
Basic Libraries − Reference Manual

Mjølner Informatics Report
MIA 90−08
March 2004

Copyright © 1990−2004 Mjølner Informatics.
All rights reserved.

No part of this document may be copied or distributed
without the prior written permission of Mjølner Informatics

http://www.mjolner.com

Table of Contents

List of Programs ..1

1 The Basic Libraries ...2
1.1 The betaenv Library...2

1.1.1 Mjølner System Version..2
1.1.2 Backward compatability..3

1.2 Using the betaenv Library..3
1.3 Basic Patterns..4

1.3.1 Simple types..4
1.3.2 The Integer Pattern...4
1.3.3 Arithmetical operators...4
1.3.4 The Boolean Pattern...5
1.3.5 The Real Pattern...5
1.3.6 The Char Pattern...5
1.3.7 The Repetition Pattern..6

1.4 Basic Object Patterns..6
1.4.1 The Object Pattern..6
1.4.2 Objects of simple types...7
1.4.3 The charValue, integerValue, booleanValue and realValue Patterns.................7
1.4.4 The charObject, integerObject, booleanObject, trueObject, falseObject and realObject Patterns

1.5 The Streams Patterns..8
1.5.1 The Stream Pattern...8
1.5.2 Substreams...8
1.5.3 The Text Pattern..8
1.5.4 Text utilities...9
1.5.5 Using Text...9
1.5.6 UniCode Text..10

1.6 Exceptions and Program Termination..10
1.6.1 Static Exceptions...11
1.6.2 Dynamic Exceptions..12

1.7 Various Other Patterns..14
1.7.1 Control Patterns..14
1.7.2 Input/Output Patterns..15
1.7.3 Command Line Arguments...15
1.7.4 Object Pool..16
1.7.5 Concurrency − SystemEnv..16
1.7.6 External Language Interface...16

1.8 Time and Date Library...16

2 The math Library...17
2.1 Using the math Fragment..17

3 The numberio Library ...18
3.1 Based integers and reals...18
3.2 Using the numberio Fragment...19

3.2.1 Reading numbers from standard input..19

4 The formatio Library ...21
4.1 Formatted input/output...21
4.2 Format string ...21
4.3 Marker type..21

 Basic Libraries − Reference Manual

i

Table of Contents

4.4 Using the formatio Fragment...22
4.4.1 Illustrating putFormat..22
4.4.2 Illustrating getFormat..22

5 The random Library ..24
5.1 simple random generators: ignlgi and ranf ..24
5.2 Using the random Fragment..24

5.2.1 Illustrating Integer Random Generator..24

6 The regexp Library ...26
6.1 Regular expression..26
6.2 regexp_match..26
6.3 regexp_search...26
6.4 regexp_replace..26
6.5 regexp_replace_literally...26
6.6 Syntax of Regular Expressions..27
6.7 List of special characters...27
6.8 Table of '\' constructs...29
6.9 A complicated regexp..29
6.10 Regular Expression Registers...30
6.11 Known bugs or Inconveniences...30
6.12 Using the regexp Fragment...31
6.13 Regexp Demos..31

6.13.1 Search for regexp..31
6.13.2 Replace with a regexp...32

7 The file Library ..34
7.1 File and diskEntry..34
7.2 Disk entry attributes...34
7.3 File attributes...34
7.4 The FileRep Library...34
7.5 The BinFile Library...34

7.5.1 Using the file Fragment...35
7.5.2 Using diskEntry...35

7.6 Using File...36

8 The directory Library ..38
8.1 Directory attributes...38
8.2 Using the directory Fragment...38

8.2.1 Listing a directory..38

9 The systemEnv Libraries ...40
9.1 basicsystemenv...40
9.2 systemenv..40
9.3 timehandler..40
9.4 The basicSystemEnv Library...40

9.4.1 Basic concepts..40
9.4.2 Changes from original design...40
9.4.3 New facilities...41
9.4.4 The Concurrency is Simulated..41
9.4.5 Concurrency and User Interface Environments..41

 Basic Libraries − Reference Manual

ii

Table of Contents

9.5 Using the SystemEnv Fragment..42
9.5.1 The Monitor Example..42
9.5.2 The Monitor with Wait Example..43
9.5.3 The Ports Example..43
9.5.4 The ObjectPort Example...44

10 The external Library ...46
10.1 Interfacing to C and Pascal..46
10.2 Using the external Fragment..46

10.2.1 Interfacing to External C Functions...46
10.2.2 Using call back from C..47
10.2.3 Interfacing to External Pascal Procedures..48
10.2.4 Example Interfacing to Pascal...49
10.2.5 Using call backs from Pascal..49
10.2.6 Interfacing to External Data Structures...49
10.2.7 cStruct...49
10.2.8 ExternalRecord...49
10.2.9 Example Using cStruct..50
10.2.10 Example Using externalRecord...50

11 The Perl Compatible Regular Expression Library ...52
11.1 Regular Expressions..52
11.2 pcre..52
11.3 init..52
11.4 options...53
11.5 match...54
11.6 match.options...54
11.7 match.pre...54
11.8 match.matchPos..54
11.9 match.matchText...54
11.10 match.preMatchText and match.postMatchText..55
11.11 match.subMatchPos..55
11.12 match.subMatchText..55
11.13 match.sub1, match.sub2, match.sub3...55
11.14 match.noMatch..56
11.15 match.position..56
11.16 replace...56
11.17 replace.rep...56
11.18 matchAll...57
11.19 replaceAll...57
11.20 subPatterns..57
11.21 compilationError...57

12 PCRE specification ...58
12.1 Name...58
12.2 Description...58
12.3 Compiling a Pattern...59
12.4 Studying a Pattern...60
12.5 Locale Support...61
12.6 Information About a Pattern...61
12.7 Matching a Pattern...63

 Basic Libraries − Reference Manual

iii

Table of Contents

12.8 Extracting Captured Substrings...65
12.9 Limitations..66
12.10 Differences from perl..66
12.11 Regular Expression Details..68
12.12 Backslash...68
12.13 Circumflex and Dollar...71
12.14 Full Stop (Period, Dot)...71
12.15 Square Brackets..71
12.16 Posix Character Classes..72
12.17 Vertical Bar..73
12.18 Internal Option Setting...73
12.19 Subpatterns..74
12.20 Repetition...75
12.21 Back References..77
12.22 Assertions..78
12.23 Once−Only Subpatterns..79
12.24 Conditional Subpatterns...81
12.25 Comments..82
12.26 Recursive Patterns...82
12.27 Performance..83
12.28 Author..84

13.1 Basicsystemenv Interface...85

13.2 Betaenv Interface...91

13.3 Binfile Interface..109

13.4 Directory Interface ...114

13.5 External Interface...119

13.6 File Interface...124

13.7 Filerep Interface ...130

13.8 Formatio Interface ...131

13.9 Iget Interface ..138

13.10 Math Interface ..139

13.11 Mbs_version Interface...144

13.12 Numberio Interface ..145

13.13 Random Interface ..154

13.14 Regexp Interface..163

13.15 Pcre Interface ...166

 Basic Libraries − Reference Manual

iv

Table of Contents

13.16 Substreams Interface ..175

13.17 Systemenv Interface..179

13.18 TextUtils Interface..180

13.19 Texthash Interface ...182

13.20 Timedate Interface ...184

13.21 Timehandler Interface ...190

13.22 Wtext Interface ...191

Index ...199
<...199
_...199
A...199
B...202
C..202
D..203
E...203
F...204
G..205
H..206
I..206
J...207
K...207
L...207
M..207
N..207
O..208
P...208
Q..210
R..210
S...210
T...212
U..212
V...213
W..213
X...213
Y...213
Z...213

 Basic Libraries − Reference Manual

v

List of Programs

List of Programs
1 textRecords.bet
2 NumberioDemo.bet
3 putformatDemo.bet
4 getformatDemo.bet
5 tstign.bet
6 searchDemo.bet
7 replaceDemo.bet
8 decompose.bet
9 fileerror.bet
10 listdir.bet
11 buffer.bet
12 OCbuf.bet
13 altex1.bet
14 sys1.bet

List of Programs 1

1 The Basic Libraries
This document contains documentation of the basic libraries of the Mjølner System. It is a
programmer's guide. The purpose is to provide the necessary information to the users of the
libraries. The facilities are documented by means of the BETA interfaces and examples of how to
use the facilities.

This document includes the documentation on the following libraries of the Mjølner System:

• betaenv.bet contains the most basic library of the Mjølner System. It contains patterns
describing character, integer, streams, exceptions, etc. as well as control patterns and
input/output patterns. Most (if not all) BETA programs will use betaenv, either directly or
indirectly.

• math.bet contains an interface to standard real functions in BETA. The library contains
patterns for mathematical functions: trigonometric, hyperbolic, exponential and logarithmic,
floating point manipulation, power, miscellaneous constants.

• numberio.bet contains patterns to be used for reading numbers from any input stream, and
for writing any number to any output stream. The patterns are able to read and write all
numeric types of the BETA language.

• formatio.bet contains two patterns for making formatted input and output on any stream.
• random.bet contains an elaborate random generator system, containing random generators

with many different statistical properties.
• regexp.bet contains facilities for working with regular expressions in text strings.
• file.bet contains the general interface into files, residing on some file system.
• directory.bet contains the general interface into directories on hierarchical file system.
• systemEnv defines the experimental concurrency system for BETA. SystemEnv contain

three closely related libraries: basicsystemenv.bet, systemenv.bet, and timehandler.bet.
• repStream.bet contains the definition of a special type of repetitions that has stream−like

operations.
• external.bet contains the various facilities for enabling BETA programs to interface to

external languages, like C and Pascal.
along with a few other, minor libraries.

1.1 The betaenv Library

When programming in BETA, the basic BETA environment betaenv is utilized. This chapter
describes how to use the facilities in betaenv.

Betaenv contains several attributes that are used in any BETA program. That is, each BETA
program must have betaenv in its origin path.

The patterns in betaenv are divided into several different categories such as character patterns,
integer patterns, boolean patterns, control patterns, input/output patterns, stream and exception
patterns.

The first section of this chapter describes how betaenv is used in general, while the subsequent
sections concern the individual patterns.

1.1.1 Mjølner System Version

The mbs_version.bet library implements a few operations which can be used in BETA programs to
test the actual release number of the Mjølner System. See the interface files for details.

1 The Basic Libraries 2

1.1.2 Backward compatability

This version of betaenv contains a few important changes, which are not backward compatible. The
most important are:

• The text attribute findCh has been renamed to findAll.
• The text attributes copyAppend and copyPrepend have been removed. To gain the same

effect, you can write:
'...'−>(t.copy).append

• or
'...'−>(t.copy).prepend

To ease the process of porting your code, we have included a small fragment called betaenvold.bet
containing these obsolite facilities.

1.2 Using the betaenv Library

The basic structure of betaenv is realized by means of the Mjølner fragment system. It is as follows:

BODY 'betaenvbody'
−−− betaenv: descriptor −−−
(# ...
(* A lot of useful patterns *)
...
theProgram: @<<SLOT program: descriptor>>;
<<SLOT lib: attributes>>
...
do theProgram
#)

The program slot must be filled by the user and can have the following form:

ORIGIN '~beta/basiclib/betaenv'
−−− program: descriptor −−−
(#
do 'This is a small BETA program' −> puttext
#)

lib slot

The lib slot makes it possible to add attributes to betaenv. An example of this is the following which
might be in a file called stack.bet:

ORIGIN '~beta/basiclib/betaenv'
−−− lib: attributes −−−
stack:
(# push: (# e: @integer enter e do ... #);
 pop: (# e: @integer do ... exit e #);
 empty: ...
 ...
#)

 Basic Libraries − Reference Manual

1.1.2 Backward compatability 3

The stack can then be used as follows:

ORIGIN '~beta/basiclib/betaenv';
INCLUDE 'stack'
−−− program: descriptor −−−
(# s: @stack
do 7 −> s.push;
 s.pop −> putint;
#)

1.3 Basic Patterns

1.3.1 Simple types

Betaenv contains definitions of the basic patterns char, integer, real, boolean, true and false that
are predefined in the BETA language (i.e. built−in data types). These patterns are self−assignable.
This means an integer object can be assigned to another integer object, a char object can be
assigned to another char object etc.

For efficiency reasons, the usage of the basic patterns char, integer, real, boolean, true and false is
somewhat restricted, compared with all other patterns in the system. These restrictions are:

• They cannot be used as superpatterns to other patterns. E.g. subInteger: integer(# ... #) is
illegal.

• Dynamic references to instances of these basic types cannot be obtained. E.g. var[] −> ... is
illegal if var is an instance of one of these basic patterns.

• Dynamic references to basic patterns cannot be declared. E.g. var: ^integer is illegal.

True object oriented patterns for integers, characters, reals and booleans are also part of the
system (see later). However, using those patterns impose an execution overhead compared with
the basic patterns.

1.3.2 The Integer Pattern

1.3.3 Arithmetical operators

Besides the arithmetical operations: +, −, *, div, and mod and the relational operations: =, <>, >, >=,
< and <=, the Min, Max and Abs patterns are defined for integers. The patterns MaxInt and MinInt
returns the largest (respectively smallest) integer on the machine.

(# i,j,k: @integer
do 3 −> i;
 '? '−>puttext; getint−>j; (* read an integer from keyboard *)
 ((i,j) −> Max, j+5) −> Min −> k;
 'k is '−> puttext; k −> putint; newline;
 (if k−1
 // 5 then ...
 // 17 then ...
 if)
#)

 Basic Libraries − Reference Manual

1.3 Basic Patterns 4

1.3.4 The Boolean Pattern

1.3.4.1 Logical operators

In the current implementation, true and false return respectively the values 1 and 0. The unary
operator not and the binary operators and, xor, and or can be applied to booleans.

Booleans are used in the traditional way:

(# aBoolean, anotherBoolean: @boolean;
 a: @integer
do ...
 (if aBoolean then
 ...
 else
 (a>7) and (a<17) −> anotherBoolean
 if)
#)

1.3.5 The Real Pattern

1.3.5.1 Arithmetical operations

The arithmetical operations: +, −, *, div (or /), and the relational operations: =, <>, >, >=, < and <=
are defined for reals. The patterns MaxReal and MinReal (defined in math.bet) returns the largest
(respectively smallest) real on the machine.

The following example shows how to use reals. The pattern putreal is described later.

(# x,y: @real;
do ... −> x;
 'Print the number 1.23:' −> putline;
 y −> putreal;
 newline;
 x −> y;
 (if x=y then 'x and y are equal!' −> putline if);
 '3.0*7.0 = ' −> puttext;
 3.0 * 7.0 −> putreal;
 newline;
 '(−4.0)*(−3.0) = ' −> puttext;
 −4.0 * (−3.0) −> putreal;
 newline;
 '(−4.0)/8.0 = ' −> puttext;
 −4.0 div 8.0 −> putreal;
 newline;
#)

1.3.6 The Char Pattern

1.3.6.1 ASCII

The char pattern enables the manipulation of characters. Characters can be expressed as literals
or as the corresponding ASCII values. The pattern Ascii defines all non−printable characters as
constants (such as null, nl, cr, esc, del). Newline however, is a variable containing either nl or cr
depending on the computer.

 Ascii also contains local patterns for various conversions and testings of characters. E.g. the

 Basic Libraries − Reference Manual

1.3.4 The Boolean Pattern 5

patterns IsDigit, IsLetter, IsUpper and IsLower are provided for determining the kind of a character.
IsSpace testes whether the character is sp, cr, nl, np, ht or vt. Conversion is available through the
upCase and lowCase patterns.

The following example shows how to use char and upCase:

(# a,b: @char
do 'a' −> a;
 98 −> b;
 (if a −> Ascii.upCase
 // 'A' then ...
 // 'B' then ...
 ...
 if)
#)

1.3.7 The Repetition Pattern

The BETA compiler also implements repetitions. Betaenv contains the repetition pattern, defining
the available operations on repetitions (apart from the lookup operation: []). These operations are
range, new and extend. Range returns the number of repetition positions, new makes it possible to
allocate an entire new repetition, and extend is used for dynamically extension of the repetition.
Note that the repetition pattern cannot be used as a superpattern:. Also note, that it is only allowed
to make repetitions of integer, boolean, char, real, and object references.

1.4 Basic Object Patterns

The basic object oriented patterns are the object pattern and the object oriented variants of the
basic patterns.

1.4.1 The Object Pattern

The object pattern functions as the implicit superpattern: for all patterns which do not have any
explicit superpattern:. The pattern object is defined as follows:

object: (* general superpattern: *)
 (# _struc:
 (#
 exit this(object)##
 #);
 _new:
 (# O: ^object
 do ...
 exit O[]
 #)
 do inner
 #);

The attribute _struc returns a reference to the structure of the current object (i.e. a pattern
reference to the pattern from which this object was created). The attribute _struc is maintained in
v1.6 for backward−compatability reasons. It will be removed in next release, since it will become
obsolite, since O## is allowed in the case where O is the name of an object. However, previous
releases of the compiler disallows this construct in some cases due to an error. Only in these
cases, it is recommended to use the O._struc construct.

 Basic Libraries − Reference Manual

1.3.7 The Repetition Pattern 6

The attribute _new returns a new object, that is qualified exactly as THIS(object). This new object is
default initialized.

1.4.2 Objects of simple types

All patterns except char, integer, real, boolean, true and false are subpatterns of Object. To enable
handling integers, reals, characters and booleans like any other objects in the system, the patterns
charObject, integerObject, realObject, booleanObject, trueObject, and falseObject have been
introduced. They are genuine patterns, corresponding to the basic patterns, described above. They
are specializations of Object that can be used instead of the basic patterns. They have all
properties ordinary patterns have (in contrast to the basic patterns).

1.4.3 The charValue, integerValue, booleanValue and realValue Patterns

The charValue, integerValue, booleanValue, and realValue patterns are object oriented variants of
the basic patterns (i.e. built−in patterns). They are used in all cases where a value of the given type
is needed. E.g. a booleanValue may be used as superpattern for patterns returning boolean results.

1.4.4 The charObject, integerObject, booleanObject, trueObject, falseObject
and realObject Patterns

These patterns are subpatterns: of the charValue, integerValue, etc. patterns above, and gives the
final functionality to allow these variants of the basic patterns to be used a genuine patterns.

These patterns can for instance be utilized when programming general data structures. Consider a
data structure list which defines its element type as a virtual Object.

list:
(# element :< object;
 insert: (# e: ^element enter e[] do ... #)
 remove: (# e: ^element do ... exit e[] #)
#)

When list is applied in a specific application, the element type is bound. The following is an
example of how a list of integers and a list of editors can be declared and manipulated:

(# integerList: @list(# element::< integerObject #);
 editor:
 (# window: ...
 menus: ...
 cut: ...
 copy: ...
 paste: ...
 #);
 ed: ^editor;
 editorList: @list(# element::< editor #);
 io: ^integerObject;
do &integerObject[] −> io[]; 7 −> io;
 io[] −> integerList.insert;
 ...
 editorList.remove −> ed[];
 ...
#)

 Basic Libraries − Reference Manual

1.4.2 Objects of simple types 7

1.5 The Streams Patterns

A stream is a generalization of internal and external text objects. An internal text object (text) is a
sequence (repetition) of chars. An external text object (file) corresponds to a traditional text file.
Stream, text and file are organized in the following hierarchy:

Stream, text, and file

stream: (# ... #);
text: stream(# ... #);
file: stream(# ... #); (* described in a later chapter *)
unixFile: file(# ... #);(* described in a later chapter *)
macFile: file(# ... #); (* described in the Macintosh
 * Library manual *)

1.5.1 The Stream Pattern

The stream pattern is an abstract superpattern: which provides general stream manipulating
procedure patterns: getPos, setPos, eos, length, reset, newline, put, get, peek, putint, getint,
puttext, gettext, putline, getNonBlank, getline, getAtom, scan, scanBlanks, scanToNL and
scanAtom. The stream pattern also defines exception patterns (e.g. EOSerror). See the interface of
stream for more details.

1.5.2 Substreams

There is an additional library called substreams.bet, which implements a substrems concept (and a
subtext concept). A substream refers to a (consequtive) portion of another stream. Manipulations
on the substream will thereby actually change that portion of this other stream. All usual stream
operations applies to a substream. See the interface of substream for more details.

1.5.3 The Text Pattern

The text concept is intended for 'small' texts, but there is no size limit. Some of the operations might
however be inefficient on large text objects.

A text is a sequence of characters. The range of a text object T is [1,T.length]. A text can be
initialized by executing T.clear or by assigning it with another (initialized) text. Like the predefined
patterns integer, real, char and boolean, Text objects are self−assignable. A text constant has the
form 'foo' or 'a'. The ' character may by specified as part of a text constant by repeating it, e.g. 'is''s
like this' is the text constant: is's like this.

Besides defining the implementations of the abstract stream operations (e.g. put and get), the text
pattern defines the following patterns: empty, clear, inxGet, inxPut, append, prepend, scanAll, sub,
insert, delete, equal, equalNCS, less, greater, makeLC, makeUC, find, findAll, findText, findTextAll,
copy, and asInt.

All error messages from exceptions originating from text objects are followed by the text lines:

Error in text which begins as follows:
<THIS(text)>.....

where <THIS(text)> is the text where the error occurred.

 Basic Libraries − Reference Manual

1.5 The Streams Patterns 8

1.5.4 Text utilities

The library textUtils.bet contains a number of additional text attributes, such as getBoolean,
putBoolean, set, setText, setInt, setBased, setReal, and setBoolean. See the interface of textUtils
for more details.

The library texthash.bet contains a single operation: honeyman, which is an efficient and nearly
optimal hash−function for text hash keys. See the interface of texthash for more details.

1.5.5 Using Text

This example gives examples of how to use the text pattern. The text object Records consists of a
sequence of records. Each record has the form:

name Job:aJob Salary:aSalary /

The program shows various patterns for manipulating the Records text:

Program 1: textRecords.bet

ORIGIN '~beta/basiclib/betaenv';

−−− program: descriptor −−
(* Demo example shwoing examples of how to use the text concept from betaenv.
 * The text object Records, consists of a sequence of records. Each record
 * has the form:
 * name Job:aJob Salary:aSalary /
 * The program shows various patterns for manipulating the Records text.
 *)
(# GetName: (* read next name from T *)
 (# T: ^text; T1: @text
 enter T[]
 do (* scan and skip until a letter is met *)
 T.scan(# while::<(#do NOT (ch−>Ascii.isLetter)−>value #)#);
 (* scan and read while letters in T *)
 T.scan
 (# while::<(#do ch−>Ascii.isLetter−>value #)
 do ch−>T1.put
 #)
 exit T1
 #);
 GetRecord:
 (* Get the record with the name N and return name and dat part *)
 (# N: ^Text; name,data: @Text
 enter N[]
 do Records.reset;
 FindName:
 (if not Records.eos then
 Records[]−>getName−>name;
 data.clear;
 (* scan and read until '/' is met *)
 Records.scan(# while::<(#do (ch<>'/')−>value#) do ch−>data.put #);
 (if not (N[]−>name.equal) then restart FindName
 if)if)
 exit(name,data)
 #);
 GetJobAndSalary:
 (* get the job and salary from data part, which is the part after name *)

 Basic Libraries − Reference Manual

1.5.4 Text utilities 9

 (# Data: ^Text; Job: @Text; Salary: @integer
 enter Data[]
 do Data.reset;
 Data[]−>GetName; Data.get (* skip ':' *); Data[]−>GetName−>Job;
 Data[]−>GetName; Data.get; Data.GetInt−>Salary
 exit(Job,Salary)
 #);

 Records: @Text;
do '−−−−−−−−−−1:'−>putLine;
 (* initialize Records *)
 'John Job:Programmer salary:120000 / '−>Records.append;
 'Joan Job:Doctor salary:130000 / '−>Records.append;
 'Mary Job:Boss salary:140000 / '−>Records.append;
 Records[]−>putLine;

 '−−−−−−−−−−2:'−>putLine;
 (* split Records into atoms *)
 Records.reset;
 scan:
 cycle
 (#
 do Records.getAtom−>putline;
 (if Records.eos then leave scan
 if)#);
 '−−−−−−−−−−3:'−>putLine;
 (* Find record with name Joan and decode data part *)
 (# Name,Data,Job: @ text; Salary: @Integer
 do 'Joan'−>GetRecord−>(Name,Data);
 'Ms. '−>Name.prePend;
 ' II'−>name.append;
 Name[]−>putText; ' has the data: '−>putText;
 Data[]−>GetJobAndSalary−>(Job,Salary);
 'Job='−>putText; Job.makeUC; Job[]−>putText;
 ' Salary='−>putText; Salary−>putInt; newline;
 #)

#)

1.5.6 UniCode Text

This release contains an experimental implementation of an UniCode stream and UniCode text.
The fragment is called wtext.bet, and a UniCode stream is realized by the wstream pattern and a
UniCode text is realized by the wtext pattern.

Besides these two patterns, this fragment defines a conversion pattern ascii2wtext, which takes a
regular BETA text and converts it into a UniCode text (a wtext instance). Furthermere, this fragment
extends the text interface with one additional operation aswtext, which converts the text instance to
a wtext instance.

See the interface file for wtext for further details.

1.6 Exceptions and Program Termination

There are two kinds of exceptions in the BETA programming language: Static exceptions and
Dynamic exceptions. Static exceptions are used when you have an exception pattern and know on
compile time where it is when you need it. Dynamic exceptions are exception patterns that can
handle a specific type of error. They are located by traversing the call stack when an error occurs.
This means, that the exception handler does not need to be in scope to be called.

 Basic Libraries − Reference Manual

1.5.6 UniCode Text 10

1.6.1 Static Exceptions

The default action of a static exception is to stop the program execution and print an informative
error message on the stream screen. In addition the file <programname>.dump contains a dump of
the call stack. Exceptions use the pattern Stop for termination. Specific error messages can be
defined by specializing the exception pattern. The attribute msg of exception is a text object that is
used to accumulate error messages in the classification hierarchy of exceptions. If the programmer
wishes to prevent the program execution from being stopped in order to handle the exception
himself, the boolean attribute continue of exception must be set to true.

The static exceptions are often defined as virtual procedure patterns of other patterns (such as the
file pattern, discussed below). At the appropriate levels in the pattern hierarchy, the virtual patterns
are bound so that the error messages are tailored to the specific context. The user can augment
these error messages by means of the msg text object or choose to ignore the exception and
continue execution.

In order to differentiate between potential fatal static exceptions and to be backward compatible
with earlier versions of exceptions in the BETA programming language, the notification pattern is
defined as:

notification: exception(# do true−>continue; INNER #);

1.6.1.1 Examples Using Static Exceptions

In order to illustrate the use of static exceptions, let us look at a file exception example. Without
using the exception handling facilities an attempt to open a non−existing file will produce the
following error messages:

**** Exception processing
 Error in file 'in.bet' No such file

Now let us see what can be done by using exceptions.

The binding of noSpaceError shows that a message can be added to msg. Msg could also have
been overwritten, by first clearing msg (msg.clear). The binding of noSuchFileError shows how to
prevent the system from stopping the execution when the program attempts to open a non−existing
file. Instead the user is prompted for another file name. In fact there exists a procedure pattern
(exists) that tests for the existence of a file, but this has not been used in this example.

(#
 inFile: @file
 (# noSuchFileError:: (# do true−>continue; false−>OK #)#);
 OK: @ boolean;

do 'in.bet' −> inFile.name;
 true −> OK;
 openFile:
 (#
 do inFile.openRead;
 (if not OK then
 'File does not exist!' −> screen.putline;
 'Type input file name: ' −> screen.puttext;
 getLine−>inFile.name;
 true −> OK;
 restart openFile

 Basic Libraries − Reference Manual

1.6.1 Static Exceptions 11

 if)
 #);

 inFile.close;
#)

An attempt to open a non−existing file will produce the following error messages:

File does not exist!
Type input file name:

It gives the programmer the possibility to proceed with another file name.

1.6.2 Dynamic Exceptions

The exception pattern can be used for dynamic exceptions as well as for static exceptions. The
way to raise a dynamic exception is to define an exception:

myExcetion: exception (# ... #)

and then throw it:

&myException[]−>throw

This will initiate a search through the call stack to find a handler for the exception.

To catch a dynamic exception, the known try−catch−finally triplet from fx java can be used. In
BETA you use a try pattern with a handler inside it:

(#
do try
 (#
 handler::
 (#
 do when
 (#
 type:: myException;
 predicate:: myPredicate
 do ...
 #);
 #);
 finally::
 (#
 do ...
 #);
 do ...
 #);
#)

Of course there can be more than one when clause in a handler.

In the when part of a handler, there are four ways to return to the calling code: propagate, abort,
retry and continue.

Propagate is the default action for a handler. It tells throw that it does not handle the exception and

 Basic Libraries − Reference Manual

1.6.2 Dynamic Exceptions 12

throw sends the exception to the next handler on the call stack. If the programmer explicitly calls
propagate, the same thing happens, except the code in the handler is executed too.

Abort aborts the current try blocks and executes all the finally part. If the exception was propagated
through other try blocks, their finally parts are executed too.

Retry executes the finally part of the try block and starts it over.

Continue returns the control to the statement in the try do part which caused the exception.

You can use the predicate of the when part to further specify which exceptions are caugt in this
when part.

1.6.2.1 Examples Using Dynamic Exceptios

Suppose we wish to cath a reference is none error, if assigning something to a NONE object:

(#
myPattern: object
 (#
 a: @integer
 enter a
 exit a
 #);

myObj: ^myPattern
do 10−>myObj
#)

This program will give the following error message when run:

Beta execution aborted: Reference is none.
Look at 'testrefnone.dump'
Generating dump file. This may take a little while − please be patient

But if we use the framework presented above, we can catch the exception:

ORIGIN '~beta/basiclib/betaenv';
INCLUDE '~beta/basiclib/private/systemExceptionHandler';
INCLUDE '~beta/basiclib/systemExceptions';

−− program: descriptor −−

(#
 myPattern: object
 (#
 a: @integer
 enter a
 do 'entering '−>puttext; a−>putint; putline;
 exit a
 #);

 myObj: ^myPattern

do runtimeExceptionHandler##−>InstallSystemExceptionHandler;
 try
 (#
 name:: (# do 'mytry'−>n[] #);

 Basic Libraries − Reference Manual

1.6.2 Dynamic Exceptions 13

 handler::
 (#
 do when
 (# type:: refNoneException
 do &myPattern[]−>myObj[];
 retry;
 #)
 #);
 do 10−>myObj
 #)
#)

This will yield the following result:

Throwing refNoneException#
 Retrying mytry
entering 10

We can see, that the refNoneException is caught in the when part, myObj is initialized and the try
block is retried and this time, there is no refNoneException.

1.7 Various Other Patterns

1.7.1 Control Patterns

Betaenv contains three predefined control patterns: forTo, cycle and loop. They are respectively
defined as:

forTo: (* for inx in [min,max] do inner *)
 (# min,max,inx: @integer
 enter (min,max)
 do ... inner;
 ...
 #);

cycle: (* executes inner forever *)
 (# do l:(#... inner; ...#) #);

loop: (* control pattern for while− and repeat−loop *)
 (# while:< booleanValue(# do ... inner; ... #);
 until:< booleanValue(# do ... inner; ... #);
 do ... inner; ...
 #)

Recall that control patterns are procedure patterns that are to be used as superpattern:s. The first
example illustrates the use of forTo in an inserted item:

do ...
 (3,17) −> forTo(# do inx*inx −> putint; newline #);
 ...

It will cause printing of the values 32, 42, ..., 172. The next example illustrates the use of cycle in
the definition of another control pattern.

countCycle: cycle

 Basic Libraries − Reference Manual

1.7 Various Other Patterns 14

 (* increments inx and executes inner forever *)
 (# inx: @integer
 do inx + 1 −> inx;
 inner
 #);

Finally, the following loop example reads a sequence of integers from standard input until either a
non−positive integer is read or the sum of integers exceeds 1000:

loop(# while::< (# do getint−>i; i>0−>value #);
 until::< (# do sum>1000−>value #);
 sum, i: @integer
 do i+sum−>sum
 #)

1.7.2 Input/Output Patterns

1.7.2.1 Screen and keyboard

Standard input/output is available through dynamic references to objects that are instances of the
pattern stream (see later). These streams are automatically opened. Abbreviations for the most
often used input/output operations are defined (e.g. put for screen.put and get for keyboard.get).

(# j: @integer
do (for i: 5 repeat
 '? '−> puttext; getint −> j;
 j*j −> putint; newline
 for)
#)

1.7.2.2 Single character input − iget.bet

The iget.bet library implements immediate character input (i.e. non−buffered input). This is through
the iget operation, which returns a single character. iget returns as soon as a character is typed.

1.7.3 Command Line Arguments

It is possible to let BETA programs access the command line arguments through the
noOfArguments and arguments patterns. NoOfArguments returns the number of text atoms on the
command line, including the program name. The text atoms are numbered from 1 to
noOfArguments. The program name is obtained by 1 −> arguments, the first argument is obtained
by 2 −> arguments, etc.

The following example displays the number of arguments of a command line followed by the
arguments.

(#
do 'This program was called with ' −> puttext;
 noOfArguments −> putint; ' argument(s):' −> putline;
 (for i: noOfArguments repeat
 i −> arguments −> puttext; ' ' −> put;
 for);
 newline;
#)

 Basic Libraries − Reference Manual

1.7.2 Input/Output Patterns 15

1.7.4 Object Pool

The objectPool is for keeping track of unique instances of patterns. A call of the form

objectPool.get(# type::< T #) −> obj[]

will return an instance of T. The first call will create an instance of T. Subsequent calls will return
this instance again. The objectPool is useful in systems where many fragments must refer to the
same unique instance of a pattern T. ObjectPool also defines a scan operation which may be used
for scanning the objects in the pool. For more operations, please consult the interface descriptions
later.

1.7.5 Concurrency − SystemEnv

The current version of the Mjølner System includes an experimental implementation of
concurrency. The complete environment for concurrency is defined in the systemEnv library,
described in a later chapter. However, some concurrency facilities are necessarily defined in the
betaenv library. Please refer to the later chapter on the systemEnv library for details.

1.7.6 External Language Interface

External and cStruct

Betaenv contains the shortInt, external and cStruct patterns for interfacing into facilities written in
other languages, such as C and Pascal. Please refer to the later chapter on the external library for
details.

1.8 Time and Date Library

The basic libraries also contains a library: timedate.bet, which defines a series of patterns for
manipulating time and date informations. See the interface of timedate for more details.

 Basic Libraries − Reference Manual

1.7.4 Object Pool 16

2 The math Library
This library provides mathematical patterns: trigonometric, hyperbolic, exponential and logarithmic,
floating point manipulation, and miscellaneous constants.

2.1 Using the math Fragment

A program using the math fragment will have the following structure:

INCLUDE '~beta/basiclib/math
−−− program: descriptor −−−
(# ...
 r: @real;
do ...
 1.234 −> sin −> r;
 ...
#)

2 The math Library 17

3 The numberio Library

3.1 Based integers and reals

 Numberio is a library for reading and writing numerals (integers, based integers, radix integers, and
reals). The format of these numerals corresponds directly to the format of these numerals as
defined by the BETA language (except for radix integers that are not supported by the BETA
language). Numberio also contains a general getNumber operation, that is able to read any
numeral, and return the proper value read.

Grammar for getNumber operation

The following grammar defines the exact syntax of the numerals:

N ::= D+ int 314
 | D+ '.' D+ real 3.14
 | D+ '.' D+ 'E' E real 3.14E8
 real 3.14E+8
 real 3.14E−8
 | D+ 'E' E real 3E8
 real 3E+8
 real 3E−8
 | D+ 'X' (D|L)+ based 2X0101
 based 8x0845
 based 16xAF12
 | (D|L)+ radix AF12
D ::= '0' | ... | '9'
L ::= 'A' | ... | 'Z'
E ::= D+
 | '+' D+
 | '−' D+

Integer examples:

10 0 123

A based integer has the form <base>X<number>. Examples are:

2X101 base=2, number= 4*1 + 2*0 + 1*1 = 5
8X12 base=8, number= 8*1 + 1*2 = 10
16x2A1 base=16, number= 256*2 + 16*10 + 1*1 = 673
0x2A1 base=16, i.e. base=0 is interpreted as base=16

Examples of reals are:

3.14 3.14E−8 3E+8

All letters may be in lower or upper case.

The various read and write operations contain several facilities for controlling the read and write.
Please consult the interface description later for details.

3 The numberio Library 18

3.2 Using the numberio Fragment

A program using the numberio fragment will have the following structure:

INCLUDE '~beta/basiclib/numberio
−−− program: descriptor −−−
(# ...
 r: @real;
do ...
 getReal −> r;
 ...
#)

3.2.1 Reading numbers from standard input

The following example illustrates using numberio to read general numerics, as well as based,
integer and reals from keyboard.

