discuss our implementation of the above in the cooltt proof
assistant. In Section 6 we establish normalization and decidability of type checking
for our core calculus. We conclude with a discussion of related work in Section 7.

2 A surface language with controlled unfolding

We begin by describing an Agda-like surface language for a dependent type
theory with controlled unfolding. In Section 4 we will give precise meaning to
this language by explaining how to elaborate it into our core calculus; for now
we proceed by example, introducing our new primitives bit by bit. Our examples
will concern the inductively defined natural numbers and their addition function:

(+) : N→ N→ N
ze+ n = n
su m+ n = su (m+ n)

2.1 A simple dependency: length-indexed vectors

In our language, definitions such as (+) are opaque by default—they are not un-
folded automatically. To illustrate the need to selectively unfold (+), consider the
indexed inductive type of length-indexed vectors with the following constructors:

vnil : vec ze A
vcons : A→ vec n A→ vec (su n) A

4 D. Gratzer et al .

Suppose we attempt to define the append operation on vectors by dependent
pattern matching on the first vector. Our goals would be as follows:

(⊕) : vec m A→ vec n A→ vec (m+ n) A

vnil⊕ v = ? : vec (ze+ n) A

vcons a u⊕ v = ? : vec (su m+ n) A

As it stands, the goals above are in normal form and cannot be proved;
however, we may indicate that the definition of (+) should be unfolded within
the definition of (⊕) by adding the following top-level unfolds annotation:

(⊕) unfolds (+)
(⊕) : vec m A→ vec n A→ vec (m+ n) A

With our new declaration, the goals simplify:

vnil⊕ v = ? : vec n A
vcons a u⊕ v = ? : vec (su (m+ n)) A

The first goal is solved with v itself; for the second goal, we begin by applying
the vcons constructor:

vcons a u⊕ v = vcons a ? : vec (m+ n) A

The remaining goal is just our induction hypothesis u⊕ v. All in all, we have:

(⊕) unfolds (+)
(⊕) : vec m A→ vec n A→ vec (m+ n) A
vnil⊕ v = v
vcons a u⊕ v = vcons a (u⊕ v)

2.2 Transitive unfolding

Now suppose we want to prove that map distributes over (⊕). In doing so we will
certainly need to unfold map, but it turns out this will not be enough:

map : (A→ B)→ vec n A→ vec n B
map f vnil = vnil
map f (vcons a u) = vcons (f a) (map f u)

map-⊕ unfolds map
map-⊕ : (f : A→ B) (u : vec m A) (v : vec n A)
→ map f (u⊕ v) ≡ map f u⊕map f v

map-⊕ f vnil v = ? : map f (vnil⊕ v) ≡ vnil⊕map f v
map-⊕ f (vcons a u) v

? : map f (vcons a u⊕ v) ≡ vcons (f a) (map f u)⊕map f v

To make further progress we must also unfold (⊕):

Controlling unfolding in type theory 5

map-⊕ unfolds map; (⊕)
map-⊕ : (f : A→ B) (u : vec m A) (v : vec n A)
→ map f (u⊕ v) ≡ map f u⊕map f v

map-⊕ f vnil v = ? : map f v ≡ map f v
map-⊕ f (vcons a u) v =

? : vcons (f a) (map f (u⊕ v)) ≡ vcons (f a) (map f u⊕map f v)

In our language, unfolding (⊕) has the side effect of also unfolding (+): in
other words, unfolding is transitive. To see why this is the case, observe that
the unfolding of vcons a u ⊕ v : vec (su m+ n) A, namely vcons a (u⊕ v) :
vec (su (m+ n)) A, would otherwise not be well-typed. From an implementation
perspective, one can think of the transitivity of unfolding as necessary for subject
reduction. Having unfolded map, (⊕), and thus (+), we complete our definition:

cong : (f : A→ B)→ a ≡ a′ → f a ≡ f a′
cong f refl = refl

map-⊕ unfolds map; (⊕)
map-⊕ : (f : A→ B) (u : vec m A) (v : vec n A)
→ map f (u⊕ v) ≡ map f u⊕map f v

map-⊕ f vnil v = refl
map-⊕ f (vcons a u) v = cong (vcons (f a)) (map-⊕ f u v)

2.3 Recovering unconditionally transparent and opaque definitions

There are also times when we intend a given definition to be a fully transparent
abbreviation, in the sense of being unfolded automatically whenever possible. We
indicate this with an abbreviation declaration:

abbreviation singleton
singleton : A→ vec (su ze) A
singleton a = vcons a vnil

Then the following lemma can be defined without any explicit unfolding:

abbrv-example : singleton 5 ≡ vcons 5 vnil
abbrv-example = refl

The meaning of the abbreviation keyword must account for unfolding
constraints. For instance, what would it mean to make map-⊕ an abbreviation?

abbreviation map-⊕
map-⊕ unfolds map; (⊕)
. . .

We cannot unfold map-⊕ in all contexts, because its definition is only well-
typed when map and (⊕) are unfolded. The meaning of this declaration must,
therefore, be that map-⊕ shall be unfolded just as soon as map and (⊕) are

6 D. Gratzer et al .

unfolded. In other words, abbreviation ϑ followed by ϑ unfolds κ1; . . . ;κn
means that unfolding ϑ is synonymous with unfolding all of κ1; . . . ;κn.

Conversely, we may intend a given definition never to unfold, which we may
indicate by a corresponding abstract declaration. Because definitions in our
system do not automatically unfold, the force of abstract ϑ is simply to prohibit
users from including ϑ in any subsequent unfolds annotations.

Remark 1. A slight variation on our system can recover the behavior of Agda’s
abstract blocks by limiting the scope in which a definition ϑ can be unfolded;
the transitivity of unfolding dictates that any definition ϑ′ that unfolds ϑ cannot
itself be unfolded once we leave that scope. We leave the details to future work.

2.4 Unfolding within the type

The effect of a ϑ unfolds κ1; . . . ;κn declaration is to make κ1; . . . κn unfold
within the definition of ϑ, but still not within its type; it will happen, however,
that a type might not be expressible without some unfolding. First we will show
how to accommodate this situation using only features we have introduced so far,
and then in Section 2.5 we will devise a more general and ergonomic solution.

Consider the left-unit law for (⊕): in order to state that a vector u is equal
to the vector vnil⊕ u, we must contend with their differing types vec n A and
vec (ze+ n) A respectively. One approach is to rewrite along the left-unit law for
N; indeed, to state the right-unit law for (⊕) one must rewrite along the right-unit
law for N. But here, because (+) computes on its first argument, vec n A and
vec (ze+ n) A would be definitionally equal types if we could unfold (+).

In order to formulate the left-unit law for (⊕), we start by defining its type
as an abbreviation that unfolds (+):

abbreviation ⊕-left-unit-type
⊕-left-unit-type unfolds (+)
⊕-left-unit-type : vec n A→ Type
⊕-left-unit-type u = vnil⊕ u ≡ u

Now we may state the intended lemma using the type defined above:

⊕-left-unit : (u : vec n A)→ ⊕-left-unit-type u
⊕-left-unit u = ? : ⊕-left-unit-type u

Clearly we must unfold (+) and thus ⊕-left-unit-type to simplify our goal:

⊕-left-unit unfolds (+)
⊕-left-unit : (u : vec n A)→ ⊕-left-unit-type u
⊕-left-unit u = ? : vnil⊕ u ≡ u

We complete the proof by unfolding (⊕) itself, which transitively unfolds (+):

⊕-left-unit unfolds (⊕)
⊕-left-unit : (u : vec n A)→ ⊕-left-unit-type u
⊕-left-unit u = refl

Controlling unfolding in type theory 7

2.5 Unfolding within subexpressions

We have just demonstrated how to unfold definitions within the type of a dec-
laration by defining that type as an additional declaration; using the same
technique, we can introduce unfoldings within any subexpression by hoisting that
subexpression to a top-level definition with its own unfolding constraint.

Unfolding within the type, revisited Rather than repeating the somewhat verbose
pattern of Section 2.4, we abstract it as a new language feature that is easily
eliminated by elaboration. In particular, we introduce a new expression former
unfold κ in M that can be placed in any expression context. Let us replay the
example from Section 2.4, but using unfold rather than an auxiliary definition:

⊕-left-unit : (u : vec n A)→ unfold (+) in vnil⊕ u ≡ u
⊕-left-unit u = ? : unfold (+) in vnil⊕ u ≡ u

The type unfold (+) in vnil⊕ u ≡ u is in normal form; the only way to
simplify it is to unfold (+). We could do this with another inline unfold
expression, but here we will use a top-level declaration:

⊕-left-unit unfolds (+)
⊕-left-unit : (u : vec n A)→ unfold (+) in vnil⊕ u ≡ u
⊕-left-unit u = ? : vnil⊕ u ≡ u

By virtue of the above, the unfold expression in our hole has computed away
and we are left with ? : vnil⊕ u ≡ u as (⊕) is still abstract in this scope. To
make progress, we strengthen the declaration to unfold (⊕) in addition to (+):

⊕-left-unit unfolds (⊕)
⊕-left-unit : (u : vec n A)→ unfold (+) in vnil⊕ u ≡ u
⊕-left-unit u = refl

The meaning of the code above is exactly as described in Section 2.4: the
unfold scope is elaborated to a new top-level abbreviation that unfolds (+).