Program 2: NumberioDemo.bet

ORIGIN '~beta/basiclib/numberio';
−−− program: descriptor −−−
(#
do L: (#
 do 'Enter a general number: '−>puttext;
 getNumber
 (# valueError::< (# do msg[]−>screen.putline; true−>continue #);
 syntaxError::< (# do msg[]−>screen.putline; get; true−>continue #);
 baseError::< (# do msg[]−>screen.putline; true−>continue #);
 EOSerror:: (# do screen.newline; leave L #);
 integerValue::<
 (# do '\tInteger='−>puttext; value−>putInt #);
 basedValue::<
 (#
 do '\tBase='−>puttext; base−>putint;
 ' Value='−>puttext; value−>putInt;
 ' BasedValue='−>puttext; (base,value)−>putBased;
 #);
 realValue::<
 (#
 do '\tReal='−>puttext;
 value−>screen.putReal(# format::< (# do exp−>style; true−>upcase #)
 #) #);
 do newline;
 #);
 'Enter a based number: '−>puttext;
 getBased
 (# valueError::< (# do msg[]−>screen.putline; true−>continue #);
 syntaxError::< (# do msg[]−>screen.putline; true−>continue #);
 baseError::< (# do msg[]−>screen.putline; true−>continue #);
 EOSerror:: (# do screen.newline; leave L #);
 do '\tBase='−>puttext; b−>putint;
 ' Value='−>puttext; i−>putInt;
 ' BasedValue='−>puttext; (b,i)−>putBased;
 #); newline;
 'Enter a real number: '−>puttext;
 getReal
 (# valueError::< (# do msg[]−>screen.putline; true−>continue #);
 syntaxError::< (# do msg[]−>screen.putline; true−>continue #);

 Basic Libraries − Reference Manual

3.2 Using the numberio Fragment 19

 baseError::< (# do msg[]−>screen.putline; true−>continue #);
 EOSerror:: (# do screen.newline; leave L #);
 do '\tReal='−>puttext
 #)−>screen.putreal(# format::< (# do exp−>style; true−>upcase #) #); newline;
 'Enter an integer number: '−>puttext;
 getInteger
 (# valueError::< (# do msg[]−>screen.putline; true−>continue #);
 syntaxError::< (# do msg[]−>screen.putline; true−>continue #);
 baseError::< (# do msg[]−>screen.putline; true−>continue #);
 EOSerror:: (# do screen.newline; leave L #);
 do '\tInteger='−>puttext
 #)−>putInt; newline;
 restart L
 #)
#)

 Basic Libraries − Reference Manual

3.2 Using the numberio Fragment 20

4 The formatio Library

4.1 Formatted input/output

This library provides facilities for formatted input and output (similar to the scanf and printf functions
in C). These facilities are implemented in the form of the getFormat and putFormat operations that
are added as stream attributes, making formatted input and output available for any stream.

4.2 Format string

Both getFormat and putFormat take a text string as argument. This text string must contain a
format specification of the input to be read from (respectively output to) the stream. The format
string may be any string, possibly with one or more embedded markers. The markers specify the
variable parts of the expected input (respectively output), such as integer values. The markers are
indicated in the string by a leading '%'. Following the '%' is the specification of the marker type.

getFormat accepts the following marker syntax:

%[width][.[precision]]dioxXrRbBfeEgGcsn%

putFormat accepts the following marker syntax:

%−+ [[0]width][.[[0]precision]]dioxXrRbBfeEgGcsn%

As it can be seen, the marker syntax is very similar.

4.3 Marker type

Corresponding to every marker type (given by the dioxXrRbBfeEgGcsn part of the marker syntax),
getFormat and putFormat defines an attribute (with the same name) as the marker symbol an
attribute with the name d, corresponding to the d marker type. Due to BETA not being
case−sensitive in identifiers, the attributes corresponding to the upper−case marker types are
called e.g. uG for upper g.

The functionality of formatted input and output can now easiest be described by showing the
following example:

(# t, s: @text;
 theName: ^text; theValue: integer;
do 'name: temperature value: 72 name: speed value: 35' −> t;
 0−>t.pos;
 'name: %s value: %d'
 t.getFormat(# do s−>theName[]; d−>theValue #);
 'The name is %s and the value is %d\n'
 s.putFormat(# do theName[]−>s; theValue−>d #);
 'name: %s value: %d'
 t.getFormat(# do s−>theName[]; d−>theValue #);
 'The name is: %s and the value is: %d\n'
 s.putFormat(# do theName[]−>s; theValue−>d #)
#)

At the end of this program, s will contain the following text:

4 The formatio Library 21

The name is: temperature and the value is: 72
The name is: speed and the value is: 35

The getFormat and putFormat operations raise exceptions if the format specifications are not
satisfied.

4.4 Using the formatio Fragment

A program using the formatio fragment will have the following structure:

INCLUDE '~beta/basiclib/formatio
−−− program: descriptor −−−
(# ...
 r: @real;
do ...
 'real value: %e' −> putformat(# do r−>e #);
 ..
#)

4.4.1 Illustrating putFormat

Program 3: putformatDemo.bet

ORIGIN '~beta/basiclib/formatio';
−−− program: descriptor −−−
(#
do 'string=%s, integer=%i, real=%f\n\n'
 −> putFormat(# do 'abc'−>s; −30−>i; 3.14−>f #);

 '(1234567){12345678}[123456789]\n' −> putFormat;
 '(%7i){%8i}[%9i]\n\n' −> putFormat(# do 27−>i; 30−>i; −45−>i #);

 '"%%s,%%.5s,%%s,%%2.3s#" = %s,%.5s,%s,%2.3s#\n\n'
 −> putFormat(# do '27'−>s; 'Hello world'−>s; '−45'−>s; none−>s #);

 ' 123456789 1234567890123456 12345678\n' −> putFormat;
 'x=%9.3f,y=%16.e,z=%.8f\n\n'
 −> putFormat(# do 27.5−>f; 30.5−>e; −45.5−>f #);

 ' 1234567890 1234567890 12345678\n' −> putFormat;
 'x=%*.*f,y=%*.2e,z=%8.*f\n\n'
 −> putFormat(# do 10−>width; 3−>precision; 27.5−>f; 30.5−>e; −45.5−>f #);

#)

4.4.2 Illustrating getFormat

Program 4: getformatDemo.bet

ORIGIN '~beta/basiclib/formatio';
−−− program: descriptor −−−
(# i1, i2, i3, i4, i5: @integer;
 s1, s2: ^text;
 r1, r2, r3: @real;

 Basic Libraries − Reference Manual

4.4 Using the formatio Fragment 22

 chr: @char;
 t, fmt: ^text;
do '123,%456, 789 JorgenLKnudsen 1.2,2+2=43.45, 67.89 abc, 101, 0x101, 0101, 101xxx'−>t[];
 0−>t.pos;

 'input:\t"%s"\n\n' −> putFormat(# do t[]−>s #); newline;

 '%i,%%%i, %i' −> fmt[] −> t.getFormat(# do i−>i1; i−>i2; i−>i3 #);
 'format:\t%s\nread:\t%i, %i, %i\n\n'
 −> putFormat(# do fmt[]−>s; i1−>i; i2−>i; i3−>i #);

 '%6s%c%s' −> fmt[] −> t.getFormat(# do s−>s1[]; c−>chr; s−>s2[] #);
 'format:\t"%s"\nread:\t"%s", "%c", "%s"\n\n'
 −> putFormat(# do fmt[]−>s; s1[]−>s; chr−>c; s2[]−>s #);

 '%f,2+2=4%e, %f' −> fmt[] −> t.getFormat(# do f−>r1; e−>r2; f−>r3 #);
 'format:\t"%s"\nread:\t%f, %f, %f\n\n'
 −> putFormat(# do fmt[]−>s; r1−>f; r2−>f; r3−>f #);

 '%x, %o, %i, %i, %i%s' −> fmt[]
 −> t.getFormat(# do x−>i1; o−>i2; i−>i3; i−>i4; i−>i5; s−>s1[] #);
 'format:\t"%s"\nread:\t%i, %i, %i, %i, %i, "%s"\n'
 −> putFormat(# do fmt[]−>s; i1−>i; i2−>i; i3−>i; i4−>i; i5−>i; s1[]−>s #);

 '123,%456, 124 %JorgenLKnudsen 1.2,2+2=43.45, 67.89 abc, 111, 0x111, 0111, 111xxx'−>t[];
 0−>t.pos;
 '\n\ninput:\t"%s"\n\n' −> putFormat(# do t[]−>s #); newline;

 '%i,%%%i, %i %6s%c%s%f' −> fmt[] −> t.getFormat(# do i−>i1; i; i−>i2; s; c; s; f−>r1; #);
 'format:\t%s\nread:\t%i, %i, %f\n\n'
 −> putFormat(# do fmt[]−>s; i1−>i; i2−>i; r1−>f; #);

#)

 Basic Libraries − Reference Manual

4.4 Using the formatio Fragment 23

5 The random Library
This library provides elaborate random number generation facilities. The random library contains
random generators with different statistical distributions, such as uniform, normal, binomial and
poison distributions.

The library offers facilities for specifying the seeds of the generator by the setsd operation.

The library offers facilities for maintaining up to 32 parallel random generators.

For more details, see the interface descriptions.

5.1 simple random generators: ignlgi and ranf

The simple random generator most often used (namely the uniform integer random generator) is in
this library the ignlgi generator which returns a uniformly distributed integer in the range [1,
2147483562]. It is also available in the ignuin variant which returns a uniformly distributed integer in
a range specified by the user.

Another simple and often used random generator is the uniform real random generator which in this
library is available as the ranf generator which returns a uniformly distributed real in the range]0, 1[
(i.e. 0 and 1 are never returned). The genunf variant returns a uniformly distributed real in a range
specified by the user.

5.2 Using the random Fragment

A program using the random fragment will have the following structure:

INCLUDE '~beta/basiclib/random
−−− program: descriptor −−−
(# ...
 i: @integer;
do ...
 (123, 456) −> setsd;
 ...
 (1,100) −> inguin −> i;
 ...
#)

5.2.1 Illustrating Integer Random Generator

Program 5: tstign.bet

ORIGIN '~beta/basiclib/random';
−−− program: descriptor −−−
(# testIgn:
 (# iarray: [mxint]@integer;
 itmp: @integer;
 lo, hi, i, up: @integer
 do (for i:nrep repeat
 (1,mxint)−>ignuin−>itmp;
 itmp−>screen.putint(# do 7−>width #);
 (if (i mod 10) = 0 then newline if);

5 The random Library 24

 iarray[itmp]+1−>iarray[itmp];
 for);
 newline;
 ' Counts of Integers Generated:'−>putline;
 (* Print 10 to a line using 7 characters for each field. *)
 mxint−>up; 1−>lo;
 l: (if lo<=up then
 (lo+9,up)−>min−>hi;
 lo−>i;
 ll: (if i<=hi then
 iarray[i]−>screen.putint(# do 7−>width #);
 i+1−>i;
 restart ll
 if);
 screen.newline;
 lo+10−>lo;
 restart l;
 if)
 #);

 mxint,nrep: @integer;

do ' Tests uniform random integer generator.'−>putline; newline;

 ' Enter two seeds to initialize rn generator: '−>puttext;
 (getint,getint)−>setall;

 ' Enter maximum uniform integer: '−>puttext;
 getint−>mxint;

 ' Enter number of randoms to generate: '−>puttext;
 getint−>nrep;

 testIgn;
#)

 Basic Libraries − Reference Manual

5 The random Library 25

6 The regexp Library
The regexp library augments the text pattern in betaenv with four new attributes:

regexp_match
regexp_search
regexp_replace
regexp_replace_literally

All four operations give facilities for working with regular expressions in text strings.

6.1 Regular expression

A regular expression (regexp, for short) is a pattern that denotes a set of strings, possibly an infinite
set. Searching for matches for a regexp is a very powerful operation that editors on Unix systems
have traditionally offered.

Regular expressions are used to locate occurrences of substrings in text, where the substring is
expected to be of a certain structure. E.g. the regexp '[Ww]ord' will match the substring 'word' or
'Word'. The four operations offer slightly different possibilities, described below:

6.2 regexp_match

Takes a regexp as enter parameter (in the form of a reference to a text, containing the regexp.
Matches THIS(text) against the regexp. INNER is executed if THIS(text) matches the regexp, and
the virtual notification noMatch is invoked otherwise. Returns true if a match is found, false
otherwise. The regexp must be found starting at the current position of THIS(text).

6.3 regexp_search

Like regexp_match, except that the match is allowed to be found anywhere between the current
position and the end of THIS(text).

6.4 regexp_replace

Like regexp_search, except that it takes a second enter parameter, replacement_string.
Regexp_replace searches for the regexp, and replaces the matched substring of THIS(text) with
the replacement string. The replacement string may contain \0, \1, ..., \9, representing the substring
matched by the i'th parenthesis in the regexp. \0 represents the entire substring matched. INNER is
executed after the replace has taken place.

6.5 regexp_replace_literally

Like regexp_replace, except that the replacement string is taken literally (i.e. \0, \1, etc. are not
representing any matched substrings)

All four regexp operations defines the same local attributes:

6 The regexp Library 26

• start: start position for search in THIS(text). Default: pos
• limit: end position for search in THIS(text). Default: length
• posToMatchEnd: if true, move THIS(text).pos to the end of the matched substring. Default:

false
• regs: structure for getting access to the matched substring. noMatch: invoked if no matches

are found.
• regexpError: is invoked if error occurs in the regexp implementation.
• value: true, if any match is found.

Regexp_string are compiled implicitly by the operations to ensure efficient matching in all
operations. If the same regexp_string is to be used several times, the repetition of this compilation
can be avoided by generating an instance of the operation (say regexp_search), and then use that
instance repeatedly (as is illustrated in the following example):

(# regexp_s: @mytext.regexp_search(# ... #);
do ...
regexp_string[]−>regexp_s;(* first search, implicit regexp
compilation *)
...
regexp_s; (* repeating the search with the same regexp.
No regexp compilation *)
...
regexp_s; (* repeating the search with the same regexp.
No regexp compilation *)
...
#)

6.6 Syntax of Regular Expressions

The syntax of regular expressions in this library follows the syntax of Emacs regular expressions.
Some of the documentation below is from the interactive Emacs Info system.

Regular expressions have a syntax in which a few characters are special constructs and the rest
are ordinary. An ordinary character is a simple regular expression which matches that character
and nothing else. The special characters are '$', '^', '.', '*', '+', '?', '[', ']' and '\'; no new special
characters will be defined. Any other character appearing in a regular expression is ordinary,
unless a '\' precedes it.

For example, 'f' is not a special character, so it is ordinary, and therefore 'f' is a regular expression
that matches the string 'f' and no other string. (It does not match the string 'ff'.) Likewise, 'o' is a
regular expression that matches only 'o'.

Any two regular expressions A and B can be concatenated. The result is a regular expression
which matches a string if A matches some amount of the beginning of that string and B matches
the rest of the string.

As a simple example, we can concatenate the regular expressions 'f' and 'o' to get the regular
expression 'fo', which matches only the string 'fo'. Still trivial. To do something nontrivial, you need
to use one of the special characters. Here is a list of them.

6.7 List of special characters

• '.' is a special character that matches any single character except a newline. Using
concatenation, we can make regular expressions like 'a.b' which matches any
three−character string which begins with 'a' and ends with 'b'.

 Basic Libraries − Reference Manual

6.6 Syntax of Regular Expressions 27

• '*' is not a construct by itself; it is a suffix, which means the preceding regular expression is
to be repeated as many times as possible. In 'fo*', the '*' applies to the 'o', so 'fo*' matches
one 'f' followed by any number of 'o's. The case of zero 'o's is allowed: 'fo*' does match 'f'.

• '*' always applies to the smallest possible preceding expression. Thus, 'fo*' has a repeating
'o', not a repeating 'fo'.

• The matcher processes a '*' construct by matching, immediately, as many repetitions as can
be found. Then it continues with the rest of the pattern. If that fails, backtracking occurs,
discarding some of the matches of the '*'−modified construct in case that makes it possible
to match the rest of the pattern. For example, matching 'ca*ar' against the string 'caaar', the
'a*' first tries to match all three 'a's; but the rest of the pattern is 'ar' and there is only 'r' left to
match, so this try fails. The next alternative is for 'a*' to match only two 'a's. With this choice,
the rest of the regexp matches successfully.

• '+' Is a suffix character similar to '*' except that it requires that the preceding expression be
matched at least once. So, for example, 'ca+r' will match the strings 'car' and 'caaaar' but
not the string 'cr', whereas 'ca*r' would match all three strings.

• '?' Is a suffix character similar to '*' except that it can match the preceding expression either
once or not at all. For example, 'ca?r' will match 'car' or 'cr'; nothing else.

• '[...]' '[' begins a character set, which is terminated by a ']'. In the simplest case, the
characters between the two form the set. Thus, '[ad]' matches either one 'a' or one 'd', and
'[ad]*' matches any string composed of just 'a's and 'd's (including the empty string), from
which it follows that 'c[ad]*r' matches 'cr', 'car', 'cdr', 'caddaar', etc.

• Character ranges can also be included in a character set, by writing two characters with a
'−' between them. Thus, '[a−z]' matches any lower−case letter. Ranges may be intermixed
freely with individual characters, as in '[a−z$%.]', which matches any lower case letter or '$',
'%' or period.

• Note that the usual special characters are not special any more inside a character set. A
completely different set of special characters exists inside character sets: ']', '−' and '^'.

• To include a ']' in a character set, you must make it the first character. For example, '[]a]'
matches ']' or 'a'. To include a '−', write '−−', which is a range containing only '−'. To include
'^', make it other than the first character in the set.

• '[^...]' '[^' begins a complement character set, which matches any character except the ones
specified. Thus, '[^a−z0−9A−Z]' matches all characters except letters and digits.

• '^' is not special in a character set unless it is the first character. The character following the
'^' is treated as if it were first ('−' and ']' are not special there).

• Note that a complement character set can match a newline, unless newline is mentioned as
one of the characters not to match.

• '^' is a special character that matches the empty string, but only if at the beginning of a line
in the text being matched. Otherwise it fails to match anything. Thus, '^foo' matches a 'foo'
which occurs at the beginning of a line.

• '$' is similar to '^' but matches only at the end of a line. Thus, 'xx*$' matches a string of one
'x' or more at the end of a line.

• '\' has two functions: it quotes the special characters (including '\'), and it introduces
additional special constructs.

• Because '\' quotes special characters, '\$' is a regular expression which matches only '$',
and '\[' is a regular expression which matches only '[', and so on.

• Note, that '\' is also a special character in BETA literals. This implies, that in order to specify
a '\' regexp special character in a BETA string literal, you have to type it twice, e.g. 'US\\$'.

Note: for historical compatibility, special characters are treated as ordinary ones if they are in
contexts where their special meanings make no sense. For example, '*foo' treats '*' as ordinary
since there is no preceding expression on which the '*' can act. It is poor practice to depend on this
behavior; better to quote the special character anyway, regardless of where is appears.

For the most part, '\' followed by any character matches only that character. However, there are
several exceptions: characters which, when preceded by '\', are special constructs. Such

 Basic Libraries − Reference Manual

6.6 Syntax of Regular Expressions 28

characters are always ordinary when encountered on their own. Here is a table of '\' constructs.

6.8 Table of '\' constructs

• '\|' specifies an alternative. Two regular expressions A and B with '\|' in between form an
expression that matches anything that either A or B will match.

• Thus, 'foo\|bar' matches either 'foo' or 'bar' but no other string.
• '\|' applies to the largest possible surrounding expressions. Only a surrounding '\(... \)'

grouping can limit the grouping power of '\|'.
• Full backtracking capability exists to handle multiple uses of '\|'.
• '\(...\)' is a grouping construct that serves three purposes:

♦ To enclose a set of '\|' alternatives for other operations. Thus, '\(foo\|bar\)x' matches
either 'foox' or 'barx'.

♦ To enclose a complicated expression for the postfix '*' to operate on. Thus,
'ba\(na\)*' matches 'bananana', etc., with any (zero or more) number of 'na' strings.

♦ To mark a matched substring for future reference.
• This last application is not a consequence of the idea of a parenthetical grouping; it is a

separate feature which happens to be assigned as a second meaning to the same '\(... \)'
construct because there is no conflict in practice between the two meanings. Here is an
explanation of this feature:

• '\DIGIT' after the end of a '\(... \)' construct, the matcher remembers the beginning and end
of the text matched by that construct. Then, later on in the regular expression, you can use
'\' followed by DIGIT to mean 'match the same text matched the DIGIT'th time by the '\(... \)'
construct.'

• The strings matching the first nine '\(... \)' constructs appearing in a regular expression are
assigned numbers 1 through 9 in order that the open−parentheses appear in the regular
expression. '\1' through '\9' may be used to refer to the text matched by the corresponding '\(
... \)' construct.

• For example, '\(.*\)\1' matches any newline−free string that is composed of two identical
halves. The '\(.*\)' matches the first half, which may be anything, but the '\1' that follows
must match the same exact text.

• '\'' matches the empty string, provided it is at the beginning of the buffer.
• '\'' matches the empty string, provided it is at the end of the buffer.
• '\b' matches the empty string, provided it is at the beginning or end of a word. Thus, '\bfoo\b'

matches any occurrence of 'foo' as a separate word. '\bballs?\b' matches 'ball' or 'balls' as a
separate word.

• '\B' matches the empty string, provided it is not at the beginning or end of a word.
• '\<' matches the empty string, provided it is at the beginning of a word.
• '\>' matches the empty string, provided it is at the end of a word.
• '\w' matches any word−constituent character. The editor syntax table determines which

characters these are.
• '\W' matches any character that is not a word−constituent.
• '\sCODE' matches any character whose syntax is CODE. CODE is a character which

represents a syntax code: thus, 'w' for word constituent, '−' for whitespace, '(' for
open−parenthesis, etc.

• '\SCODE' matches any character whose syntax is not CODE.

6.9 A complicated regexp

Here is a complicated regexp, used to recognize the end of a sentence together with any
whitespace that follows. It is given in BETA text string syntax to enable you to distinguish the
spaces from the tab characters. In BETA text string syntax, the string constant begins and ends
with a double−quote. '""' stands for a double−quote as part of the regexp, '\\' for a backslash as part
of the regexp, '\t' for a tab and '\n' for a newline.

 Basic Libraries − Reference Manual

6.8 Table of '\' constructs 29

"[.?!][]""')]*\\($\\|\t\\| \\)[\t\n]*"

This contains four parts in succession: a character set matching period, '?' or '!'; a character set
matching close−brackets, quotes or parentheses, repeated any number of times; an alternative in
backslash−parentheses that matches end−of−line, a tab or two spaces; and a character set
matching whitespace characters, repeated any number of times.

6.10 Regular Expression Registers

The special regexp parenthesis (i.e. \(... \)) are used for three different purposes:

• to make the regexp operators work on entire sub−regexp: e.g.
• 123*4 matches 124, 1234, 12334, 123334, etc., whereas 1\(23\)*4 matches 124, 1234,

123234, 12323234, etc. (and not 12334, 123334, etc.).
• to delimit alternatives: e.g. 1\(2\|3\)4 matches 124 and 134.
• to mark a matched substring for future reference. In regexg_replace, \0, \1, \2, ..., \9

substrings will be replaced with the matched substring. We will here give a short
introduction to accessing these registers from a BETA program.

We would like to give a little more details on the (3) purpose. Let us assume, that we invoke:

'sum: \([0−9]+\)\.\([0−9]\) US$'
 −> t.regexp_search
 (#
 do 'The amount is: '−>puttext;
 (1−>regs.start+1,1−>regs.end)−>t.sub−>puttext;
 ' dollars and '−>puttext;
 (2−>regs.start+1,2−>regs.end)−>t.sub−>puttext;
 ' cents'−>putline
 #)

The intent is to find some amount i the t text variable. The amount should be found in a context of
the form: 'sum: XXX.YYY US$', where XXX and YYY may be any number. If found, the amount will
be written on standard screen in the form: 'The amount is: XXX dollars and YYY cents'.

Note the use of i−>regs.start and i−>regs.end, which returns the character positions of the i'th
matched substring (in this case the 1'st and 2'nd substring, containing the amount of dollars and
the amount of cents, respectively). As it can be seen, these constructs can be used within the
action−parts of all regexp operations to gain access to the matched substrings (note that the 0'th
substring is the entire string matched).

6.11 Known bugs or Inconveniences

• \i (i= 0, 1, ...,9) matches the empty string if it is positioned before the i'th parenthesis.
According to the specification, \i should match 'i' if positioned before the i'th parenthesis.
E.g. \1 matches the empty string in \1\(2\)3.

• There is a slight error in the current implementation of registers, when the parenthesis
bounds a repetitive regexp, i.e. a '*' or '+' regexp. In this case, the register will not contain
the correct character positions, but instead refer to the empty string, immediately after the
matched substring. Use an extra pair of parenthesis to get the correct substring (e.g. use
1\(\(2\)*\)3 instead of 1\(2\)*3 to refer to the matched '2's − the matched '2's can be referred
to through register 1.

 Basic Libraries − Reference Manual

6.10 Regular Expression Registers 30

6.12 Using the regexp Fragment

A program using the regexp fragment will have the following structure:

INCLUDE '~beta/basiclib/regexp
−−− program: descriptor −−−
(# ...
t: ^text
do ...
 'Hello world' −> t[]; t.reset;
 ('\\<w.*\\>', '\\0 champion') −> t.regexp_replace;
 t[] −> putline; (* prints 'Hello world champion' *)
 ...
#)

6.13 Regexp Demos

6.13.1 Search for regexp

The following example is a simple program that enters a regexp from the keyboard, followed by
another test string, trying to find the regexp in the test string. If found, the registers are printed on
the screen, and the corresponding matched substrings:

Program 6: searchDemo.bet

ORIGIN '~beta/basiclib/regexp';
−−− program: descriptor −−−
(#
do loop:
 (# regex: ^text;
 do 'Search for: ' −> puttext; getLine −> regex[];
 (if regex.length = 0 then leave loop if);
 loop:
 (# string: ^text;
 do 'Search for: '−>puttext; regex[]−>puttext;
 ' in: ' −> puttext; getline −> string[];
 (if string.length = 0 then leave loop if);
 0 −> string.pos;
 regex[] −> string.regexp_search
 (# noMatch::< (# do '\tNo match' −> putline #)
 do (for i: regexp_numberOfRegisters repeat
 (if (i−1−>regs.start)>=0 then
 '\tregister '−>puttext; i−1 −> putint; ': '−>puttext;
 i−1−>regs.start−>putint;
 ' to '−>puttext;
 i−1−>regs.end−>putint;
 ': '−>puttext;
 ((i−1−>regs.start)+1, i−1−>regs.end)−>string.sub−>putline
 if)
 for);
 #);
 restart loop
 #);
 restart loop
 #)
#)

 Basic Libraries − Reference Manual

6.12 Using the regexp Fragment 31

Output from the demo might be:

Search for: 1\(234\)5
Search for: 1\(234\)5 in: dfjdfhdf1235jfdkj12345ghdf
register 0: 17 to 22: 12345
register 1: 18 to 21: 234
Search for: 1\(234\)5 in: 12345
register 0: 0 to 5: 12345
register 1: 1 to 4: 234
Search for: 1\(234\)5 in: 123
No match
Search for: 1\(234\)5 in:

Search for: \(22\).*\1
Search for: \(22\).*\1 in: xxx22yyy2zzz
No match
Search for: \(22\).*\1 in: xxx22yyy22zzz
register 0: 3 to 10: 22yyy22
register 1: 3 to 5: 22

6.13.2 Replace with a regexp

The following example is nearly identical to the previous, except that it allows for the specification
of a replacement string:

Program 7: replaceDemo.bet

ORIGIN '~beta/basiclib/regexp';
−−− program: descriptor −−−
(#
do loop:
 (# regex: ^text;
 do 'Replace: ' −> puttext; getLine −> regex[];
 (if regex.length = 0 then leave loop if);
 loop:
 (# string: ^text;
 do 'Replace: '−>puttext; regex[]−>puttext;
 ' in: ' −> puttext; getline −> string[];
 (if string.length = 0 then leave loop if);
 loop:
 (# t, replacement: ^text
 do string.copy −> t[]; 0 −> t.pos;
 'Replace: '−>puttext; regex[]−>puttext;
 ' in: ' −> puttext; string[]−>puttext;
 ' with: '−>puttext; getline −> replacement[];
 (if replacement.length = 0 then leave loop if);
 (regex[], replacement[]) −> t.regexp_replace
 (# noMatch::< (# do '\tNo match'−>screen.putline #) #);
 'Replace: '−>puttext; regex[]−>puttext;
 ' in: ' −> puttext; string[]−>puttext;
 ' with: '−>puttext; replacement[]−>puttext;
 ' gives: '−>puttext; t[] −> putline;
 restart loop
 #);
 restart loop
 #);
 restart loop
 #)
#)

 Basic Libraries − Reference Manual

6.13.2 Replace with a regexp 32

Output from the demo might be:

Replace: [Ww]ord
Replace: [Ww]ord in: This Word is in capital
Replace: [Ww]ord in: This Word is in capital with: sentence
Replace: [Ww]ord in: This Word is in capital with: sentence gives: This sentence is in capital

 Basic Libraries − Reference Manual

6.13.2 Replace with a regexp 33

7 The file Library
The file library implements the diskEntry, file, fileRep, patterns, all used to model external storage
media such as disk files.

7.1 File and diskEntry

The file library implements the file pattern that is used to represent external storage media such as
disk files. File is an abstract subpattern of stream, specifying the machine independent attributes of
such media. Specific subpatterns: exists for the different machine types such as UNIX and
Macintosh (unixFile, respectively macFile, see later).

The attributes of file are divided into two parts: the disk entry attributes and the contents related
attributes. The disk entry attributes are located in the entry attribute of file, whereas the contents
related attributes are ordinary attributes of file.

7.2 Disk entry attributes

The disk entry attributes are defined in the diskEntry pattern: path, size, readable, writable, isFile,
isDirectory, exists, modtime, touch, and rename. Also related to the disk entry are the following
exceptions: diskEntryExistsException, diskEntryModtimeException, diskEntryTouchException, and
diskEntryRenameException. These attributes are accessed through the entry attribute of a file, e.g.
if aFile is a file object, then aFile.entry.modtime will return the last modification time of the
associated disk file.

7.3 File attributes

The contents related attributes are: entry, name, touch, delete, openRead, openWrite,
openAppend, openReadWrite, openReadAppend, flush, and close. Note that file also inherits all
the stream attributes (further binding several of them). File also defines the following exceptions:
openException, accessError, writeError, readError, noSuchFileError, fileExistsError, noSpaceError,
and otherError.

7.4 The FileRep Library

The fileRep pattern is consisting of a repetition of integers and operations which makes it possible
to save and restore this repetition in one chunk from a file. When saving, the repetition elements
[1:top−1] are saved (top is an attribute of fileRep) and when restoring, top will become equal to
range of the stored repetition. The repetition is in the R attribute, and save and restore is used for
saving and restoring the repetition onto some file.

7.5 The BinFile Library

This fragment declare attributes for direct reading/writing of various data sizes to a file. The data is
written out exactly as is:

64 −> aBinFile.putLong

will write the number 0x00000020 to aBinFile, whereas

7 The file Library 34

64 −> aBinFile.putInt

will write the two characters '6' (ascii 54) and '4' (ascii 52) to the file.

The operations putBytes and getBytes allow an arbitrary sequence of bytes to be written/read
to/from a file. E.g.

buffer: [1000]@char;
 putB: @aFile.putBytes;
do ...
 (@@buffer[1],500) −> putB;

This will write the first 500 characters from the buffer repetition to the file. NOTICE, that you must
have a static instance of putBytes/getBytes when using them, since they require an address
argument. If dynamic instances are used, a garbage− collection may be triggered, and the address
argument would be illegal.

These operations are declared in FileLib, e.g. they become usable for any file, by just including this
fragment file. However, on some platforms, the "binary" virtual of File MUST be further bound to
TrueObject for these operations to work. The binfile pattern below adds this further binding.

You should remember this further binding if you are using these operations on a file, that is not a
binfile.

Exceptions: If any of the put−operations fail, they raise the WriteError file−exception. If any of the
get−operations fail, they raise the ReadError file−exception.

7.5.1 Using the file Fragment

A program using the file fragment will have the following structure:

INCLUDE '~beta/basiclib/file
−−− program: descriptor −−−
(# ...
 f: @file;
do ...
 'Hello world' −> f.putline;
...
#)

7.5.2 Using diskEntry

An example showing the use of the path attribute of DiskEntry: The path specified on the command
line is decomposed, and the various parts of it are printed:

Program 8: decompose.bet

ORIGIN '~beta/basiclib/file';

−−− program: descriptor −−−
(* An example showing the use of the 'path' attribute of DiskEntry: The path
 * specified on the command line is decomposed, and the various parts of it are

 Basic Libraries − Reference Manual

7.5.1 Using the file Fragment 35

 * printed.
 *)

(# e: @diskentry;
do (if noOfArguments <> 2 then
 'Usage: ' −> puttext; 1−>arguments−>puttext; ' path' −> putline;
 stop;
 if);
 2 −> arguments −> e.path;
 'The path \''−>puttext;
 e.path −> puttext;
 '\' is composed like this:'−>putline;
 'Head of path: '−>puttext; e.path.head −> putline;
 'Name: '−>puttext; e.path.name −> putline;
 'Prefix of name: '−>puttext; e.path.name.prefix −> putline;
 'Suffix of name: '−>puttext; e.path.name.suffix −> putline;
 'Extension of name: '−>puttext; e.path.name.extension −> putline;
 (if e.exists then '(and the entry exists on disk)' −> putline;
 else '(there is no such entry on disk)' −> putline;
 if);
#)

7.6 Using File

Program showing the use of exceptions in files: if the input file specified on the command line
cannot be opened, the exception noSuchFileError is raised. In this example, it is further bound
specifying that the program should continue after the exception is raised. Then a new file name is
prompted for. Instead of this approach, of course, the attributes exists of diskEntry could have been
used.

If the output file could not be opened, the exception noSpaceError is raised, and this exception is
further bound to print a message:

Program 9: fileerror.bet

ORIGIN '~beta/basiclib/file';
−−− program: descriptor −−−

(* Program showing the use of exceptions in files: if the input file
 * specified on the command line cannot be opened, the exception
 * NoSuchFileError is raised. In this example, it is further bound
 * specifying that the program should continue after the exception is raised.
 * Then a new file name is prompted for.
 * Instead of this approach, of course, the attributes 'exists' of DiskEntry
 * could have been used.
 * If the output file could not be opened, the exception NoSpaceError is raised,
 * and this exception is further bound to print a message.
 *)

(# outFile: @file
 (# NoSpaceError ::<
 (# do 'It is time to delete garbage!' −> msg.putLine #);
 #);
 inFile: @ file
 (# NoSuchFileError ::< (# do true −> continue; false −> OK #);
 #);
 OK: @ boolean;

do (if noOfArguments <> 2 then

 Basic Libraries − Reference Manual

7.6 Using File 36

 'Usage: ' −> puttext; 1−>arguments−>puttext; ' out−file' −> putline;
 stop;
 if);
 2 −> arguments −> outFile.name;
 outFile.OpenWrite;

 'nofile.bet' −> inFile.name;
 true −> OK;
 openFile:
 (#
 do inFile.OpenRead;
 (if not OK then
 'File does not exist: ' −> screen.puttext;
 infile.name −> putline;
 'Type input file name: ' −> screen.putText;
 inFile.name.read;
 true −> OK;
 restart openFile
 if);
 #);

 readFile:
 (#
 do (if not inFile.eos then
 inFile.getatom −> outFile.putText;
 outFile.newLine;
 restart readFile
 else leave readFile
 if)
 #);
 inFile.close;
 outFile.close;
 'Tokens from \''−>puttext; infile.name −> puttext;
 '\' copied to \''−>puttext; outfile.name −> puttext;
 '\''−>putline;
#)

 Basic Libraries − Reference Manual

7.6 Using File 37

8 The directory Library
The directory library defines the directory pattern that is the interface into file directories in a
hierarchical file system. Directory is an abstract pattern, specifying the machine independent
attributes of such directories. Specific subpatterns: exists for the different machine types such as
UNIX and Macintosh (unixDirectory, respectively macDirectory, see later).

Similar to file, the attributes of directory are divided into two parts: the disk entry attributes and the
directory related attributes. The disk entry attributes are located in the entry attribute of directory,
whereas the directory related attributes are ordinary attributes of directory .

The disk entry attributes of directory are the same as for file, and will therefore not be discussed
here (see previous chapter).

8.1 Directory attributes

The directory related attributes are: entry, name, touch, delete, createFile, deleteFile, createDir,
deleteDir, noOfEntries, empty, findEntry, and scanEntries. Directory also defines the following
exceptions: entryExistException, dirScanException, dirSearchException, noSuchException, and
notFoundException.

8.2 Using the directory Fragment

A program using the directory fragment will have the following structure:

INCLUDE '~beta/basiclib/directory'
−−− program: descriptor −−−
(# ...
 dir: @directory;
do ...
 '/user/local/lib/beta/basiclib/' −> dir.name;
 dir.scanEntries(# do found.name −> putline #);
...
#)

8.2.1 Listing a directory

Program showing a simple use of directory: The directory with the path given as argument is
scanned, and the names of all the entries are printed with an indication of what type of entry it is.
This is done using the select pattern of scanentries. This is a more efficient strategy than using
found.entry.isFile etc., possibly correcting for the case that 'd' is not current working directory.

If the path given is not a directory, an exception will be raised:

Program 10: listdir.bet

ORIGIN '~beta/basiclib/directory';

−−− program: descriptor −−−

(* Program showing a simple use of directory: The directory with the path
 * given as argument is scanned, and the names of all the entries are printed

8 The directory Library 38

 * with an indication of what type of entry it is.
 * This is done using the 'select' pattern of 'scanentries'. This is a more
 * efficient startegy than using 'found.entry.isFile' etc., possibly
 * correcting for the case that 'd' is not current working directory.
 * If the path given is not a directory, an exception will be raised.
 *)

(# arg: ^text;
 d: @directory;
 nl: @boolean;
 full: @boolean;
 usage:
 (# do 'Usage: ' −> puttext;
 1−>arguments−>puttext;
 ' [−f] path' −> putline;
 stop;
 #);
do (* Parse command line *)
 (if noOfArguments
 // 1 then '.' −> d.name
 // 2 then
 2 −> arguments −> arg[];
 (if '−f' −> arg.equal then
 true −> full;
 '.' −> d.name;
 else
 arg[] −> d.name;
 if)
 // 3 then
 2 −> arguments −> arg[];
 (if '−f' −> arg.equal then
 true −> full;
 else usage;
 if);
 3 −> arguments −> d.name;
 else
 usage;
 if);

 (* Scan directory *)
 newline;
 'The content of \''−> puttext;
 d.name −> puttext;
 '\' is: ' −> putline;
 d.scanEntries
 (#
 do select
 (# whenFile::<
 (# do 'File: ' −> puttext; #);
 whenDir::<
 (# do 'Directory: ' −> puttext; #);
 whenOther::<
 (# do '(Unknown): ' −> puttext; #);
 #);
 (if full then foundFullPath −> putline;
 else found.path −> putline;
 if);
 #);
 newline;
#)

 Basic Libraries − Reference Manual

8 The directory Library 39

9 The systemEnv Libraries
The systemEnv libraries define the experimental concurrency system for BETA. The systemEnv
libraries contain five closely related libraries: basicsystemenv.bet, systemenv.bet, and
timehandler.bet.

9.1 basicsystemenv

The basicsyst emenv.bet fragment contains the core of the concurrency system, and is the prime
fragment for information on the concurrency facilities.

9.2 systemenv

The systemenv.bet fragment is to be used if the concurrency is to be used in a program that is not
using any graphical user interface system, such as the X Window System. Systemenv.bet does not
define any new attributes at all.

9.3 timehandler

The timehandler.bet fragment contains facilities for setting timers in the form of objects to be
executed when a given time period have elapsed.

The rest of the chapter will only describe the basicsystemenv.bet fragments. For details on the use
of the other fragments, please see the documentation in the interface descriptions.

9.4 The basicSystemEnv Library

The systemEnv fragment contains abstract superpattern:s for describing the BETA concepts of
concurrent systems. The basic ideas are:

9.4.1 Basic concepts

• Components (coroutines) can be executed concurrently.
• A primitive semaphore pattern is available for synchronization. The operations on a

semaphore must be executed as an indivisible unit.
• An abstract pattern Monitor similar to the monitor proposed by Hoare and Brinch−Hansen.
• An abstract pattern System is defined. System defines communication between systems by

means of synchronized rendezvous. A concurrency imperative conc and an alternation
imperative alt are defined for system.

Currently an exploratory style is used to experiment with different variants of the abstract patterns.
The current version is thus far from any final form of definition and may contain errors. The
separation into interface and implementation has not been completely carried out.

The abstractions defined here are based on the ones described in chapter 12 of the BETA book.

9.4.2 Changes from original design

The implementation is identical to the design in the BETA book, except for the following changes:

• The syntax of fork is

9 The systemEnv Libraries 40

S[]−>fork

• and not S.fork.
• The syntax of conc is

conc(# do S1[]−>start; S2[]−>start; S3[]−>start #)

• and not conc(# do S1.start; S2.start; S3.start #).
• The syntax of alt is

alt(#do S1[]−>start; S2[]−>start; S3[]−>start #)

• and not alt(# do S1.start; S2.start; S3.start #).

9.4.3 New facilities

This implementation of systemenv included a few new facilities, not described in the BETA book:

• semaphore have an additional attribute: tryP, which is a non−blocking call of P.
• In addition to s[]−>fork, s[]−>kill is now possible, and in addition to pause, 100−>sleep is

possible.
• system have a new virtual attribute, onKilled, that is invoked before the system terminates
• systemenv has a new virtual attribute, deadlocked, that is invoked if all processes are

deadlocked.
• Finally, systemenv defines three new attributes to cope with event driven user interfaces:

windowEnvType, theWindowEnv, and setWindowEnv. See further details on cooperation
with user interface environments below.

9.4.4 The Concurrency is Simulated

In order to implement real concurrency, an interrupt mechanism must be implemented. This is
currently not done. A component/system will thus keep the control until it makes an explicit or
implicit SUSPEND. An implicit SUSPEND is made when a component must wait for a semaphore,
executes the pause pattern, executes the sleep pattern, or performs a blocking communication
using the shellEnv distribution libraries (not described in this manual).

9.4.5 Concurrency and User Interface Environments

User interface environments (such as X Window System) are usually event−driven in the sense
that actions in the program are executed as a response to user input events. To handle this, a
number of separate implementations of SystemEnv exists for the different user interface libraries,
such as xtEnv, awEnv, motifEnv, and guiEnv:

• Use systemenv.bet as origin for programs not using event−driven user−interface libraries.
• Use ~beta/Xt/xsystemenv.bet as origin for programs using xtEnv, awEnv or motifEnv.
• Use ~beta/guienv/guienvsystemenv.bet as origin for programs using GUIenv.

See xsystemenv and guienvsystemenv for a description of using systemenv in conjunction with X
and GUIenv programs, respectively.

For examples of using SystemEnv, see the demo directory.

Please note, that programs should only use one of the systemenv, xsystemenv, and
guienvsystemenv fragments. It is a fairly common mistake in systemEnv programs to find more

 Basic Libraries − Reference Manual

9.4.3 New facilities 41

than one of these fragments.

9.5 Using the SystemEnv Fragment

A program using the systemEnv fragment will have the following structure:

INCLUDE '~beta/basiclib/systemenv'
−−− program: descriptor −−−
systemenv
(# process: @ |system(# ... #);
do ...
 process[] −> fork;
 ...
#)

9.5.1 The Monitor Example

The following is an example of a producer/consumer system with a shared buffer (implemented as
a 20 element character buffer, protected as a monitor. The producer and consumer are concurrent
objects:

Program 11: buffer.bet

ORIGIN '~beta/basiclib/systemenv';

−−−program: descriptor−−−
SystemEnv
(# buffer: @Monitor
 (# R: [20] @char; in,out: @integer;
 full,empty: @Condition;

 put: Entry
 (# ch: @char
 enter ch
 do (if in = out then full.wait if);
 ch−>R[in]; (in mod R.range)+1 −>in;
 empty.signal;
 #);
 get: Entry
 (# ch: @char
 do (if in = (out mod R.range)+1 then empty.wait if);
 R[(out mod R.range)+1−>out]−>ch;
 full.signal;
 (if ch=ascii.eot then stop if);
 exit ch
 #);
 init::< (# do 1−>in; R.range−>out #)
 #);

 prod: @| System(# do cycle(# do (if keyboard.EOS then ascii.eot−>buffer.put else keyboard.get−>buffer.put if) #) #);
 cons: @| System(# do cycle(# do buffer.get−>screen.put #) #);

do buffer.init;
 conc(# do prod[]−>start; cons[]−>start #)
#)

 Basic Libraries − Reference Manual

9.5 Using the SystemEnv Fragment 42

9.5.2 The Monitor with Wait Example

This example is similar to the previous, except that wait is used instead of condition to control the
medium−term scheduling of access to the buffer.

Program 12: OCbuf.bet

ORIGIN '~beta/basiclib/systemenv';

−−−program: descriptor−−
systemenv
(# buffer: @Monitor
 (# R: [4] @char; in,out: @integer;
 full: (# exit in=out #);
 empty: (#exit (in = (out mod R.range)+1) #);
 Put: Entry
 (# ch: @char
 enter ch
 do wait(# do (not full)−>cond #);
 ch−>R[in]; (in mod R.range)+1 −>in;
 #);
 get: Entry
 (# ch: @char
 do wait(# do (not empty)−>cond #);
 R[(out mod R.range)+1−>out]−>ch;
 exit ch
 #);
 init::< (# do 1−>in; R.range−>out #)
 #);

 prod: @| System(# do cycle(# do (if keyboard.EOS then stop else keyboard.get−>buffer.put if) #) #);
 cons: @| System(# do cycle(# do buffer.get−>screen.put #) #);

do buffer.init;
 conc(# do prod[]−>start; cons[]−>start #)
#)

9.5.3 The Ports Example

The following is an example of three communicating objects: S, R1 and R2. R1 and R2 are similar
(instances of the same Rtype pattern).

Rtype defines two ports: p1 and p2, with a get entry in p1 and a put entry in p2. The get entry prints
the value of the x attribute on standard output, and put prints the y attribute. Rtype objects
repeatedly accepts p1 communications followed by p2 communications (i.e. since in this example,
only get is define in p1, and only put in p2, this implies get followed by put). Note that the use of
ports, allows specializations of Rtype to define new entries in p1 and/or p2, such that these
communications follow the same communication structure.

The S object defines two internal objects, C1 and C2, which are executed alternating. C1 is
responsible for the communication with R1 and C2 is responsible with the communication with R2.
It is in this way ensured that the communication pattern between S and R1 follows the get followed
by put pattern (the same for S and R2), but these two communication patterns may be
non−deterministically interleaved.

 Basic Libraries − Reference Manual

9.5.2 The Monitor with Wait Example 43

Program 13: altex1.bet

ORIGIN '~beta/basiclib/systemenv';

−−−program: descriptor−−
SystemEnv
(# S: @| System
 (# C1: @| System
 (#
 do cycle(# do '1'−>put; R1.get; '2'−>put; R1.put #);
 #);
 C2: @| System
 (#
 do cycle(# do 'a'−>put; R2.get; 'b'−>put; R2.put #)
 #)
 do alt(# do C1[]−>start; C2[]−>start #)
 #);

 Rtype: System
 (# get: p1.entry(# do x−>screen.put; #); p1: @port;
 put: p2.entry(# do y−>screen.put; #); p2: @port;
 x,y: @char
 do cycle(# do p1.accept; p2.accept #)
 #);
 R1: @| Rtype;
 R2: @| Rtype;

do '('−>R1.x; ')'−>R1.y; '['−>R2.x; ']'−>R2.y;
 conc(# do S[]−>start; R1[]−>start; R2[]−>start #)
#)

9.5.4 The ObjectPort Example

This example illustrates the use of the ObjectPort facility. The S object defines f1, f2, and f3
communication entries, where f1 is controlled by an objectPort. This enables S to control exactly
which object which is allowed to communicate f3's in an accept. Note, that initially, R.R1 is allowed,
and later R.R3 is allowed:

Program 14: sys1.bet

ORIGIN '~beta/basiclib/systemenv';

−−−program: descriptor−−
SystemEnv
(# S: @| System
 (# P1: @ObjectPort;
 f1: P1.entry(# do 'f1 called' −>putline #);
 P2: @Port;
 f2: P2.entry(# do 'f2 called' −>putline #);
 P3: @Port;
 f3: P3.entry(# do 'f3 called' −>putline #);
 do R.R1[]−>P1.accept;
 P2.accept;
 P3.accept;
 R.R3[]−>P1.accept
 #);

 R: @| System
 (# R1: @| System(# do S.f1; S.f3 #);
 R2: @| System(# do S.f2; #);

 Basic Libraries − Reference Manual

9.5.3 The Ports Example 44

 R3: @| System(# do S.f1 #);
 do 'Start R'−>putLine;
 conc(# do R1[]−>start; R2[]−>start; R3[]−>start #);
 'End R'−>putLine
 #);

do 'Start'−>putLine;
 conc(# do R[]−>start; S[]−>start #);
 'End'−>putLine
#)

 Basic Libraries − Reference Manual

9.5.3 The Ports Example 45

10 The external Library

10.1 Interfacing to C and Pascal

The external fragment contains a general interface to other programming languages. This interface
is provided by the patterns external and cStruct. The external pattern is used to interface to
procedures and functions written in other languages e.g. C or Pascal. The cStruct pattern is used to
be able to create BETA objects with a structure similar to C structs or Pascal records. This interface
is used heavily in the system, e.g. in the interface to UNIX and Macintosh, and in the user interface
toolkit. The basic external and cStruct patterns are defined in betaenv and the external fragment
defines the specific attributes of these patterns. Furthermore, the external fragment defines the
externalRecord pattern, which is used for defining the BETA interface to data structures, allocated
by the external language (e.g. C).

For passing strings to and from C programs you can use the CString pattern.

10.2 Using the external Fragment

A program using the external fragment will have the following structure:

INCLUDE '~beta/basiclib/external
−−− program: descriptor −−−
(# foo: external(# ... #)
do ...
 ... foo ...
#)

10.2.1 Interfacing to External C Functions

When interfacing to C, the pattern callC must be called in the do−part of the External specialization.
The BETA compiler will then generate a call to an external routine with the same name as the
BETA pattern, using C's style of passing parameters.

A pattern of the form

foo: external
 (# enter ... do callC exit ... #)

describes the interface to an external C function with entry−point foo(_foo). (The do−part can be left
out.) As a convenience, the call to C above need not be specified in which case the compiler will
insert it automatically.

If you prefer to give the external a different name from the entry−point name, you can state the
entry−point name explicitly. If the entry−point name contains special characters, you are forced to
do this:

foo: external
 (# ... enter... do 'X$bar' −> callC exit... #);

This pattern describes the interface to an external C function, whose entry−point name is X$bar
(and not foo).

10 The external Library 46

cstring.html

It is important that there exist a C function with the same name and exactly the number of enter
parameters corresponds to the number of parameters of the C function. If the C function returns
any results, it is important that an exit parameters is specified in the BETA external pattern, and
that this exit value is evaluated in all usage's of this external (due to an error in the current
compiler) If the C function does not return any result, no exit parameters may be specified.

10.2.2 Using call back from C

The following example shows how to install call backs from C to BETA. Readers not familiar with
call backs should skip this section.

We use declarations like:

callBackProc: external
 (* This pattern describes the interface to the procedure
 * that is called on the call back. It may have the
 * following type definition in C:
 *
 * typedef void (*callBackProcPtr)(int i)
 *)
 (# i: @integer;
 enter i
 (* only the types shortInt, integer, char and boolean
 * can be used in the enter and exit parts
 *)
 do cExternalEntry;
 inner;
 (* Had the return type not been void,
 * the exit part should have appeared here.
 *)
 #);

installCallBack: external
 (* This pattern describes the interface for the C
 * function that installs the call back.
 * It has the following C description:
 *
 * void installCallBack(callBackProcPtr theProcPtr,int j)
 *)
 (# theProcPtr: ##callBackProc;
 j: @integer;
 enter (theProcPtr##,j)
 do callC;
 #);

When writing the actual procedure to be called on the call back, it is easiest to specialise the above
callBackProc pattern, as in:

(# ...
 myCallBack: callBackProc
 (# ...
 (* do not specialize the enter part *)
 do 'There is a call back.' −> putline;
 'Value received in parameter i is ' −> puttext;
 i −> putint; '.' −> put; newline;
 (* do not specialize the exit part *)
 #);
 j: @integer;
do 46 −> j;
 (* install the call back: *)

 Basic Libraries − Reference Manual

10.2.2 Using call back from C 47

 (myCallBack##, j) −> installCallBack;
 ...
#)

10.2.3 Interfacing to External Pascal Procedures

When interfacing to Pascal or another programming language with a similar activation record
organization the pattern Pascal must be called in the do−part of the External specialization. The
BETA compiler will then generate a call to an external routine with the same name as the BETA
pattern, using the Pascal style of passing parameters.

A pattern of the form

foo: external
 (# enter ... do Pascal exit ... #)

describes the interface to an external Pascal function with entry−point foo (_foo). (Note the exit
parameters that must be present in Pascal function interfaces.

A Pascal procedure can be interfaced to through a pattern of the form

foo: external
 (# enter ... do Pascal #)

If the entry−point of the Pascal function or procedure needs to be explicitly specified, a pattern of
the form

foo: external
 (# enter ... do 'X$bar' −> Pascal ... #)

can be used to describe the interface to an external Pascal procedure, where the entry−point for
the Pascal procedure is X$bar instead of foo.

A pattern of the form

foo: external
 (# enter ... do '$...' −> PascalTrap exit ... #)

or

foo: external
 (# enter ... do '{$...,$...,...}' −> PascalTrap exit ... #)

describes the interface to an external Pascal procedure that is called using Motorola traps. The
string in the first example is in the form of a single hexadecimal number, preceded with a $ (e.g.
'$A9FF'). The string in the second example is in the form of a comma separated list of hexadecimal
numbers, each preceded with a $ and enclosed with braces (e.g. '{$A9FF,$02F4}'). Decimal
numbers may be used for specifying the traps. This is done by leaving out the $.

 Basic Libraries − Reference Manual

10.2.3 Interfacing to External Pascal Procedures 48

10.2.4 Example Interfacing to Pascal

As an example, an interface routine to a Pascal function (NewHandle) may be implemented in the
following way:

NEWHANDLE: external
 (# theHandle: @integer
 do pascal
 exit theHandle
 #);

10.2.5 Using call backs from Pascal

Call backs from Pascal is handled similar to call backs from C, except that you should use
pascalExternalEntry instead of cExternalEntry.

10.2.6 Interfacing to External Data Structures

 Transferring data to and from the external languages is dealt with through two special purpose
patterns: cStruct and externalRecord.

cStruct is the means for specifying a BETA object with a specific storage layout, and with the
purpose of transferring this object to the external language for processing. That is, a cStruct object
is allocated by BETA and made available for processing by the external language.

ExternalRecord is the means for specifying a BETA interface into some data structures, allocated
by the external language.

10.2.7 cStruct

 cStruct defines byteSize [1] that is used for specifying the number of bytes that should be allocated
for the BETA object. For specifying the fields, the local patterns byte, short, signedShort and long
are available. These patterns contain a local virtual attribute, pos, that is used to specify the byte
position of this field in the cStruct object. Note that there is no check for overlapping fields. cStruct
also defines put/getByte, put/getShort, put/getSignedShort and put/getLong operations for
accessing the bytes, longs, etc. of the cStruct object directly.

10.2.8 ExternalRecord

 ExternalRecord defines the ptr attribute, that is used to contain the memory address of the
externally allocated data structure. For specifying the interface into the fields of this data structure,
externalRecord defines byte, short, signedShort and long with local virtual attribute, pos, to
describe the byte position of each field (just as cStruct). ExternalRecord also defines the
put/getByte, etc. to make direct access to the bytes, shorts, etc. of the external data structure.

The connection between the externalRecord object and the external data structure is established
by letting some external routine return the address of the external data structure, and then transfer
this integer into the ptr attribute of the externalRecord object. If it is necessary to transfer this
address back to the external language, it can be done by transferring the ptr attribute back through
some external language routine.

 Basic Libraries − Reference Manual

10.2.4 Example Interfacing to Pascal 49

10.2.9 Example Using cStruct

The following example shows how to interface to the C language using cStruct and external. The
BETA pattern myStruct describes a BETA object to be transferred to the foo C function. The BETA
pattern foo describes the interface to a C function called foo. It is important that there exist a C
function with the name foo and exactly the same parameters and result.

(# myStruct: cStruct
 (* myStruct describes a cStruct consisting of 8 bytes
 'a' denotes byte[0]
 'b' denotes byte[1]
 'c' denotes byte[2−5]
 'd' denotes byte[6−7]
 *)
 (# byteSize ::< (# do 8 −> value #);
 a: byte (# pos ::< (# do 0 −> value #) #);
 b: byte (# pos ::< (# do 1 −> value #) #);
 c: long (# pos ::< (# do 2 −> value #) #);
 d: short (# pos ::< (# do 6 −> value #) #)
 #);
 foo: external
 (* This pattern describes the interface to the following
 * C function, called 'foo':
 *
 * int foo(int i, short si, char a, char *t, myStruct *r)
 *)
 (# i: @integer; si: @shortint;
 a: @char; t: [1] @char;
 r: ^myStruct;
 status: @ integer;
 enter (i, si, a, t, r[])
 exit status
 #);
 theStruct: @myStruct;
 m, n, status: @integer;
 c: @char;
do ...
 m −> theStruct.a; (* overflow is not detected *)
 17 −> theStruct.b; ...
 (n, 117, c, 'smith', theStruct[]) −> foo −> status;
 (if status
 // 117 then
 theStruct.d −> m;
 ...
 if);
 (11, m, 'x', 'smith', NONE) −> foo −> status;
#)

10.2.10 Example Using externalRecord

Here TCSbuffer is the interface into some data structure in some image processing software.
TCAlloc is the interface into the C routine in that software, allocating this data structure, and
allocate is an example of using this routine for getting access to the externally allocated data
structure. Finally, update illustrates how to transfer the memory address back into the external
language.

TCSbuffer: externalRecord
(# display: @long(# pos ::< (# do 0 −> value #)#);
 window: @long(# pos ::< (# do 4 −> value #)#);
 visual: @long(# pos ::< (# do 8 −> value #)#);

 Basic Libraries − Reference Manual

10.2.9 Example Using cStruct 50

 colormap: @long(# pos ::< (# do 12 −> value #)#);
 depth: @long(# pos ::< (# do 16 −> value #)#);
 gc: @long(# pos ::< (# do 20 −> value #)#);
 colorLookup: @long(# pos ::< (# do 24 −> value #)#);
 width: @long(# pos ::< (# do 56 −> value #)#);
 height: @long(# pos ::< (# do 60 −> value #)#);
 data: @long(# pos ::< (# do 64 −> value #)#);
 xOffset: @long(# pos ::< (# do 68 −> value #)#);
 yOffset: @long(# pos ::< (# do 72 −> value #)#);
 zoom: @long(# pos ::< (# do 76 −> value #)#);
 updateTile: @long(# pos ::< (# do 80 −> value #)#);
#);

TCAlloc: External
 (# width, height: @integer;
 buffer: @integer
 enter (width, height)
 exit buffer
#);

allocate:
 (* allocates a true color buffer of resolution
 * width x height
 *)
 (# width, height: @integer; buffer: ^TCSbuffer
 noMemoryError :< TCSnoMemoryError;
 enter(width, height, buffer[])
 do (width, height) −> TCALLOC −> buffer.ptr;
 (if ptr //−1 then noMemoryError if);
 INNER
 #);

update:
 (* Draws a region of a true color buffer on the window it's
 * associated with. The x, y, width and height arguments
 * give the location and size of the region in BUFFER
 * coordinates, NOT window coordinates.
 *)
 (# x, y, width, height: @integer; buffer: ^TCSbuffer
 noBufferError :< TCSnoBufferError;
 internError :< TCSinternError;
 enter (buffer, x, y, width, height)
 do (if (buffer.ptr, x, y, width, height) −> TCUPDATE
 // 0 then 'update' −> NoBufferError
 //−4 then 'update' −> internError
 if);
 INNER
#);

 [1] Note, that cStruct is defined in betaenv, and that the external library defines additional attributes
to this cStruct pattern. ByteSize is defined in betaenv, whereas the rest of the attributes mentioned
here, are described in external

 Basic Libraries − Reference Manual

10.2.9 Example Using cStruct 51

11 The Perl Compatible Regular Expression Library
The Perl Compatible Regular Expression Library (PCRE) implements the pcre pattern with the
method attributes

init
options
match
matchAll
replace
replaceAll

the value attribute

subPatterns

the exception attribute

compilationError

11.1 Regular Expressions

A regular expression (regexp, for short) is a pattern that denotes a set of strings, possibly an infinite
set. Searching for matches for a regexp is a very powerful operation that editors and scripting
languages on Unix systems have traditionally offered.

This implementation of regular expressions implements a regular expression syntax that is
compatible with that in the language Perl. It is based on Philip Hazel's PCRE library. Most of Philip
Hazel's documentation also applies to the BETA version.

11.2 pcre

The pcre pattern encapsulates a regular expression. It takes a Text reference as an enter
parameter. The enter parameter is given to the Init method.

The pcre pattern has an empty do−part

The pcre pattern exits a reference to itself

You can use the pcre pattern as in the following example

 re: ^Pcre;
do 'trigger' −> pcre −> re[];
 (filename[], re[]) −> myGrep;

11.3 init

The init method takes a Text reference as an enter parameter. This string describes the regular
expression according to the syntax described in the pcre documentation. Init compiles the regular
expression into an internal format suitable for matching against strings. This operation takes some
CPU time, so the result (stored in the pcre object) should be kept if the same pattern is to be used
many times.

When compiling the regular expression the options defined by the options method are used.

11 The Perl Compatible Regular Expression Library 52

You can call init several times if you want to change the regular expression matched by the pcre
object.

11.4 options

The options method is a virtual pattern, which you can specialise. Put the options you need into the
do part. For example:

 re: @Pcre (# options:: (# do CASELESS; DO_STUDY; #); #)
do 'tRiGgEr' −> re;
 (filename[], re[]) −> myGrep;

There is an alternative way to specify certain options, which involves placing them in the textual
representation of the regular expression. For example the option CASELESS can be specified by
prepending the string '<?i>' to the regular expression.

The following options are supported

Option Text version Used in Description

 CASELESS (?i) init Ignore case when matching

 MULTILINE (?m) init ^ and $ match after/before newlines

 DOTALL (?s) init . matches newlines

 EXTENDED (?x) init Extended regexp syntax

 ANCHORED ^ init Match only at start of string

 DOLLAR_ENDONLY init $ doesn't match before terminal newline

 EXTRA (?X) init Support PCRE extensions to Perl regexps

 NOTBOL init or match Do not match ^ at start of string

 NOTEOL init or match Do not match $ at end of string

 UNGREEDY (?U) init Quantifiers not greedy by default

 NOTEMPTY init or match Empty string cannot match entire expression

 C_LOCALE init Use C locale instead of default localei

 DO_STUDY init Study regexp after compiling it

 RETURN_NONE init or match Return NONE for subpatterns that didn't match

Notes:

• More information
More details are available in the documentation of the pcre library.

• When to set options
Some options are only used in the init method, while others are set to a default in the init
method, but may be overridden in the options method of match (inherited by matchAll,
replace and replaceAll).

• C_LOCALE
Normally pcre will use the locale defined by your C library to determine whether a given
character is a letter, etc. If you set this option, then pcre will use the C locale, ie only the
characters a−z are letters. Most of the time this option will make no difference.

• DO_STUDY
If you are going to be using a pattern many times, then this option may improve
performance. See more about this in the documentation of the pcre library.

• RETURN_NONE
Normally the subMatchText methods and similar will exit an empty string in the case where

 Basic Libraries − Reference Manual

11.4 options 53

the subpattern didn't match at all. This helps prevent unexpected ref−NONE exceptions in
your code. Unfortunately it also makes it difficult to tell the difference between a subpattern
that matched an empty string and a subpattern that didn't match at all (because it was in an
alternation that wasn't used). If you set this option then you risk getting NONE back from an
invocation of subMatchText and your program must be able to cope with that.

• Clearing options
In some cases you may want to clear an option that has been set by a superpattern. You do
this by prefixing the option name with clear. For example:

(* p is a perl regexp with my favourite options, including case
 * insensitivity, but just this once I want a case sensitive
 * regexp.
 *)
p: @PcreWithMyFavouriteOptions (# options:: (# do clearCASELESS #) #);

11.5 match

The match method takes a Text reference and exits true or false, depending on whether the text
matched the expression. It also contains a set of methods that can be overridden to provide much
more information about the match.

The INNER part of the match method is only called in the case of a match.

options
pre
matchPos
matchText
preMatchText
postMatchText
subMatchPos
subMatchText
sub1, sub2, sub3...
noMatch
position

11.6 match.options

This method can be overridden in much the same way as the options method in the pcre pattern in
order to pass options to the matching stage of the regular expression engine.

11.7 match.pre

This method is called before any matching takes place. It does nothing, but you can specialise it in
your own subclasses.

11.8 match.matchPos

This method can be called from the inner part of the match method. It exits an integer pair,
indicating the start and end positions of the matched text in the original text. See the example
below.

11.9 match.matchText

This method can be called from the inner part of the match method. It exits a Text reference
indicating the text that matched the regular expression. See the example below.

 Basic Libraries − Reference Manual

11.5 match 54

11.10 match.preMatchText and match.postMatchText

These methods can be called from the inner part of the match method. They exit a Text reference
indicating the text that preceeded (or followed) the text that matched the regular expression.

For example:

(# t1: ^Text;
 t2: ^Text;
 r3: ^Text;
 s: @Integer;
 e: @Integer;
do 'abc123def' −> ('\\d+' −> pcre).match
 (#
 do preMatchText −> t1[];
 matchText −> t2[];
 postMatchText −> t3[];
 matchPos −> (s, e);
 #);
 ...
#);

Will put 'abc' in t1, '123' in t2 and 'def' in t3. It also puts 4 in s and 6 in e.

11.11 match.subMatchPos

This method can be called from the inner part of the match method. It enters an integer and exits
an integer pair, indicating the start and end positions of the nth subpattern in the original text. See
the example below.

11.12 match.subMatchText

This method can be called from the inner part of the match method. It enters an integer and exits a
text, indicating the text matched by the nth subpattern. See the example below.

11.13 match.sub1, match.sub2, match.sub3...

These methods can be called from the inner part of the match method. They exit a text, indicating
the text matched by the nth subpattern. They are simply a shorthand method of invoking
subMatchText. See the example below:

(# t1: ^Text;
 t2: ^Text;
 r3: ^Text;
 s: @Integer;
 e: @Integer;
do 'abc123def' −> ('([a−z])(\\d+)([a−z]+)' −> pcre).match
 (#
 do sub1 −> t1[];
 sub2 −> t2[];
 3 −> subMatchText −> t3[];
 3 −> subMatchPos −> (s, e);
 #);
 ...
#);

Will put 'c' in t1, '123' in t2 and 'def' in t3. It also puts 7 in s and 9 in e.

 Basic Libraries − Reference Manual

11.10 match.preMatchText and match.postMatchText 55

11.14 match.noMatch

This method is called by match when no match is found. You can specialise it to specify an action if
no match is found.

11.15 match.position

This method controls where in the input string the search for a regular expression match starts. You
can specialise it, putting a different number into the variable 'value'.

11.16 replace

The replace method inherits from the match method. It takes two inputs, firstly a Text reference to a
search string, and secondly a text reference to a default replacement string. It exits two values,
firstly a boolean (true or false), depending on whether the text matched the expression. Secondly
the a text reference to the new text with the replacement carried out. If no replacement is carried
out then the text exited is a copy of the search string entered. Replace also contains a set of
methods that can be overridden to provide much more information about the match and to control
the replacement text more accurately. See the example below.

The INNER part of the replace method is only called in the case of a match.

options
pre
matchPos
matchText
preMatchText
postMatchText
subMatchPos
subMatchText
sub1, sub2, sub3...
noMatch
position
rep

11.17 replace.rep

This method controls the replacement string. The 'value' variable is a reference to the default
replacement text. By assigning a new reference to 'value' you can dynamically choose another
replacement string, based on information gleaned from the other methods available in replace.

(# t1: ^Text;
do ('The y2k problem', 'year 2000' −>
 ('\\by2k\\b' −> pcre).replace −>
 (p, t1[]);
 ...
#);

Will put 'The year 2000 problem' in t1. (The escape sequence '\b' in a regular expression matches a
word boundary. In a BETA string you have to double the backslash.)

(# t1: ^Text;
do ('The y3k problem', '' −>
 ('\\by([0−9]+)k\\b' −> pcre).replace
 (# rep::
 (#
 do 'year %s000' −> putFormat (# do sub1 −> s #) −> value[];

 Basic Libraries − Reference Manual

11.14 match.noMatch 56

 #);
 #) −> (p, t1[]);
 ...
#);

11.18 matchAll

This method is similar to match, but calls INNER several times, once for each match. It is not yet
fully documented. Please see pcre.bet comments and demo programs.

11.19 replaceAll

This method is similar to replace, but calls INNER several times, once for each match. It is not yet
fully documented. Please see pcre.bet comments and demo programs.

11.20 subPatterns

This is a readonly integer pattern, which tells you how many subpatterns your pattern has. Only
useful if you are reading regular expressions from a config file or from the user, since otherwise you
should know this figure already.

11.21 compilationError

This pattern is executed if your regular expression contains syntax errors. In this case it is not a
good idea to call match or replace on that pattern.

 Basic Libraries − Reference Manual

11.18 matchAll 57

12 PCRE specification
• Name
• Description
• Compiling a Pattern
• Studying a Pattern
• Locale Support
• Information About a Pattern
• Matching a Pattern
• Extracting Captured Substrings
• Limitations
• Differences from perl
• Regular Expression Details
• Backslash
• Circumflex and Dollar
• Full Stop (Period, Dot)
• Square Brackets
• Posix Character Classes
• Vertical Bar
• Internal Option Setting
• Subpatterns
• Repetition
• Back References
• Assertions
• Once−Only Subpatterns
• Conditional Subpatterns
• Comments
• Recursive Patterns
• Performance
• Author

12.1 Name

pcre − Perl−compatible regular expressions.

12.2 Description

The PCRE library is a set of functions that implement regular expression pattern matching using
the same syntax and semantics as Perl 5, with just a few differences (see below). The current
implementation corresponds to Perl 5.005, with some additional features from the Perl
development release.

This documentation is an edited version of the full documentation for the C language interface to
the PCRE library. Some sections that were of no interest to BETA users were removed.

The functions pcre_compile(), pcre_study(), and pcre_exec() are used for compiling and
matching regular expressions, while pcre_copy_substring(), pcre_get_substring(), and
pcre_get_substring_list() are convenience functions for extracting captured substrings from a
matched subject string. The function pcre_maketables() is used (optionally) to build a set of
character tables in the current locale for passing to pcre_compile().

The function pcre_fullinfo() is used to find out information about a compiled pattern; pcre_info() is
an obsolete version which returns only some of the available information, but is retained for

12 PCRE specification 58

backwards compatibility. The function pcre_version() returns a pointer to a string containing the
version of PCRE and its date of release.

The global variables pcre_malloc and pcre_free initially contain the entry points of the standard
malloc() and free() functions respectively. PCRE calls the memory management functions via
these variables, so a calling program can replace them if it wishes to intercept the calls. This should
be done before calling any PCRE functions.

12.3 Compiling a Pattern

The function pcre_compile() is called to compile a pattern into an internal form. The pattern is a C
string terminated by a binary zero, and is passed in the argument pattern. A pointer to a single
block of memory that is obtained via pcre_malloc is returned. This contains the compiled code and
related data. The pcre type is defined for this for convenience, but in fact pcre is just a typedef for
void, since the contents of the block are not externally defined. It is up to the caller to free the
memory when it is no longer required.

The size of a compiled pattern is roughly proportional to the length of the pattern string, except that
each character class (other than those containing just a single character, negated or not) requires
33 bytes, and repeat quantifiers with a minimum greater than one or a bounded maximum cause
the relevant portions of the compiled pattern to be replicated.

The options argument contains independent bits that affect the compilation. It should be zero if no
options are required. Some of the options, in particular, those that are compatible with Perl, can
also be set and unset from within the pattern (see the detailed description of regular expressions
below). For these options, the contents of the options argument specifies their initial settings at the
start of compilation and execution. The PCRE_ANCHORED option can be set at the time of
matching as well as at compile time.

If errptr is NULL, pcre_compile() returns NULL immediately. Otherwise, if compilation of a pattern
fails, pcre_compile() returns NULL, and sets the variable pointed to by errptr to point to a textual
error message. The offset from the start of the pattern to the character where the error was
discovered is placed in the variable pointed to by erroffset, which must not be NULL. If it is, an
immediate error is given.

If the final argument, tableptr, is NULL, PCRE uses a default set of character tables which are built
when it is compiled, using the default C locale. Otherwise, tableptr must be the result of a call to
pcre_maketables(). See the section on locale support below.

The following option bits are defined in the header file:

 PCRE_ANCHORED

If this bit is set, the pattern is forced to be "anchored", that is, it is constrained to match only at the
start of the string which is being searched (the "subject string"). This effect can also be achieved by
appropriate constructs in the pattern itself, which is the only way to do it in Perl.

 PCRE_CASELESS

If this bit is set, letters in the pattern match both upper and lower case letters. It is equivalent to
Perl's /i option.