Expression-level vs. top-level unfolding We noted in our definition of ⊕-left-unit
above that we could have replaced the top-level unfolds (⊕) directive of⊕-left-unit
with the new expression-level unfold (⊕) in as follows:

⊕-left-unit′ : (u : vec n A)→ unfold (+) in vnil⊕ u ≡ u
⊕-left-unit′ u = unfold (⊕) in refl

The resulting definition of ⊕-left-unit′ has slightly different behavior than
⊕-left-unit above: whereas unfolding ⊕-left-unit causes (⊕) to unfold transitively,
we can unfold ⊕-left-unit′ without unfolding (⊕)—at the cost of unfold (⊕)
expressions appearing in our goal. This more granular behavior may be desirable
in some cases, and it is a strength of our language and its elaborative semantics
that the programmer can manipulate unfolding in such a fine-grained manner.

For completeness, we illustrate the elimination of expression-level unfolding
from the definition of ⊕-left-unit′:

8 D. Gratzer et al .

abbreviation ⊕-left-unit′-type
⊕-left-unit′-type unfolds (+)
⊕-left-unit′-type : vec n A→ Type
⊕-left-unit′-type u = vnil⊕ u ≡ u

abbreviation ⊕-left-unit′-body
⊕-left-unit′-body unfolds (⊕)
⊕-left-unit′-body : (u : vec n A)→ ⊕-left-unit′-type u
⊕-left-unit′-body u = refl

⊕-left-unit′ : (u : vec n A)→ ⊕-left-unit′-type u
⊕-left-unit′ u = ⊕-left-unit′-body u

In our experience, expression-level unfolding seems more commonly useful
for end users than top-level unfolding; on the other hand, the clearest semantics
for expression-level unfolding are stated in terms of top-level unfolding! Because
one of our goals is to provide an account of unfolding that admits a reliable and
precise mental model for programmers, it is desirable to include both top-level
and expression-level unfolding in the surface language.

3 Controlling unfolding with extension types

Having introduced our new surface language constructs for controlled unfold-
ing in Section 2, we now describe how to elaborate these constructs into our
dependently-typed core calculus. Again we proceed by example, deferring our
formal descriptions of the core calculus and elaboration algorithm to Section 4.

3.1 A dependently-typed core calculus with proposition symbols

Our core calculus parameterizes intensional Martin-Löf type theory (MLTT)
[25] by a bounded meet semilattice of proposition symbols p ∈ P, and adjoins to
the type theory a new form of context extension and two new type formers {p}A
and {A | p ↪→M} involving proposition symbols:

(contexts) Γ ::= . . . | Γ, p
(types) A ::= . . . | {p}A | {A | p ↪→M}

The bounded meet semilattice structure on P closes proposition symbols
under conjunction ∧ and the true proposition >, thereby partially ordering P by
entailment p ≤ q (“p entails q”) satisfying the usual logical principles. We say p
is true if > entails p; the context extension Γ, p hypothesizes that p is true.

Remark 2. Our proposition symbols are much more restricted than, and should
not be confused with, other notions of proposition in type theory such as h-
propositions [41, §3.3] or strict propositions [16]. In particular, unlike types, our
proposition symbols have no associated proof terms.

Controlling unfolding in type theory 9

The type {p}A is the dependent product “{_ : p} → A”, i.e., {p}A is well-
formed when A is a type under the hypothesis that p is true, and f : {p}A when,
given that p is true, we may conclude f : A. The extension type {A | p ↪→ ap} is
well-formed when A is a type and ap : {p}A; its elements a : {A | p ↪→ ap} are
terms a : A satisfying the side condition that when p is true, we have a = ap : A.

3.2 Elaborating controlled unfolding to our core calculus

Our surface language extends a generic surface language for dependent type
theory with a new expression former unfold and several new declaration forms:
ϑ unfolds κ1; . . . ;κn for controlled unfolding, abbreviation ϑ for transparent
definitions, and abstract ϑ for opaque definitions. Elaboration transforms these
surface-language declarations into core-language signatures, i.e. sequences of
declarations over our core calculus of MLTT with proposition symbols.

Our core-language signatures include the following declaration forms:

– prop p ≤ q introduces a fresh proposition symbol p such that p entails q ∈ P;
– prop p = q defines the proposition symbol p to be an abbreviation for q ∈ P;
– const ϑ : A introduces a constant ϑ of type A.

We now revisit our examples from Section 2, illustrating how they are elabo-
rated into our core calculus:

Plain definitions Recall our unadorned definition of (+) from Section 2:

(+) : N→ N→ N
ze+ n = n
su m+ n = su (m+ n)

We elaborate (+) into a sequence of declarations: first, we introduce a new
proposition symbol Υ+ corresponding to the proposition that “(+) unfolds.” Next,
we introduce a new definition δ+ : N → N → N satisfying the defining clauses
of (+) above, under the (trivial) assumption of >; finally, we introduce a new
constant (+) involving the extension type of δ+ along Υ+.

prop Υ+ ≤ >

δ+ : {>} (mn : N)→ N
δ+ ze n = n
δ+ (su m) n = su (δ+ m n)

const (+) : {N→ N→ N | Υ+ ↪→ δ+}

Remark 3. In a serious implementation, it would be simple to induce δ+ to be
pretty-printed as (+) in user-facing displays such as goals and error messages.

10 D. Gratzer et al .

Top-level unfolding To understand why we have elaborated (+) in this way, let
us examine how to elaborate top-level unfolding declarations (Section 2.1):

(⊕) unfolds (+)
(⊕) : vec m A→ vec n A→ vec (m+ n) A
vnil⊕ v = v
vcons a u⊕ v = vcons a (u⊕ v)

To elaborate (⊕) unfolds (+), we define the proposition symbol Υ⊕ to entail
Υ+, capturing the idea that unfolding (⊕) always causes (+) to unfold; in order
to cause (+) to unfold in the body of (⊕), we assume Υ+ in the definition of δ⊕.
In full, we elaborate the definition of (⊕) as follows:

prop Υ⊕ ≤ Υ+

δ⊕ : {Υ+} (u : vec m A) (v : vec n A)→ vec (m+ n) A
δ⊕ vnil v = v
δ⊕ (vcons a u) v = vcons a (δ⊕ u v)

const (⊕) : {vec m A→ vec n A→ vec (m+ n) A | Υ⊕ ↪→ δ⊕}

Observe that the definition of δ⊕ is well-typed because Υ+ is true in its scope:
thus the the extension type of (+) causes ze + n to be definitionally equal to
δ+ ze n, which in turn is defined to be n. The constraint Υ⊕ ↪→ δ⊕ is well-typed
because Υ⊕ entails Υ+.

If a definition ϑ unfolds multiple definitions κ1; . . . ;κn, we define Υϑ to entail
(and define δϑ to assume) the conjunction Υκ1 ∧· · ·∧Υκn ; if a definition ϑ unfolds
no definitions, then Υϑ entails (and δϑ assumes) >, as in our (+) example.

Abbreviations To elaborate the combination of the declarations abbreviation ϑ
and ϑ unfolds κ1; . . . ;κn we define Υϑ to equal the conjunction Υκ1

∧ · · · ∧ Υκn
.

For example, consider the following code from Section 2.3:

abbreviation map-⊕
map-⊕ unfolds map; (⊕)
map-⊕ : (f : A→ B) (u : vec m A) (v : vec n A)
map f (u⊕ v) ≡ map f u⊕map f v

map-⊕ f vnil v = refl
map-⊕ f (vcons a u) v = cong (vcons (f a)) (map-⊕ f u v)

It is elaborated as follows:

prop Υmap-⊕ = Υmap ∧ Υ⊕

δmap-⊕ : {Υmap ∧ Υ⊕} (f : A→ B) (u : vec m A) (v : vec n A)
→ map f (u⊕ v) ≡ map f u⊕map f v

δmap-⊕ f vnil v = refl
δmap-⊕ f (vcons a u) v = cong (vcons (f a)) (δmap-⊕ f u v)

Controlling unfolding in type theory 11

const map-⊕
: {(f : A→ B) (u : vec m A) (v : vec n A)→ map f (u⊕ v) ≡
map f u⊕map f v | Υmap-⊕ ↪→ δmap-⊕}

Expression-level unfolding The elaboration of the expression-level unfolding
construct unfold κ in M to our core calculus factors through the elaboration of
expression-level unfolding to top-level unfolding as described in Section 2.5; we
return to this in Section 4.3.

4 The elaboration algorithm

We now formally specify our mechanism for controlled unfolding by more precisely
defining the elaboration algorithm sketched in the previous section, starting with
a precise definition of the target of elaboration, our core calculus TTP.

4.1 The core calculus TTP

Our core calculus TTP is intensional Martin-Löf type theory (MLTT) [25] with
dependent sums and products, natural numbers, a Tarski universe, etc., extended
with (1) a collection of proof-irrelevant proposition symbols, (2) dependent
products over propositions, and (3) extension types for those propositions [30].

Remark 4. We treat the features of MLTT and of our surface language somewhat
generically; our elaboration algorithm can be applied on top of an existing
bidirectional elaboration algorithm for type theory, e.g ., those described in [11,21].