 PCRE_DOLLAR_ENDONLY

If this bit is set, a dollar metacharacter in the pattern matches only at the end of the subject string.

 Basic Libraries − Reference Manual

12.3 Compiling a Pattern 59

Without this option, a dollar also matches immediately before the final character if it is a newline
(but not before any other newlines). The PCRE_DOLLAR_ENDONLY option is ignored if
PCRE_MULTILINE is set. There is no equivalent to this option in Perl.

 PCRE_DOTALL

If this bit is set, a dot metacharater in the pattern matches all characters, including newlines.
Without it, newlines are excluded. This option is equivalent to Perl's /s option. A negative class
such as [^a] always matches a newline character, independent of the setting of this option.

 PCRE_EXTENDED

If this bit is set, whitespace data characters in the pattern are totally ignored except when escaped
or inside a character class, and characters between an unescaped # outside a character class and
the next newline character, inclusive, are also ignored. This is equivalent to Perl's /x option, and
makes it possible to include comments inside complicated patterns. Note, however, that this
applies only to data characters. Whitespace characters may never appear within special character
sequences in a pattern, for example within the sequence (?(which introduces a conditional
subpattern.

 PCRE_EXTRA

This option was invented in order to turn on additional functionality of PCRE that is incompatible
with Perl, but it is currently of very little use. When set, any backslash in a pattern that is followed
by a letter that has no special meaning causes an error, thus reserving these combinations for
future expansion. By default, as in Perl, a backslash followed by a letter with no special meaning is
treated as a literal. There are at present no other features controlled by this option. It can also be
set by a (?X) option setting within a pattern.

 PCRE_MULTILINE

By default, PCRE treats the subject string as consisting of a single "line" of characters (even if it
actually contains several newlines). The "start of line" metacharacter (^) matches only at the start of
the string, while the "end of line" metacharacter ($) matches only at the end of the string, or before
a terminating newline (unless PCRE_DOLLAR_ENDONLY is set). This is the same as Perl.

When PCRE_MULTILINE it is set, the "start of line" and "end of line" constructs match immediately
following or immediately before any newline in the subject string, respectively, as well as at the very
start and end. This is equivalent to Perl's /m option. If there are no "\n" characters in a subject
string, or no occurrences of ^ or $ in a pattern, setting PCRE_MULTILINE has no effect.

 PCRE_UNGREEDY

This option inverts the "greediness" of the quantifiers so that they are not greedy by default, but
become greedy if followed by "?". It is not compatible with Perl. It can also be set by a (?U) option
setting within the pattern.

12.4 Studying a Pattern

When a pattern is going to be used several times, it is worth spending more time analyzing it in
order to speed up the time taken for matching. The function pcre_study() takes a pointer to a
compiled pattern as its first argument, and returns a pointer to a pcre_extra block (another
void typedef) containing additional information about the pattern; this can be passed to
pcre_exec(). If no additional information is available, NULL is returned.

 Basic Libraries − Reference Manual

12.4 Studying a Pattern 60

The second argument contains option bits. At present, no options are defined for pcre_study(),
and this argument should always be zero.

The third argument for pcre_study() is a pointer to an error message. If studying succeeds (even if
no data is returned), the variable it points to is set to NULL. Otherwise it points to a textual error
message.

At present, studying a pattern is useful only for non−anchored patterns that do not have a single
fixed starting character. A bitmap of possible starting characters is created.

12.5 Locale Support

PCRE handles caseless matching, and determines whether characters are letters, digits, or
whatever, by reference to a set of tables. The library contains a default set of tables which is
created in the default C locale when PCRE is compiled. This is used when the final argument of
pcre_compile() is NULL, and is sufficient for many applications.

An alternative set of tables can, however, be supplied. Such tables are built by calling the
pcre_maketables() function, which has no arguments, in the relevant locale. The result can then
be passed to pcre_compile() as often as necessary. For example, to build and use tables that are
appropriate for the French locale (where accented characters with codes greater than 128 are
treated as letters), the following code could be used:

 setlocale(LC_CTYPE, "fr");
 tables = pcre_maketables();
 re = pcre_compile(..., tables);

The tables are built in memory that is obtained via pcre_malloc. The pointer that is passed to
pcre_compile is saved with the compiled pattern, and the same tables are used via this pointer by
pcre_study() and pcre_exec(). Thus for any single pattern, compilation, studying and matching all
happen in the same locale, but different patterns can be compiled in different locales. It is the
caller's responsibility to ensure that the memory containing the tables remains available for as long
as it is needed.

12.6 Information About a Pattern

The pcre_fullinfo() function returns information about a compiled pattern. It replaces the obsolete
pcre_info() function, which is nevertheless retained for backwards compability (and is documented
below).

The first argument for pcre_fullinfo() is a pointer to the compiled pattern. The second argument is
the result of pcre_study(), or NULL if the pattern was not studied. The third argument specifies
which piece of information is required, while the fourth argument is a pointer to a variable to receive
the data. The yield of the function is zero for success, or one of the following negative numbers:

 PCRE_ERROR_NULL the argument code was NULL
 the argument where was NULL
 PCRE_ERROR_BADMAGIC the "magic number" was not found
 PCRE_ERROR_BADOPTION the value of what was invalid

The possible values for the third argument are defined in pcre.h, and are as follows:

 PCRE_INFO_OPTIONS

Return a copy of the options with which the pattern was compiled. The fourth argument should

 Basic Libraries − Reference Manual

12.5 Locale Support 61

point to au unsigned long int variable. These option bits are those specified in the call to
pcre_compile(), modified by any top−level option settings within the pattern itself, and with the
PCRE_ANCHORED bit forcibly set if the form of the pattern implies that it can match only at the
start of a subject string.

 PCRE_INFO_SIZE

Return the size of the compiled pattern, that is, the value that was passed as the argument to
pcre_malloc() when PCRE was getting memory in which to place the compiled data. The fourth
argument should point to a size_t variable.

 PCRE_INFO_CAPTURECOUNT

Return the number of capturing subpatterns in the pattern. The fourth argument should point to an
\fbint\fR variable.

 PCRE_INFO_BACKREFMAX

Return the number of the highest back reference in the pattern. The fourth argument should point
to an int variable. Zero is returned if there are no back references.

 PCRE_INFO_FIRSTCHAR

Return information about the first character of any matched string, for a non−anchored pattern. If
there is a fixed first character, e.g. from a pattern such as (cat|cow|coyote), it is returned in the
integer pointed to by where. Otherwise, if either

(a) the pattern was compiled with the PCRE_MULTILINE option, and every branch starts with "^",
or

(b) every branch of the pattern starts with ".*" and PCRE_DOTALL is not set (if it were set, the
pattern would be anchored),

−1 is returned, indicating that the pattern matches only at the start of a subject string or after any
"\n" within the string. Otherwise −2 is returned. For anchored patterns, −2 is returned.

 PCRE_INFO_FIRSTTABLE

If the pattern was studied, and this resulted in the construction of a 256−bit table indicating a fixed
set of characters for the first character in any matching string, a pointer to the table is returned.
Otherwise NULL is returned. The fourth argument should point to an unsigned char * variable.

 PCRE_INFO_LASTLITERAL

For a non−anchored pattern, return the value of the rightmost literal character which must exist in
any matched string, other than at its start. The fourth argument should point to an int variable. If
there is no such character, or if the pattern is anchored, −1 is returned. For example, for the pattern
/a\d+z\d+/ the returned value is 'z'.

The pcre_info() function is now obsolete because its interface is too restrictive to return all the
available data about a compiled pattern. New programs should use pcre_fullinfo() instead. The
yield of pcre_info() is the number of capturing subpatterns, or one of the following negative
numbers:

 PCRE_ERROR_NULL the argument code was NULL
 PCRE_ERROR_BADMAGIC the "magic number" was not found

 Basic Libraries − Reference Manual

12.5 Locale Support 62

If the optptr argument is not NULL, a copy of the options with which the pattern was compiled is
placed in the integer it points to (see PCRE_INFO_OPTIONS above).

If the pattern is not anchored and the firstcharptr argument is not NULL, it is used to pass back
information about the first character of any matched string (see PCRE_INFO_FIRSTCHAR above).

12.7 Matching a Pattern

The function pcre_exec() is called to match a subject string against a pre−compiled pattern, which
is passed in the code argument. If the pattern has been studied, the result of the study should be
passed in the extra argument. Otherwise this must be NULL.

The PCRE_ANCHORED option can be passed in the options argument, whose unused bits must
be zero. However, if a pattern was compiled with PCRE_ANCHORED, or turned out to be
anchored by virtue of its contents, it cannot be made unachored at matching time.

There are also three further options that can be set only at matching time:

PCRE_NOTBOL

The first character of the string is not the beginning of a line, so the circumflex metacharacter
should not match before it. Setting this without PCRE_MULTILINE (at compile time) causes
circumflex never to match.

PCRE_NOTEOL

The end of the string is not the end of a line, so the dollar metacharacter should not match it nor
(except in multiline mode) a newline immediately before it. Setting this without PCRE_MULTILINE
(at compile time) causes dollar never to match.

PCRE_NOTEMPTY

An empty string is not considered to be a valid match if this option is set. If there are alternatives in
the pattern, they are tried. If all the alternatives match the empty string, the entire match fails. For
example, if the pattern

 a?b?

is applied to a string not beginning with "a" or "b", it matches the empty string at the start of the
subject. With PCRE_NOTEMPTY set, this match is not valid, so PCRE searches further into the
string for occurrences of "a" or "b".

Perl has no direct equivalent of PCRE_NOTEMPTY, but it does make a special case of a pattern
match of the empty string within its split() function, and when using the /g modifier. It is possible to
emulate Perl's behaviour after matching a null string by first trying the match again at the same
offset with PCRE_NOTEMPTY set, and then if that fails by advancing the starting offset (see
below) and trying an ordinary match again.

The subject string is passed as a pointer in subject, a length in length, and a starting offset in
startoffset. Unlike the pattern string, it may contain binary zero characters. When the starting offset
is zero, the search for a match starts at the beginning of the subject, and this is by far the most
common case.

A non−zero starting offset is useful when searching for another match in the same subject by
calling pcre_exec() again after a previous success. Setting startoffset differs from just passing over

 Basic Libraries − Reference Manual

12.7 Matching a Pattern 63

a shortened string and setting PCRE_NOTBOL in the case of a pattern that begins with any kind of
lookbehind. For example, consider the pattern

 \Biss\B

which finds occurrences of "iss" in the middle of words. (\B matches only if the current position in
the subject is not a word boundary.) When applied to the string "Mississipi" the first call to
pcre_exec() finds the first occurrence. If pcre_exec() is called again with just the remainder of the
subject, namely "issipi", it does not match, because \B is always false at the start of the subject,
which is deemed to be a word boundary. However, if pcre_exec() is passed the entire string again,
but with startoffset set to 4, it finds the second occurrence of "iss" because it is able to look behind
the starting point to discover that it is preceded by a letter.

If a non−zero starting offset is passed when the pattern is anchored, one attempt to match at the
given offset is tried. This can only succeed if the pattern does not require the match to be at the
start of the subject.

In general, a pattern matches a certain portion of the subject, and in addition, further substrings
from the subject may be picked out by parts of the pattern. Following the usage in Jeffrey Friedl's
book, this is called "capturing" in what follows, and the phrase "capturing subpattern" is used for a
fragment of a pattern that picks out a substring. PCRE supports several other kinds of
parenthesized subpattern that do not cause substrings to be captured.

Captured substrings are returned to the caller via a vector of integer offsets whose address is
passed in ovector. The number of elements in the vector is passed in ovecsize. The first two−thirds
of the vector is used to pass back captured substrings, each substring using a pair of integers. The
remaining third of the vector is used as workspace by pcre_exec() while matching capturing
subpatterns, and is not available for passing back information. The length passed in
ovecsize should always be a multiple of three. If it is not, it is rounded down.

When a match has been successful, information about captured substrings is returned in pairs of
integers, starting at the beginning of ovector, and continuing up to two−thirds of its length at the
most. The first element of a pair is set to the offset of the first character in a substring, and the
second is set to the offset of the first character after the end of a substring. The first pair,
ovector[0] and ovector[1], identify the portion of the subject string matched by the entire pattern.
The next pair is used for the first capturing subpattern, and so on. The value returned by
pcre_exec() is the number of pairs that have been set. If there are no capturing subpatterns, the
return value from a successful match is 1, indicating that just the first pair of offsets has been set.

Some convenience functions are provided for extracting the captured substrings as separate
strings. These are described in the following section.

It is possible for an capturing subpattern number n+1 to match some part of the subject when
subpattern n has not been used at all. For example, if the string "abc" is matched against the
pattern (a|(z))(bc) subpatterns 1 and 3 are matched, but 2 is not. When this happens, both offset
values corresponding to the unused subpattern are set to −1.

If a capturing subpattern is matched repeatedly, it is the last portion of the string that it matched
that gets returned.

If the vector is too small to hold all the captured substrings, it is used as far as possible (up to
two−thirds of its length), and the function returns a value of zero. In particular, if the substring
offsets are not of interest, pcre_exec() may be called with ovector passed as NULL and
ovecsize as zero. However, if the pattern contains back references and the ovector isn't big enough
to remember the related substrings, PCRE has to get additional memory for use during matching.

 Basic Libraries − Reference Manual

12.7 Matching a Pattern 64

Thus it is usually advisable to supply an ovector.

Note that pcre_info() can be used to find out how many capturing subpatterns there are in a
compiled pattern. The smallest size for ovector that will allow for n captured substrings in addition
to the offsets of the substring matched by the whole pattern is (n+1)*3.

If pcre_exec() fails, it returns a negative number. The following are defined in the header file:

 PCRE_ERROR_NOMATCH (−1)

The subject string did not match the pattern.

 PCRE_ERROR_NULL (−2)

Either code or subject was passed as NULL, or ovector was NULL and ovecsize was not zero.

 PCRE_ERROR_BADOPTION (−3)

An unrecognized bit was set in the options argument.

 PCRE_ERROR_BADMAGIC (−4)

PCRE stores a 4−byte "magic number" at the start of the compiled code, to catch the case when it
is passed a junk pointer. This is the error it gives when the magic number isn't present.

 PCRE_ERROR_UNKNOWN_NODE (−5)

While running the pattern match, an unknown item was encountered in the compiled pattern. This
error could be caused by a bug in PCRE or by overwriting of the compiled pattern.

 PCRE_ERROR_NOMEMORY (−6)

If a pattern contains back references, but the ovector that is passed to pcre_exec() is not big
enough to remember the referenced substrings, PCRE gets a block of memory at the start of
matching to use for this purpose. If the call via pcre_malloc() fails, this error is given. The memory
is freed at the end of matching.

12.8 Extracting Captured Substrings

Captured substrings can be accessed directly by using the offsets returned by pcre_exec() in
ovector. For convenience, the functions pcre_copy_substring(), pcre_get_substring(), and
pcre_get_substring_list() are provided for extracting captured substrings as new, separate,
zero−terminated strings. A substring that contains a binary zero is correctly extracted and has a
further zero added on the end, but the result does not, of course, function as a C string.

The first three arguments are the same for all three functions: subject is the subject string which
has just been successfully matched, ovector is a pointer to the vector of integer offsets that was
passed to pcre_exec(), and stringcount is the number of substrings that were captured by the
match, including the substring that matched the entire regular expression. This is the value
returned by pcre_exec if it is greater than zero. If pcre_exec() returned zero, indicating that it ran
out of space in ovector, the value passed as stringcount should be the size of the vector divided by
three.

The functions pcre_copy_substring() and pcre_get_substring() extract a single substring,
whose number is given as stringnumber. A value of zero extracts the substring that matched the

 Basic Libraries − Reference Manual

12.8 Extracting Captured Substrings 65

entire pattern, while higher values extract the captured substrings. For pcre_copy_substring(), the
string is placed in buffer, whose length is given by buffersize, while for pcre_get_substring() a
new block of store is obtained via pcre_malloc, and its address is returned via stringptr. The yield
of the function is the length of the string, not including the terminating zero, or one of

 PCRE_ERROR_NOMEMORY (−6)

The buffer was too small for pcre_copy_substring(), or the attempt to get memory failed for
pcre_get_substring().

 PCRE_ERROR_NOSUBSTRING (−7)

There is no substring whose number is stringnumber.

The pcre_get_substring_list() function extracts all available substrings and builds a list of pointers
to them. All this is done in a single block of memory which is obtained via pcre_malloc. The
address of the memory block is returned via listptr, which is also the start of the list of string
pointers. The end of the list is marked by a NULL pointer. The yield of the function is zero if all went
well, or

 PCRE_ERROR_NOMEMORY (−6)

if the attempt to get the memory block failed.

When any of these functions encounter a substring that is unset, which can happen when capturing
subpattern number n+1 matches some part of the subject, but subpattern n has not been used at
all, they return an empty string. This can be distinguished from a genuine zero−length substring by
inspecting the appropriate offset in ovector, which is negative for unset substrings.

12.9 Limitations

There are some size limitations in PCRE but it is hoped that they will never in practice be relevant.
The maximum length of a compiled pattern is 65539 (sic) bytes. All values in repeating quantifiers
must be less than 65536. The maximum number of capturing subpatterns is 99. The maximum
number of all parenthesized subpatterns, including capturing subpatterns, assertions, and other
types of subpattern, is 200.

The maximum length of a subject string is the largest positive number that an integer variable can
hold. However, PCRE uses recursion to handle subpatterns and indefinite repetition. This means
that the available stack space may limit the size of a subject string that can be processed by certain
patterns.

12.10 Differences from perl

The differences described here are with respect to Perl 5.005.

1. By default, a whitespace character is any character that the C library function
isspace() recognizes, though it is possible to compile PCRE with alternative character type tables.
Normally isspace() matches space, formfeed, newline, carriage return, horizontal tab, and vertical
tab. Perl 5 no longer includes vertical tab in its set of whitespace characters. The \v escape that
was in the Perl documentation for a long time was never in fact recognized. However, the character
itself was treated as whitespace at least up to 5.002. In 5.004 and 5.005 it does not match \s.

2. PCRE does not allow repeat quantifiers on lookahead assertions. Perl permits them, but they do

 Basic Libraries − Reference Manual

12.9 Limitations 66

not mean what you might think. For example, (?!a){3} does not assert that the next three characters
are not "a". It just asserts that the next character is not "a" three times.

3. Capturing subpatterns that occur inside negative lookahead assertions are counted, but their
entries in the offsets vector are never set. Perl sets its numerical variables from any such patterns
that are matched before the assertion fails to match something (thereby succeeding), but only if the
negative lookahead assertion contains just one branch.

4. Though binary zero characters are supported in the subject string, they are not allowed in a
pattern string because it is passed as a normal C string, terminated by zero. The escape sequence
"\0" can be used in the pattern to represent a binary zero.

5. The following Perl escape sequences are not supported: \l, \u, \L, \U, \E, \Q. In fact these are
implemented by Perl's general string−handling and are not part of its pattern matching engine.

6. The Perl \G assertion is not supported as it is not relevant to single pattern matches.

7. Fairly obviously, PCRE does not support the (?{code}) and (?p{code}) constructions. However,
there is some experimental support for recursive patterns using the non−Perl item (?R).

8. There are at the time of writing some oddities in Perl 5.005_02 concerned with the settings of
captured strings when part of a pattern is repeated. For example, matching "aba" against the
pattern /^(a(b)?)+$/ sets $2 to the value "b", but matching "aabbaa" against /^(aa(bb)?)+$/ leaves
$2 unset. However, if the pattern is changed to /^(aa(b(b))?)+$/ then $2 (and $3) are set.

In Perl 5.004 $2 is set in both cases, and that is also true of PCRE. If in the future Perl changes to
a consistent state that is different, PCRE may change to follow.

9. Another as yet unresolved discrepancy is that in Perl 5.005_02 the pattern /^(a)?(?(1)a|b)+$/
matches the string "a", whereas in PCRE it does not. However, in both Perl and PCRE /^(a)?a/
matched against "a" leaves $1 unset.

10. PCRE provides some extensions to the Perl regular expression facilities:

(a) Although lookbehind assertions must match fixed length strings, each alternative branch of a
lookbehind assertion can match a different length of string. Perl 5.005 requires them all to have the
same length.

(b) If PCRE_DOLLAR_ENDONLY is set and PCRE_MULTILINE is not set, the $ meta− character
matches only at the very end of the string.

(c) If PCRE_EXTRA is set, a backslash followed by a letter with no special meaning is faulted.

(d) If PCRE_UNGREEDY is set, the greediness of the repetition quantifiers is inverted, that is, by
default they are not greedy, but if followed by a question mark they are.

(e) PCRE_ANCHORED can be used to force a pattern to be tried only at the start of the subject.

(f) The PCRE_NOTBOL, PCRE_NOTEOL, and PCRE_NOTEMPTY options for pcre_exec() have
no Perl equivalents.

(g) The (?R) construct allows for recursive pattern matching (Perl 5.6 can do this using the
(?p{code}) construct, which PCRE cannot of course support.)

 Basic Libraries − Reference Manual

12.9 Limitations 67

12.11 Regular Expression Details

The syntax and semantics of the regular expressions supported by PCRE are described below.
Regular expressions are also described in the Perl documentation and in a number of other books,
some of which have copious examples. Jeffrey Friedl's "Mastering Regular Expressions", published
by O'Reilly (ISBN 1−56592−257), covers them in great detail. The description here is intended as
reference documentation.

A regular expression is a pattern that is matched against a subject string from left to right. Most
characters stand for themselves in a pattern, and match the corresponding characters in the
subject. As a trivial example, the pattern

 The quick brown fox

matches a portion of a subject string that is identical to itself. The power of regular expressions
comes from the ability to include alternatives and repetitions in the pattern. These are encoded in
the pattern by the use of meta−characters, which do not stand for themselves but instead are
interpreted in some special way.

There are two different sets of meta−characters: those that are recognized anywhere in the pattern
except within square brackets, and those that are recognized in square brackets. Outside square
brackets, the meta−characters are as follows:

 \ general escape character with several uses
 ^ assert start of subject (or line, in multiline mode)
 $ assert end of subject (or line, in multiline mode)
 . match any character except newline (by default)
 [start character class definition
 | start of alternative branch
 (start subpattern
) end subpattern
 ? extends the meaning of (
 also 0 or 1 quantifier
 also quantifier minimizer
 * 0 or more quantifier
 + 1 or more quantifier
 { start min/max quantifier

Part of a pattern that is in square brackets is called a "character class". In a character class the
only meta−characters are:

 \ general escape character
 ^ negate the class, but only if the first character
 − indicates character range
] terminates the character class

The following sections describe the use of each of the meta−characters.

12.12 Backslash

The backslash character has several uses. Firstly, if it is followed by a non−alphameric character, it
takes away any special meaning that character may have. This use of backslash as an escape
character applies both inside and outside character classes.

For example, if you want to match a "*" character, you write "*" in the pattern. This applies whether
or not the following character would otherwise be interpreted as a meta−character, so it is always
safe to precede a non−alphameric with "\" to specify that it stands for itself. In particular, if you want

 Basic Libraries − Reference Manual

12.11 Regular Expression Details 68

to match a backslash, you write "\\".

If a pattern is compiled with the PCRE_EXTENDED option, whitespace in the pattern (other than in
a character class) and characters between a "#" outside a character class and the next newline
character are ignored. An escaping backslash can be used to include a whitespace or "#" character
as part of the pattern.

A second use of backslash provides a way of encoding non−printing characters in patterns in a
visible manner. There is no restriction on the appearance of non−printing characters, apart from the
binary zero that terminates a pattern, but when a pattern is being prepared by text editing, it is
usually easier to use one of the following escape sequences than the binary character it
represents:

 \a alarm, that is, the BEL character (hex 07)
 \cx "control−x", where x is any character
 \e escape (hex 1B)
 \f formfeed (hex 0C)
 \n newline (hex 0A)
 \r carriage return (hex 0D)
 \t tab (hex 09)
 \xhh character with hex code hh
 \ddd character with octal code ddd, or backreference

The precise effect of "\cx" is as follows: if "x" is a lower case letter, it is converted to upper case.
Then bit 6 of the character (hex 40) is inverted. Thus "\cz" becomes hex 1A, but "\c{" becomes hex
3B, while "\c;" becomes hex 7B.

After "\x", up to two hexadecimal digits are read (letters can be in upper or lower case).

After "\0" up to two further octal digits are read. In both cases, if there are fewer than two digits, just
those that are present are used. Thus the sequence "\0\x\07" specifies two binary zeros followed by
a BEL character. Make sure you supply two digits after the initial zero if the character that follows is
itself an octal digit.

The handling of a backslash followed by a digit other than 0 is complicated. Outside a character
class, PCRE reads it and any following digits as a decimal number. If the number is less than 10, or
if there have been at least that many previous capturing left parentheses in the expression, the
entire sequence is taken as a back reference. A description of how this works is given later,
following the discussion of parenthesized subpatterns.

Inside a character class, or if the decimal number is greater than 9 and there have not been that
many capturing subpatterns, PCRE re−reads up to three octal digits following the backslash, and
generates a single byte from the least significant 8 bits of the value. Any subsequent digits stand
for themselves. For example:

 \040 is another way of writing a space
 \40 is the same, provided there are fewer than 40
 previous capturing subpatterns
 \7 is always a back reference
 \11 might be a back reference, or another way of
 writing a tab
 \011 is always a tab
 \0113 is a tab followed by the character "3"
 \113 is the character with octal code 113 (since there
 can be no more than 99 back references)
 \377 is a byte consisting entirely of 1 bits
 \81 is either a back reference, or a binary zero
 followed by the two characters "8" and "1"

 Basic Libraries − Reference Manual

12.11 Regular Expression Details 69

Note that octal values of 100 or greater must not be introduced by a leading zero, because no more
than three octal digits are ever read.

All the sequences that define a single byte value can be used both inside and outside character
classes. In addition, inside a character class, the sequence "\b" is interpreted as the backspace
character (hex 08). Outside a character class it has a different meaning (see below).

The third use of backslash is for specifying generic character types:

 \d any decimal digit
 \D any character that is not a decimal digit
 \s any whitespace character
 \S any character that is not a whitespace character
 \w any "word" character
 \W any "non−word" character

Each pair of escape sequences partitions the complete set of characters into two disjoint sets. Any
given character matches one, and only one, of each pair.

A "word" character is any letter or digit or the underscore character, that is, any character which
can be part of a Perl "word". The definition of letters and digits is controlled by PCRE's character
tables, and may vary if locale− specific matching is taking place (see "Locale support" above). For
example, in the "fr" (French) locale, some character codes greater than 128 are used for accented
letters, and these are matched by \w.

These character type sequences can appear both inside and outside character classes. They each
match one character of the appropriate type. If the current matching point is at the end of the
subject string, all of them fail, since there is no character to match.

The fourth use of backslash is for certain simple assertions. An assertion specifies a condition that
has to be met at a particular point in a match, without consuming any characters from the subject
string. The use of subpatterns for more complicated assertions is described below. The
backslashed assertions are

 \b word boundary
 \B not a word boundary
 \A start of subject (independent of multiline mode)
 \Z end of subject or newline at end (independent of multiline mode)
 \z end of subject (independent of multiline mode)

These assertions may not appear in character classes (but note that "\b" has a different meaning,
namely the backspace character, inside a character class).

A word boundary is a position in the subject string where the current character and the previous
character do not both match \w or \W (i.e. one matches \w and the other matches \W), or the start
or end of the string if the first or last character matches \w, respectively.

The \A, \Z, and \z assertions differ from the traditional circumflex and dollar (described below) in
that they only ever match at the very start and end of the subject string, whatever options are set.
They are not affected by the PCRE_NOTBOL or PCRE_NOTEOL options. If the
startoffset argument of pcre_exec() is non−zero, \A can never match. The difference between \Z
and \z is that \Z matches before a newline that is the last character of the string as well as at the
end of the string, whereas \z matches only at the end.

 Basic Libraries − Reference Manual

12.11 Regular Expression Details 70

12.13 Circumflex and Dollar

Outside a character class, in the default matching mode, the circumflex character is an assertion
which is true only if the current matching point is at the start of the subject string. If the
startoffset argument of pcre_exec() is non−zero, circumflex can never match. Inside a character
class, circumflex has an entirely different meaning (see below).

Circumflex need not be the first character of the pattern if a number of alternatives are involved, but
it should be the first thing in each alternative in which it appears if the pattern is ever to match that
branch. If all possible alternatives start with a circumflex, that is, if the pattern is constrained to
match only at the start of the subject, it is said to be an "anchored" pattern. (There are also other
constructs that can cause a pattern to be anchored.)

A dollar character is an assertion which is true only if the current matching point is at the end of the
subject string, or immediately before a newline character that is the last character in the string (by
default). Dollar need not be the last character of the pattern if a number of alternatives are involved,
but it should be the last item in any branch in which it appears. Dollar has no special meaning in a
character class.

The meaning of dollar can be changed so that it matches only at the very end of the string, by
setting the PCRE_DOLLAR_ENDONLY option at compile or matching time. This does not affect
the \Z assertion.

The meanings of the circumflex and dollar characters are changed if the PCRE_MULTILINE option
is set. When this is the case, they match immediately after and immediately before an internal "\n"
character, respectively, in addition to matching at the start and end of the subject string. For
example, the pattern /^abc$/ matches the subject string "def\nabc" in multiline mode, but not
otherwise. Consequently, patterns that are anchored in single line mode because all branches start
with "^" are not anchored in multiline mode, and a match for circumflex is possible when the
startoffset argument of pcre_exec() is non−zero. The PCRE_DOLLAR_ENDONLY option is
ignored if PCRE_MULTILINE is set.

Note that the sequences \A, \Z, and \z can be used to match the start and end of the subject in both
modes, and if all branches of a pattern start with \A is it always anchored, whether
PCRE_MULTILINE is set or not.

12.14 Full Stop (Period, Dot)

Outside a character class, a dot in the pattern matches any one character in the subject, including
a non−printing character, but not (by default) newline. If the PCRE_DOTALL option is set, dots
match newlines as well. The handling of dot is entirely independent of the handling of circumflex
and dollar, the only relationship being that they both involve newline characters. Dot has no special
meaning in a character class.

12.15 Square Brackets

An opening square bracket introduces a character class, terminated by a closing square bracket. A
closing square bracket on its own is not special. If a closing square bracket is required as a
member of the class, it should be the first data character in the class (after an initial circumflex, if
present) or escaped with a backslash.

A character class matches a single character in the subject; the character must be in the set of
characters defined by the class, unless the first character in the class is a circumflex, in which case

 Basic Libraries − Reference Manual

12.13 Circumflex and Dollar 71

the subject character must not be in the set defined by the class. If a circumflex is actually required
as a member of the class, ensure it is not the first character, or escape it with a backslash.

For example, the character class [aeiou] matches any lower case vowel, while [^aeiou] matches
any character that is not a lower case vowel. Note that a circumflex is just a convenient notation for
specifying the characters which are in the class by enumerating those that are not. It is not an
assertion: it still consumes a character from the subject string, and fails if the current pointer is at
the end of the string.

When caseless matching is set, any letters in a class represent both their upper case and lower
case versions, so for example, a caseless [aeiou] matches "A" as well as "a", and a caseless
[^aeiou] does not match "A", whereas a caseful version would.

The newline character is never treated in any special way in character classes, whatever the
setting of the PCRE_DOTALL or PCRE_MULTILINE options is. A class such as [^a] will always
match a newline.

The minus (hyphen) character can be used to specify a range of characters in a character class.
For example, [d−m] matches any letter between d and m, inclusive. If a minus character is required
in a class, it must be escaped with a backslash or appear in a position where it cannot be
interpreted as indicating a range, typically as the first or last character in the class.

It is not possible to have the literal character "]" as the end character of a range. A pattern such as
[W−]46] is interpreted as a class of two characters ("W" and "−") followed by a literal string "46]", so
it would match "W46]" or "−46]". However, if the "]" is escaped with a backslash it is interpreted as
the end of range, so [W−\]46] is interpreted as a single class containing a range followed by two
separate characters. The octal or hexadecimal representation of "]" can also be used to end a
range.

Ranges operate in ASCII collating sequence. They can also be used for characters specified
numerically, for example [\000−\037]. If a range that includes letters is used when caseless
matching is set, it matches the letters in either case. For example, [W−c] is equivalent to
[][\^_`wxyzabc], matched caselessly, and if character tables for the "fr" locale are in use, [\xc8−\xcb]
matches accented E characters in both cases.

The character types \d, \D, \s, \S, \w, and \W may also appear in a character class, and add the
characters that they match to the class. For example, [\dABCDEF] matches any hexadecimal digit.
A circumflex can conveniently be used with the upper case character types to specify a more
restricted set of characters than the matching lower case type. For example, the class [^\W_]
matches any letter or digit, but not underscore.

All non−alphameric characters other than \, −, ^ (at the start) and the terminating] are non−special
in character classes, but it does no harm if they are escaped.

12.16 Posix Character Classes

Perl 5.6 (not yet released at the time of writing) is going to support the POSIX notation for character
classes, which uses names enclosed by [: and :] within the enclosing square brackets. PCRE
supports this notation. For example,

 [01[:alpha:]%]

matches "0", "1", any alphabetic character, or "%". The supported class names are

 Basic Libraries − Reference Manual

12.16 Posix Character Classes 72

 alnum letters and digits
 alpha letters
 ascii character codes 0 − 127
 cntrl control characters
 digit decimal digits (same as \d)
 graph printing characters, excluding space
 lower lower case letters
 print printing characters, including space
 punct printing characters, excluding letters and digits
 space white space (same as \s)
 upper upper case letters
 word "word" characters (same as \w)
 xdigit hexadecimal digits

The names "ascii" and "word" are Perl extensions. Another Perl extension is negation, which is
indicated by a ^ character after the colon. For example,

 [12[:^digit:]]

matches "1", "2", or any non−digit. PCRE (and Perl) also recogize the POSIX syntax [.ch.] and
[=ch=] where "ch" is a "collating element", but these are not supported, and an error is given if they
are encountered.

12.17 Vertical Bar

Vertical bar characters are used to separate alternative patterns. For example, the pattern

 gilbert|sullivan

matches either "gilbert" or "sullivan". Any number of alternatives may appear, and an empty
alternative is permitted (matching the empty string). The matching process tries each alternative in
turn, from left to right, and the first one that succeeds is used. If the alternatives are within a
subpattern (defined below), "succeeds" means matching the rest of the main pattern as well as the
alternative in the subpattern.

12.18 Internal Option Setting

The settings of PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, and PCRE_EXTENDED
can be changed from within the pattern by a sequence of Perl option letters enclosed between "(?"
and ")". The option letters are

 i for PCRE_CASELESS
 m for PCRE_MULTILINE
 s for PCRE_DOTALL
 x for PCRE_EXTENDED

For example, (?im) sets caseless, multiline matching. It is also possible to unset these options by
preceding the letter with a hyphen, and a combined setting and unsetting such as (?im−sx), which
sets PCRE_CASELESS and PCRE_MULTILINE while unsetting PCRE_DOTALL and
PCRE_EXTENDED, is also permitted. If a letter appears both before and after the hyphen, the
option is unset.

The scope of these option changes depends on where in the pattern the setting occurs. For
settings that are outside any subpattern (defined below), the effect is the same as if the options
were set or unset at the start of matching. The following patterns all behave in exactly the same
way:

 Basic Libraries − Reference Manual

12.17 Vertical Bar 73

 (?i)abc
 a(?i)bc
 ab(?i)c
 abc(?i)

which in turn is the same as compiling the pattern abc with PCRE_CASELESS set. In other words,
such "top level" settings apply to the whole pattern (unless there are other changes inside
subpatterns). If there is more than one setting of the same option at top level, the rightmost setting
is used.

If an option change occurs inside a subpattern, the effect is different. This is a change of behaviour
in Perl 5.005. An option change inside a subpattern affects only that part of the subpattern that
follows it, so

 (a(?i)b)c

matches abc and aBc and no other strings (assuming PCRE_CASELESS is not used). By this
means, options can be made to have different settings in different parts of the pattern. Any changes
made in one alternative do carry on into subsequent branches within the same subpattern. For
example,

 (a(?i)b|c)

matches "ab", "aB", "c", and "C", even though when matching "C" the first branch is abandoned
before the option setting. This is because the effects of option settings happen at compile time.
There would be some very weird behaviour otherwise.

The PCRE−specific options PCRE_UNGREEDY and PCRE_EXTRA can be changed in the same
way as the Perl−compatible options by using the characters U and X respectively. The (?X) flag
setting is special in that it must always occur earlier in the pattern than any of the additional
features it turns on, even when it is at top level. It is best put at the start.

12.19 Subpatterns

Subpatterns are delimited by parentheses (round brackets), which can be nested. Marking part of a
pattern as a subpattern does two things:

1. It localizes a set of alternatives. For example, the pattern

 cat(aract|erpillar|)

matches one of the words "cat", "cataract", or "caterpillar". Without the parentheses, it would match
"cataract", "erpillar" or the empty string.

2. It sets up the subpattern as a capturing subpattern (as defined above). When the whole pattern
matches, that portion of the subject string that matched the subpattern is passed back to the caller
via the ovector argument of pcre_exec(). Opening parentheses are counted from left to right
(starting from 1) to obtain the numbers of the capturing subpatterns.

For example, if the string "the red king" is matched against the pattern

 the ((red|white) (king|queen))

the captured substrings are "red king", "red", and "king", and are numbered 1, 2, and 3.

The fact that plain parentheses fulfil two functions is not always helpful. There are often times when

 Basic Libraries − Reference Manual

12.19 Subpatterns 74

a grouping subpattern is required without a capturing requirement. If an opening parenthesis is
followed by "?:", the subpattern does not do any capturing, and is not counted when computing the
number of any subsequent capturing subpatterns. For example, if the string "the white queen" is
matched against the pattern

 the ((?:red|white) (king|queen))

the captured substrings are "white queen" and "queen", and are numbered 1 and 2. The maximum
number of captured substrings is 99, and the maximum number of all subpatterns, both capturing
and non−capturing, is 200.

As a convenient shorthand, if any option settings are required at the start of a non−capturing
subpattern, the option letters may appear between the "?" and the ":". Thus the two patterns

 (?i:saturday|sunday)
 (?:(?i)saturday|sunday)

match exactly the same set of strings. Because alternative branches are tried from left to right, and
options are not reset until the end of the subpattern is reached, an option setting in one branch
does affect subsequent branches, so the above patterns match "SUNDAY" as well as "Saturday".

12.20 Repetition

Repetition is specified by quantifiers, which can follow any of the following items:

 a single character, possibly escaped
 the . metacharacter
 a character class
 a back reference (see next section)
 a parenthesized subpattern (unless it is an assertion − see below)

The general repetition quantifier specifies a minimum and maximum number of permitted matches,
by giving the two numbers in curly brackets (braces), separated by a comma. The numbers must
be less than 65536, and the first must be less than or equal to the second. For example:

 z{2,4}

matches "zz", "zzz", or "zzzz". A closing brace on its own is not a special character. If the second
number is omitted, but the comma is present, there is no upper limit; if the second number and the
comma are both omitted, the quantifier specifies an exact number of required matches. Thus

 [aeiou]{3,}

matches at least 3 successive vowels, but may match many more, while

 \d{8}

matches exactly 8 digits. An opening curly bracket that appears in a position where a quantifier is
not allowed, or one that does not match the syntax of a quantifier, is taken as a literal character.
For example, {,6} is not a quantifier, but a literal string of four characters.

The quantifier {0} is permitted, causing the expression to behave as if the previous item and the
quantifier were not present.

For convenience (and historical compatibility) the three most common quantifiers have
single−character abbreviations:

 Basic Libraries − Reference Manual

12.20 Repetition 75

 * is equivalent to {0,}
 + is equivalent to {1,}
 ? is equivalent to {0,1}

It is possible to construct infinite loops by following a subpattern that can match no characters with
a quantifier that has no upper limit, for example:

 (a?)*

Earlier versions of Perl and PCRE used to give an error at compile time for such patterns.
However, because there are cases where this can be useful, such patterns are now accepted, but if
any repetition of the subpattern does in fact match no characters, the loop is forcibly broken.

By default, the quantifiers are "greedy", that is, they match as much as possible (up to the
maximum number of permitted times), without causing the rest of the pattern to fail. The classic
example of where this gives problems is in trying to match comments in C programs. These appear
between the sequences /* and */ and within the sequence, individual * and / characters may
appear. An attempt to match C comments by applying the pattern

 /*.**/

to the string

 /* first command */ not comment /* second comment */

fails, because it matches the entire string due to the greediness of the .* item.

However, if a quantifier is followed by a question mark, it ceases to be greedy, and instead
matches the minimum number of times possible, so the pattern

 /*.*?*/

does the right thing with the C comments. The meaning of the various quantifiers is not otherwise
changed, just the preferred number of matches. Do not confuse this use of question mark with its
use as a quantifier in its own right. Because it has two uses, it can sometimes appear doubled, as
in

 \d??\d

which matches one digit by preference, but can match two if that is the only way the rest of the
pattern matches.

If the PCRE_UNGREEDY option is set (an option which is not available in Perl), the quantifiers are
not greedy by default, but individual ones can be made greedy by following them with a question
mark. In other words, it inverts the default behaviour.

When a parenthesized subpattern is quantified with a minimum repeat count that is greater than 1
or with a limited maximum, more store is required for the compiled pattern, in proportion to the size
of the minimum or maximum.

If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equivalent to Perl's /s) is set, thus
allowing the . to match newlines, the pattern is implicitly anchored, because whatever follows will
be tried against every character position in the subject string, so there is no point in retrying the
overall match at any position after the first. PCRE treats such a pattern as though it were preceded
by \A. In cases where it is known that the subject string contains no newlines, it is worth setting
PCRE_DOTALL when the pattern begins with .* in order to obtain this optimization, or alternatively

 Basic Libraries − Reference Manual

12.20 Repetition 76

using ^ to indicate anchoring explicitly.

When a capturing subpattern is repeated, the value captured is the substring that matched the final
iteration. For example, after

 (tweedle[dume]{3}\s*)+

has matched "tweedledum tweedledee" the value of the captured substring is "tweedledee".
However, if there are nested capturing subpatterns, the corresponding captured values may have
been set in previous iterations. For example, after

 /(a|(b))+/

matches "aba" the value of the second captured substring is "b".

12.21 Back References

Outside a character class, a backslash followed by a digit greater than 0 (and possibly further
digits) is a back reference to a capturing subpattern earlier (i.e. to its left) in the pattern, provided
there have been that many previous capturing left parentheses.

However, if the decimal number following the backslash is less than 10, it is always taken as a back
reference, and causes an error only if there are not that many capturing left parentheses in the
entire pattern. In other words, the parentheses that are referenced need not be to the left of the
reference for numbers less than 10. See the section entitled "Backslash" above for further details of
the handling of digits following a backslash.

A back reference matches whatever actually matched the capturing subpattern in the current
subject string, rather than anything matching the subpattern itself. So the pattern

 (sens|respons)e and \1ibility

matches "sense and sensibility" and "response and responsibility", but not "sense and
responsibility". If caseful matching is in force at the time of the back reference, the case of letters is
relevant. For example,

 ((?i)rah)\s+\1

matches "rah rah" and "RAH RAH", but not "RAH rah", even though the original capturing
subpattern is matched caselessly.

There may be more than one back reference to the same subpattern. If a subpattern has not
actually been used in a particular match, any back references to it always fail. For example, the
pattern

 (a|(bc))\2

always fails if it starts to match "a" rather than "bc". Because there may be up to 99 back
references, all digits following the backslash are taken as part of a potential back reference
number. If the pattern continues with a digit character, some delimiter must be used to terminate
the back reference. If the PCRE_EXTENDED option is set, this can be whitespace. Otherwise an
empty comment can be used.

A back reference that occurs inside the parentheses to which it refers fails when the subpattern is
first used, so, for example, (a\1) never matches. However, such references can be useful inside

 Basic Libraries − Reference Manual

12.21 Back References 77

repeated subpatterns. For example, the pattern

 (a|b\1)+

matches any number of "a"s and also "aba", "ababaa" etc. At each iteration of the subpattern, the
back reference matches the character string corresponding to the previous iteration. In order for
this to work, the pattern must be such that the first iteration does not need to match the back
reference. This can be done using alternation, as in the example above, or by a quantifier with a
minimum of zero.

12.22 Assertions

An assertion is a test on the characters following or preceding the current matching point that does
not actually consume any characters. The simple assertions coded as \b, \B, \A, \Z, \z, ^ and $ are
described above. More complicated assertions are coded as subpatterns. There are two kinds:
those that look ahead of the current position in the subject string, and those that look behind it.

An assertion subpattern is matched in the normal way, except that it does not cause the current
matching position to be changed. Lookahead assertions start with (?= for positive assertions and
(?! for negative assertions. For example,

 \w+(?=;)

matches a word followed by a semicolon, but does not include the semicolon in the match, and

 foo(?!bar)

matches any occurrence of "foo" that is not followed by "bar". Note that the apparently similar
pattern

 (?!foo)bar

does not find an occurrence of "bar" that is preceded by something other than "foo"; it finds any
occurrence of "bar" whatsoever, because the assertion (?!foo) is always true when the next three
characters are "bar". A lookbehind assertion is needed to achieve this effect.

Lookbehind assertions start with (?<= for positive assertions and (?<! for negative assertions. For
example,

 (?60;!foo)bar

does find an occurrence of "bar" that is not preceded by "foo". The contents of a lookbehind
assertion are restricted such that all the strings it matches must have a fixed length. However, if
there are several alternatives, they do not all have to have the same fixed length. Thus

 (?60;=bullock|donkey)

is permitted, but

 (?60;!dogs?|cats?)

causes an error at compile time. Branches that match different length strings are permitted only at
the top level of a lookbehind assertion. This is an extension compared with Perl 5.005, which
requires all branches to match the same length of string. An assertion such as

 Basic Libraries − Reference Manual

12.22 Assertions 78

 (?60;=ab(c|de))

is not permitted, because its single top−level branch can match two different lengths, but it is
acceptable if rewritten to use two top−level branches:

 (?60;=abc|abde)

The implementation of lookbehind assertions is, for each alternative, to temporarily move the
current position back by the fixed width and then try to match. If there are insufficient characters
before the current position, the match is deemed to fail. Lookbehinds in conjunction with once−only
subpatterns can be particularly useful for matching at the ends of strings; an example is given at
the end of the section on once−only subpatterns.

Several assertions (of any sort) may occur in succession. For example,

 (?60;=\d{3})(?60;!999)foo

matches "foo" preceded by three digits that are not "999". Notice that each of the assertions is
applied independently at the same point in the subject string. First there is a check that the
previous three characters are all digits, and then there is a check that the same three characters
are not "999". This pattern does not match "foo" preceded by six characters, the first of which are
digits and the last three of which are not "999". For example, it doesn't match "123abcfoo". A
pattern to do that is

 (?60;=\d{3}...)(?60;!999)foo

This time the first assertion looks at the preceding six characters, checking that the first three are
digits, and then the second assertion checks that the preceding three characters are not "999".

Assertions can be nested in any combination. For example,

 (?60;=(?60;!foo)bar)baz

matches an occurrence of "baz" that is preceded by "bar" which in turn is not preceded by "foo",
while

 (?60;=\d{3}(?!999)...)foo

is another pattern which matches "foo" preceded by three digits and any three characters that are
not "999".

Assertion subpatterns are not capturing subpatterns, and may not be repeated, because it makes
no sense to assert the same thing several times. If any kind of assertion contains capturing
subpatterns within it, these are counted for the purposes of numbering the capturing subpatterns in
the whole pattern. However, substring capturing is carried out only for positive assertions, because
it does not make sense for negative assertions.

Assertions count towards the maximum of 200 parenthesized subpatterns.

12.23 Once−Only Subpatterns

With both maximizing and minimizing repetition, failure of what follows normally causes the
repeated item to be re−evaluated to see if a different number of repeats allows the rest of the
pattern to match. Sometimes it is useful to prevent this, either to change the nature of the match, or
to cause it fail earlier than it otherwise might, when the author of the pattern knows there is no point

 Basic Libraries − Reference Manual

12.23 Once−Only Subpatterns 79

in carrying on.

Consider, for example, the pattern \d+foo when applied to the subject line

 123456bar

After matching all 6 digits and then failing to match "foo", the normal action of the matcher is to try
again with only 5 digits matching the \d+ item, and then with 4, and so on, before ultimately failing.
Once−only subpatterns provide the means for specifying that once a portion of the pattern has
matched, it is not to be re−evaluated in this way, so the matcher would give up immediately on
failing to match "foo" the first time. The notation is another kind of special parenthesis, starting with
(?> as in this example:

 (?62;\d+)bar

This kind of parenthesis "locks up" the part of the pattern it contains once it has matched, and a
failure further into the pattern is prevented from backtracking into it. Backtracking past it to previous
items, however, works as normal.

An alternative description is that a subpattern of this type matches the string of characters that an
identical standalone pattern would match, if anchored at the current point in the subject string.

Once−only subpatterns are not capturing subpatterns. Simple cases such as the above example
can be thought of as a maximizing repeat that must swallow everything it can. So, while both \d+
and \d+? are prepared to adjust the number of digits they match in order to make the rest of the
pattern match, (?>\d+) can only match an entire sequence of digits.

This construction can of course contain arbitrarily complicated subpatterns, and it can be nested.

Once−only subpatterns can be used in conjunction with lookbehind assertions to specify efficient
matching at the end of the subject string. Consider a simple pattern such as

 abcd$

when applied to a long string which does not match. Because matching proceeds from left to right,
PCRE will look for each "a" in the subject and then see if what follows matches the rest of the
pattern. If the pattern is specified as

 ^.*abcd$

the initial .* matches the entire string at first, but when this fails (because there is no following "a"),
it backtracks to match all but the last character, then all but the last two characters, and so on.
Once again the search for "a" covers the entire string, from right to left, so we are no better off.
However, if the pattern is written as

 ^(?62;.*)(?60;=abcd)

there can be no backtracking for the .* item; it can match only the entire string. The subsequent
lookbehind assertion does a single test on the last four characters. If it fails, the match fails
immediately. For long strings, this approach makes a significant difference to the processing time.

When a pattern contains an unlimited repeat inside a subpattern that can itself be repeated an
unlimited number of times, the use of a once−only subpattern is the only way to avoid some failing
matches taking a very long time indeed. The pattern

 Basic Libraries − Reference Manual

12.23 Once−Only Subpatterns 80

 (\D+|60;\d+62;)*[!?]

matches an unlimited number of substrings that either consist of non−digits, or digits enclosed in
<>, followed by either ! or ?. When it matches, it runs quickly. However, if it is applied to

 aa

it takes a long time before reporting failure. This is because the string can be divided between the
two repeats in a large number of ways, and all have to be tried. (The example used [!?] rather than
a single character at the end, because both PCRE and Perl have an optimization that allows for
fast failure when a single character is used. They remember the last single character that is
required for a match, and fail early if it is not present in the string.) If the pattern is changed to

 ((?62;\D+)|60;\d+62;)*[!?]

sequences of non−digits cannot be broken, and failure happens quickly.

12.24 Conditional Subpatterns

It is possible to cause the matching process to obey a subpattern conditionally or to choose
between two alternative subpatterns, depending on the result of an assertion, or whether a
previous capturing subpattern matched or not. The two possible forms of conditional subpattern are

 (?(condition)yes−pattern)
 (?(condition)yes−pattern|no−pattern)

If the condition is satisfied, the yes−pattern is used; otherwise the no−pattern (if present) is used. If
there are more than two alternatives in the subpattern, a compile−time error occurs.

There are two kinds of condition. If the text between the parentheses consists of a sequence of
digits, the condition is satisfied if the capturing subpattern of that number has previously matched.
Consider the following pattern, which contains non−significant white space to make it more
readable (assume the PCRE_EXTENDED option) and to divide it into three parts for ease of
discussion:

 (\()? [^()]+ (?(1) \))

The first part matches an optional opening parenthesis, and if that character is present, sets it as
the first captured substring. The second part matches one or more characters that are not
parentheses. The third part is a conditional subpattern that tests whether the first set of
parentheses matched or not. If they did, that is, if subject started with an opening parenthesis, the
condition is true, and so the yes−pattern is executed and a closing parenthesis is required.
Otherwise, since no−pattern is not present, the subpattern matches nothing. In other words, this
pattern matches a sequence of non−parentheses, optionally enclosed in parentheses.

If the condition is not a sequence of digits, it must be an assertion. This may be a positive or
negative lookahead or lookbehind assertion. Consider this pattern, again containing non−significant
white space, and with the two alternatives on the second line:

 (?(?=[^a−z]*[a−z])
 \d{2}−[a−z]{3}−\d{2} | \d{2}−\d{2}−\d{2})

The condition is a positive lookahead assertion that matches an optional sequence of non−letters
followed by a letter. In other words, it tests for the presence of at least one letter in the subject. If a
letter is found, the subject is matched against the first alternative; otherwise it is matched against
the second. This pattern matches strings in one of the two forms dd−aaa−dd or dd−dd−dd, where

 Basic Libraries − Reference Manual

12.24 Conditional Subpatterns 81

aaa are letters and dd are digits.

12.25 Comments

The sequence (?# marks the start of a comment which continues up to the next closing
parenthesis. Nested parentheses are not permitted. The characters that make up a comment play
no part in the pattern matching at all.

If the PCRE_EXTENDED option is set, an unescaped # character outside a character class
introduces a comment that continues up to the next newline character in the pattern.

12.26 Recursive Patterns

Consider the problem of matching a string in parentheses, allowing for unlimited nested
parentheses. Without the use of recursion, the best that can be done is to use a pattern that
matches up to some fixed depth of nesting. It is not possible to handle an arbitrary nesting depth.
Perl 5.6 has provided an experimental facility that allows regular expressions to recurse (amongst
other things). It does this by interpolating Perl code in the expression at run time, and the code can
refer to the expression itself. A Perl pattern to solve the parentheses problem can be created like
this:

 $re = qr{\((?: (?62;[^()]+) | (?p{$re}))* \)}x;

The (?p{...}) item interpolates Perl code at run time, and in this case refers recursively to the pattern
in which it appears. Obviously, PCRE cannot support the interpolation of Perl code. Instead, the
special item (?R) is provided for the specific case of recursion. This PCRE pattern solves the
parentheses problem (assume the PCRE_EXTENDED option is set so that white space is ignored):

 \(((?62;[^()]+) | (?R))* \)

First it matches an opening parenthesis. Then it matches any number of substrings which can
either be a sequence of non−parentheses, or a recursive match of the pattern itself (i.e. a correctly
parenthesized substring). Finally there is a closing parenthesis.

This particular example pattern contains nested unlimited repeats, and so the use of a once−only
subpattern for matching strings of non−parentheses is important when applying the pattern to
strings that do not match. For example, when it is applied to

 (aaa()

it yields "no match" quickly. However, if a once−only subpattern is not used, the match runs for a
very long time indeed because there are so many different ways the + and * repeats can carve up
the subject, and all have to be tested before failure can be reported.

The values set for any capturing subpatterns are those from the outermost level of the recursion at
which the subpattern value is set. If the pattern above is matched against

 (ab(cd)ef)

the value for the capturing parentheses is "ef", which is the last value taken on at the top level. If
additional parentheses are added, giving

 \((((?62;[^()]+) | (?R))*) \)
 ^ ^
 ^ ^

 Basic Libraries − Reference Manual

12.25 Comments 82

the string they capture is "ab(cd)ef", the contents of the top level parentheses. If there are more
than 15 capturing parentheses in a pattern, PCRE has to obtain extra memory to store data during
a recursion, which it does by using pcre_malloc, freeing it via pcre_free afterwards. If no memory
can be obtained, it saves data for the first 15 capturing parentheses only, as there is no way to give
an out−of−memory error from within a recursion.

12.27 Performance

Certain items that may appear in patterns are more efficient than others. It is more efficient to use a
character class like [aeiou] than a set of alternatives such as (a|e|i|o|u). In general, the simplest
construction that provides the required behaviour is usually the most efficient. Jeffrey Friedl's book
contains a lot of discussion about optimizing regular expressions for efficient performance.

When a pattern begins with .* and the PCRE_DOTALL option is set, the pattern is implicitly
anchored by PCRE, since it can match only at the start of a subject string. However, if
PCRE_DOTALL is not set, PCRE cannot make this optimization, because the . metacharacter does
not then match a newline, and if the subject string contains newlines, the pattern may match from
the character immediately following one of them instead of from the very start. For example, the
pattern

 (.*) second

matches the subject "first\nand second" (where \n stands for a newline character) with the first
captured substring being "and". In order to do this, PCRE has to retry the match starting after every
newline in the subject.

If you are using such a pattern with subject strings that do not contain newlines, the best
performance is obtained by setting PCRE_DOTALL, or starting the pattern with ^.* to indicate
explicit anchoring. That saves PCRE from having to scan along the subject looking for a newline to
restart at.

Beware of patterns that contain nested indefinite repeats. These can take a long time to run when
applied to a string that does not match. Consider the pattern fragment

 (a+)*

This can match "aaaa" in 33 different ways, and this number increases very rapidly as the string
gets longer. (The * repeat can match 0, 1, 2, 3, or 4 times, and for each of those cases other than
0, the + repeats can match different numbers of times.) When the remainder of the pattern is such
that the entire match is going to fail, PCRE has in principle to try every possible variation, and this
can take an extremely long time.

An optimization catches some of the more simple cases such as

 (a+)*b

where a literal character follows. Before embarking on the standard matching procedure, PCRE
checks that there is a "b" later in the subject string, and if there is not, it fails the match
immediately. However, when there is no following literal this optimization cannot be used. You can
see the difference by comparing the behaviour of

 (a+)*\d

with the pattern above. The former gives a failure almost instantly when applied to a whole line of
"a" characters, whereas the latter takes an appreciable time with strings longer than about 20

 Basic Libraries − Reference Manual

12.27 Performance 83

characters.

12.28 Author

Philip Hazel <ph10@cam.ac.uk>
University Computing Service,
New Museums Site,
Cambridge CB2 3QG, England.
Phone: +44 1223 334714

Last updated: 27 January 2000
Copyright (c) 1997−2000 University of Cambridge.

 Basic Libraries − Reference Manual

12.28 Author 84

13.1 Basicsystemenv Interface
ORIGIN 'betaenv';
LIB_DEF 'basicsystemenv' '../lib';
BODY 'private/basicsystemenvbody'
−−−LIB:attributes−−−
(*
 * COPYRIGHT
 * Copyright Mjolner Informatics, 1992−96
 * All rights reserved.
 *
 * This fragment contains abstract superpatterns for describing the
 * BETA concepts of concurrent systems.
 *
 * The basic ideas are
 *
 * A. Components (coroutines) can be executed concurrently
 *
 * B. A primitive semaphore pattern is available for
 * syncronization.
 *
 * C. An abstract pattern 'Monitor' similar to the monitor
 * proposed by Hoare and Brinch−Hansen
 *
 * D. An abstract pattern 'System' is defined. System defines
 * communication between systems by means of synchronized
 * rendezvous. A concurreny imperative 'conc' is defined for
 * systems.
 *
 * The abstractions defined here are identical to the ones described
 * in chapter 12 of the BETA book except for the following points:
 *
 * 1. The syntax of 'fork' is
 * S[]−>fork
 * and NOT S.fork
 *
 * 2. The syntax of 'conc' is
 * conc(# do S1[]−>start; S2[]−>start; S3[]−>start #)
 * and NOT conc(# do S1.start; S2.start; S3.start #)
 *
 * 4. THE CONCURRENCY IS SIMULATED In order to implement real
 * concurreny, an interrupt mechanism must be implemented. This is
 * currently NOT done. A component/system will thus keep the
 * control until it makes an explicit or implicit SUSPEND. An
 * implicit SUSPEND is made when a component must wait for a
 * semaphore, executes the pause pattern, executes the sleep
 * pattern, or performs a blocking communication using the shellEnv
 * distribution abstractions. As the concurrency is simulated,
 * there is no difference between the implementation of the alt and
 * conc imperatives.
 *
 * 5. A program using concurrency must have the form:
 * systemenv(# ... do ... #)
 *
 * 6. Concurrency and X−Windows/macenv/guienv
 * User interface environments are usually event−driven in the
 * sense that actions in the program are executed as a response to
 * user input events. To handle this, a number of separate
 * implementations of SystemEnv exists for different user interface
 * libraries:
 *
 * Use systemenv.bet as origin for programs not using event−driven
 * user−interface libraries.
 *

13.1 Basicsystemenv Interface 85

 * Use ~beta/Xt/current/xsystemenv.bet as origin for programs using
 * XtEnv, AwEnv or MotifEnv.
 *
 * Use ~beta/guienv/current/guienvsystemenv.bet as origin for
 * programs using GUIenv (Lidskvjalv).
 *
 * See xsystemenv and guienvsystemenv for a description of using
 * systemenv in conjunction with X and GUIenv programs,
 * respectively.
 *
 * See ~beta/macenv/current/macsystemenv for a description of using
 * systemenv and macenv.
 *
 * For examples of using SystemEnv see the demo directory.
 *)
getSystemEnv:
 (* Returns the unique systemEnv instance running *)
 (# systemEnvType:< systemEnv;

theSystemEnv: ^systemEnvType;
 do(* SystemEnv## −> objectPool.strucGet
 (# init::< (#
 do (failure,
 'Program:descriptor must be a subpattern of systemEnv')
 −> stop
 #)#) −> theSystemEnv[]; *)
 objectPool.get
 (# type::systemEnvType;
 init::
 (#
 do (failure,'Illegal use of systemenv. You may have precisely one systemenv instance!')
 −>stop;
 #)
 #)−>theSystemEnv[];
 exit theSystemEnv[]
 #);
SystemEnv: SysHead
 (# <<SLOT systemlib:attributes >>;

semaphore:
 (* P and V are the usual semaphore operations.
 *
 * tryP returns true if the P operation succeded. Returns false
 * if a P would block the caller. In that case the P operation
 * is not performed.
 *
 * Count returns the number of components waiting for the
 * semaphore.
 *)
 (# P: @...;
 V: @...;
 tryP: @BooleanValue
 (# ... #);
 Count: @
 (# value: @Integer;
 ...
 exit value
 #);
 semRep: @...
 #);

fork: @
 (* S is put into the queue of scheduled systems. The calling
 * system keeps control, i.e. is not preempted.
 *)
 (# first: @...;
 second: @...;
 S: ^|SysHead
 enter S[]

 Basic Libraries − Reference Manual

13.1 Basicsystemenv Interface 86

 do first; second; none −> s[];
 #);

kill: @
 (* Kills S. If S is the active system, this is equivalent to a
 * direct suspend.
 *)
 (# S: ^|SysHead; doKill: @...
 enter S[]
 do doKill
 #);

pause: @
 (* Moves the calling system to the end of the queue of
 * scheduled systems.
 *)
 ...;

sleep: @
 (* Makes the calling system sleep at least time seconds. If
 * time is 0 or negative, sleep has no effect.
 *)
 (# time: @Real
 enter time
 ...
 #);

sleepUntil:
 (* Makes the calling system sleep until at least time. If
 * time is less than the current time, sleepUntil has no effect.
 *)
 (# time: @Real
 enter time
 ...
 #);

timeStamp:
 (# value: @Real;
 ...
 exit value
 #);

Monitor:
 (# (* idx+ *)

Condition:
 (# q: @Semaphore;
 Wait: ...;
 Signal: ...;
 #);

Wait:
 (# cond: @boolean
 do INNER;
 (if not cond then
 return; (* exit monitor *)
 pause;
 mutex.P; (* reentry of monitor *)
 restart Wait
 if)
 #);
 Entry: (# do mutex.P; INNER; return #);
 init:< (# do INNER; mutex.V; #);
 (* private:
 *
 * mutex controls entry to the Monitor. urgent delays a
 * signalling process.
 *
 * return is executed by processes leaving the monitor.
 * Reactivates possible processes waiting for entry: delayed
 * signalling processes (urgent) have first priority
 *)
 mutex: @semaphore;
 urgent: @semaphore;

 Basic Libraries − Reference Manual

13.1 Basicsystemenv Interface 87

 return: @...;
 #);

System: SysHead
 (# Port:
 (# mx,m: @Semaphore;
 entry: (# do m.P; INNER; mx.V #);
 accept: (# do m.V; mx.P #)
 #);

RestrictedPort:
 (# mx, am: @Semaphore;
 Delayed: @...;
 accept:<
 (# ... #);
 acceptable:<
 (# OK: @Boolean; s: ^|sysHead enter s[] do INNER exit OK #);
 restrictedEntry:
 (# ... #);
 #);

ObjectPort: RestrictedPort
 (# accept::< (# enter sender[] do none−>sender[] #);
 acceptable::< (# ... #);
 entry: RestrictedEntry (# do INNER #);
 sender: ^|sysHead
 #);

QualifiedPort: RestrictedPort
 (# accept::< (# enter sender## do none−>sender## #);
 acceptable::< (# ... #);
 entry: RestrictedEntry(# do INNER #);
 sender: ##sysHead
 #);

conc:
 (# start:
 (# s: ^|system
 enter s[]
 ...
 #);
 concPriv: @...
 do INNER; ...;
 #);

alt: conc (# do INNER #);
onKilled:<

 (* Called before this system terminates. *)
 (#
 do (if caller[]<>NONE then (* not the outermost system *)
 caller.dec; NONE −> caller[]
 if);
 INNER;
 #);

caller: ^protectedInt;
 do INNER;
 #);

deadLocked:< Exception
 (* This exception is called when all coroutines are blocked
 * and none are waiting for I/O.
 *)
 (#
 do INNER;
 (if not continue then
 'BasicSystemEnv: All coroutines blocked on semaphores.'
 −> msg.append;
 if);
 #);

conc:
 (# start:
 (# s: ^|system
 enter s[]

 Basic Libraries − Reference Manual

13.1 Basicsystemenv Interface 88

 ...
 #);

concPriv: @...
 do INNER; ...;
 #);

alt:
 (* Same as conc as a consequence of non−preemtive scheduling.
 *)
 conc (# #);

 (* ATTRIBUTES FOR EVENT−DRIVEN WINDOWING ENVIRONMENTS
 *
 * These attributes are only used when combining SystemEnv with
 * an event−driven windowing environment. This demands an
 * alternative implementation than the standard SystemEnv
 * implementation. See the file: xsystemenv.bet
 *)

windowEnvType:< Object;
theWindowEnv: ^windowEnvType;
setWindowEnv:< Object;

 (* PRIVATE
 *
 * Everything below is in principle private implementation stuff.
 *)

private: @ ...;
BasicScheduler: ...;
theActive: ^|sysHead;
ProtectedInt: IntegerObject

 (* Used in implementation of conc. *)
 (# mutex: @semaphore;

atZero: @semaphore;
dec:

 (#
 do mutex.P; (if (value−1−>value)=0 then atZero.V if); mutex.V;
 #);

waitForZero: (# do atZero.P #);
init: (# enter value do mutex.V #);

 #);
initBeforeScheduler:<

 (* Called before the scheduler is activated and before
 * setWindowEnv and the systemenv INNER is called.
 *)
 Object;
 do ...;
 INNER
 #);

cyclicElm:
 (# s: ^|SysHead;

next, prev: ^cyclicElm;
due: @Real

 (* due is used by sleepingQueue. If zero, this element is
 * currently not in a sleepingQueue.
 *)
 #);
cyclicQueue:
 (# onDelete:< Object;

onDel: @onDelete;
onInsert:< Object;
onIns: @onInsert;
first, freeList: ^cyclicElm;
insert: @

 (# s: ^|sysHead; new: ^cyclicElm;
 enter s[]
 ...

 Basic Libraries − Reference Manual

13.1 Basicsystemenv Interface 89

 exit new[]
 #);

append: @
 (# elm: ^cyclicElm;
 enter elm[]
 ...
 #);

prepend: @
 (# elm: ^cyclicElm;
 enter elm[]
 ...
 #);

insertBefore: @
 (# new, old: ^cyclicElm;
 enter (new[],old[])
 ...
 #);

getFirst: @
 (# elm: ^cyclicElm;
 ...
 exit elm[]
 #);

delete: @
 (# elm: ^cyclicElm;
 enter elm[]
 ...
 exit elm[]
 #);

remove: @
 (* elm should not be reused after remove. Use delete instead.
 *)
 (# elm: ^cyclicElm; s: ^|sysHead;
 enter elm[]
 ...
 exit s[]
 #);

scan:
 (# current: ^cyclicElm;
 ...
 #);

size: @Integer;
 #);
SysHead:
 (# shstatus: @Integer;

lc: ^Object; (* Last errorCatcher for distribution errors. *)
ce: ^cyclicElm; (* ce,q <> none => this(sysHead) is ce in q. *)
q: ^cyclicQueue;

 do INNER
 #);
(* SysHead.shstatus values: *)
SE_RUNNING: (# exit 1 #); (* Current system. *)
SE_WAITING: (# exit 2 #); (* Blocked on semaphore. *)
SE_READY: (# exit 3 #); (* Ready to run. *)
SE_SLEEPING: (# exit 4 #); (* Sleeping. *)
SE_KILLED: (# exit 5 #)

 Basic Libraries − Reference Manual

13.1 Basicsystemenv Interface 90

13.2 Betaenv Interface
LIB_DEF 'betaenv' '../lib';
BODY 'private/betaenvbody';
(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics, 1984−2003
 * All rights reserved.
 *
 * This fragment implements the very basic patterns, utilized by most
 * BETA programs
 *)
−− betaenv: descriptor −−
(# <<SLOT lib: attributes>>;
 (**)
 (* The simple patterns for simple values and variables. These
 * simple patterns are treated special by the compiler.
 *)

integer: (* 32 bit signed long *) (# #);
shortInt: (* 16 bit unsigned half *) (# #); (* do not use shortInt anymore,

 * use int16u instead.
 *)

char: (* 8 bit unsigned byte *) (# #);
boolean: (* 8 bit unsigned byte, values 0 or 1 *) (# #);
false: boolean (* 8 bit unsigned byte with value 0 *) (# #);
true: boolean (* 8 bit unsigned byte with value 1 *) (# #);
real: (* double precision floating point number *) (# #);
real32: (* single precision real for bytecode only *) (# #);
int8: (* 8 bit signed integer *) (# #);
int8u: (* 8 bit unsigned integer *) (# #);
int16: (* 16 bit signed integer *) (# #);
int16u: (* 16 bit unsigned integer.