In fact, TTP is actually a family of type theories parameterized by a bounded
meet semilattice (P,>,∧) whose underlying set P is the set of proposition symbols
of TTP; the semilattice structure on P axiomatizes the conjunctive fragment of
propositional logic with ∧ as conjunction, > as the true proposition, and ≤ as
entailment (where p ≤ q is defined as p ∧ q = p), subject to the usual logical
principles such as p ∧ q ≤ p and p ∧ q ≤ q and p ≤ >.

Remark 5. The judgments of TTP are functorial in the choice of P, in the sense
that given any homomorphism f : P P′ of bounded meet semilattices and any
type or term in TTP over P, we have an induced type/term in TTP′ over P′. In
particular, we will use the fact that judgments of TTP are stable under adjoining
new proposition symbols to P.

The language TTP augments ordinary MLTT with a new form of judgment
Γ ` p true (for p ∈ P) and the corresponding context extension Γ, p (for p ∈ P).
The judgment Γ ` p true states that the proposition p is true in context Γ , i.e.,
the conjunction of the propositional hypotheses in Γ entails p; the latter extends
Γ with the hypothesis that p is true.

12 D. Gratzer et al .

Γ ctx p ∈ P
Γ, p ctx

p ∈ P
Γ, p ` p true

Γ, p ` J Γ ` p true

Γ ` J

Γ ` > true

Γ ` p true Γ ` q true

Γ ` p ∧ q true

Γ ` p true p ≤ q
Γ ` q true

The dependent product {p}A of the family p ` A is defined as an ordinary
dependent product type, omitting the β/η rules for lack of space:

Γ, p ` A type

Γ ` {p}A type

Γ, p `M : A

Γ ` 〈p〉M : {p}A
Γ `M : {p}A Γ ` p true

Γ `M @ p : A

The remaining feature of TTP is the extension type {A | p ↪→ ap}. Given a
proposition p ∈ P and an element ap of A under the hypothesis p, the elements
of {A | p ↪→ ap} correspond to elements of A that equal ap when p holds.

Γ ` A type Γ, p ` ap : A
Γ ` {A | p ↪→ ap} type

Γ ` a : A
Γ, p ` ap : A
Γ, p ` a = ap : A

Γ ` inp a : {A | p ↪→ ap}

Γ ` a : {A | p ↪→ ap}
Γ ` outp a : A

Γ ` a : A

Γ ` outp(inp a) = a : A

Γ ` a : {A | p ↪→ ap}
Γ ` inp(outp a) = a : {A | p ↪→ ap}

Γ ` p true Γ ` a : {A | p ↪→ ap}
Γ ` outp a = ap : A

4.2 Signatures over TTP

Our elaboration procedure takes as input a sequence of surface language defini-
tions, and outputs a well-formed signature, a list of declarations over TTP.

(signatures) Σ ::= ε | Σ,D
(declarations) D ::= constx : A | prop p ≤ q | prop p = q

A signature is well-formed precisely when each declaration in Σ is well-
formed relative to the earlier declarations in Σ. Our well-formedness judgment
` Σ sig −→ P, Γ computes from Σ the TTP context Γ and proposition semilattice
P specified by Σ’s const and prop declarations, respectively.

The rules for signature well-formedness are standard except for the prop p ≤ q
and prop p = q declarations, which extend P with a new element p satisfying
p ≤ q or p = q respectively. Recalling that our core calculus TTP is really a
family of type theories parameterized by a semilattice P, these declarations shift
us between type theories, e.g ., from TTP to TTQ, where Q = P[p ≤ q] is the
minimal semilattice containing P and an element p satisfying p ≤ q. This shifting
between theories is justified by Remark 5.

Controlling unfolding in type theory 13

` ε sig −→ {>}, ·
` Σ sig −→ P, Γ Γ `TTP A type

` (Σ, constx : A) sig −→ P, (Γ, x : A)

` Σ sig −→ P, Γ q ∈ P
` (Σ, prop p ≤ q) sig −→ P[p ≤ q], Γ
` (Σ, prop p = q) sig −→ P[p = q], Γ

4.3 Bidirectional elaboration

We adopt a bidirectional elaboration algorithm which mirrors bidirectional type-
checking algorithms [10,28]. The top-level elaboration judgment Σ ` ~S Σ′

takes as input the current well-formed signature Σ and a list of surface-level
definitions ~S and outputs a new signature Σ′, maintaining the invariant that
successful elaboration produces well-formed signatures.

We define Σ ` ~S Σ′ in terms of three auxiliary judgments for elaborating
surface-language types and terms; in the bidirectional style, we divide term
elaboration into a checking judgment Σ;Γ ` e⇐ A Σ′,M taking a core type
as input, and a synthesis judgment Σ;Γ ` e ⇒ A Σ′,M producing a core
type as output. All three judgments take as input a signature Σ and a context
(telescope) over Σ, and output a new signature along with a core type or term.

In the algorithm, we write (def ϑ : A, abbrv?, abstr?, [κ1, . . . κn], e) for the
representation of a surface-level definition S; in this expression, ϑ is the name of
the definiendum, A is the surface-level type of the definition, abbrv? and abstr? are
flags governing whether ϑ is an abbreviation (resp., is abstract), [κ1, . . . , κn]
are the names of the definitions that ϑ unfolds, and e is the surface-level definiens.

The elaboration judgment elaborates each surface definition in sequence:

Σ ` ~S Σ1

Σ1; · ` A⇐ type Σ2, A
Σ2;

∧
i≤n Υκi ` e⇐ A Σ3,M

let p := if abstr? then gensym () else Υϑ
let � := if abbrv? then (=) else (≤)
let Σ4 := Σ3,prop p �

∧
i≤n Υκi

, constϑ : {A | p ↪→M}
Σ ` ~S, (def ϑ : A, abbrv?, abstr?, [κ1, . . . , κn], e) Σ4

Remark 6. When a definition is marked abstract, the name of the unfolding
proposition is generated fresh so that it cannot be accessed by any future
unfold declaration. Conversely, when a definition is marked as an abbreviation,
its unfolding proposition is defined to be equivalent to the conjunction of its
dependencies rather than merely entailing its dependencies.

The rules for term and type elaboration are largely standard, e.g ., we elab-
orate a surface dependent product to a core dependent product by recursively

14 D. Gratzer et al .

elaborating the first and second components. We single out two cases below: the
boundary between checking and synthesis, and the expression-level unfold.

Σ;Γ ` e⇒ A Σ1;M
Σ1;Γ ` convAB
Σ;Γ ` e⇐ B Σ1;M

Σ;Γ,Υϑ ` e⇐ A Σ1;M let χ := gensym ()
let Σ2 := Σ1, constχ :

∏
Γ {A | Υϑ ↪→M}

Σ;Γ ` unfold ϑ in e⇐ A Σ2; outΥϑ
χ[Γ]

The first rule states that a term synthesizing a type A can be checked
against a type B provided that A and B are definitionally equal; in order to
implement this rule algorithmically, we need definitional equality to be decidable.
Additionally, our (omitted) type-directed elaboration rules are only well-defined if
type constructors are injective up to definitional equality, e.g ., A→ B = C → D
if and only if A = C and B = D. We establish both of these essential properties
of definitional equality in Section 6.

Elaborating expression-level unfolding requires the ability to hoist a type
to the top level by iterating dependent products over its context, an operation
notated

∏
Γ above. Because Γ can hypothesize (the truth of) propositions, this

operation relies crucially on the presence of dependent products {p}A.

5 Case study: an implementation in cooltt

We have implemented our approach to controlled unfolding in the experimental
cooltt proof assistant [29]; cooltt is an implementation of cartesian cubical
type theory [2], a computational version of homotopy type theory whose syntactic
metatheory is particularly well understood [31,33]. The existing support for
partial elements and extension types made cooltt a particularly hospitable
ground to experiment with elaborating controlled unfolding to extension types.
The following example illustrates the use of controlled unfolding in cooltt:

def + : N→ N→ N :=
elim
| zero⇒ n⇒ n
| suc {_⇒ ih} ⇒ n⇒ suc {ih n}

unfold +
def +0L (x : N) : path {+ 0 x} x :=
i⇒ x

def +0R : (x : N)→ path N {+ x 0} x :=
elim
| zero⇒ +0L 0
| suc {x⇒ ih} ⇒
equation N
| + 0 {suc y} =[+0L {suc y}]
| suc {+ x 0} =[i⇒ suc {ih i}]
| suc x

This example follows a common pattern: we prove basic computational laws
(+0L) by unfolding a definition, and then in subsequent results (+0R) use these
lemmas abstractly rather than unfolding. Doing so controls the size and readability
of proof goals, and explicitly demarcates which parts of the library depend on
the definitional behavior of a given function.

We have also implemented the derived forms for expression-level unfolding:

def two : N := + 1 1

Controlling unfolding in type theory 15

def thm : path N two 2 := unfold two + in i⇒ 2
def thm-is-refl : path-p {i⇒ path N two {thm i}} {i⇒ two} thm :=
i j ⇒ unfold two + in 2

def thm-is-refl’ : path {path N two 2} {i⇒ unfold two + in two} thm :=
i j ⇒ unfold two + in 2

The third and fourth declarations above illustrate two strategies in cooltt for
dealing with a dependent type whose well-formedness depends on an unfolding;
in thm-is-refl we use a dependent path type but only unfold in the definiens,
whereas in thm-is-refl’ we use a non-dependent path type but must unfold in both
the definiens and in its type.