 * int16u will eventually replace shortInt *) (# #);
int32: (* 32 bit signed integer

 * int32 is semantically identical to integer *) (# #);
int32u: (* 32 bit unsigned integer *) (# #);

 (* int64 and int64u are NOT yet implemented;
 * the compiler allows variables of these types,
 * but no operations, including assignment,
 * are implemented, so don't use them.
 *)

int64: (* 64 bit signed integer *) (# #);
int64u: (* 64 bit unsigned integer *) (# #);

 (* The pattern wchar is for experimenting with implementing
 * support for the UniCode character set. The name wchar
 * is preliminary. wchar is semantically identical to int16u.
 * Patterns wcharValue and wcharObject have also been introduced below
 *)

wchar: (# #); (* 16 bit unsigend integer *)

 (* The pattern COM is a general super pattern for
 * objects that may used with Microsoft COM
 *)

COM: (# #);

 (* Holder is general superpattern for holder−patterns used for
 * parameters in COM.
 *)

Holder: (# adr: @integer #);

object: (* General superpattern *)
 (# _struc:

13.2 Betaenv Interface 91

 (* Exit a pattern reference for THIS(Object).
 * Is now obsolete: the new form obj## is preferred
 * to the old form obj.struc
 *)
 (#
 exit this(object)##
 #);

_new:
 (* returns a new object, that is qualified exactly
 * as THIS(object)
 *)
 (# newObj: ^object; oType: ##object
 do this(object)##−>oType##; &oType[]−>newObj[]; INNER _new
 exit newObj[]
 #);

_state:
 (* Pattern _state is for experimental purpose only
 * and using it may give undefined results
 *)
 (# S: ##object
 enter S##
 ...
 #)
 do INNER object
 #);
 (* idx *)

 (* The following patterns define 'real' patterns corresponding to
 * the predefined simple patterns
 *)

integerValue: (# value: @integer do INNER integerValue exit value #);
integerObject: integerValue(# enter value do INNER integerObject #);

charValue: (# value: @char do INNER charValue exit value #);
charObject: charValue(# enter value do INNER charObject #);

wcharValue: (# value: @wchar do INNER wcharValue exit value #);
wcharObject: wcharValue(# enter value do INNER wcharObject #);

booleanValue: (# value: @boolean do INNER booleanValue exit value #);
trueValue: booleanValue(# do true−>value; INNER trueValue #);
falseValue: booleanValue(# do false−>value; INNER falseValue #);

booleanObject: booleanValue(# enter value do INNER booleanObject #);
trueObject: booleanObject(# do true−>value; INNER trueObject #);
falseObject: booleanObject(# do false−>value; INNER falseObject #);

realValue: (# value: @real do INNER realValue exit value #);
realObject: realValue(# enter value do INNER realObject #);

textValue: (# value: ^text do INNER textValue exit value[] #);
textObject: textValue(# enter value[] do INNER textObject #);

 (**** Integer limits ***)
MaxInt8: (# exit 0x7f #);
MinInt8: (# exit 0x80 #);
MaxInt8u: (# exit 0xff #);
MinInt8u: (# exit 0x00 #);

MaxInt16: (# exit 0x7fff #);
MinInt16: (# exit 0x8000 #);
MaxInt16u: (# exit 0xffff #);
MinInt16u: (# exit 0x0000 #);

MaxInt32: (# exit 0x7fffffff #);
MinInt32: (# exit 0x80000000 #);

 Basic Libraries − Reference Manual

13.2 Betaenv Interface 92

MaxInt32u: (# exit 0xffffffff #);
MinInt32u: (# exit 0x00000000 #);

MaxInt: (# exit MaxInt32 #);
MinInt: (# exit MinInt32 #);

MaxReal: (# exit 1.797693134862315E+308 #);
MinReal: (# exit 2.225073858507201E−308 #);

 (**** Implementation dependent constants *************************)
infReal: (* Returns the real value 'Infinity' *)

 realValue(# ... #);

 (***** Functional patterns ***************************************)
min: (* Returns the minimum of 2 integers *)

 (# a,b: @integer
 enter (a,b)
 do (if (a < b) then a−>b if)
 exit b
 #);

max: (* Returns the maximum of 2 integers *)
 (# a,b: @integer
 enter (a,b)
 do (if (a < b) then b−>a if)
 exit a
 #);

abs: (* Returns the absolute value of an integer *)
 (# n: @integer
 enter n
 do (if (n < 0) then −n−>n if)
 exit n
 #);

 (***** Simple standard input/output patterns *********************)
keyboard, screen: ^stream;
get:

 (# ch: @char;
getC: ^stream.get

 do (if getC[]=NONE then &keyboard.get[]−>getC[] if);
 getC−>ch;
 INNER;
 exit ch
 #);

put:
 (# ch: @char;

putC: ^stream.put
 enter ch
 do (if putC[] = NONE then &screen.put[] −> putC[] if);
 INNER;
 ch−>putC
 #);

newline:
 (# newL: ^stream.newline
 do (if newL[] = NONE then &screen.newline[] −> newL[] if);
 INNER;
 newL
 #);

putint:
 (# i: @integer;

putI: ^stream.putInt
 enter i
 do (if puti[] = NONE then &screen.putint[] −> putI[] if);
 INNER;
 i−>putI;
 #);

puttext:

 Basic Libraries − Reference Manual

13.2 Betaenv Interface 93

 (# t: ^text;
putT: ^stream.puttext;

 enter t[]
 do (if putT[] = NONE then &screen.puttext[] −> putT[] if);
 INNER;
 t[]−>putT;
 #);

putline:
 (# t: ^text;

putL: ^stream.putline;
 enter t[]
 do (if putL[] = NONE then &screen.putline[] −> putL[] if);
 INNER;
 t[]−>putL;
 #);

getint:
 (# i: @integer;

getI: ^stream.getInt;
 do (if getI[] = NONE then &keyboard.getint[] −> getI[] if);
 INNER;
 getI −> i;
 exit i
 #);

getNonBlank:
 (# ch: @char;

getNB: ^stream.getNonBlank;
 do (if getNB[] = NONE then &keyboard.getNonBlank[] −> getNB[] if);
 INNER;
 getNB −> ch;
 exit ch
 #);

scanAtom:
 (# scanA: ^stream.scanAtom;
 do (if scanA[] = NONE then &keyboard.scanAtom(# do INNER scanAtom #)[] −> scanA[] if);
 scanA;
 #);

getAtom:
 (# t: ^text;

getA: ^stream.getAtom;
 do (if getA[] = NONE then &keyboard.getAtom[] −> getA[] if);
 INNER;
 getA −> t[];
 exit t[]
 #);

getline:
 (# t: ^text;

getL: ^stream.getLine;
 do (if getL[] = NONE then &keyboard.getline[] −> getL[] if);
 INNER;
 getL −> t[];
 exit t[]
 #);

 (***** Control patterns **)
forTo: (* for 'inx' in [low:high] do INNER forTo *)

 (# low, high, inx: @integer;
 enter (low, high)
 ...
 #);

cycle: (* Executes INNER forever *)
 (# ... #);

loop:
 (# while:< booleanValue(# do true−>value; INNER while #);

until:< booleanValue;
whilecondition: @while;

 Basic Libraries − Reference Manual

13.2 Betaenv Interface 94

untilcondition: @until;
 ...
 #);

qua:
 (* Pattern replacing the BETA language construct QUA. To be
 * used as 't1[]−>qua(# as::< Tn #)−>t2[]'. The 'qua' pattern
 * checks, whether 't1' is qualified by 'Tn'. If not, the
 * 'quaError' exception is invoked. Otherwise, a reference
 * qualified by 'Tn', and referring to the same object as 't1[]'
 * is referring, is returned.
 *)
 (# as:< object; R: ^object; thisObj: ^as;

quaError:< exception
 (# do 'Qualification error'−>msg.append; INNER quaError #)
 enter R[]
 ...
 exit thisObj[]
 #);

 (***** Stream patterns ***)
stream:

 (# <<SLOT streamLib: attributes>>;
length:< integerValue (* returns the length of THIS(stream) *)

 (#
 do −1−>value; INNER length
 #);

position: (* current position of THIS(stream) *)
 (#
 enter setPos
 exit getPos
 #);

eos:< (* returns 'true' if THIS(stream) is at end−of−stream *)
 booleanValue;

reset: (* sets 'position' to zero *)
 (#
 do 0−>setPos
 exit THIS(stream)[]
 #);

peek:< (* looks at the next character of THIS(stream) *)
 (# ch: @char
 do INNER peek
 exit ch
 #);

get:< (* reads a character from THIS(stream) *)
 (# ch: @char
 do INNER get
 exit ch
 #);

getNonBlank:
 (* Reads first non−whitespace character from THIS(stream).
 * If called at end−of−stream the character 'ascii.fs' is
 * returned
 *)
 (# ch: @char;

skipblanks: @scanWhiteSpace;
testEOS: @EOS;
getCh: @get;

 ...
 exit ch
 #);

getint: integerValue
 (* Reads an integer: skips whitespace characters and
 * returns the following digits.
 *
 * See numberio.bet for more numerical output operations
 *)

 Basic Libraries − Reference Manual

13.2 Betaenv Interface 95

 (# syntaxError:< streamException
 (#
 ...
 #);

geti: @...
 do geti; INNER getint
 #);

getAtom:<
 (* Returns the next atom (i.e. sequence of non−white
 * characters − skipping leading blanks)
 *)
 (# txt: ^text;
 do &text[]−>txt[]; INNER getAtom;
 exit txt[]
 #);

getline:<
 (* Reads a sequence of characters until nl−character
 * appears and returns the characters read.
 *)
 (# txt: ^text;

missing_newline:< Object
 (* Called if last line of THIS(Stream) is
 * not terminated by a newline character.
 *);
 do &text[]−>txt[]; INNER getline
 exit txt[]
 #);

asInt:
 (* converts THIS(text) to an integer value, ignoring
 * leading and trailing whitespace. See numberio.bet for
 * more numerical conversion operations.
 *)
 (# i: @integer;

syntaxError:< streamException
 (#
 ...
 #);
 ...
 exit i
 #);

put:< (* writes a character to THIS(stream) *)
 (# ch: @char
 enter ch
 do INNER put
 exit THIS(stream)[]
 #);

newline: (* writes the nl−character *)
 (#
 do ascii.newline−>put
 exit THIS(stream)[]
 #);

putint:
 (* Writes an integer to THIS(stream); The format may be
 * controlled by the 'signed', 'blankSign', 'width',
 * 'adjustLeft' and 'zeroPadding' variable attributes.
 * 'width' is extended if it is too small. Examples:
 * '10−>putint' yields: '10'; '10*pi−>putint(# do 10−>width;
 * true−>adjustLeft #)' yields: '10 '; and '10−>putint(# do
 * 10−>width; true−>zeroPadding #)' yields: '0000000010'.
 *
 * See numberio.bet for more numerical output operations
 *)
 (# n: @integer;

signed: @boolean
 (* If integer is positive, a '+' will always be
 * displayed

 Basic Libraries − Reference Manual

13.2 Betaenv Interface 96

 *);
blankSign: @boolean

 (* If integer is positive, a ' ' space is displayed as
 * the sign. Ignored if 'signed=true'
 *);

width: @integer
 (* Minimum width *);

adjustLeft: @boolean
 (* Specifies if the number is to be aligned left or
 * right, if padding of spaces is necessary to fill up
 * the specified width.
 *);

zeroPadding: @boolean
 (* width is padded with leading zero instead of
 * spaces. Ignored if 'adjustLeft=true'
 *);

format:< (# do INNER format #);
puti: @...

 enter n
 do 1−>width; format; INNER putint; puti
 exit THIS(stream)[]
 #);

puttext:< (* Writes a text to THIS(stream). *)
 (# txt: ^text
 enter txt[]
 do (if txt[]<>NONE then INNER puttext if)
 exit THIS(stream)[]
 #);

putline:
 (* 'puttext' followed by 'newline' *)
 (# T: ^text; putT: @puttext; newL: @newline
 enter T[]
 do INNER putline; T[]−>putT; newL
 exit THIS(stream)[]
 #);

scan:
 (* Scan chars from current position in THIS(stream) while
 * '(ch−>while)=true'; perform INNER for each char being
 * scanned
 *)
 (# while:<
 (# ch: @char; value: @boolean
 enter ch
 do true−>value; INNER while
 exit value
 #);

ch: @char;
whilecondition: @while;
testEOS: @EOS;
getPeek: @peek;
getCh: @get;

 ...
 exit THIS(stream)[]
 #);

scanWhiteSpace: scan
 (* Scan whitespace characters *)
 (# while::< (# do ch−>ascii.isWhiteSpace−>value #)
 do INNER scanWhiteSpace
 exit THIS(stream)[]
 #);

scanAtom:
 (* Scan until first non−whitespace char. Scan the next
 * sequence of non−whitespace chars. Stop at first
 * whitespace char. For each non−whitespace char an INNER
 * is performed. Usage: 'scanAtom(# do ch−><destination> #)'
 *)

 Basic Libraries − Reference Manual

13.2 Betaenv Interface 97

 (# ch: @char;
 ...
 exit THIS(stream)[]
 #);

scanToNl:
 (* Scan all chars in current line including newline char *)
 (# ch: @char; getCh: @get;

missing_newline:< Object
 (* Called if last line of THIS(Stream) is
 * not terminated by a newline character.
 *);
 ...
 exit THIS(stream)[]
 #);

streamException: exception
 (# do INNER streamException #);

EOSerror:< streamException
 (* Raised from 'get' and 'peek' when attempted to read past
 * the end of the stream.
 *)
 (#
 do 'Attempt to read past end−of−stream'−>msg.putline;
 INNER EOSerror
 #);

otherError:< streamException
 (* Raised when some other kind of stream error apart from
 * the one mentioned above occurs.
 *);

getPos:< (* returns current position of THIS(Stream) *)
 integerValue;

setPos:< (* sets current position in THIS(stream) to 'p' *)
 (# p: @integer
 enter p
 do INNER setPos
 exit THIS(stream)[]
 #)
 #); (* pattern stream *)

 (***** Text pattern **)
text: stream

 (* A text is a sequence of characters. Let 'T: @text'. The
 * range of 'T' is '[1,T.length]'. A text can be initialized by
 * executing 'T.clear' or by assigning it another (initialized)
 * text. A text−constant has the form 'foo'. The 'text' pattern
 * is primarily intended for small texts but there is no upper
 * limit in the size. However, most of the operations becomes
 * less efficient with larger texts.
 *)
 (# <<SLOT textLib: attributes>>;

length::< (* Returns the length of THIS(text) *)
 (# do lgth−>value; INNER length #);

eos::<
 (# ... #);

empty:
 (# exit (lgth = 0) #);

clear: (* Sets the length and position of THIS(text) to zero *)
 (#
 do 0−>pos−>lgth
 exit THIS(text)[]
 #);

equal: booleanValue
 (* Tests if THIS(text) is equal to the entered text. If
 * 'NCS' is further bound to 'trueObject', the comparison
 * will be done Non Case Sensitive.
 *)
 (# txt: ^text;

 Basic Libraries − Reference Manual

13.2 Betaenv Interface 98

NCS:< booleanObject
 enter txt[]
 ...
 #);

equalNCS: equal
 (* As 'equal', except the the comparison will be done Non
 * Case Sensitive
 *)
 (# NCS:: trueObject #);

less: booleanValue
 (* Tests whether the entered text 'T1[1: length]' is less
 * than 'THIS(text)[1: T1.length]'. The lexicographical
 * ordering is used.
 *)
 (# T1: ^text
 enter T1[]
 ...
 #);

greater: booleanValue
 (* Tests whether the entered text 'T1[1: length]' is
 * greater than 'THIS(text)[1: T1.length]'. The
 * lexicographical ordering is used.
 *)
 (# T1: ^text
 enter T1[]
 ...
 #);

peek::<
 (* Returns the character at current position; does not
 * update 'position'
 *)
 (# ... #);

get::<
 (* Returns the character at current position; increments
 * 'position'
 *)
 (# ... #);

inxGet: charValue
 (* Returns the character at position 'i' *)
 (# i: @integer;

iget: @...
 enter i
 do iget
 #);

getAtom::<
 (* Returns the next atom (i.e. sequence of non−white
 * characters − skipping leading blanks)
 *)
 (# ... #);

getline::<
 (* Reads a sequence of characters until nl−character
 * appears and returns the characters read.
 *)
 (# ... #);

put::<
 (* writes the character 'ch' at current position in
 * THIS(text); increments 'position'
 *)
 (# ... #);

inxPut:
 (* Replaces the character at position 'i' *)
 (# ch: @char;

i: @integer;
iput: @...

 enter (ch,i)
 do iput

 Basic Libraries − Reference Manual

13.2 Betaenv Interface 99

 exit THIS(text)[]
 #);

puttext::<
 (# ... #);

append:
 (* Appends a text to THIS(text); does not change 'position'
 *)
 (# T1: ^text
 enter T1[]
 ...
 exit THIS(text)[]
 #);

prepend:
 (* Inserts the text in 'T1' in front of THIS(text); updates
 * current position to 'position+T1.length' if 'position>0'
 *)
 (# T1: ^text
 enter T1[]
 ...
 exit THIS(text)[]
 #);

insert:
 (* Inserts a text before the character at position 'inx'.
 * Note: inx<1 means inx=1; inx>length means inx=length+1.
 * If 'position>=inx' then 'position+T1.length−>position'.
 *)
 (# T1: ^text;

inx: @integer
 enter (T1[],inx)
 ...
 exit THIS(text)[]
 #);

delete:
 (* Deletes THIS(text)[i: j]; updates current position:
 * i<=position<j => i−1−>position
 * j<=position => position−(j−i+1)−>position
 *)
 (# i,j: @integer;

deleteT: @...
 enter (i,j)
 do deleteT
 exit THIS(text)[]
 #);

makeLC: (* Converts all characters to lower case *)
 (# ...
 exit THIS(text)[]
 #);

makeUC:
 (* Converts all characters to upper case *)
 (# ...
 exit THIS(text)[]
 #);

sub:
 (* Returns a copy of THIS(text)[i:j]. If 'i<1', 'i' is
 * adjusted to 1. If 'j>length', 'j' is adjusted to
 * 'length'. If (after adjustment) 'i>j', an empty text is
 * returned.
 *)
 (# i,j: @integer; T1: ^text;

subI: @...
 enter (i,j)
 do subI
 exit T1[]
 #);

copy:
 (# T1: ^text;

 Basic Libraries − Reference Manual

13.2 Betaenv Interface 100

copyI: @...
 do copyI
 exit T1[]
 #);

scanAll:
 (* Scans all the elements in THIS(text). For 'ch' in '[1:
 * THIS(text).length]' do INNER
 *)
 (# ch: @char
 do (for i: lgth repeat T[i]−>ch; INNER scanAll for)
 exit THIS(text)[]
 #);

find:
 (* find all occurrences of the character 'ch' in
 * THIS(text), executing INNER for each occurrence found,
 * beginning at 'THIS(text).position'. 'inx' will contain
 * the position of each 'ch' in THIS(text). If 'NCS' is
 * further bound to 'trueObject', the comparison will be
 * done Non Case Sensitive. If 'from' is further bound, the
 * search will begin at position 'from'.
 *)
 (# ch: @char;

inx: @integer;
NCS:< booleanObject;
from:< integerObject(# do pos−>value; INNER from #)

 enter ch
 ...
 exit THIS(text)[]
 #);

findAll: find
 (* As 'find', except that the entire text will be searched.
 * Replaces 'findCh' in previous versions of betaenv (v1.4
 * and earlier)
 *)
 (# from:: (# do 0−>value #)
 do INNER findAll
 #);

findText:
 (* find all occurrences of the 'txt' in THIS(text),
 * executing INNER for each occurrence found, beginning at
 * 'THIS(text).position'. 'inx' will contain the position
 * of the first character of each occurrence found
 * THIS(text). If 'NCS' is further bound to 'trueObject',
 * the comparison will be done Non Case Sensitive. If
 * 'from' is further bound, the search will begin at
 * position 'from'.
 *)
 (# txt: ^text;

inx: @integer;
NCS:< booleanObject;
from:< integerObject(# do pos−>value; INNER from #)

 enter txt[]
 ...
 exit THIS(text)[]
 #);

findTextAll: findText
 (* As 'findText', except that the entire text will be
 * searched
 *)
 (# from:: (# do 0−>value #)
 do INNER findTextAll
 #);

extend:
 (* Extend THIS(text) with 'L' (undefined) chars. Notice
 * that it is only the representation of the THIS(text),
 * that is extended, the 'length' and 'position' are not

 Basic Libraries − Reference Manual

13.2 Betaenv Interface 101

 * changed.
 *)
 (# L: @integer
 enter L do L−>T.extend
 exit THIS(text)[]
 #);

indexError:< streamException
 (* Raised from 'Check' when the index goes outside the
 * range of the text. Message: "Index error in text!".
 *)
 (# inx: @integer
 enter inx
 ...
 #);

EOSerror::<
 (* Raised from 'get' and 'peek' when the end of the stream is
 * passed.
 *)
 (# ... #);

otherError::<
 (* Raised when an error other than the Index−/EOSerror
 * occurs.
 *)
 (# ... #);

setPos::<
 (# ... #);

getPos::<
 (# do pos−>value; INNER getPos #);
 (* Private attributes: !!OBS!! The 3 attributes 'T', 'lgth'
 * and 'pos' declared below MUST be the first data items
 * declared in 'stream' and 'text' since their addresses are
 * hardcoded into the compiler.
 *)

T: [16] @char;
lgth,pos: (* 16 is default size *) @integer;
setT: (# enter T do T.range−>lgth−>pos #)

 enter setT
 exit T[1: lgth]
 #) (* Pattern text *);

 (***** ASCII character constants and attributes ******************)
ascii: @

 (# <<SLOT asciiLib: attributes>>;
nul: (# exit 0 #);
soh: (# exit 1 #);
stx: (# exit 2 #);
etx: (# exit 3 #);
eot: (# exit 4 #);
enq: (# exit 5 #);
ack: (# exit 6 #);
bel: (# exit 7 #);
bs: (# exit 8 #);
ht: (# exit 9 #);
nl: (# exit 10 #);
vt: (# exit 11 #);
np: (# exit 12 #);
cr: (# exit 13 #);
so: (# exit 14 #);
si: (# exit 15 #);
dle: (# exit 16 #);
dc1: (# exit 17 #);
dc2: (# exit 18 #);
dc3: (# exit 19 #);
dc4: (# exit 20 #);
nak: (# exit 21 #);
syn: (# exit 22 #);

 Basic Libraries − Reference Manual

13.2 Betaenv Interface 102

etb: (# exit 23 #);
can: (# exit 24 #);
em: (# exit 25 #);
sub: (# exit 26 #);
esc: (# exit 27 #);
fs: (# exit 28 #);
gs: (# exit 29 #);
rs: (# exit 30 #);
us: (# exit 31 #);
sp: (# exit 32 #);
capA: (# exit 65 #);
smalla: (# exit 97 #);
del: (# exit 127 #);
newline: @char; (* either 'lf' or 'cr' *)

init: ...;
upCase: @charObject

 (# ... #);
lowCase: @charObject

 (# ... #);
testChar: booleanValue

 (# ch: @char
 enter ch
 do INNER testchar
 #);

isUpper: @testChar
 (# ... #);

isLower: @testChar
 (# ... #);

isDigit: @testChar
 (# ... #);

isLetter: @testChar
 (# ... #);

isSpace: @testChar
 (* True if 'ch' in {sp,cr,nl,np,ht,vt} *)
 (# ... #);

isWhiteSpace: @testChar
 (* True if 'ch' is a whitespace char *)
 (# ... #);

private: @...
 #);
 (***** Exception Patterns **)

stop:
 (* Terminates program execution:
 * termCode=normal : normal termination;
 * termCode=failure : abnormal termination;
 * termCode=failureTrace : abnormal termination with trace of
 * run−time stack on dump−file;
 * termCode=dumpStack : Trace of run−time stack on console
 * without termination.
 *
 * 'T' will be printed on the screen.
 *)
 (# termCode: @integer; T: ^text
 enter (termCode,T[])
 ...
 #);

normal: (# exit 0 #);
failure: (# exit −1 #);
failureTrace: (# exit −2 #);
dumpStack: (# exit −3 #);

 (***** Object Pool ***)
objectPool: @

 (# <<SLOT objectPoolLib: attributes>>;
get:

 Basic Libraries − Reference Manual

13.2 Betaenv Interface 103

 (# type:< object;
 obj: ^type;
 exact:< booleanValue;
 init:< object(* Called if an object was created *)
 ...
 exit obj[]
 #);

strucGet:
 (# type: ##object;
 obj: ^object;
 exact:< booleanValue;
 init:< object(* Called if an object was created *);
 enter type##
 ...
 exit obj[]
 #);

scan:
 (* Scan through all objects in 'objectPool', (at least)
 * qualified by 'type'.
 *)
 (# type:< object;
 current: ^type;
 exact:< booleanValue;
 ...
 #);

strucScan:
 (* Scan through all objects in 'objectPool', (at least)
 * qualified by 'type'
 *)
 (# type: ##object;
 current: ^object;
 exact:< booleanValue
 enter type##
 ...
 #);

put:
 (* Puts a given object into 'objectPool'. If an object with
 * (at least) the qualification of the given object is
 * already present in 'objectPool', the exception
 * 'alreadyThere' is raised.
 *)
 (# obj: ^object;
 exact:< booleanValue;
 alreadyThere:< exception;
 putObj: @...
 enter obj[]
 do putObj
 #);

private: @...;
 #);

 (***** Command line arguments ************************************)
argumentHandlerType:

 (#
noOfArguments:<

 (* Return the number of arguments on command line.
 * The number includes the program name.
 *)
 integervalue;

getArgByNumber:<
 (* Returns argument number argNo.
 * Number 1 is the program name,
 * number 2 is the first program argument, etc.
 *)
 (# argNo: @integer; theArg: ^text;

 Basic Libraries − Reference Manual

13.2 Betaenv Interface 104

 enter argNo
 do INNER
 exit theArg[]
 #);
 #);

rawArgumentHandler: argumentHandlerType
 (#

noOfArguments::
 (# ... #);

getArgByNumber::
 (# ... #);
 #);

expandWildcardsArgumentHandler: argumentHandlerType
 (# private: @...;

noOfArguments::
 (# ... #);

getArgByNumber::
 (# ... #);
 #);

argumentHandler: ^argumentHandlerType;

 (* Backwards compatible interface *)
noOfArguments: integervalue(# do argumentHandler.noOfArguments −> value #);
arguments:

 (# argNo: @integer; theArg: ^text;
 enter argNo
 do argNo −> argumentHandler.getArgByNumber −> theArg[]
 exit theArg[]
 #);

 (* Explicit array − currently only supported by bytecode implementations *)
ArgVector: [0]^text;

 (**)
 (* External language interface: See file 'external.bet' for further
 * patterns.
 *)

External:
 (* Is only meaningful with interface to externals *)
 (# callC,callPascal,pascal,pascalTrap,callStd,
 cExternalEntry,pascalExternalEntry,stdExternalEntry: @text
 #);

cStruct:
 (* Super−pattern for describing structures which can be given
 * 'by refererence' (using the usual [] notation) to an external
 * function (e.g. a C function described as a specialization
 * of the above External pattern). See file external.bet for
 * supported operations on cStruct.
 *)
 (# <<SLOT cStructLib: attributes>>;
 (* 'R' is the bytestream containing THIS(cStruct).
 * MUST be declared as the first attribute
 *);

R: [(byteSize−1) div 4 + 1] @integer;
byteSize:<

 (* Number of bytes in THIS(cStruct) *)
 IntegerObject;

BoundsExceeded:< Exception
 (* Raised if indexing outside range of R *)
 (# inx: @integer;
 enter inx
 ...
 #);

 Basic Libraries − Reference Manual

13.2 Betaenv Interface 105

chk: @(# inx: @integer enter inx ... #);
 #);

data:
 (* The 'data' pattern may be used for definining simple data
 * objects. Data−objects have no 'type' information. They can
 * thus NOT be allocated dynamically in the BETA heap. They do
 * not have the overhead of extra attributes used for virtual
 * dispatch and garbage collection. One main use of data−objects
 * is as interface to external data such as 'cstruct'. For
 * details see the manuals
 *)
 (# #);

 (* Basic types used for bytecode platforms *)
ExternalClass:

 (# classname: @text;
 do INNER;
 #);

class:
 (# (*classname: @text;*) #);

proc:
 (# procname: @text; #);

static_proc: (# procname: @text #);
cons: (# procname: @text #);
static_cons: (# procname: @text #);

Structure:
 (# (* representing a descriptor sctrurure/ptn variable *)#);

doGC: (* will force a garbage collection to happen *)
 (# ... #);

machine_type:
 (* Exits a reference to a copy of a text indicating the machine
 * type in lowercase, e.g. 'sun4s', 'linux', 'nti'.
 *)
 (# T: @Text;
 ...
 exit T.copy
 #);

program: (* descriptor executed by this environment *)
 ...;

theProgram: ^|program;
theScheduler: ^|object

 (* Scheduler installed by 'basicSystemEnv' (if used in program) *);
 (**)
 (* The following patterns are only used by the compiler and should
 * NOT be used for other purposes.
 *)

repetition:
 (# range: (* Returns the range of THIS(repetition) *)
 (# n: @integer
 exit n
 #);

new:
 (* Allocates a new repetition of 'n' elements. The previous
 * elements in THIS(repetition) become inaccessible
 * hereafter
 *)
 (# n: @integer
 enter n
 #);

extend:
 (* Extends THIS(repetition) by 'n' elements. The existing
 * elements are retained. The new elements are allocated
 * after the existing elements (i.e. with index from the

 Basic Libraries − Reference Manual

13.2 Betaenv Interface 106

 * 'range+1')
 *)
 (# n: @integer
 enter n
 #)
 #);

state: (# #); (* Pattern STATE is for experimental purpose only
 * and using it may give undefined results
 *)

errorName: (# #);

exception:
 (# <<SLOT exceptionLib: attributes>>;

msg:
 (* append text to this 'msg' variable to specify
 * the exception error message for
 * this(exception)
 *)
 @text;

continue: @boolean
 (* the value of this variable determines the
 * control−flow behaviour of this(exception):
 * true: continue execution after exception
 * false: terminate execution by calling
 * 'stop'; default
 *);

error:
 (* used to define local exception conditions
 * which can be handled separately. All error's
 * that are not handled separately will be
 * handled by this(exception)
 *)
 (# <<SLOT errorExceptionLib: attributes>>
 do false−>continue;
 INNER;
 '**** Error processing\n'−>msg.prepend;
 (if not continue then this(exception) if)
 #);

_notify: error
 (* used to define local notification conditions
 * which can be handled separately. All
 * 'notify's that are not handled separately
 * will be handled by this(exception)
 *)
 (# <<SLOT notifyExceptionLib: attributes>>
 do true−>continue; INNER
 #);

propagate:<
 (* if further bound to trueObject, this(exception) allows
 * propagation (i.e. this(exception will _not_ terminate)
 *)
 (* This is to make exception backward compatible *)
 booleanValue;

termCode: @integer;
 (* Arg. To pattern 'stop'; initial failureTrace *)

 ...
 #);

 (* Notification is used to make the new exceptions backward compatible *)
notification: exception

 (# do true−>continue; INNER notification #);

unknown: exception
 (# <<SLOT unknownExceptionLib: attributes>>;

original: ^object;

 Basic Libraries − Reference Manual

13.2 Betaenv Interface 107

 do INNER
 #);

try:
 (# <<SLOT tryExceptionLib: attributes>>;

handler:<
 (* invoked automatically bu the try block in the search for a
 * when clause
 *)
 (# <<SLOT tryHandlerExceptionLib: attributes>>;
 when:
 (# <<SLOT tryHandlerWhenExceptionLib: attributes>>;
 current: ^type;
 type:< object;
 predicate:< booleanValue;
 continue:
 (# ... #);
 retry:
 (# ... #);
 propagate:
 (# ... #);
 abort:
 (# ... #);
 do ...
 #);
 current: ^object; status: @(*private*)integer;
 private: @...
 enter current[]
 do ...
 exit status
 #);

finally:< (# do INNER; #);
name:< (# n: ^text do INNER exit n[] #);
private: @...

 ...
 #);

throw:
 (# <<SLOT throwExceptionLib: attributes>>;

current: ^object;
private: @...

 enter current[]
 ...
 #);

init: ...;

betaenvPrivate: @...;
 (**)

do (#
 ...
 #)
#)

 Basic Libraries − Reference Manual

13.2 Betaenv Interface 108

13.3 Binfile Interface
ORIGIN '~beta/basiclib/file';
LIB_DEF 'binfile' '../lib';
BODY 'private/binfilebody';

(* binfile:
 * These fragments declare attributes for direct reading/writing
 * of various data sizes to a file. The data is written out exactly
 * as is:
 * 64 −> aBinFile.putLong
 * will write the number 0x00000020 to aBinFile, whereas
 * 64 −> aBinFile.putInt
 * will write the two characters '6' (ascii 54) and '4' (ascii 52)
 * to the file.
 *
 * The operations putBytes and getBytes allow an arbitrary
 * sequence of bytes to be written/read to/from a file.
 * E.g.
 * buffer: [1000]@char;
 * putB: @aFile.putBytes;
 * do ...
 * (@@buffer[1],500) −> putB;
 * This will write the first 500 characters from the buffer
 * repetition to the file. NOTICE, that you must have a static
 * instance of putBytes/getBytes when using them, since they require
 * an address argument. If dynamic instances are used, a garbage−
 * collection may be triggered, and the address argument would be
 * illegal.
 *
 * These operations are declared in FileLib, e.g. they become
 * usable for any file, by just including this fragment file.
 * However, on some platforms, the "binary" virtual of File
 * MUST be further bound to TrueObject for these operations
 * to work. The binfile pattern below adds this further binding.
 *
 * You should remember this further binding if you are using
 * these operations on a file, that is not a binfile.
 *
 * Exceptions:
 * If any of the put−operations fail, they raise the WriteError
 * file−exception. If any of the get−operations fail, they raise
 * the ReadError file−exception.
 *)

−− LIB: attributes −−

binfile: file
 (# <<SLOT BinFileLib: attributes>>;

binary :: trueobject
 #);

−− FileLib: attributes −−
putdouble:
 (* Write binary representation of i (8 bytes) to file *)
 (# i: @real;
 enter i
 ...
 #);
putlong:
 (* Write binary representation of i (4 bytes) to file *)
 (# i: @integer;
 enter i
 ...

13.3 Binfile Interface 109

 #);
putshort:
 (* Write binary representation of i (2 bytes) to file *)
 (# i: @int16;
 enter i
 ...
 #);
putbyte:
 (* Write binary representation of i (1 byte) to file *)
 (# i: @char;
 enter i
 ...
 #);
getDouble:
 (* Read binary representation of i (8 bytes) from file *)
 (# i: @real;
 ...
 exit i
 #);
getLong:
 (* Read binary representation of i (4 bytes) from file *)
 (# i: @integer;
 ...
 exit i
 #);
getShort:
 (* Read binary representation of i (2 bytes) from file *)
 (# i: @int16;
 ...
 exit i
 #);
getByte:
 (* Read binary representation of i (1 byte) from file *)
 (# i: @char;
 ...
 exit i
 #);

putCharRep:
 (* Write num chars from R[1]..R[num] to file *)
 (# R: [0] @char;

num: @integer;
 enter (R[], num)
 ...
 #);
getCharRep:
 (* Read num chars from file into a new repetition.
 * 'extra' can be used to preallocated that number of
 * chars at the end og the repetition during the same
 * operation.
 *)
 (# R: [0] @char;

num, extra: @integer;
 enter (num, extra)
 ...
 exit R[]
 #);

(* Put and get of repetitions of SIGNED elements
 * using repetition references
 *)
putInt8Rep:
 (* Write num int8 from R[1]..R[num] to file *)
 (# R: [0] @int8;

num: @integer;
 enter (R[], num)

 Basic Libraries − Reference Manual

13.3 Binfile Interface 110

 ...
 #);
getInt8Rep:
 (* Read num int8 from file into a new repetition.
 * 'extra' can be used to preallocated that number of
 * int8 at the end og the repetition during the same
 * operation.
 *)
 (# R: [0] @int8;

num, extra: @integer;
 enter (num, extra)
 ...
 exit R[]
 #);
putInt16Rep:
 (* Write num int16s from R[1]..R[num] to file *)
 (# R: [0] @int16;

num: @integer;
 enter (R[], num)
 ...
 #);
getInt16Rep:
 (* Read num int16s from file into a new repetition.
 * 'extra' can be used to preallocated that number of
 * int16s at the end og the repetition during the same
 * operation.
 *)
 (# R: [0] @int16;

num, extra: @integer;
 enter (num, extra)
 ...
 exit R[]
 #);
putInt32Rep:
 (* Write num int32s from R[1]..R[num] to file *)
 (# R: [0] @int32;

num: @integer;
 enter (R[], num)
 ...
 #);
getInt32Rep:
 (* Read num int32s from file into a new repetition.
 * 'extra' can be used to preallocated that number of
 * int32s at the end og the repetition during the same
 * operation.
 *)
 (# R: [0] @int32;

num, extra: @integer;
 enter (num, extra)
 ...
 exit R[]
 #);

(* Put and get of repetitions of UNSIGNED elements
 * using repetition references
 *)
putInt8uRep:
 (* Write num int8u from R[1]..R[num] to file *)
 (# R: [0] @int8u;

num: @integer;
 enter (R[], num)
 ...
 #);
getInt8uRep:
 (* Read num int8u from file into a new repetition.
 * 'extra' can be used to preallocated that number of

 Basic Libraries − Reference Manual

13.3 Binfile Interface 111

 * int8 at the end og the repetition during the same
 * operation.
 *)
 (# R: [0] @int8u;

num, extra: @integer;
 enter (num, extra)
 ...
 exit R[]
 #);
putInt16uRep:
 (* Write num int16u from R[1]..R[num] to file *)
 (# R: [0] @int16u;

num: @integer;
 enter (R[], num)
 ...
 #);
getInt16uRep:
 (* Read num int16u from file into a new repetition.
 * 'extra' can be used to preallocated that number of
 * int16s at the end og the repetition during the same
 * operation.
 *)
 (# R: [0] @int16u;

num, extra: @integer;
 enter (num, extra)
 ...
 exit R[]
 #);
putInt32uRep:
 (* Write num int32u from R[1]..R[num] to file *)
 (# R: [0] @int32u;

num: @integer;
 enter (R[], num)
 ...
 #);
getInt32uRep:
 (* Read num int32u from file into a new repetition.
 * 'extra' can be used to preallocated that number of
 * int32s at the end og the repetition during the same
 * operation.
 *)
 (# R: [0] @int32u;

num, extra: @integer;
 enter (num, extra)
 ...
 exit R[]
 #);

(* Unsafe operations retained for backward compatibility *)

putBytes:
 (* Write num bytes to file from memory
 * starting at address addr.
 *)
 (# addr, num: @integer;
 enter (addr, num)
 ...
 #);
getBytes:
 (* Read in num bytes from file to memory
 * starting at address addr.
 *)
 (# addr, num: @integer;
 enter (addr, num)
 ...
 #)

 Basic Libraries − Reference Manual

13.3 Binfile Interface 112

 Basic Libraries − Reference Manual

13.3 Binfile Interface 113

13.4 Directory Interface
ORIGIN 'file';
LIB_DEF 'directory' '../lib';
BODY 'private/directorybody';
(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics, 1984−96
 * All rights reserved.
 *
 *)
−−−− LIB: attributes −−−−
directory:
 (* Generalization of disk folder/directory. Describes the list
 * aspects of directories and contains a DiskEntry item describing
 * the other properties of a directory.
 *)
 (#
 <<SLOT DirectoryLib: attributes>>;

EntryDesc:< DiskEntry;
entry: @EntryDesc

 (* The item holding most characterizing attributes of
 * THIS(directory)
 *);

name: @
 (* convenient interface to entry.path *)
 (# read:
 (* Reads a directory name from the Keyboard *)
 (# do ... #);
 enter entry.path
 exit entry.path
 #);

 (* Directory exceptions *)

DirException: Exception
 (* General directory exception *)
 (# do ...; INNER #);

DirEntryException: DirException
 (* Error for an entry in the directory. Message:
 * "Operation failed on entry".
 *)
 (# entry: ^text enter entry[] ... #);

NoSuchException: DirEntryException
 (* Raised on attempt to delete a file or directory that did
 * not exist in THIS(directory). Message: "Attempt to delete a
 * nonexisting entry."
 *)
 (# do ...; INNER #);

EntryExistException: DirEntryException
 (* Raised on attempt to create a file or directory that
 * already existed in THIS(directory). Message: "Directory
 * entry already exist"
 *)
 (# do ...; INNER #);

DirScanException: DirException
 (* Raised if a scan of THIS(directory) has failed. Message:
 * "Scan of directory failed.", and an indication of why it
 * failed.
 *)
 (# do ...; INNER #);

DirSearchException: DirException
 (* Raised if a find in THIS(directory) has failed. Message:

13.4 Directory Interface 114

 * "Search of directory failed.", and an indication of why it
 * failed.
 *)
 (# do ...; INNER #);

NotFoundException: DirException
 (* Raised if findEntry.select is used in findEntry.notFound,
 * or in other situations that findEntry.found[]=NONE. Message:
 * "Attempt to use 'select' in 'findEntry' when the candidate
 * was not found."
 *)
 (# do ...; INNER #);

 (* Manipulations of THIS(directory) *)

touch: entry.touch
 (* If the disk entry does not exist, an empty directory will
 * be created.
 *)
 (# touchD: @...;
 do touchD
 #);

delete:
 (* Delete THIS(directory) *)
 (# nosuch:< NoSuchException
 (* Raised if there was no disk entry corresponding to
 * THIS(Directory)
 *);
 error:< entry.DiskEntryException
 (* Raised if other errors occurred *);
 deleteD: @...;
 do deleteD
 #);

createFile:
 (* Create a file named 'name' in THIS(Directory) *)
 (# name: ^text;
 newEntry: ^EntryDesc;
 exists:< EntryExistException
 (* Raised if en entry of that name already existed *);
 error:< DirEntryException
 (* Raised if other errors occurred *);
 enter name[]
 ...
 exit newEntry[]
 #);

deleteFile:
 (* Delete a file named 'name' in THIS(Directory) *)
 (# name: ^text;
 nosuch:< NoSuchException
 (* Raised if there was no disk entry in THIS(Directory)
 * named 'name'
 *);
 error:<DirEntryException
 (* Raised if other errors occured *)
 enter name[]
 ...
 #);

createDir:
 (* Create a directory named 'name' in THIS(Directory) *)
 (# name: ^text;
 newEntry: ^EntryDesc;
 exists:< EntryExistException
 (* Raised if en entry of that name already existed *);
 error:< DirEntryException
 (* Raised if other errors occurred *);
 enter name[]
 ...