Our cooltt implementation deviates in a few respects from the presentation
in this paper: in particular, the propositions Υκ are represented by abstract
elements iκ : I of the interval via the embedding I ↪→ F sending i to (i =I 1).
This implementation-specific design decision is not essential, but it enabled us
to use an existing solver for inequalities i ≤I j. Our modifications to cooltt
were relatively modest, resulting in a net increase of 996 lines of OCaml code;
we believe that our implementation strategy is also applicable in principle to
systems such as Agda, which already features the extension types that we need.

6 The metatheory of TTP

In Section 4 we described an algorithm elaborating a surface language with
controlled unfolding to TTP. In order to actually execute our algorithm, it is
necessary to decide the definitional equality of types in TTP; as is often the case
in type theory, type dependency ensures that deciding equality for types also
requires us to decide the equality of terms. In order to implement our elaboration
algorithm, we therefore prove a normalization result for TTP.

At its heart, a normalization algorithm is a computable bijection between
equivalence classes of terms up to definitional equality and a collection of normal
forms. By ensuring that the equality of normal forms is evidently decidable, this
yields an effective decision procedure for definitional equality. In our case, we
attack normalization through a synthetic and semantic approach to normalization
by evaluation called synthetic Tait computability [34,33,31,32] or STC.

Neutral forms for TTP This appealingly simple story for normalization is
substantially complicated by the boundary law for extension types:

Γ ` p true Γ, p ` ap : A Γ ` a : {A | p ↪→ ap}
Γ ` outp a = ap : A

When defining normal forms for TTP, we might naively add a neutral form outp
to represent outp. In order to ensure that normal and neutral forms correspond
bijectively with equivalence classes of terms, however, we should only allow outp
to be applied in a context where p is not true; if p were true, then outp a is
already represented by the normal form for ap.

16 D. Gratzer et al .

A similar problem arises in the context of cubical type theory [9,2] where
some equalities apply precisely when two dimensions coincide. The same problem
then presents itself: either renamings must exclude substitutions which identify
two dimension terms, or neutral forms will fail to be stable under renamings.

In their recent proof of normalization for cubical type theory, Sterling and
Angiuli [33] refined neutral forms to account for this tension by introducing
stabilized neutrals. Rather than cutting down on renamings, they expand the class
of neutrals by allowing “bad” neutrals akin to outp e in a context where p is true.
They then associate each neutral form with a frontier of instability : a proposition
which is true if the neutral is no longer meaningful. Crucially, while well-behaved
neutrals may not be stable under renamings, the frontier of instability is stable,
and can therefore be incorporated into the internal language.

We show that Sterling and Angiuli’s stabilized neutrals can be adapted to
TTP and use their approach to establish normalization. In so doing, we refine
Sterling and Angiuli’s approach to obtain a constructive normalization proof. We
also carefully spell out the details of the universe in the normalization model,
correcting an oversight in an earlier revision of Sterling’s dissertation [31].

6.1 Type theories as categories with representable maps

While any number of logical frameworks are available (generalized algebraic theo-
ries [7], essentially algebraic theories [15], locally cartesian closed categories [20],
etc.), Uemura’s categories with representable maps [39,40] are particularly attrac-
tive because they express exactly the binding and dependency structure needed
for type theory: a second-order version of generalized algebraic theories.

Definition 1. A category with representable maps C is a finitely complete
category equipped with a pullback-stable class of representable maps R ⊆ Arr(C)
such that pullback along f ∈ R has a right adjoint (dependent product along f).

We will often refer to categories with representable maps as CwRs.

Definition 2. A morphism of CwRs is a functor between the underlying cate-
gories that preserves finite limits, representability of maps, and dependent products
along representable maps.

Definition 3. Categories with representable maps, morphisms between them,
and natural isomorphisms assemble into a (2, 1)-category CwR.

Uemura’s logical framework axiomatizes the category of judgments of TTP
as a particular category with representable maps T. The finite limit structure of
T encodes substitution as well as equality judgments, while the class of repre-
sentable maps carves out those judgments that may be hypothesized. Uemura [39]
develops a syntactic method for presenting a CwR as a signature within a variant
of extensional type theory, which he has rephrased in terms of second order
generalized algebraic theories in his doctoral dissertation [40]. Although we will
use the type-theoretic presentation for convenience, the difference between these
two accounts is only superficial.

Controlling unfolding in type theory 17

Each judgment of TTP is rendered as a (dependent) sort while type and term
formers are modeled by elements of the given sorts. In order to record whether a
given judgment may be hypothesized, the sorts of the type theory are stratified
by meta-sorts ? ⊆ � where A : ? signifies that A is a representable sort (i.e. a
context-former) and can be hypothesized, whereas B : � cannot parameterize a
framework-level dependent product.

Theorem 1. Let T be the free category with representable maps generated by a
given logical framework signature; then the groupoid of CwR functors [T, E]CwR

is equivalent to the groupoid of interpretations of the signature within E.

We will often refer to a category with representable maps T as a type theory;
indeed, as the category of judgments of a given type theory, T is a suitable
invariant replacement for it.

The (2,1)-category of models of a type theory Theorem 1 describes the universal
property of a type theory generated by a given signature in a logical framework.
Type theories qua CwRs thus give rise to a form of functorial semantics in which
algebras (interpretations) arrange into a groupoid of CwR functors [T, E]CwR.

This is an appropriate setting for studying the syntax of type theory, but
it is somewhat inappropriate for studying the semantics of type theory—in
which one expects models to correspond to structured CwFs [13] or natural
models [5], which themselves arrange into a (2,1)-category. The second notion of
functorial semantics, developed by Uemura in his doctoral dissertation [40], is a
generalization of the theory of CwFs and pseudo-morphisms between them [8,27].

Note that we may always regard a presheaf category Pr(C) as a CwR with
the representable maps being representable natural transformations, i.e. families
of presheaves whose fibers at representables are representable [5].

Definition 4. A model of a type theory T is defined to be a categoryM� together
with a CwR functorM : T Pr(M�).

Models are arranged into a (2,1)-category ModT (see Appendix B). Essen-
tially, a morphism of models M N is given by a functor α� : M� N�
together with a natural transformationM α∗�N ∈ [T,Pr(M�)] that preserves
context extensions up to isomorphism; an isomorphism between morphisms of
models is a natural isomorphism between the underlying functors satisfying an
additional property. For each CwR T, Uemura has shown the following theorem:

Theorem 2. The (2,1)-category of models ModT has a bi-initial object I.

Remark 7. If one takes T to be e.g ., Martin-Löf type theory, the bi-initial model
I can be realized by the familiar initial CwF built from the category of contexts.

6.2 Encoding TTP in the logical framework

We begin by defining the signature for a category with representable maps T0

containing exactly the bare judgmental structure of TTP, namely the propositions
and the judgments for types and terms. In our signature, we make liberal use of
the Agda-style notation for implicit arguments. As always, p ranges over P.

18 D. Gratzer et al .

〈p〉 : ?
_ : {u, v : 〈p〉} =⇒ u = v
_ :

{
_ :

〈∧
i<n pi

〉}
=⇒ 〈pk〉

_ : {_ : 〈pi〉, . . . } =⇒
〈∧

i<n pi
〉

tp : �
tm : tp =⇒ ?

We next extend the above to include the type formers of TTP, writing T for
the CwR generated by the full signature.

Notation 1. Given X : {_ : 〈p〉} =⇒ �, we will write {p}X to further abbrevi-
ate the Agda-style implicit function space {_ : 〈p〉} → X.

For space reasons, we only include the signature for the extension types:

extp : (A : tp) (a : {p} tmA) =⇒ tp
inp : (A : tp) (a : {p} tmA) (u : tmA) {_ : {p}u = a} =⇒ tm (extpAa)
outp : (A : tp) (a : {p} tmA) (u : tm (extpAa)) =⇒ tmA
_ : (A : tp) (a : {p} tmA) (u : tm (extpAa)) {_ : 〈p〉} =⇒ outpAau = a
_ : (A : tp) (a : {p} tmA) (u : tmA) {_ : {p}u = a} =⇒ outpAa (inpAau) = u
_ : (A : tp) (a : {p} tmA) (u : tm (extpAa)) =⇒ inpAa (outpAau) = u

These clauses precisely axiomatize the rules of extension types given in
Section 4.1. Once the signature is complete, we obtain from Uemura’s framework
a category with representable maps T together with a bi-initial model I.

6.3 The atomic figure shape and its universal property

For each context Γ and type Γ ` A type, it is possible to axiomatize the normal
forms of type A; unfortunately, this assignment of sets of normal forms does
not immediately extend to a presheaf on the category of contexts I�, precisely
because normal forms are not a priori closed under substitution! In fact, closing
normal forms under substitution is the purpose of the normalization theorem, so
we are not able to assume it beforehand.