 Basic Libraries − Reference Manual

13.4 Directory Interface 115

 exit newEntry[]
 #);

deleteDir:
 (* Delete a directory named 'name' in THIS(Directory) *)
 (# name: ^text;
 nosuch:< NoSuchException
 (* Raised if there was no disk entry in THIS(Directory)
 * named 'name'
 *);
 error:< DirEntryException
 (* Raised if other errors occured *)
 enter name[]
 ...
 #);

noOfEntries: IntegerValue
 (* exit the number of entries in THIS(directory) *)
 (# error:<DirException;
 ...
 #);

empty: BooleanValue
 (* TRUE iff THIS(directory) is empty. Note that this does not
 * always imply NoOfEntries=0
 *)
 (# error:<DirException;
 ...
 #);

findEntry:
 (* Calls INNER if entry was found in THIS(directory), and
 * otherwise calls notFound
 *)
 (# <<SLOT DirFindLib: attributes>>;

candidate: ^text;
 (* The name of the entry to search for *)

foundDesc:< DiskEntry;
 (* Qualification of "found" *)

found: ^foundDesc;
 (* Reference to entry, if found. Notice that 'found.path'
 * is relative to THIS(directory). The full path may be
 * obtained by 'foundFullPath' Also 'foundFullPath −>
 * found.path' may be needed before is queried for modtime
 * etc., if THIS(Directory) is not the current working
 * directory.
 *)

foundFile:< File;
 (* Qualification of file generated in
 * select.whenfile.thefile
 *)

foundDir:< Directory;
 (* Qualification of directory generated in
 * select.whendir.thedir
 *)

foundFullPath: (* Fullpath of "found" *)
 (# p: ^text do ... exit p[] #);

notfound:< (* Called if the entry was not found *)
 (# do INNER #);

select:
 (* Used to distinguish between the various entries that
 * may be found
 *)
 (# error:< found.DiskEntryException;

whenFile:<
 (* Called when the entry found is a file *)
 (# thefile:
 (* Generate an instance of foundFile
 * corresponding to the entry found. Notice that

 Basic Libraries − Reference Manual

13.4 Directory Interface 116

 * 'found' and 'f.entry' are two distinct
 * objects; 'f.entry' has a full path, 'found'
 * may or may not have a path relative to
 * THIS(Directory).
 *)
 (# f: ^foundFile
 do ...
 exit f[]
 #);
 do INNER
 #);

whenDir:<
 (* Called when the entry found is a directory *)
 (# theDir:
 (* Generate an instance of foundDir
 * corresponding to the entry found. Notice that
 * 'found' and 'd.entry' are two distinct
 * objects; 'd.entry' has a full path, 'found'
 * may or may not have a path relative to
 * THIS(Directory).
 *)
 (# d: ^foundDir
 do ...
 exit d[]
 #);
 do INNER
 #);

whenOther:<
 (* Called when the entry found is neither a file nor
 * a directory
 *)
 (# do INNER #);

selectImpl:< (* private *)
 (# selectedInInner: @boolean
 do ...;
 INNER; ...;
 #)
 do selectImpl;
 #); (* select *)

error:< DirSearchException
 (* Raised if the search fails *);
 enter candidate[]
 do ...;
 #); (* findEntry *)

scanEntries:
 (* Calls INNER for each entry in THIS(directory) *)
 (# <<SLOT DirScanLib: attributes>>;

longest: @integer;
 (* The length of the longest entry−name in THIS(directory)
 *)

foundDesc:< DiskEntry;
 (* Qualification of "found" *)

found: ^foundDesc;
 (* Reference to entry, if found. Notice that 'found.path'
 * is relative to THIS(directory). The full path may be
 * obtained by 'foundFullPath' Also 'foundFullPath −>
 * found.path' may be needed before is queried for modtime
 * etc., if THIS(Directory) is not the current working
 * directory.
 *)

foundFile:< File;
 (* Qualification of file generated in
 * select.whenfile.thefile
 *)

foundDir:< Directory;
 (* Qualification of directory generated in

 Basic Libraries − Reference Manual

13.4 Directory Interface 117

 * select.whendir.thedir
 *)

foundFullPath: (* Fullpath of "found" *)
 (# p: ^text do ... exit p[] #);

select:
 (* Used to distinguish between the various entries that
 * may be found
 *)
 (# error:< found.DiskEntryException;

whenFile:<
 (* Called when the entry found is a file *)
 (# thefile:
 (* Generate an instance of foundFile
 * corresponding to the entry found. Notice that
 * 'found' and 'f.entry' are two distinct
 * objects; 'f.entry' has a full path, 'found'
 * may or may not have a path relative to
 * THIS(Directory).
 *)
 (# f: ^foundFile
 do ...
 exit f[]
 #);
 do INNER
 #);

whenDir:<
 (* Called when the entry found is a directory *)
 (# theDir:
 (* Generate an instance of foundDir
 * corresponding to the entry found. Notice that
 * 'found' and 'd.entry' are two distinct
 * objects; 'd.entry' has a full path, 'found'
 * may or may not have a path relative to
 * THIS(Directory).
 *)
 (# d: ^foundDir
 do ...
 exit d[]
 #);
 do INNER
 #);

whenOther:<
 (* Called when the entry found is neither a file nor
 * a directory
 *)
 (# do INNER #);

selectImpl:< (* private *)
 (# selectedInInner: @boolean
 do ...;
 INNER; ...;
 #)
 do selectImpl;
 #); (* select *)

error:< DirScanException
 (* Raised if the scan fails *);
 (* idx− *) (* idx− *)
 do ...;
 #); (* scanEntries *)

private: @...;
 #)

 Basic Libraries − Reference Manual

13.4 Directory Interface 118

13.5 External Interface
ORIGIN 'betaenv';
LIB_DEF 'external' '../lib';
−− CStructLib: attributes−−−
(*
 * COPYRIGHT
 * Copyright Mjolner Informatics, 1992−99
 * All rights reserved.
 *
 ****** Patterns for external interface *****
 *
 * In CStructLib, the operations on a cStruct are defined.
 * The pattern ExternalRecord is an interface to e.g. CStruct objects
 * allocated from C or other external languages.
 *)
GetByte:
 (# byteno: @int32;
 enter byteno−>chk
 exit byteNo −> R.%getByte
 #);
PutByte:
 (# val: @int8;
 byteno: @int32;
 enter(byteno,val)
 do byteno−>chk;
 (val,byteno) −>R.%putbyte
 #);
GetShort:
 (# byteno: @int32;
 enter byteno−>chk
 exit (byteno div 2) −>R.%getShort
 #);
PutShort:
 (# val: @int16;
 byteno: @int32;
 enter (byteno,val)
 do byteno−>chk;
 (val,byteno div 2) −> R.%putShort
 #);
GetSignedShort:
 (# byteno: @int32;
 enter byteno−>chk
 exit (byteno div 2) −>R.%getSignedShort
 #);
GetLong:
 (# byteno: @int32;
 enter byteno−>chk
 exit (byteno div 4) −>R.%getLong
 #);
PutLong:
 (# val: @int32;
 byteno: @int32
 enter (byteno,val)
 do byteno−>chk;
 (val,byteno div 4) −>R.%putLong
 #);

CStructField:
 (* Used for declaring CStruct fields *)
 (# pos:< IntegerObject;
 p: @pos;
 #);

13.5 External Interface 119

Byte: CStructField
 (# set: @(# val: @int8 enter val do (val,p) −>R.%putByte #);
 enter set
 exit p −>R.%getByte
 #);
Short: CStructField
 (# set: @(# val: @int16 enter val do (val,p div 2) −>R.%putShort #);
 enter set
 exit (p div 2) −>R.%getShort
 #);
SignedShort: CStructField
 (# set: @(# val: @int16 enter val do (val,p div 2) −>R.%putShort #);
 enter set
 exit (p div 2) −>R.%getSignedShort
 #);
Long: CStructField
 (# set: @(# val: @int32 enter val do (val,p div 4) −>R.%putLong #);
 enter set
 exit (p div 4)−>R.%getLong
 #);

−−LIB: attributes−−

(* Various C functions *)
malloc: External
 (# size: @integer;

ptr: @integer;
 enter size
 exit ptr
 #);
memcpy: external
 (# s1, s2, nbytes: @int32;
 enter (s1, s2, nbytes)
 exit s1
 #);

ExternalRecord:
 (* Super−pattern for describing externally allocated record−structures.
 * A call to e.g. a C routine may often return a pointer to a CStruct.
 * By assigning such a pointer to the ptr−field of an externalRecord
 * object it is possible to interface to such an external CStruct.
 * Notice the difference to the CStruct pattern, which is typically used
 * to *provide* external code with a structure allocated in BETA.
 *)
 (# ptr: @int32; (* pointer to the externally allocated record *)

GetByte:
 (# byteno: @int32;
 enter byteno
 exit %getByteAt (ptr+byteno)
 #);

PutByte:
 (# val: @int8;
 byteno: @int32;
 enter(byteno,val)
 do val %putByteAt (ptr+byteno)
 #);

GetShort:
 (# byteno: @int32;
 enter byteno
 exit %getShortAt (ptr+byteno)
 #);

GetSignedShort:
 (# byteno: @int32;
 enter byteno
 exit %getSignedShortAt (ptr+byteno)

 Basic Libraries − Reference Manual

13.5 External Interface 120

 #);
PutShort:

 (# val: @int16;
 byteno: @int32;
 enter(byteno,val)
 do val %putShortAt (ptr+byteno)
 #);

GetLong:
 (# byteno: @int32
 enter byteno
 exit %getLongAt (ptr+byteno)
 #);

PutLong:
 (# val: @int32;
 byteno: @int32
 enter(byteno,val)
 do val %putLongAt (ptr+byteno)
 #);

ExternalRecordField:
 (* For declaring fields in ExternalRecords *)
 (# pos:< IntegerValue;
 p: @pos;
 #);

Byte: ExternalRecordField
 (# set: @(# val: @int8 enter val do val %putByteAt (ptr+p) #)
 enter set
 exit %getByteAt (ptr+p)
 #);

Short: ExternalRecordField
 (# set: @(# val: @int16 enter val do val %putShortAt (ptr+p) #);
 enter set
 exit %getShortAt (ptr+p)
 #);

SignedShort: ExternalRecordField
 (# set: @(# val: @int16 enter val do val %putShortAt (ptr+p) #);
 enter set
 exit %getSignedShortAt (ptr+p)
 #);

Long: ExternalRecordField
 (# val: @int32;
 set: @(# enter val do val %putLongAt (ptr+p) #);
 enter set
 exit %getLongAt (ptr+p)
 #);

DoubleLong: ExternalRecordField
 (# v1,v2: @int32;
 set: @(# enter(v1,v2)
 do v1 %putLongAt (ptr+p);
 v2 %putLongAt (ptr+p+4);
 #);
 enter set
 exit (%getLongAt (ptr+p), %getLongAt (ptr+p+4))
 #);
 enter ptr
 do INNER
 exit ptr
 #) (* ExternalRecord *);

ExternalRepetition: ExternalRecord
 (# elementSize:<integerValue;

init:
 (# enter new #);

new:
 (# newrange: @int32
 enter newrange

 Basic Libraries − Reference Manual

13.5 External Interface 121

 do free;
 newrange−>range;
 #);

extend:
 (# extra: @int32;
 newptr, newrange, size: @int32;

 enter extra
 do (* is realloc available on all platforms? *)
 elementSize−>size;
 (*'EXTEND: elementsize: ' −> puttext;
 * elementsize −> putint; ', range.r: ' −> puttext;
 * range.r−>putint; newline;
 *)
 range.r+extra −> newrange;
 size*newrange −> malloc −> newptr;
 (if newPtr=0 then
 'ExternalRepetition.extend: malloc failed' −> screen.putline;
 else
 (if ptr<>0 then
 (* 'memcpy ' −> puttext; size*range.r−>putint;
 * ' bytes.'−>putline;
 *)
 (newptr, ptr, size*range.r) −> memcpy;
 free;
 if);
 newptr−>ptr;
 newrange −> range.r;
 if);
 #);

range: @
 (# r: @int32;
 enter (# r2: @int32 enter r2 do r2−r−>extend #)
 exit r
 #);

free:
 (# cfree: External
 (# ptr: @integer
 enter ptr
 do 'free' −> callC;
 #);
 do (if ptr<>0 then ptr −> cfree; 0−>ptr; if);
 0 −> range.r;
 #);

inxPut:
 (* Only for elementSize in {1,2,4}. Inx zero based. No index check *)
 (# elm, inx: @int32;
 enter (elm, inx)
 do (if elementSize
 // 1 then elm %putByteAt (ptr+inx)
 // 2 then elm %putShortAt (ptr+2*inx)
 // 4 then elm %putLongAt (ptr+4*inx)
 else
 'ExternalRepetition.inxPut: Not for elementSize='−>screen.puttext;
 elementSize−>screen.putInt;
 screen.newline;
 if);
 #);

inxCopy:
 (* Copy elementSize bytes from "element" (which is assumed to
 * point to data of the same type as the external repetition elements)
 * to index number inx (counting from zero) in the external
 * repetition.
 * Can be used for any elementSize.
 *)
 (# inx: @int32;

 Basic Libraries − Reference Manual

13.5 External Interface 122

 element: ^data;
 n: @integer;
 enter (inx, element[])
 do elementSize −> n;
 (ptr+inx*n, %getLongAt(@@element), n) −> memcpy
 #);

inxGet:
 (* Only for elementSize in {1,2,4}. Inx zero based. No index check *)
 (# elm, inx: @int32;
 enter (inx)
 do (if elementSize
 // 1 then (%getByteAt (ptr+inx)) −> elm
 // 2 then (%getShortAt (ptr+2*inx)) −> elm;
 // 4 then (%getLongAt (ptr+4*inx)) −> elm;
 else
 'ExternalRepetition.inxGet: Not for elementSize='−>screen.puttext;
 elementSize−>screen.putInt;
 screen.newline;
 if);
 exit elm
 #);
 #);

makeCBF: External
 (* Call this external to install a callback and get
 * an int32 pointer to it.
 *)
 (# pat: ##External;

cb: @int32;
 enter pat##
 exit cb
 #);

freeCBF: External
 (* Call this external with an int32 pointer to an installed
 * callback (obtained via MakeCBF) when it is certain that the
 * callback will NOT be called again.
 * This will free BETA heap space associated with the callback.
 *)
 (# cbf: @int32;
 enter cbf
 #)

 Basic Libraries − Reference Manual

13.5 External Interface 123

13.6 File Interface
ORIGIN 'betaenv';
LIB_DEF 'file' '../lib';
BODY 'private/filebody';
(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics, 1984−96
 * All rights reserved.
 *
 * The BETA interface to disk−entries in a hierarchic file system
 * files, and directories is organised as follows:
 *
 * DiskEntry: Machine independent interface to entries like
 * file and directories on the disk
 * (file 'file.bet').
 * UnixEntry: Unix specific specialization of DiskEntry
 * (file 'unixfile.bet').
 * MacEntry: Macintosh specific specialization of DiskEntry
 * (file 'macfile.bet').
 *
 * File: Machine independent interface to disk files. Is
 * a specialization of Stream (file 'betaenv.bet'),
 * and contains a DiskEntry (file 'file.bet').
 * UnixFile: Unix specific specialization of File, which
 * contains a UnixEntry (file 'unixfile.bet').
 * MacFile: Macintosh specific specialization of File,
 * which contains a MacEntry (file 'macfile.bet').
 *
 * Directory: Machine independent interface to
 * directories/folders. Contains a DiskEntry
 * (file 'directory.bet').
 * UnixDirectory: Unix specific specialization of Directory,
 * which contains a UnixEntry
 * (file 'unixdirectory.bet').
 * MacDirectory: Macintosh specific specialization of Directory,
 * which contains a MacEntry
 * (file 'macdirectory.bet').
 *)
−− LIB: Attributes −−
DiskEntry:
 (* Pattern describing various attributes of disk−entries like files
 * and directories in a hierarchic file system
 *)
 (# <<SLOT DiskEntryLib: attributes>>;

 (* DISK ENTRY EXCEPTIONS *)
DiskEntryException: Exception

 (* General exception for disk entries *)
 (# ... #);

DiskEntryExistsException: DiskEntryException
 (* Raised if a test for disk entry existence has
 * failed. Message: "Test for disk entry existence failed.",
 * and an indication of why it failed.
 *)
 (# ... #);

DiskEntryModtimeException: DiskEntryException
 (* Raised if examination or setting of disk entry modtime has failed.
 * Message: "Examination/setting of disk entry modtime failed.", and an
 * indication of why it failed.
 *)
 (# ... #);

DiskEntryTouchException: DiskEntryException
 (* Raised if touch of a disk entry has failed. Message: "Touch

13.6 File Interface 124

 * of disk entry failed.", and an indication of why it failed.
 *)
 (# ... #);

DiskEntryRenameException: DiskEntryException
 (* Raised if rename of a disk entry has failed. Message:
 * "Rename of disk entry failed.", and an indication of why it
 * failed.
 *)
 (# ... #);

pathDesc:<
 (* A virtual descriptor for the full or relative path of
 * THIS(DiskEntry)
 *)
 (# head:<
 (* The head of the path, e.g. head of '/usr/smith/foo.bet'
 * is '/usr/smith'
 *)
 (# h: ^text
 ...
 exit h[]
 #);

nameDesc:<
 (* The actual name−part of the path, e.g. name part of
 * '/usr/smith/foo.bet' is 'foo.bet'
 *)
 (# prefix:<
 (* exits the prefix part of the name, i.e. what is
 * before the last dot (.), e.g 'foo' for 'foo.bet'
 *)
 (# p: ^text
 ...
 exit p[]
 #);

extension:<
 (* exits the extension part of the name, i.e. what
 * is after the last dot (.), e.g. 'bet' for 'foo.bet'
 *)
 (# e: ^text
 ...
 exit e[]
 #);

suffix:<
 (* like extension, but includes the dot (.),
 * e.g. '.bet' for 'foo.bet'
 *)
 (# s: ^text
 ...
 exit s[]
 #);

get:<
 (* exits "prefix.extension" *)
 (# n: ^text
 ...
 exit n[]
 #);
 exit get
 #);

name: @nameDesc;
set:<

 (* set the entire path *)
 (# p: ^text
 enter p[]
 ...
 #);

get:<
 (* get the entire path *)

 Basic Libraries − Reference Manual

13.6 File Interface 125

 (# p: ^text
 ...
 exit p[]
 #);
 enter set
 do INNER
 exit get
 #);

path: @pathDesc;
exists: BooleanValue

 (* exits a boolean indicating whether the disk entry
 * corresponding to the current setting of path actually exists
 *)
 (# error:< DiskEntryExistsException;
 ...
 #);

modtime:
 (* exits an integer denoting the (system) time of the last
 * modification
 *)
 (# time: @integer;
 error:<DiskEntryModTimeException;
 enter (# enter time ... #)
 exit (# ... exit time #)
 #);

touch:
 (* Updates the modtime to the current (system) time. *)
 (# error:< DiskEntryTouchException;
 ...
 #);

rename:
 (* Rename the disk entry. Changes the physical disk entry and
 * updates THIS(DiskEntry).path
 *)
 (# newpath: ^text;
 error:< DiskEntryRenameException;
 enter newpath[]
 ...
 #);

size: IntegerValue
 (* exits the size of THIS(DiskEntry) in bytes *)
 (# error:<DiskEntryException;
 ...
 #);

readable: BooleanValue
 (* exits true if THIS(DiskEntry) can be read *)
 (# error:< DiskEntryException;
 ...
 #);

writeable: BooleanValue
 (* exits true if THIS(DiskEntry) can be written to *)
 (# error:< DiskEntryException;
 checkwrite: @...;
 do checkwrite
 #);

isFile: BooleanValue
 (* True if THIS(DiskEntry) is a regular file *)
 (# error:< DiskEntryException;
 ...
 #);

isDirectory: BooleanValue
 (* True if THIS(DiskEntry) is a directory *)
 (# error:<DiskEntryException;
 ...
 #);

 Basic Libraries − Reference Manual

13.6 File Interface 126

private: @...
 do INNER
 #); (* DiskEntry *)

(* Constants used for specifying mode to File.SetPos. *)
FromBeginning:
 (* Seeks relative to the beginning of a file. Corresponds to
 * absolute positions in File[0:File.Length−1].
 *)
 (# exit 0 #);
FromCurrent:
 (* Seeks relative to the current position. *)
 (# exit 1 #);
FromEnd:
 (* Seeks relative to the end of a file. *)
 (# exit 2 #);

File: Stream
 (* Generalization of disk file. Describes the stream aspects of
 * files, providing buffered I/O, and contains a DiskEntry object
 * describing the other properties of a file.
 *)
 (# <<SLOT FileLib: attributes>>;

EntryDesc:< DiskEntry;
Entry: @EntryDesc

 (* The item holding most characterizing attributes of
 * THIS(file)
 *);

name: @
 (* convenient interface to entry.path *)
 (# read:
 (* Reads the file name from the Keyboard *)
 (# ... #);
 enter entry.path
 exit entry.path
 #);

Put::< (# ... #);
Get::< (# ... #);
Peek::< (# ... #);
PutText::< (# ... #);
GetAtom::< (# ... #);
GetLine::< (# ... #);
Length::<

 (* Returns the byte size of THIS(file). Notice that this is
 * not always the same as entry.size, which is how many bytes
 * THIS(file) occupies on the disk
 *)
 (# ... #);

GetPos::<
 (* Returns current position of THIS(File) *)
 (# ... #);

SetPos::<
 (* Sets position on THIS(file). Enters position and mode. See
 * above for definition of constants to use as mode,
 * FromBeginning, FromCurrent, FromEnd. Returns the absolute
 * position seeked to [0..File.Length−1].
 *)
 (# mode,newpos: @integer
 enter mode
 ...
 exit newpos
 #);

Eos::< (# ... #);
touch: entry.touch

 (* If the disk entry does not exist, an empty file will be

 Basic Libraries − Reference Manual

13.6 File Interface 127

 * created.
 *)
 (# ... #);

delete:
 (* Deletes THIS(File) *)
 (# ... #);

binary:< booleanvalue
 (* THIS(File) is binary if value is true. On some systems a
 * non−binary (e.g. textual) file may behave differently, than
 * a binary file. A binary file is always treated as raw bytes,
 * whereas a non−binary file may treat some characters, notably
 * the end−of−line marker, differently.
 *);

openRead:
 (* opens THIS(File) for reading, starting at the beginning *)
 (# ... #);

openWrite:
 (* Opens THIS(File) for writing. truncates the contents of
 * the disk file if it already existed, and creates the disk
 * file if not
 *)
 (# ... #);

openAppend:
 (* Opens THIS(File) for writing at the end. Setpos cannot be
 * used to write other places than at the end. Creates the
 * file if it did not exist.
 *)
 (# ... #);

openReadWrite:
 (* Opens THIS(File) for both reading and writing. The file is
 * positioned at the beginning. To switch between writing and
 * reading an intermediate setpos may be necessary.
 *)
 (# ... #);

openReadAppend:
 (* Like OpenReadWrite, but positiones at the end *)
 (# ... #);

flush:
 (* Flushes THIS(File). Affects only files opened for output *)
 (# ... #);

close: (* Closes THIS(File) *)
 (# ... #);

 (* FILE EXCEPTIONS *)

FileException: StreamException
 (* General File exception *)
 (# m: ^text
 enter m[]
 ...
 #);

OpenException: FileException
 (* Raised if opening of a file has failed. Message: "Cannot
 * open file".
 *)
 (# ... #);

AccessError:< OpenException
 (* Raised on attempt to access a file with insufficient
 * privilegies. Message: "Insufficient access privilegies".
 *)
 (# ... #);

WriteError:< FileException
 (* Raised from Put, PutText and Flush on attempt to write on a
 * non−existing block. Message: "Write block error".
 *)
 (# ... #);

 Basic Libraries − Reference Manual

13.6 File Interface 128

ReadError:< FileException
 (* Raised from Get and Peek on attempt to read a non−existing
 * block. Message: "Read block error".
 *)
 (# ... #);

EOSerror::<
 (# ... #);

NoSuchFileError:< FileException
 (* Raised on attempt to open a non−existing file. Message:
 * "File does not exist"
 *)
 (# ... #);

FileExistsError:< FileException
 (* Raised when creating an already existing file. Message:
 * "File does already exist".
 *)
 (# ... #);

NoSpaceError:< FileException
 (* Raised when the file system is full. Message: "File system
 * is full".
 *)
 (# ... #);

OtherError:< FileException
 (* Raised when errors other than the above occur *)
 (# ... #);

private: @ ...;
 #)

 Basic Libraries − Reference Manual

13.6 File Interface 129

13.7 Filerep Interface
ORIGIN 'betaenv';
LIB_DEF 'filerep' '../lib';
BODY 'private/filerepbody'
−−−lib:attributes−−−
FileRep:
 (* A pattern consisting of a repetition R which may be
 * saved/restored in one chunk from a file; When saving, the
 * elements R[1:top−1] are saved; After restoring top is R.range
 *)
 (# <<SLOT FileRepLib: attributes>>;

R: [1] @integer;
top: @integer;
Save:

 (# filename: ^text
 enter filename[]
 do ...
 #);

Restore:
 (# filename: ^text
 enter filename[]
 do ...
 #)
 #)

13.7 Filerep Interface 130

13.8 Formatio Interface
ORIGIN 'betaenv';
LIB_DEF 'formatio' '../lib';
BODY 'private/formatioBody'
(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics, 1984−96
 * All rights reserved.
 *
 *)
−−− streamLib: attributes −−−
getFormat: formatter
 (* getFormat accepts the following syntax for markers:
 *
 * %[width][.[precision]]{dioxXrRbBfeEgGcsn%}
 *
 * where width is a (unsigned) decimal number (or '*'), and
 * precision is a (unsigned) decimal number (or '*'),
 *
 * and where
 * [...] means that the enclodes is optional,
 * and { ... } means one if the enclosed characters.
 *
 * Width is only interpreted in conjunction with the 's' marker.
 * Precision is only interpreted in conjunction with the
 * 'r' and 'R' markers.
 *
 * For all but the 'c' marker, leading white space are skipped.
 *
 * The '%' marker means that a '%' is expected on the input stream.
 *
 * Actually, getFormat accepts the same syntax as putFormat (see
 * later):
 *
 * %{−+ }[[0]width][.[[0]precision]]{dioxXrRbBfeEgGcsn%}
 *
 * but only the above part of that syntax is actually interpreted by
 * getFormat. The reason for accepting the same syntax is to allow
 * a format string to be used both for getFormat and putFormat.
 *)
 (# <<SLOT getformatlib: attributes>>;

width:
 (* sets the default precision to be used in future '*' width
 * specifications
 *)
 (# w: @integer enter w ... #);

precision:
 (* sets the default precision to be used in future '*'
 * precision specifications
 *)
 (# p: @integer enter p ... #);

marker: scanForMarker
 (# formatEOS:: (# do mark−>missingMarker #)
 ...
 #);

d: marker (* read a decimal number *)
 (# mark:: (# do 'd'−>value #);
 value: @integer
 ...
 exit value
 #);

i: marker
 (* read a number, either decimal, octal or hexadecimal using C

13.8 Formatio Interface 131

 * conventions: 0nnn implies octal, 0xnnn implies hexadecimal,
 * decimal otherwise.
 *)
 (# mark:: (# do 'i'−>value #);
 value: @integer
 ...
 exit value
 #);

o: marker (* read an octal number *)
 (# mark:: (# do 'o'−>value #);
 value: @integer
 ...
 exit value
 #);

x: marker (* read a hexadecimal number *)
 (# mark:: (# do 'x'−>value #);
 value: @integer
 ...
 exit value
 #);

uX: marker (* read a hexadecimal number. Identical to 'x' *)
 (# mark:: (# do 'X'−>value #);
 value: @integer
 ...
 exit value
 #);

r: marker
 (* read a number in radix given by precision *)
 (# mark:: (# do 'r'−>value #);
 value: @integer
 ...
 exit value
 #);

uR: marker
 (* read a number in radix given by precision. Identical to
 * 'r'
 *)
 (# mark:: (# do 'R'−>value #);
 value: @integer
 ...
 exit value
 #);

b: marker
 (* read a number as based number (i.e. in the bbxnnn format) *)
 (# mark:: (# do 'b'−>value #);
 base, value: @integer
 ...
 exit (base,value)
 #);

uB: marker
 (* read a number as based number (i.e. in the bbxnnn format).
 * Identical to 'b'
 *)
 (# mark:: (# do 'B'−>value #);
 base, value: @integer
 ...
 exit (base,value)
 #);

f: marker (* read a real *)
 (# mark:: (# do 'f'−>value #);
 value: @real
 ...
 exit value
 #);

e: marker (* read a real. Identical to 'f' *)
 (# mark:: (# do 'e'−>value #);

 Basic Libraries − Reference Manual

13.8 Formatio Interface 132

 value: @real
 ...
 exit value
 #);

uE: marker (* read a real. Identical to 'f' *)
 (# mark:: (# do 'E'−>value #);
 value: @real
 ...
 exit value
 #);

g: marker (* read a real. Identical to 'f' *)
 (# mark:: (# do 'g'−>value #);
 value: @real
 ...
 exit value
 #);

uG: marker (* read a real. Identical to 'f' *)
 (# mark:: (# do 'G'−>value #);
 value: @real
 ...
 exit value
 #);

c: marker (* read a single character *)
 (# mark:: (# do 'c'−>value #);
 value: @char
 ...
 exit value
 #);

s: marker
 (* read a text atom (i.e. a sequence of non−white space
 * characters, terminated by a white space character − similar
 * to getAtom). If width is non−zero, at most width characters
 * are read. Otherwise, characters are read until next
 * whitespace character
 *)
 (# mark:: (# do 's'−>value #);
 value: ^text
 ...
 exit value[]
 #);

n: marker
 (* return the number of characters read until this point *)
 (# mark:: (# do 'n'−>value #);
 value: @integer
 ...
 exit value
 #);

match:: (* private *)
 (# ... #)
 do INNER getFormat
 #);

putFormat: formatter
 (* putFormat accepts the following syntax for markers:
 *
 * %{−+ }[[0]width][.[[0]precision]]{dioxXrRbBfeEgGcsnt%}
 *
 * where width is a (unsigned) decimal number (or '*'), and
 * precision is a (unsigned) decimal number (or '*') and where
 *
 * [...] means that the enclodes is optional,
 * and { ... } means one if the enclosed characters.
 *
 * '−' implies output leftjustified in field
 * '+' implies output numbers signed (always with leading '+' or
 * '−')

 Basic Libraries − Reference Manual

13.8 Formatio Interface 133

 * ' ' implies output numbers with blank sign (i.e. leading ' ' if
 * positive)
 * '0' in front of either width or precision implies zero padding
 * width specifies the minimun width of the output field.
 * precision is interpreted for various things in the 'rRbBfeEgG'
 * markers.
 *
 * The '%' marker means that a '%' is put on the output stream.
 *
 * The '%t' marker prints booleans, use it with tv.
 *)
 (# <<SLOT putformatlib: attributes>>;

width:
 (* sets the default precision to be used in future '*' width
 * specifications
 *)
 (# w: @integer enter w ... #);

precision:
 (* sets the default precision to be used in future '*'
 * precision specifications
 *)
 (# p: @integer enter p ... #);

marker: scanForMarker
 (# formatEOS:: (# do mark−>missingMarker #)
 ...
 #);

d: marker (* insert the integer *)
 (# mark:: (# do 'd'−>value #);
 value: @integer
 enter value
 ...
 #);

i: marker (* insert the integer. Identical to 'd' *)
 (# mark:: (# do 'i'−>value #);
 value: @integer
 enter value
 ...
 #);

y: marker (* insert the integer in binary *)
 (# mark:: (# do 'y'−>value #);
 value: @integer
 enter value
 ...
 #);

o: marker (* insert the integer in octal, at least 10 ciffers *)
 (# mark:: (# do 'o'−>value #);
 value: @integer
 enter value
 ...
 #);

x: marker (* insert the integer in hexadecimal, at least 8 ciffers *)
 (# mark:: (# do 'x'−>value #);
 value: @integer
 enter value
 ...
 #);

uX: marker
 (* insert the integer in hexadecimal, using uppercase letters
 *)
 (# mark:: (# do 'X'−>value #);
 value: @integer
 enter value
 ...
 #);

r: marker
 (* insert the integer in radix given by precision *)

 Basic Libraries − Reference Manual

13.8 Formatio Interface 134

 (# mark:: (# do 'r'−>value #);
 value: @integer
 enter value
 ...
 #);

uR: marker
 (* insert the integer in radix given by precision, using
 * uppercase letters if radix>10
 *)
 (# mark:: (# do 'R'−>value #);
 value: @integer
 enter value
 ...
 #);

b: marker
 (* insert the integer as based number (i.e. in the bbxnnn
 * format) with base given by precision
 *)
 (# mark:: (# do 'b'−>value #);
 value: @integer
 enter value
 ...
 #);

uB: marker
 (* insert the integer as based number (i.e. in the bbxnnn
 * format) with base given by precision, using uppercase
 * letters if base>10
 *)
 (# mark:: (# do 'B'−>value #);
 value: @integer
 enter value
 ...
 #);

f: marker (* insert the real in noexp style *)
 (# mark:: (# do 'f'−>value #);
 value: @real
 enter value
 ...
 #);

e: marker (* insert the real in exp style *)
 (# mark:: (# do 'e'−>value #);
 value: @real
 enter value
 ...
 #);

uE: marker (* insert the real in exp style and upcase 'E' *)
 (# mark:: (# do 'E'−>value #);
 value: @real
 enter value
 ...
 #);

g: marker (* insert the real in plain style *)
 (# mark:: (# do 'g'−>value #);
 value: @real
 enter value
 ...
 #);

uG: marker (* insert the real in plain style and upcase 'E' *)
 (# mark:: (# do 'G'−>value #);
 value: @real
 enter value
 ...
 #);

c: marker (* insert the char *)
 (# mark:: (# do 'c'−>value #);
 value: @char;

 Basic Libraries − Reference Manual

13.8 Formatio Interface 135

 putc: @(* Private *)...
 enter value
 do putc
 #);

s: marker (* insert the text *)
 (# mark:: (# do 's'−>value #);
 value: ^text;
 puts: @(* Private *)...
 enter value[]
 do puts
 #);

n: marker
 (* return the length of the result string until this point *)
 (# mark:: (# do 'n'−>value #);
 value: @integer
 ...
 exit value
 #);

trueText:<(# t:^text; do 'true'−>t[]; INNER exit t[] #);
falseText:<(# t:^text; do 'false'−>t[]; INNER exit t[] #);
tv: marker (* Truth−value, prints trueText of falseText *)