Normal forms are, however, closed under substitutions of variables for variables
(often called structural renamings), and in our case we shall be able to close them
additionally under the “phase transitions” Γ, 〈p〉 Γ, 〈q〉 when Γ, p ` q true is
derivable. We shall refer to the substitutions so-restricted as atomic substitutions,
and we wish to organize them into a category.

It is possible to inductively define a category of “atomic contexts” whose
objects are those of I� and whose morphisms are atomic substitutions, but
this construction obscures a beautiful and simple (2,1)-categorical universal
property first exposed by Bocquet, Kaposi, and Sattler [6] that leads to a more
modular proof. To explicate this universal property, first note that the theory T0

axiomatizes exactly the structure of variables and phase transitions, and that
the initial model I of T is, by restriction along T0 T, also a model of T0.

Definition 5. An atomic substitution algebra is given by a model A of the bare
judgmental theory T0, together with a morphism of models α : A I in ModT0

such that αtp : A tp α∗�(I tp) ∈ Pr(A�) is an isomorphism.

Controlling unfolding in type theory 19

The atomic substitution algebras arrange themselves into a (2,1)-category, a
full subcategory of the pseudo-slice ModT0 ↓ I.

Theorem 3 (Bocquet, Kaposi, and Sattler [6]). The bi-initial atomic sub-
stitution algebra

(
A, α : A I

)
exists.

We use the bi-initial atomic substitution algebra as a figure shape in the
sense of Sterling [31, §4.3] to instantiate synthetic Tait computability. Here we
transition into the 2-category of Grothendieck topoi, geometric morphisms, and
geometric transformations, guided by a phase distinction between “object-space”
and “meta-space” [32]; object-space refers to the object language embodied in
the model I, whereas meta-space refers to the metalanguage embodied in the
model A. Later on, we will construct a glued topos in which we may speak of
constructs that have extent in both object-space and meta-space. We follow Anel
and Joyal [1] and Vickers [42] in emphasizing the distinction between a topos X
and the category of sheaves SX presenting it:

Definition 6. We denote by I and A the object-space and meta-space topoi
respectively, with underlying categories of sheaves S I = Pr(I�) and SA = Pr(A�).

Definition 7. The functor α� : A� I� gives rise under precomposition to a
lex and cocontinuous functor Pr(I�) Pr(A�), that shall serve as the inverse
image part of a geometric morphism α : A I named the atomic figure shape.

Definition 8. We denote by G the closed mapping cylinder [23] of the geometric
morphism α : A I, such that SG is the comma category SA ↓ α∗. We will write
j : I G and i : A G for the induced open and closed subtopos inclusions.

6.4 The language of synthetic Tait computability

As I and A are both subtopoi of G, they are reflected in the internal language
of SG by means of a pair of complementary lex idempotent monads (#,). The
internal language of S I is presented by the #-modal or object-space types and SA
is presented by -modal or meta-space types. Because they form an open/closed
partition, these modal subuniverses admit a particularly simple formulation:

Theorem 4. There exists a proposition obj : Ω such that

1. a type X is #-modal / object-space iff X → (obj→ X) is an isomorphism;
2. a type X is -modal / meta-space iff obj×X → obj is an isomorphism.

Remark 8. We will use extension types {A | φ ↪→ a} in the internal language
of SG as realized by the subset comprehension of topos logic, treating their
introduction and elimination rules silently. Here the proposition φ will be an
element of the subobject classifier, in contrast to the situation in our object
language, where it ranged over a fixed set of proposition symbols.

20 D. Gratzer et al .

Remark 9. We isolate a subuniverse Ωdec ⊆ Ω of the subobject classifier that
is closed under finite disjunctions and contains obj; Ωdec will ultimately be a
subuniverse spanned by pointwise/externally decidable propositions [2], but this
fact will not play a role in the synthetic development.

Notation 2. As there is at most one element of obj, we will reuse Notation 1
and write {obj}A rather than {_ : obj} → A when A : {_ : obj} → U .

As a presheaf topos, SG inherits a hierarchy of cumulative universes Ui, each
of which supports the strict gluing or (mixed-phase) refinement type [19,32]: a
version of the dependent sum of a family of meta-space types indexed in an
object-space type A that additionally restricts within object-space to exactly A:

A : {obj}Ui B : ({obj}A)→ Ui {obj}(a : A)→ (B a ∼= 1)

(x : A)nB x : {Ui | obj ↪→ A}
gl :
{(∑

x:{obj}AB x
) ∼= (x : A)nB x

∣∣ obj ↪→ π1
}

Remark 10. In topos logic, it is a property for a function to have an inverse;
thus we have conveniently packaged the introduction and elimination rules for
(x : A)nB x into a single function gl that is assumed to be an isomorphism.

Notation 3. We write [obj ↪→ a | b] for gl (a, b) and unglx for π2
(
gl−1x

)
.

Both # and induce reflective subuniverses U i#,U i Ui spanned by modal
types, and these universes are themselves modal. Following Sterling [31], we use
strict gluing to choose these universes with additional strict properties:

U i# : {Ui+1 | obj ↪→ Ui} U i : {Ui+1 | obj ↪→ 1}

Furthermore, the inclusion U i# Ui restricts to the identity under obj. With
the modal universes to hand, we may choose # : Ui → Ui and : Ui → Ui to
factor through U i# and U i respectively. Henceforth we will suppress the inclusions
U i#,U i Ui and write e.g . # : Ui → U i# for the reflections.

Remark 11. The strict gluing types, modal universes, and their modal reflections
can be chosen to commute strictly with the liftings Ui Ui+1.

The interpretation of the TTP signature within S I internalizes into SG as a
sequence of constants valued in the subuniverse U0

#; for instance, we have:

tp : U0
tm : tp→ U0

〈p〉 : Ωdec (for p ∈ P)
extp : (A : tp)→ (a : {〈p〉} tmA)→ tp
inp : (A : tp) (a : {〈p〉} tmA)→ {tmA | 〈p〉 ↪→ a} ∼= tm (extpAa)

Following Remark 10, we package the pair (inp, outp) as a single isomorphism inp.
The presheaf of terms in the model A internalizes as a meta-space type of

variables which by virtue of the structure map A I can be indexed over the
object-space collection of terms. We realize this synthetically as follows:

var : (A : tp)→ {U | obj ↪→ tmA}

We refer to extensional type theory extended with these constants and modal-
ities as the language of synthetic Tait computability (STC).

Controlling unfolding in type theory 21

Remark 12. To account for strict universes—those for which el commutes strictly
with chosen codes—some prior STC developments employed strict gluing along
the image of el [33,31]. By limiting our usage of strict gluing to obj, we are able to
execute our constructions in a constructive metatheory. To model strict universes,
we instead rely on the cumulativity of the hierarchy of universes Ui and the fact
that all levels are coherently closed under modalities and strict gluing.

6.5 Normal and neutral forms

Internally to STC, we now specify the normal and neutral forms of terms, and the
normal forms of types. Following Sterling and Angiuli [33] we index the type of
neutral forms by a frontier of instability, a proposition at which the neutral form
is no longer meaningful. Our construction proceeds in two steps. First, we define
a series of indexed quotient-inductive definitions [24] specifying the meta-space
components of normal and neutral forms:

nf• : (A : tp)→ tmA→ U0

ne• : (A : tp)→ Ωdec → tmA→ U0

nftp• : tp→ U0

Next we use the strict gluing connective to define the types of normals,
neutrals, and normal types such that they lie strictly over tm and tp:

nfA = (a : tmA)n nf•Aa
neφA = (a : tmA)n ne•Aφa
nftp = (A : tp)n nftp•A

We illustarte a representative fragment of the inductive definitions in Fig. 1.
The induction principles for nf•, ne• and nftp• play no role in the main

development, which works with any algebra for these constants. These induction
principles, however, are needed in order to to prove Theorem 6 and deduce the
decidability of definitional equality and the injectivity of type constructors. These
same considerations motivate our choice to index ne• over Ωdec rather than Ω.

6.6 The normalization model

The construction of the normalization model itself is now reduced to a series of
programming exercises. Specifically, we must give a new TTP-algebra internally
to SG subject to the constraint that each of its constituents restricts under obj to
the corresponding constant from the TTP-algebra inherited from S I. For instance,
we must define types representing object types and terms:

tp∗ : {U2 | obj ↪→ tp} tm∗ : {tp∗ → U1 | obj ↪→ tm}

The meta-space component of the computability structure of types is given
as a dependent record below:

record tp• (A : tp) : U2 where

22 D. Gratzer et al .

var : (x : varA)→ ne•A⊥x
unst : {a : tmA} → ne•A> a
_ : (a : tmA) (e : ne•A> a)→ e = unst a

extp : nftp•A→ ({p} nf•Aa)→ nftp• (extpAa)
inp : nftp•A→ nf•Au→ nf• (extpAa)u
outp : nftp•A→ ne• (extpAa)φu→ ne•A (φ ∨ 〈p〉)

(
in−1
p u

)
upuni : ne• uniφA→ ({φ} nftp•A)→ nftp• (elA)
upel : ne• uniφA→ ({φ} nftp (elA))→ ne• (elA)ψ a→ ({φ ∨ ψ} nf• (elA) a)→ nf• (elA) a
el : ne• uniφA→ ({φ} nf• uniA)→ nf• uniA

_ : (e : ne• uni>A) (u : nftp•A)→ upuni e u = u
_ : (e : ne• uni>A) (u : nf• uniA)→ el e u = u
_ : {φ ∨ ψ} (eA : ne• uniφA) (uA : {φ} nftp• (elA)) (ea : ne• (elA)ψ a) (ua : nf•Aa)
→ upel eA uA ea ua = ua

Fig. 1. Selected rules from the quotient inductive definition of nf, ne, and nftp.

code : nftp•A
tm• : tmA→ U1

reflect : (a : tmA) (φ : Ωdec) (e : ne•Aφa) (aφ : {φ} tm• a)
→ {tm• a | φ ↪→ aφ}

reify : (a : tmA)→ tm• a→ nf•Aa

The tm• field classifies the meta-space component of a given element; the
reflect and reify fields generalize the familiar operations of normalization by
evaluation, subject to Sterling and Angiuli’s stabilization yoga [33]. We finally
define both tp∗ and tm∗ using strict gluing to achieve the correct boundary:

tp∗ = (A : tp)n tp•A
tm∗A = (a : tmA)n (unglA).tm• a

Notation 4. Henceforth we will simply write A fld rather than (unglA).fld to
access a field of the closed component of A.

We must also define 〈p〉∗ : Ωdec for each p ∈ P subject to the condition that
obj implies 〈p〉∗ = 〈p〉. As there is no normalization data associated with these
propositions, we define 〈p〉∗ = 〈p〉 which clearly satisfies the boundary condition.
It remains to show that (tp∗, tm∗) are closed under all the connectives of TTP.
We show two representative cases: extension types and the universe.

Extension types We begin with extension types. Fixing A : tp∗, p : P, and
a : {〈p〉} tm∗A, we must construct the following two constants:

ext∗pAa : {tp∗ | obj ↪→ extpAa}
in∗pAa : {{tm∗A | 〈p〉 ↪→ a} ∼= tm∗ (ext∗pAa) | obj ↪→ inpAa}

Controlling unfolding in type theory 23

Recalling the definition of tp∗ as a strict gluing type, we observe that the
boundary condition on ext∗p already fully constrains the first component:

ext∗pAa = [obj ↪→ extpAa | ? : tp• (extpAa)]

We define the second component as follows, using copattern matching notation:

(ext∗pAa) code = extpA code (A reify a)
(ext∗pAa) tm• x =

{
A tm•

(
in−1p x

) ∣∣ 〈p〉 ↪→ a
}

(ext∗pAa) reify (η•x) = inpA code (A reifyx)
(ext∗pAa) reflectxφ e (η•xφ) =
η•
(
A reflect

(
in−1p x

)
(φ ∨ 〈p〉) (outpA code e) [φ ↪→ xφ | 〈p〉 ↪→ a]

)
In the clauses for reify and reflect above, we were allowed to pattern match

on η•x because we are mapping into meta-space types.

Remark 13. Stabilized neutrals are crucial to the definition of (ext∗pAa) reflect
above: without them, we could not ensure that reflecting outpA code e lies within
the specified subtype of A tm•.

Having defined ext∗p in this manner, the definition of in∗p is straightforward:

in∗pAax = [obj ↪→ inpAax | unglx]

We leave the routine verification of the various boundary conditions to the
reader; nearly all of them follow immediately from the properties of strict gluing.

The universe We now turn to the construction of the universe in the
normalization model; it is here that the complexity of unstable neutrals becomes
evident. Once again the boundary conditions on uni∗ fully constrain part of its
definition:

uni∗ = [obj ↪→ uni | ? : tp• uni]

The second component of uni∗ is complex and we present its definition in
Fig. 2. The inclusion of el-code in uni• is necessary in order to define el∗:

obj ↪→ el∗A = elA
(el∗ (η•A)) code = A el-code
(el∗ (η•A)) tm• = A tm•
(el∗ (η•A)) reflect = A reflect
(el∗ (η•A)) reify = A reify

Finally, we must show that uni∗ is closed under all small type formers and
that el∗ preserves them. This flows from the cumulativity of the universes in
SG; to close uni∗ under e.g . products, we essentially ‘redo’ the construction of
products within tp∗ by altering its predicate to be valued in U0 rather than U1.

24 D. Gratzer et al .

record uni•A : U1 where
code : nf• uniA
el-code : nftp• (elA)
tm• : tm (elA)→ U0

reflect : (a : tmA) (φ : Ωdec)
→ (e : ne•Aφa)
→ (aφ : {φ} tm• a)
→ {tm• a | φ ↪→ aφ}

reify : (a : tmA)→ tm• a→ nf•Aa

uni∗ : {tp∗ | obj ↪→ uni}
uni∗ code = uni
uni∗ tm•A = (uni•A)
uni∗ reify_ (η•A) = A.code

obj ↪→ uni∗ reflectAφeAAφ = A
ungl (uni∗ reflectAφeAAφ) =

letAφ : {φ} uni•A = X ← Aφ;X;
η• record
code = upuni eAAφ code
el-code = el eAAφ el-code
tm• a = ((u : nf•Ax)× {φ} {a : Aφ tm• a | Aφ reify a = u})
reflect aψ ea aψ =

let aψ : {ψ} (u : nf•Ax)× . . . = x← aψ;x;
let aφ = Aφ reflectψ ea aψ;
η•(el eAAφ el-code ea [φ ↪→ Aφ reify aφ | ψ ↪→ π1 aψ], aφ)

reify_(η• (u,_)) = u

Fig. 2. The normalization structure on the universe.

6.7 The normalization algorithm

Having constructed the normalization model in SG, we now extract the actual
normalization algorithm using an argument based on those presented by Fiore [14]
and Sterling [31]. Despite the differences in the normalization models, this portion
of the proof closely follows Sterling’s argument.

Theorem 5. The unit map η◦ : nftp tp is an isomorphism.

In fact, as our construction of the normalization model is constructive, this
isomorphism and its inverse are both computable.

Definition 9. An object X ∈ SG is called levelwise decidable when for each
Γ ∈ A�, the set (i∗X)Γ is decidable where i : A G is as in Definition 8.

Theorem 6. Viewed as objects of SG, the following are levelwise decidable:

nftp (A : tp)× nfA (A : tp)× (φ : Ωdec)× neφA

From Theorems 5 and 6 we obtain our main results concerning TTP:

Corollary 1. Definitional equality of types and terms in TTP is decidable, and
type constructors in TTP are definitionally injective.

Controlling unfolding in type theory 25

7 Related work

As discussed in Section 1, proof assistants already have support for various means
of controlling the unfolding of definitions; we classify these mechanisms as either
library-level or language-level.

Library-level features Various library-level idioms for abstract definitions are used
in practice such as SSReflect’s lock idiom. While such approaches are flexible
and compatible with existing proof assistants, they are often cumbersome in
practice. For instance, lock relies on various tactics with subtle behavior, which
makes it difficult to use locking idioms in pure Gallina code.

Language-level features Many proof assistants include a feature like Agda’s
abstract blocks which marks a definition as completely opaque to the remainder
of the development. In Remark 1, we explained how to recover Agda’s abstract
definitions using controlled unfolding. Moreover, as controlled unfolding does not
require a user to decide up front whether a definition can be unfolded, it gives a
more realistic and flexible discipline for abstraction in a proof assistant. In practice,
however, abstract is often used for performance reasons instead of merely for
controlling abstraction; unfolding large or complex definitions can significantly
slow down type checking and unification. While we have not discussed performance
considerations for controlled unfolding, the same optimizations apply directly
to our mechanism for definitions that are never unfolded. In total, controlled
unfolding strictly generalizes Agda’s abstract blocks.

Translucent ascription in module systems Thus far we have focused on proof assis-
tants, but similar considerations arise for ML-style module systems [26,22,12,34].
Interestingly, the default opacity for definitions in module systems is the same as
in controlled unfolding and opposite to proof assistants: types are abstract unless
marked otherwise. The treatment of translucent type declarations in module
systems [22] relies on singleton kinds [4,35], which are the special case of extension
types whose boundary proposition is >. Generalizing from compiletime kinds to
mixed compiletime–runtime module signatures, Sterling and Harper have pointed
out that transparent ascriptions are most appropriately handled by means of an
extension type whose boundary proposition represents the compiletime phase
itself [34]. Thus the translucency of compiletime module components can be
thought of as a particular controlled unfolding policy in the sense of this paper.

8 Conclusions and future work

We have proposed controlled unfolding, a new mechanism for interpolating between
transparent and opaque definitions in proof assistants. We have demonstrated its
practical applicability by extending cooltt with controlled unfolding primitives;
we have also proved its theoretical soundness by constructing an elaboration
algorithm to a core calculus whose normalization we establish using a novel
constructive synthetic Tait computability argument.

26 D. Gratzer et al .

In the future, we hope to see controlled unfolding integrated into more proof
assistants and to further explore its applications for large-scale organization
of mechanized mathematics. In the context of our cooltt implementation, we
have also already begun to experiment with potential extensions, including one
that allows a subterm to be declared locally abstract and then unfolded later
on as-needed — a more flexible alternative to Coq’s abstract t tactical. As we
mentioned in Remark 1, we also are interested in facilities to limit the scope in
which it is possible to unfold a given definition.

Acknowledgments

This work was supported in part by a Villum Investigator grant (no. 25804),
Center for Basic Research in Program Verification (CPV), from the VILLUM
Foundation. Jonathan Sterling is funded by the European Union under the Marie
Skłodowska-Curie Actions Postdoctoral Fellowship project TypeSynth: synthetic
methods in program verification. Views and opinions expressed are however those
of the authors only and do not necessarily reflect those of the European Union
or the European Commission. Neither the European Union nor the granting
authority can be held responsible for them. Carlo Angiuli is supported by the
U.S. Air Force Office of Scientific Research under grant number FA9550-21-0009.
Any opinions, findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the
AFOSR.

References

1. Anel, M., Joyal, A.: Topo-logie. In: Anel, M., Catren, G. (eds.) New Spaces in
Mathematics: Formal and Conceptual Reflections, vol. 1, chap. 4, pp. 155–257.
https://doi.org/10.1017/9781108854429.007

2. Angiuli, C., Brunerie, G., Coquand, T., Hou (Favonia), K.B., Harper, R., Licata,
D.R.: Syntax and models of Cartesian cubical type theory 31(4), 424–468 (2021).
https://doi.org/10.1017/S0960129521000347

3. Angiuli, C., Hou (Favonia), K.B., Harper, R.: Cartesian Cubical Computational
Type Theory: Constructive Reasoning with Paths and Equalities. In: Ghica, D.,
Jung, A. (eds.) 27th EACSL Annual Conference on Computer Science Logic (CSL
2018). Leibniz International Proceedings in Informatics (LIPIcs), vol. 119, pp.
6:1–6:17. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany
(2018). https://doi.org/10.4230/LIPIcs.CSL.2018.6, http://drops.dagstuhl.
de/opus/volltexte/2018/9673

4. Aspinall, D.: Subtyping with singleton types. In: Pacholski, L., Tiuryn, J. (eds.)
Computer Science Logic. pp. 1–15. Springer Berlin Heidelberg (1995)

5. Awodey, S.: Natural models of homotopy type theory. Mathematical Struc-
tures in Computer Science 28(2), 241–286 (2018). https://doi.org/10.1017/
S0960129516000268

6. Bocquet, R., Kaposi, A., Sattler, C.: Relative induction principles for type theories
(2021). https://doi.org/10.48550/ARXIV.2102.11649

https://www.jonmsterling.com/typesynth.html
https://www.jonmsterling.com/typesynth.html
https://doi.org/10.1017/9781108854429.007
https://doi.org/10.1017/9781108854429.007
https://doi.org/10.1017/S0960129521000347
https://doi.org/10.1017/S0960129521000347
https://doi.org/10.4230/LIPIcs.CSL.2018.6
https://doi.org/10.4230/LIPIcs.CSL.2018.6
http://drops.dagstuhl.de/opus/volltexte/2018/9673
http://drops.dagstuhl.de/opus/volltexte/2018/9673
https://doi.org/10.1017/S0960129516000268
https://doi.org/10.1017/S0960129516000268
https://doi.org/10.1017/S0960129516000268
https://doi.org/10.1017/S0960129516000268
https://doi.org/10.48550/ARXIV.2102.11649
https://doi.org/10.48550/ARXIV.2102.11649

Controlling unfolding in type theory 27

7. Cartmell, J.: Generalised Algebraic Theories and Contextual Categories. Ph.D.
thesis, University of Oxford (1978)

8. Clairambault, P., Dybjer, P.: The biequivalence of locally cartesian closed categories
and martin-löf type theories. Mathematical Structures in Computer Science 24(6)
(2014). https://doi.org/10.1017/S0960129513000881

9. Cohen, C., Coquand, T., Huber, S., Mörtberg, A.: Cubical Type Theory: a con-
structive interpretation of the univalence axiom 4(10), 3127–3169 (2017)

10. Coquand, T.: An algorithm for type-checking dependent types. Science of Computer
Programming 26(1), 167–177 (1996). https://doi.org/10.1016/0167-6423(95)
00021-6

11. Dagand, P.E.: A Cosmology of Datatypes: Reusability and Dependent Types. Ph.D.
thesis, University of Strathclyde, Glasgow, Scotland (08 2013)

12. Dreyer, D., Crary, K., Harper, R.: A type system for higher-order modules. In:
Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. pp. 236–249. POPL ’03, New Orleans, Louisiana, USA
(2003). https://doi.org/10.1145/604131.604151

13. Dybjer, P.: Internal type theory. In: Berardi, S., Coppo, M. (eds.) Types for Proofs
and Programs. pp. 120–134. Springer Berlin Heidelberg, Berlin, Heidelberg (1996).
https://doi.org/10.1007/3-540-61780-9_66

14. Fiore, M.: Semantic analysis of normalisation by evaluation for typed lambda
calculus. In: Proceedings of the 4th ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programming. pp. 26–37. PPDP ’02, ACM
(2002). https://doi.org/10.1145/571157.571161

15. Freyd, P.: Aspects of topoi. Bulletin of the Australian Mathematical Society 7(1),
1–76 (1972). https://doi.org/10.1017/S0004972700044828

16. Gilbert, G., Cockx, J., Sozeau, M., Tabareau, N.: Definitional proof-irrelevance
without K. Proc. ACM Program. Lang. 3(POPL) (Jan 2019). https://doi.org/
10.1145/3290316, https://doi.org/10.1145/3290316

17. Gonthier, G., Mahboubi, A., Tassi, E.: A small scale reflection extension for the
Coq system. Research Report RR-6455, Inria Saclay Ile de France (2016), https:
//hal.inria.fr/inria-00258384

18. Gratzer, D.: Normalization for multimodal type theory (2021)
19. Gratzer, D., Shulman, M., Sterling, J.: Strict universes for Grothendieck topoi

(2022), https://arxiv.org/abs/2202.12012, unpublished manuscript
20. Gratzer, D., Sterling, J.: Syntactic categories for dependent type theory: sketching

and adequacy (2020)
21. Gratzer, D., Sterling, J., Birkedal, L.: Implementing a Modal Dependent Type

Theory. Proc. ACM Program. Lang. 3 (2019). https://doi.org/10.1145/3341711
22. Harper, R., Stone, C.: A type-theoretic interpretation of Standard ML. In: Plotkin,

G., Stirling, C., Tofte, M. (eds.) Proof, Language, and Interaction, pp. 341–387. MIT
Press, Cambridge, MA, USA (2000). https://doi.org/10.5555/345868.345906

23. Johnstone, P.T.: Topos Theory. Academic Press (1977)
24. Kaposi, A., Kovács, A., Altenkirch, T.: Constructing quotient inductive-inductive

types. Proc. ACM Program. Lang. 3(POPL), 2:1–2:24 (Jan 2019). https://doi.
org/10.1145/3290315

25. Martin-Löf, P.: An intuitionistic theory of types: predicative part. In: Rose, H.,
Shepherdson, J. (eds.) Logic Colloquium ’73, Proceedings of the Logic Colloquium,
Studies in Logic and the Foundations of Mathematics, vol. 80, pp. 73–118. North-
Holland (1975)

26. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML
(Revised). MIT Press (1997)

https://doi.org/10.1017/S0960129513000881
https://doi.org/10.1017/S0960129513000881
https://doi.org/10.1016/0167-6423(95)00021-6
https://doi.org/10.1016/0167-6423(95)00021-6
https://doi.org/10.1016/0167-6423(95)00021-6
https://doi.org/10.1016/0167-6423(95)00021-6
https://doi.org/10.1145/604131.604151
https://doi.org/10.1145/604131.604151
https://doi.org/10.1007/3-540-61780-9_66
https://doi.org/10.1007/3-540-61780-9_66
https://doi.org/10.1145/571157.571161
https://doi.org/10.1145/571157.571161
https://doi.org/10.1017/S0004972700044828
https://doi.org/10.1017/S0004972700044828
https://doi.org/10.1145/3290316
https://doi.org/10.1145/3290316
https://doi.org/10.1145/3290316
https://doi.org/10.1145/3290316
https://doi.org/10.1145/3290316
https://hal.inria.fr/inria-00258384
https://hal.inria.fr/inria-00258384
https://arxiv.org/abs/2202.12012
https://doi.org/10.1145/3341711
https://doi.org/10.1145/3341711
https://doi.org/10.5555/345868.345906
https://doi.org/10.5555/345868.345906
https://doi.org/10.1145/3290315
https://doi.org/10.1145/3290315
https://doi.org/10.1145/3290315
https://doi.org/10.1145/3290315

28 D. Gratzer et al .

27. Newstead, C.: Algebraic models of dependent type theory. Phd thesis, Carnegie
Mellon University (2018), https://sites.math.northwestern.edu/~newstead/
thesis-clive-newstead.pdf

28. Pierce, B.C., Turner, D.N.: Local type inference. ACM Transactions Programming
Language and Systems 22(1), 1–44 (2000)

29. RedPRL Development Team, T.: cooltt (2020), http://www.github.com/RedPRL/
cooltt

30. Riehl, E., Shulman, M.: A type theory for synthetic∞-categories. Higher Structures
1(1), 147–224 (2017), https://arxiv.org/abs/1705.07442

31. Sterling, J.: First Steps in Synthetic Tait Computability: The Objective Metatheory
of Cubical Type Theory. Ph.D. thesis, Carnegie Mellon University (2021). https:
//doi.org/10.5281/zenodo.6990769, version 1.1, revised May 2022

32. Sterling, J.: Naïve logical relations in synthetic Tait computability (Jun 2022),
unpublished manuscript

33. Sterling, J., Angiuli, C.: Normalization for cubical type theory. In: Proceedings of
the 36th Annual ACM/IEEE Symposium on Logic in Computer Science. LICS ’21,
ACM, New York, NY, USA (2021)

34. Sterling, J., Harper, R.: Logical relations as types: Proof-relevant parametricity
for program modules. Journal of the ACM 68(6) (Oct 2021). https://doi.org/10.
1145/3474834

35. Stone, C.A., Harper, R.: Extensional equivalence and singleton types 7(4), 676–722
(2006). https://doi.org/10.1145/1183278.1183281

36. The Agda Development Team: The Agda programming language (2022), http:
//wiki.portal.chalmers.se/agda/pmwiki.php

37. The Agda Development Team: The Agda standard library (2022), https://github.
com/agda/agda-stdlib

38. The Coq Development Team: The Coq proof assistant (2022), https://www.coq.
inria.fr

39. Uemura, T.: A general framework for the semantics of type theory (04 2019),
https://arxiv.org/abs/1904.04097

40. Uemura, T.: Abstract and Concrete Type Theories. Ph.D. thesis, Institute for Logic,
Language and Computation, University of Amsterdam (2021)

41. Univalent Foundations Program, T.: Homotopy Type Theory: Univalent Foun-
dations of Mathematics. Institute for Advanced Study (2013), https://
homotopytypetheory.org/book

42. Vickers, S.: Locales and toposes as spaces. In: Aiello, M., Pratt-Hartmann, I.,
Van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 429–496. Springer Nether-
lands, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4_8

A The LF signature for TTP

We present the nonstandard portion of the signature of TTP:

tp : �
tm : tp =⇒ ?

〈p〉 : ?
_ : {u, v : 〈p〉} =⇒ u = v
_ :

{
_ :

〈∧
i<n pi

〉}
=⇒ 〈pk〉

https://sites.math.northwestern.edu/~newstead/thesis-clive-newstead.pdf
https://sites.math.northwestern.edu/~newstead/thesis-clive-newstead.pdf
http://www.github.com/RedPRL/cooltt
http://www.github.com/RedPRL/cooltt
https://arxiv.org/abs/1705.07442
https://doi.org/10.5281/zenodo.6990769
https://doi.org/10.5281/zenodo.6990769
https://doi.org/10.5281/zenodo.6990769
https://doi.org/10.5281/zenodo.6990769
https://doi.org/10.1145/3474834
https://doi.org/10.1145/3474834
https://doi.org/10.1145/3474834
https://doi.org/10.1145/3474834
https://doi.org/10.1145/1183278.1183281
https://doi.org/10.1145/1183278.1183281
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://wiki.portal.chalmers.se/agda/pmwiki.php
https://github.com/agda/agda-stdlib
https://github.com/agda/agda-stdlib
https://www.coq.inria.fr
https://www.coq.inria.fr
https://arxiv.org/abs/1904.04097
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://doi.org/10.1007/978-1-4020-5587-4_8
https://doi.org/10.1007/978-1-4020-5587-4_8

Controlling unfolding in type theory 29

_ : {_ : 〈pi〉, . . . } =⇒
〈∧

i<n pi
〉

extp : (A : tp) (a : {p} tmA) =⇒ tp
inp : (A : tp) (a : {p} tmA) (u : tmA) {_ : {p}u = a} =⇒ tm (extpAa)
outp : (A : tp) (a : {p} tmA) (u : tm (extpAa)) =⇒ tmA
_ : (A : tp) (a : {p} tmA) (u : tm (extpAa)) {_ : 〈p〉} =⇒ outpAau = a
_ : (A : tp) (a : {p} tmA) (u : tmA) {_ : {p}u = a} =⇒ outpAa (inpAau) = u
_ : (A : tp) (a : {p} tmA) (u : tm (extpAa)) =⇒ inpAa (outpAau) = u

partp : (A : {p} tp) =⇒ tp
lamp : (A : tp) (a : {p} tmA) =⇒ tm (partpA)
appp : (A : tp) (u : tm (partpA)) =⇒ {p} tmA
_ : (A : tp) (a : {p} tmA) =⇒ apppA (lampAa) = a
_ : (A : tp) (a : tm (partpA)) =⇒ lampA (apppAa) = a

B The (2,1)-category of models of a type theory

Uemura [40] has observed that a model (M�,M) in the sense of Definition 4 can
be packaged into a single functor M̃ : TB Cat, in which TB freely extends
T by a new terminal object � and Cat is the 2-category of categories. From
this perspective, a sort X ∈ T is taken to the total category M̃X =

∫
M�MX

of a discrete fibration over M̃� = M�. Here we are using the equivalence
betweenDFibC ' Pr(C). The preservation of representable maps is then rendered
here as the requirement that for representable u : X Y , each functor M̃u :
M̃X M̃Y shall have a right adjoint M̃u a qM̃u

taking an element of M̃Y to
the generic element of M̃X in the extended context.

Example 1. For a representable map π : tm tp, the functorial action M̃π :
M̃ tm M̃ tp takes a term Γ ` a : A to the type Γ ` A; the right adjoint
qM̃π

: M̃ tp M̃ tm sends a type Γ ` A to the variable Γ, a : A ` a : A.

Definition 10. Given two modelsM,N of T, a morphism of models fromM
to N is given by a natural transformation F : M̃ Ñ ∈ [TB,Cat] such that
the left-hand square below satisfies the Beck–Chevalley condition in the sense
that for each representable u : X Y : T the right-hand wiring diagram (ori-
ented from top left to bottom right) denotes an invertible natural transformation
FX ◦ qM̃u

qÑu ◦ FY :

M̃X

M̃Y

M̃u

ÑX

ÑY

FX

Ñu

FY

qM̃u

FX

Ñu

qÑuM̃u

FY

η

≡

ε

30 D. Gratzer et al .

Given a natural transformation F : M̃ Ñ ∈ [TB,Cat], we have a left Kan
extension F�! : DFibM� DFibN� . This functor can be used to re-express the
Beck–Chevalley condition in a manner that is more amenable to computations.

Definition 11. Let M,N be two models of T, and let F,G :M N be two
morphisms of models. An isomorphism h from F to G is defined to be an
invertible modification between the underlying natural transformations F,G. This
amounts to choosing for each X ∈ TB a natural isomorphism hX : FX GX in
[M̃X, ÑX], subject to the coherence condition that for each u : X Y in TB

the following two wiring diagrams are equal:

hX

FX

Ñu
GX

hYM̃u

FY

GY

Naturality of F,G ensures that the diagrams above have the same boundary.

Remark 14. Because each of the induced maps πMX : M̃X M� and πNX :
ÑX N� into the cone point are discrete fibrations, it suffices to check the
modification condition of h on only the cone maps X �: as any discrete
fibration is a faithful functor, it moreover follows that h� : F� G� uniquely
determines all the other hX if they exist. Unfolding further, given x ∈ M̃X we
are only requiring that (h�)∗πMx

(GXx) = FXx in the sense depicted below in the
discrete fibration NX over N�:

FXx

F�(πMXx)

GXx

G�(πMXx)

∃!hXx

(h�)πMx

Thus we have a (2,1)-category of models ModT for any category with
representable maps T.

C The (2,1)-category of atomic substitution algebras

Definition 12. Given atomic substitution algebras α : A I and α′ : A′ I,
a morphism from (A, α) to (A′, α′) is given by a morphism F : A A′ ∈ModT0

together with an isomorphism φF : α α′ ◦ F in [A, I] as depicted below:

F α′
φF

α

Controlling unfolding in type theory 31

Definition 13. Given two morphisms F,G : (A, α) (A′, α′), an isomorphism
from F to G is given by an isomorphism h : F G ∈ [A,A′] such that the
following wiring diagrams denote equal isomorphisms α α′ ◦G:

F

α′

φF

h

α

G

G α′
φG

α

	Controlling unfolding in type theory
	Introduction
	A surface language with controlled unfolding
	A simple dependency: length-indexed vectors
	Transitive unfolding
	Recovering unconditionally transparent and opaque definitions
	Unfolding within the type
	Unfolding within subexpressions

	Controlling unfolding with extension types
	A dependently-typed core calculus with proposition symbols
	Elaborating controlled unfolding to our core calculus

	The elaboration algorithm
	The core calculus TT_P
	Signatures over TT_P
	Bidirectional elaboration

	Case study: an implementation in cooltt
	The metatheory of TT_P
	Type theories as categories with representable maps
	Encoding TT_P in the logical framework
	The atomic figure shape and its universal property
	The language of synthetic Tait computability
	Normal and neutral forms
	The normalization model
	The normalization algorithm

	Related work
	Conclusions and future work
	The LF signature for TT_P
	The (2,1)-category of models of a type theory
	The (2,1)-category of atomic substitution algebras