 (# mark:: (# do 't'−>value #);
 localTrueText:<(# t:^text; enter t[] do INNER exit t[] #);
 localFalseText:<(# t:^text; enter t[] do INNER exit t[] #);
 value:@boolean
 enter value
 ...
 #);

match:: (* private *)
 (# ... #)
 do INNER putFormat
 #);

formatter: (* superpattern for putFormat and getFormat *)
 (# illegalFormat:< exception
 (# mark: @char
 enter mark
 ...
 #);

missingMarker:< exception
 (# mark: @char
 enter mark
 ...
 #);

missingField:< exception
 (# ... #);

inputError:< exception
 (# chFound, chExpected: @char
 enter (chFound, chExpected)
 ...
 #);

scanForMarker: (* Private *)
 (# mark:< charValue;
 formatEOS:< exception;
 fieldWidth, precisionSpec: @integer;
 leftFlag, signedFlag, blankFlag,
 alternativeFlag, zeroFlag, longFlag: @boolean
 ...
 #);

match:< (* private *)
 (# ch: @char
 enter ch
 do INNER match
 #);

private: @...;
formatStr: ^text

 Basic Libraries − Reference Manual

13.8 Formatio Interface 136

 enter formatStr[]
 ...
 exit this(stream)[]
 #);

−−− lib: attributes −−−

getFormat: keyboard.getFormat(# do INNER getFormat #);

putFormat: screen.putFormat(# do INNER putFormat #)

 Basic Libraries − Reference Manual

13.8 Formatio Interface 137

13.9 Iget Interface
ORIGIN 'betaenv';
BODY 'private/igetbody';
(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics, 1984−96
 * All rights reserved.
 *
 *)
−−LIB: attributes−−
iget:
 (* Pattern to get a single character from the keyboard immediately
 * without having to type <RETURN> after the character.
 *)
 (# ch: @char;
 ...
 exit ch
 #)

13.9 Iget Interface 138

13.10 Math Interface
ORIGIN 'betaenv';
LIB_DEF 'math' '../lib';
(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics, 1984−96
 * All rights reserved.
 *
 * Math.bet: mathematical functions
 *
 * This library provides mathematical patterns: trigonometric,
 * hyperbolic, exponential and logarithmic, floating point
 * manipulation and miscellaneous constants.
 *)
−−− LIB: Attributes −−−

(* miscellaneous constants *)

e: (# Exit 2.7182818284590452354 #);
log2e: (# Exit 1.4426950408889634074 #);
log10e: (# Exit 0.43429448190325182765 #);
ln2: (# Exit 0.69314718055994530942 #);
ln10: (# Exit 2.30258509299404568402 #);
pi: (# Exit 3.14159265358979323846 #);
pihalf: (# Exit 1.57079632679489661923 #);
piforth: (# Exit 0.78539816339744830962 #);

(* trigonometric functions *)

acos: external
 (* returns the arccosine of x in radians, in the range 0 to pi. If
 * x is a NaN (Not−a−Number) or if the absolute value of x exceeds
 * 1.0, acos(x) returns a NaN. Invalid operation/DOMAIN error is
 * signaled if x is a NaN or if |x| > 1.0.
 *)
 (# x,res: @Real;
 enter x
 exit res
 #);
asin: external
 (* returns the arcsine of x in radians, in the range −pi/2 to pi/2.
 * If x is a NaN or if the absolute value of x exceeds 1.0, asin
 * returns a NaN. Invalid operation/DOMAIN error is signaled if x
 * is a NaN or if |x| > 1.0.
 *)
 (# x,res: @Real;
 enter x
 exit res
 #);
atan: external
 (* returns the arctangent of x, in the range of −pi/2 to pi/2
 * radians. If x = +−infinity, then atan(x) returns +−pi/2. If x
 * is +− 0, then atan returns x. If x is a NaN, then atan returns a
 * NaN. An invalid operation/DOMAIN error is signaled by atan only
 * if x is a NaN.
 *)
 (# x,res: @Real;
 enter x
 exit res
 #);
atan2: external
 (* returns the arctangent of y/x in radians, in the range −pi to
 * pi, using the signs of both arguments to determine the quadrant

13.10 Math Interface 139

 * of the return value.
 *
 * If x is a NaN or if y is a NaN or if both x and y are infinities,
 * atan2 returns a NaN. If both x and y are zero, atan2 returns
 * zero. Invalid operation/DOMAIN error is signaled by atan2 if
 * both x and y are infinite or if either x or y is a NaN.
 *)
 (# y,x,res: @Real;
 enter (y,x)
 exit res
 #);
cos: external
 (* computes the cosine of x, where x is expressed in radians.
 *
 * The cos function uses an argument reduction based on the
 * remainder function and pi. The cos function is periodic with
 * respect to pi, so its period differs slightly from its
 * mathematical counterpart and diverges from its counterpart when
 * the argument becomes very large.
 *
 * If x is infinite or a NaN, then cos returns a NaN and signals
 * invalid/DOMAIN error.
 *)
 (# x,res: @Real;
 enter x
 exit res
 #);
sin: external
 (* computes the sine of x, where x is expressed in radians.
 *
 * The sin function uses an argument reduction based on the
 * remainder function and pi. The sin function is periodic with
 * respect to pi, so its period differs slightly from its
 * mathematical counterpart and diverges from its counterpart when
 * the argument becomes very large.
 *
 * If x is infinite or a NaN, then sin returns a NaN and signals
 * invalid/DOMAIN error.
 *)
 (# x,res: @Real;
 enter x
 exit res
 #);
tan: external
 (* computes the tangent of x, where x is expressed in radians.
 *
 * The tan function uses an argument reduction based on the
 * remainder function and pi The tan function is periodic with
 * respect to pi, so its period differs slightly from its
 * mathematical counterpart and diverges from its counterpart when
 * the argument becomes very large.
 *)
 (# x,res: @Real;
 enter x
 exit res
 #);

(* hyperbolic functions *)

cosh: external
 (* returns the hyberbolic cosine of x.
 *
 * If x is a NaN, cosh returns a NaN.
 *)
 (# x,res: @Real;
 enter x

 Basic Libraries − Reference Manual

13.10 Math Interface 140

 exit res
 #);
sinh: external
 (* returns the hyberbolic sine of x.
 *
 * If x is a NaN, sinh returns a NaN.
 *)
 (# x,res: @Real;
 enter x
 exit res
 #);
tanh: external
 (* returns the hyberbolic tangent of x.
 *
 * If x is a NaN, tanh returns a NaN.
 *)
 (# x,res: @Real;
 enter x
 exit res
 #);

(* exponential and logarithmic functions *)

exp: external
 (* returns the base−e or natural exponential e^x.
 *
 * Special cases for exp:
 *
 * If x = +infinity, then exp returns +infinity and does not signal
 * an exception. If x = -infinity, then exp returns 0 and does not
 * signal an exception. If x is a NaN, then exp returns a NaN.
 *)
 (# x,res: @Real;
 enter x
 exit res
 #);
ldexp: external
 (* returns the quantity x * 2^exp. *)
 (# x,res: @Real;

exp: @Integer;
 enter (x,exp)
 exit res
 #);
log: external
 (* returns the base e or natural logarithm of its argument x.
 *
 * Special cases for log:
 *
 * If x is +infinity, then log returns +infinity and signals no
 * exceptions. If x is 0, then log returns −infinity and signals
 * divide−by−zero. If x < 0, then log returns a NaN and signals
 * invalid/DOMAIN error.
 *)
 (# x,res: @Real;
 enter x
 exit res
 #);
log10: external
 (* returns the base 10 logarithm of x.
 *
 * If x is a NaN or is negative, log10 returns a NaN. If x is
 * +infinity, log10(x) returns +infinity. If x is zero, log10
 * returns −infinity and signals divide by zero/SING error.
 *)
 (# x,res: @Real;
 enter x

 Basic Libraries − Reference Manual

13.10 Math Interface 141

 exit res
 #);

(* floating point manipulation *)

modf: external
 (* returns the fractional part of x and stores the integral part
 * indirectly in the location pointed to by ipPtr. Both the return
 * value and the value stored in ipPtr share the same sign as x.
 *
 * If x is infinite, modf returns a zero with the sign of x and sets
 * ipPtr to x. If x is a NaN, mod returns a NaN and sets ipPtr to
 * the same NaN.
 *)
 (# x,res: @Real;

ipPtr: @Integer;
 enter (x,ipPtr)
 exit res
 #);
pow: external
 (* returns x^y *)
 (# x,y,res: @Real;
 enter (x,y)
 exit res
 #);
sqrt: external
 (* computes the square root of x.
 *
 * Special cases for sqrt:
 *
 * If x is a NaN, sqrt returns a NaN and signals no exceptions. If
 * x is a NaN or if x < 0, sqrt returns a NaN and signals invalid
 * operation/DOMAIN error.
 *)
 (# x,res: @Real;
 enter x
 exit res
 #);
ceil: external
 (* returns the smallest integer value (in real format) not less
 * than x.
 *
 * If x is a NaN, ceil returns a NaN. If x is infinite, ceil
 * returns x. Invalid operation is signaled by ceil if x is a NaN.
 * If x is a non−integral finite value, ceil signals inexact
 *)
 (# x,res: @Real;
 enter x
 exit res
 #);
fmin: (* Returns the minimum of 2 reals *)
 (# a,b: @real
 enter (a,b)
 do (if (a < b) then a−>b if)
 exit b
 #);
fmax: (* Returns the maximum of 2 reals *)
 (# a,b: @real
 enter (a,b)
 do (if (a < b) then b−>a if)
 exit a
 #);
fabs: external
 (* returns |x|, the absolute value of x *)
 (# x,res: @Real;
 enter x

 Basic Libraries − Reference Manual

13.10 Math Interface 142

 exit res
 #);
floor: external
 (* largest integer value (in real format) not greater than x.
 *
 * If x is a NaN, floor returns a NaN. If x is infinite, floor
 * returns x. Invalid operation is signaled by floor if x is a NaN.
 * If x is a non−integral finite value, floor signals inexact.
 *)
 (# x,res: @Real;
 enter x
 exit res
 #);
fmod: external
 (* Whenever possible, the fmod pattern returns the number f with
 * the same sign as x, such that x = i*y + f for some integer i, and
 * |f| < |y|. If y is 0, fmod returns a NaN.
 *)
 (# x,y,f: @Real;
 enter (x,y)
 exit f
 #)

 Basic Libraries − Reference Manual

13.10 Math Interface 143

13.11 Mbs_version Interface
ORIGIN 'betaenv';
LIB_DEF 'mbs_version' '../lib';
(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics, 1984−2004
 * All rights reserved.
 *)
−− LIB: attributes −−
mbs_version:
 (* Defines the current version of the Mjolner BETA System
 * in various ways. Typical usage:
 *
 * (if (mbs_version).major >= 4 then
 * ...
 * if);
 *)
 (# major: (# exit 5 #);

minor: (# exit 4 #);
revision: (# exit 0 #);
release: (# exit 050400 #);
desc: (# exit '5.4' #);

 exit THIS(mbs_version)[]
 #)

13.11 Mbs_version Interface 144

13.12 Numberio Interface
ORIGIN 'betaenv';
LIB_DEF 'numberio' '../lib';
BODY 'private/numberioBody'
(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics, 1992−96
 * All rights reserved.
 *
 * This fragment implements the following stream operations:
 * getNumber * reads a number from THIS(stream).
 * * The number may be either an integer,
 * * a based number or a real number
 * getBased * reads a based number from THIS(stream)
 * getRadix * reads a based number from THIS(stream),
 * * without the 'bbx' part
 * getInteger * reads an integer number from THIS(stream)
 * getReal * reads a real number from THIS(stream)
 * putReal * appends a textual rep. of a real value to
 * * THIS(stream)
 * putBased * appends a textual rep. of a integer value in a
 * * particular to THIS(stream). The textual
 * * representation in in the given base
 * putRadix * as putBased, except that the 'bbx' part is
 * * not printed
 * getHex * similar to getRadix with radix 16, but more efficient.
 * putHex * similar to putBased with base 16, but more efficient.
 * getOctal * similar to getOctal with base 8, but more efficient.
 * putOctal * similar to putBased with base 8, but more efficient.
 * getBinary * similar to getRadix with radix 2, but more efficient.
 * putBinary * similar to putBased with base 2, but more efficient.
 * putByteHex * like putHex, except that it only prints one byte.
 * putByteBinary * like putBinary, except that it only prints one byte.
 *
 * asNumber * abstract pattern for the following asBased,
 * * asRadix, and asReal operations
 * asBased * returns the based number present in
 * * THIS(stream)
 * asRadix * returns the based number present in
 * * THIS(stream), without the 'bbx' part
 * asReal * returns the real number present in
 * * THIS(stream)
 *
 * The corresponding short−cuts for keyboard.getNumber, etc, and
 * screen.putReal, etc. are also included in this fragment.
 *
 * Since the asNumber operations does not make sence for keyboard,
 * no short−cuts are defined for these.
 *)
−−− StreamLib: attributes −−−
getNumber:
 (* getNumber reads a number from the current position of
 * this(stream).
 * The number is either an integer (in base 10), an integer with a
 * given base, or a real.
 * Integer examples: 10, 0, 123
 * A based integer has the form <base>X<number>. Examples are:
 * 2X101 base=2, number= 4*1 + 2*0 + 1*1 = 5
 * 8X12 base=8, number= 8*1 + 1*2 = 10
 * 16x2A1 base=16, number= 256*2 + 16*10 + 1*1 = 673
 * 0x2A1 base=16, i.e. base=0 is interpreted as base=16
 * Examples of reals are:
 * 3.14, 3.14E−8, 3E+8

13.12 Numberio Interface 145

 * The following grammar defines the exact syntax of the numbers:
 *
 * N ::= {D}+ Int 314
 * | {D}+ '.' {D}+ real 3.14
 * | {D}+ '.' {D}+ 'E' E real 3.14E8
 * real 3.14E+8
 * real 3.14E−8
 *
 * | {D}+ 'E' E real 3E8
 * real 3E+8
 * real 3E−8
 * | 'X' {D | L}+ based 2X0101
 * based 8x0845
 * based 16xAF12
 * D ::= {'0' | ... | '9' }
 * L ::= {'A' | ... | 'Z'}
 * E ::= {D}+
 * | {D}+ '+' {D}+
 * | {D}+ '−' {D}+
 *
 * All letters may be in lower or upper case.
 * After the call, the stream is positioned
 * after the first char not in the number.
 *)
 (# integerValue:<
 (* the number has the form
 * x
 * value contains the integer value
 *)
 integerValuePtn;

integerValuePtn:
 (# value: @integer enter value do INNER #);

basedValue:<
 (* the number has the form
 * bXy
 * base contains the base number
 * value contains the integer value (in base 10)
 *)
 basedValuePtn;

basedValuePtn:
 (# base,value: @integer enter (base,value) do INNER #);

realValue:<
 (* the number has the form
 * x.yEz
 * l is the number of leading zero's in y. i.e. in
 * 3.0017E−12, x=3, y=17,l=2 and z=−12
 * value contains the real value
 *)
 realValuePtn;

realValuePtn:
 (# x,y,l,z: @real; value: @real enter(x,y,l,z,value)
 do INNER #);

syntaxError:< streamException
 (# peekCh: @char
 enter peekCh
 do 'getNumber: Syntax error − looking at: "'−>msg.append;
 (if peekCh = ascii.nul then 'NUL'−>msg.puttext
 else peekCh−>msg.put if);
 '"'−>msg.put; INNER #);

baseError:< streamException
 (# base: @integer
 enter base
 do 'getNumber: Error in base − looking at: "'−>msg.append;
 base−>msg.putInt; '"'−>msg.put; INNER #);

valueError:< streamException
 (# peekCh: @char

 Basic Libraries − Reference Manual

13.12 Numberio Interface 146

 enter peekCh
 do 'getNumber: Illegal value type − looking at: "'−>msg.append;
 peekCh−>msg.put; '"'−>msg.put; INNER #);

overflow:< streamException
 (# value: @integer
 do 'getNumber: Overflow in integer− or based−value'−>msg.append;
 INNER
 exit value
 #);

underflow:< streamException
 (# value: @integer
 do 'getNumber: Underflow in integer− or based−value'−>msg.append;
 INNER
 exit value
 #);

EOSError:< streamException
 (#
 do 'getNumber: End of stream while reading number'−>msg.append;
 INNER
 #);

getn: @...
 do getn;
 INNER getNumber
 #);
getReal: getNumber
 (# r: @real;

realValue::< (# do value−>r #)
 do INNER getReal
 exit r
 #);
getBased: getNumber
 (# i, b: @integer;

basedValue::< (# do value−>i; base−>b #)
 do INNER getBased
 exit (b,i)
 #);
getInteger: getNumber
 (# i: @integer;

integerValue::< (# do value−>i #)
 do INNER getInteger
 exit i
 #);
getRadix:
 (* gets a number in the specified radix. GetRadix is similar to
 * getBased, except that is does NOT expect the 'bbx' prefix
 *)
 (# radix, value: @integer;

radixError:< streamException
 (# radix: @integer
 enter radix
 ...
 #);

getr: (* private *) @...
 enter radix
 do getr;
 INNER getRadix
 exit value
 #);

putBased:
 (* Takes a number and a base, and prints the number in that base.
 * If base is 0, base 16 is assumed, and the format "0xnnn" is used.
 * If base is negative, 1 or greater that 126, the baseError
 * exception is invoked.
 *
 * The format is default "bbxnnnn", where "bb" is the base (in

 Basic Libraries − Reference Manual

13.12 Numberio Interface 147

 * decimal), and "nnnn" is the number, printed in the base. "x"
 * separates the two parts. The format may be controlled by the
 * signed, blankSign, upcase, uppercase, width, adjustLeft,
 * zeroPadding, noBasePrefix, baseWidth and baseZeroPadding variable
 * attributes. If noBasePrefix is true, the "bbx" part is omitted.
 *)
 (# value, base: @integer;

baseError:< streamException
 (# base: @integer
 enter base
 do 'putBased: Illegal base: "'−>msg.append;
 base−>msg.putInt; '"'−>msg.put; INNER #);
 (* The format may be further controlled by the signed, blankSign,
 * width, adjustLeft and zeroPadding variable attributes.
 * width is extended if it is too small.
 *
 * Examples:
 * (10,10)−>putBased
 * yields: '10x10'
 * (2,5)−>putBased(# do 10−>width; true−>adjustLeft #);
 * yields: '2x101 '
 * (2,5)−>putBased(# do 10−>width; true−>zeroPadding #);
 * yields: '2x00000101'
 *)

signed:
 (* If the number is positive, a '+' will always be displayed
 *)
 @boolean;

blankSign:
 (* If the number is positive, a ' ' space is displayed as the
 * sign. Ignored if signed=true
 *)
 @boolean;

upcase: @boolean
 (* Specifies whether an upcase 'X' or a lowcase 'x' is the
 * be used in the 'bbx' part.
 *);

uppercase: @boolean
 (* Specifies whether uppercase letters or lowercase letters
 * are used in the 'nnnn' part (for base>9).
 *);

width: (* Minimum width *) @integer;
adjustLeft: @boolean

 (* Specifies if the number is to be aligned left or right,
 * if padding of spaces is necessary to fill up the specified
 * width.
 *);

zeroPadding:
 (* width is padded with leading zero instead of spaces.
 * Ignored if adjustLeft=true
 *)
 @boolean;

noBasePrefix: (* If true, the 'bbx' part is omitted *)
 @boolean;

baseWidth: (* minimun width for the 'bbx' part *)
 @integer;

baseZeroPadding:
 (* baseWidth is padded with leading zero instead of spaces *)
 @boolean;

format:< (# do INNER #);
putb: @...

 enter (base, value)
 do INNER putBased; putb
 #);
putReal:
 (* Append a real to THIS(stream). The format may be controlled by

 Basic Libraries − Reference Manual

13.12 Numberio Interface 148

 * the style, signed, blankSign, precision, upcase, width,
 * adjustLeft and zeroPadding variable attributes
 *)
 (# r: @real;

style: @integer
 (* Controls the style, and may be one of plain, exp and noexp
 * (noexp is the default)
 *);

noexp: (* The notation [−]mmm.dddddd is used *)
 (# exit 0 #);

exp: (* The notation [−]m.ddddddE[+|−]xx is used *)
 (# exit 1 #);

plain:
 (* In this style, precision is the total number of digits in
 * the printed real (not the number of digits in the fraction,
 * as in the other styles).
 *
 * The exp or noexp style is used, dependent on the value being
 * printed. Exp style is used only if the exponent is less
 * than −4 or greater than or equal to the precision; otherwise
 * the noexp notation is used. Trailing zeros are not printed
 * as part of the fractional part and a decimal point is
 * printed if not followed by a digit
 *)
 (# exit 2 #);

signed: (* If real is positive, a '+' will always be displayed *)
 @boolean;

blankSign:
 (* If real is positive, a ' ' space is displayed as the sign.
 * Ignored if signed=true
 *)
 @boolean;

precision: @integer
 (* The number of d's in the expressions above, default 6 *);

upcase: @boolean
 (* Specifies whether an upcase 'E' or a lowcase 'e' is the
 * be used in the exp style.
 *);

width: (* Minimum width *)
 @integer;

adjustLeft: @boolean
 (* Specifies if the number is to be aligned left or right,
 * if padding of spaces is necessary to fill up the specified
 * width.
 *);

zeroPadding:
 (* width is padded with leading zero instead of spaces.
 * Ignored if adjustLeft=true
 *)
 @boolean;
 (* Examples:
 * 10*pi −> putreal;
 * yields: '31.415926'
 * 10*pi −> putreal(# do 10−>width; true−>adjustLeft #);
 * yields: '31.415926 '
 * 10*pi −> putreal(# do exp−>style; true−>upcase #);
 * yields: '3.1415926E+01'
 * 10*pi −> putreal(# do exp−>style; 2−>precision #);
 * yields: '3.14e+01'
 *)

format:< (# do INNER #);
putr: @...

 enter r
 do 1−>width; 6−>precision; format; INNER putReal; putr
 #);
putRadix: putBased

 Basic Libraries − Reference Manual

13.12 Numberio Interface 149

 (#
 do true−>noBasePrefix; INNER putRadix
 #);

putHex:
 (* prints a hexadecimal representation of x (as unsigned word) on
 * this(stream). Similar to
 * (16,x)−>putRadix(# do true−>zeroPadding; 8−>width #)
 * but more efficient.
 *)
 (# uppercase: @boolean;

width: @integer;
zeroPadding: @boolean;
x: @integer;
format:< (# do INNER #);
putH: (*private*)@...

 enter x
 do 8−>width; true−>zeroPadding; format; INNER putHex; putH
 #);

putByteHex:
 (* prints a hexadecimal representation of byte 'byte' in x (as
 * unsigned word) on this(stream)
 *)
 (# x: @integer;

byte: @integer;
putBH: (*private*)@...

 enter (x,byte)
 do INNER putByteHex; putBH
 #);

putOctal:
 (* prints a octal representation of x (as unsigned word) on
 * this (stream). Similar to
 * (8,x)−>putRadix(# do true−>zeroPadding; #)
 * but more efficient.
 *)
 (# width: @integer;

zeroPadding: @boolean;
x: @integer;
format:< (# do INNER #);
putO:(*private*)@...

 enter x
 do true−>zeroPadding; format; INNER putOctal; putO;
 #);

putBinary:
 (* prints a binary representation of x (as unsigned word) on
 * this(stream). Similar to
 * (2,x)−>putRadix(# do true−>zeroPadding; #)
 * but more efficient.
 *)
 (# width: @integer;

zeroPadding: @boolean;
x: @integer;
format:< (# do INNER #);
putB: (*private*)@...

 enter x
 do true−>zeroPadding; format; INNER putBinary; putB
 #);

putByteBinary:
 (* prints a binary representation of byte 'byte' of x (as unsigned
 * word) on this(stream)
 *)
 (# x: @integer;

 Basic Libraries − Reference Manual

13.12 Numberio Interface 150

byte: @integer;
putBB: (*private*)@...

 enter (x, byte)
 do INNER putByteBinary; putBB
 #);

getHex:
 (* reads a hexadecimal number from this(stream) and returns the
 * value in x (as unsigned word). Similar to 16−>getRadix but more
 * efficient.
 *)
 (# x: @integer;

noNumberError:< streamException
 (# peekCh: @char
 enter peekCh
 do 'getHex: the number begins with: "'−>msg.append;
 (if peekCh = ascii.nul then 'NUL'−>msg.puttext
 else peekCh−>msg.put if);
 '". Not a legal hexadecimal digit'−>msg.puttext;
 INNER noNumberError
 #);

getH: (*private*)...
 do INNER getHex; getH
 exit x
 #);

getOctal:
 (* reads a hexadecimal number from this(stream) and returns the
 * value in x (as unsigned word). Similar to 16−>getRadix but more
 * efficient.
 *)
 (# x: @integer;

noNumberError:< streamException
 (# peekCh: @char
 enter peekCh
 do 'getHex: the number begins with: "'−>msg.append;
 (if peekCh = ascii.nul then 'NUL'−>msg.puttext
 else peekCh−>msg.put if);
 '". Not a legal hexadecimal digit'−>msg.puttext;
 INNER noNumberError
 #);

getO: (*private*)...
 do INNER getOctal; getO
 exit x
 #);

getBinary:
 (* reads a binary number from this(stream) and returns the value in
 * x (as unsigned word). Similar to 2−>getRadix but more efficient.
 *)
 (# x: @integer;

noNumberError:< streamException
 (# peekCh: @char
 enter peekCh
 do 'getBinary: the number begins with: "'−>msg.append;
 (if peekCh = ascii.nul then 'NUL'−>msg.puttext
 else peekCh−>msg.put if);
 '". Not a legal binary digit'−>msg.puttext;
 INNER noNumberError
 #);

getB: (*private*)...
 do INNER getBinary; getB
 exit x
 #);

asNumber:

 Basic Libraries − Reference Manual

13.12 Numberio Interface 151

 (# syntaxError:< streamException
 (# peekCh: @char
 enter peekCh
 do 'asNumber: Syntax error − looking at: "'−>msg.append;
 peekCh−>msg.put; '"'−>msg.put;
 INNER syntaxError
 #);

baseError:< streamException
 (# base: @integer
 enter base
 do 'asNumber: Error in base − looking at: "'−>msg.append;
 base−>msg.putInt; '"'−>msg.put;
 INNER baseError
 #);

valueError:< streamException
 (# peekCh: @char
 enter peekCh
 do 'asNumber: Illegal value type − looking at: "'−>msg.append;
 peekCh−>msg.put; '"'−>msg.put;
 INNER valueError
 #);
 do reset;
 INNER asNumber;
 ScanWhiteSpace; (if not eos then peek−>syntaxError if)
 #);

asReal: asNumber
 (# r: @real
 ...
 exit r
 #);
asBased: asNumber
 (# i, b: @integer
 ...
 exit (b,i)
 #);
asRadix: asNumber
 (# radix, value: @integer
 enter radix
 ...
 exit value
 #);
asInteger: asNumber
 (# i: @integer
 ...
 exit i
 #)

−−− lib: attributes −−−

getNumber: keyboard.getNumber
 (# do INNER getNumber #);
getReal: keyboard.getReal
 (# do INNER getReal #);
getBased: keyboard.getBased
 (# do INNER getbased #);
getRadix: keyboard.getRadix
 (# do INNER getRadix #);
getInteger: keyboard.getInteger
 (# do INNER getInteger #);

putReal: screen.putReal
 (# do INNER putReal #);
putBased: screen.putBased
 (# do INNER putBased #);
putRadix: screen.putRadix

 Basic Libraries − Reference Manual

13.12 Numberio Interface 152

 (# do INNER putRadix #);

getHex: keyboard.getHex
 (# do INNER getHex #);
getOctal: keyboard.getOctal
 (# do INNER getOctal #);
getBinary: keyboard.getBinary
 (# do INNER getBinary #);

putHex: screen.putHex
 (# do INNER putHex #);
putByteHex: screen.putByteHex
 (# do INNER putByteHex #);
putOctal:screen.putOctal
 (# do INNER putOctal #);
putBinary: screen.putBinary
 (# do INNER putBinary #);
putByteBinary: screen.putByteBinary
 (# do INNER putByteBinary #);

real2ints:
 (* Extract the high− and low bits of the real r into (i1, i2) *)
 (# r: @real;

i1, i2: @int32;
 enter r
 ...
 exit (i1, i2)
 #);

ints2real:
 (* Combine the high− and low bits in (i1, i2) to form the real r *)
 (# i1, i2: @int32;

r: @real;
 enter (i1, i2)
 ...
 exit r
 #)

 Basic Libraries − Reference Manual

13.12 Numberio Interface 153

13.13 Random Interface
ORIGIN 'betaenv';
BODY 'private/randombody';
(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics, 1995−96
 * All rights reserved.
 *)
−−− lib: attributes −−−

initgn: external
 (*
 * INIT−ialize current G−e−N−erator
 * Reinitializes the state of the current generator
 *
 * Arguments
 * isdtyp −> The state to which the generator is to be set
 * isdtyp = −1 => sets the seeds to their initial value
 * isdtyp = 0 => sets the seeds to the first value of the
 * current block
 * isdtyp = 1 => sets the seeds to the first value of the
 * next block
 *
 * Method
 * This is a transcription from Pascal to Fortran of routine
 * Init_Generator from the paper
 * L'Ecuyer, P. and Cote, S. "Implementing a Random Number
 * Package with Splitting Facilities." ACM Transactions on
 * Mathematical Software, 17:98−111 (1991)
 *)
 (# isdtyp: @integer
 enter (isdtyp)
 #);

gscgn: external
 (*
 * Get/Set GeNerator
 * Gets or returns in G the number of the current generator
 *
 * Arguments
 * getset −−> 0 Get 1 Set
 * g <−− Number of the current random number generator (1..32)
 *)
 (# getset, g: @integer
 enter (getset, g)
 #);

setsd: external
 (*
 * SET S−ee−D of current generator
 * Resets the initial seed of the current generator to ISEED1
 * and ISEED2. The seeds of the other generators remain
 * unchanged.
 * Arguments
 * iseed1 −> First integer seed
 * iseed2 −> Second integer seed
 * Method
 * This is a transcription from Pascal to Fortran of routine
 * Set_Seed from the paper L'Ecuyer, P. and Cote, S. "Implementing a
 * Random Number Package with Splitting Facilities." ACM
 * Transactions on Mathematical Software, 17:98−111 (1991)

13.13 Random Interface 154

 *)
 (# iseed1, iseed2: @integer
 enter (iseed1, iseed2)
 #);

getsd: external
 (*
 * GET SeeD
 * Returns the value of two integer seeds of the current
 * generator
 * Arguments
 * iseed1 <− First integer seed of generator G
 * iseed2 <− Second integer seed of generator G
 * Method
 * This is a transcription from Pascal to Fortran of routine
 * Get_State from the paper L'Ecuyer, P. and Cote, S. "Implementing
 * a Random Number Package with Splitting Facilities." ACM
 * Transactions on Mathematical Software, 17:98−111 (1991)
 *)
 (# iseed1, iseed2: @integer
 enter (iseed1, iseed2)
 #);

setall: external
 (*
 * SET ALL random number generators
 * Sets the initial seed of generator 1 to ISEED1 and
 * ISEED2. The initial seeds of the other generators are set
 * accordingly, and all generators states are set to these seeds.
 *
 * Arguments
 * iseed1 −> First of two integer seeds
 * iseed2 −> Second of two integer seeds
 *
 * Method
 * This is a transcription from Pascal to Fortran of routine
 * Set_Initial_Seed from the paper L'Ecuyer, P. and Cote,
 * S. "Implementing a Random Number Package with Splitting
 * Facilities." ACM Transactions on Mathematical Software,
 * 17:98−111 (1991)
 *)
 (# iseed1, iseed2: @integer
 enter (iseed1, iseed2)
 #);

setant: external
 (*
 * SET ANTithetic Sets whether the current generator produces
 * antithetic values. If X is the value normally returned from
 * a uniform [0,1] random number generator then 1 − X is the
 * antithetic value. If X is the value normally returned from a
 * uniform [0,N] random number generator then N − 1 − X is the
 * antithetic value. All generators are initialized to NOT
 * generate antithetic values.
 * Arguments
 * qvalue −> nonzero if generator G is to generating antithetic
 * values, otherwise zero
 * Method
 * This is a transcription from Pascal to Fortran of routine
 * Set_Antithetic from the paper L'Ecuyer, P. and Cote,
 * S. "Implementing a Random Number Package with Splitting
 * Facilities." ACM Transactions on Mathematical Software,
 * 17:98−111 (1991)

 Basic Libraries − Reference Manual

13.13 Random Interface 155

 *)
 (# qvalue: @integer
 enter qvalue
 #);

advnst: external
 (*
 * ADV−a−N−ce ST−ate
 * Advances the state of the current generator by 2^K values
 * and resets the initial seed to that value.
 * Arguments
 * k −> The generator is advanced by2^K values
 * Method: routine Advance_State from the paper L'Ecuyer, P. and
 * Cote, S. "Implementing a Random Number Package with
 * Splitting Facilities." ACM Transactions on Mathematical
 * Software, 17:98−111 (1991)
 *)
 (# k: @integer
 enter k
 #);

(*===*)
(*===== Integer random number generators ==========================*)
(*===*)

ignlgi: external
 (*
 * Integer GeNerate LarGe Integer
 * Returns a random integer following a uniform distribution
 * over (1, 2147483562) using the current generator.
 *
 * Method
 * This is a transcription from Pascal to Fortran of routine
 * Random from the paper L'Ecuyer, P. and Cote, S. "Implementing a
 * Random Number Package with Splitting Facilities." ACM
 * Transactions on Mathematical Software, 17:98−111 (1991)
 *)
 (# random: @integer
 exit random
 #);

ignuin: external
 (*
 * GeNerate Uniform INteger
 * Generates an integer uniformly distributed between LOW and
 * HIGH.
 *
 * Arguments
 * low −−> Low bound (inclusive) on integer value to be
 * generated
 * high −−> High bound (inclusive) on integer value to be
 * generated
 *
 * Note
 * If (HIGH−LOW) > 2,147,483,561 prints error message on * unit
 * and stops the program.
 *)
 (# low, high: @integer;

random: @integer
 enter (low, high)
 exit random
 #);

 Basic Libraries − Reference Manual

13.13 Random Interface 156

ignbin: external
 (*
 * Integer GeNerate BINomial random deviate
 * Generates a single random deviate from a binomial
 * distribution whose number of trials is N and whose probability of
 * an event in each trial is P.
 *
 * Arguments
 * n −−> The number of trials in the binomial distribution from
 * which a random deviate is to be generated.
 * p −−> The probability of an event in each trial of the
 * binomial distribution from which a random deviate is
 * to be generated.
 * ignbin <−− A random deviate yielding the number of events
 * from N independent trials, each of which has a
 * probability of event P.
 * Method
 * This is algorithm BTPE from: Kachitvichyanukul, V. and
 * Schmeiser, B. W. Binomial Random Variate Generation.
 * Communications of the ACM, 31, 2 (February, 1988) 216.
 *)
 (# n: @integer;

p: @real;
random: @integer

 enter (n, p)
 exit random
 #);

ignnbn: external
 (*
 * Integer GeNerate Negative BiNomial random deviate
 * Generates a single random deviate from a negative binomial
 * distribution.
 *
 * Arguments
 * N −−> The number of trials in the negative binomial
 * distribution from which a random deviate is to be
 * generated.
 * P −−> The probability of an event.
 * Method
 * Algorithm from page 480 of Devroye, Luc, Non−Uniform Random
 * Variate Generation. Springer−Verlag, New York, 1986.
 *)
 (# n: @integer;

p: @real;
random: @integer

 enter (n, p)
 exit random
 #);

ignpoi: external
 (*
 * GENerate POIsson random deviate
 * Generates a single random deviate from a Poisson
 * distribution with mean AV.
 *
 * Arguments
 * mu −−> The mean of the Poisson distribution from which a
 * random deviate is to be generated.
 *
 * Method
 * Renames KPOIS from TOMS as slightly modified by BWB to use
 * RANF instead of SUNIF. For details see: Ahrens, J.H. and Dieter,
 * U. Computer Generation of Poisson Deviates From Modified Normal

 Basic Libraries − Reference Manual

13.13 Random Interface 157

 * Distributions. ACM Trans. Math. Software, 8, 2 (June
 * 1982),163−179
 *)
 (# mu: @real;

random: @integer
 enter mu
 exit random
 #);

(*===*)
(*===== Real random number generators =============================*)
(*===*)

ranf: external
 (*
 * RANnom number generator as a Function
 * Returns a random floating point number from a uniform
 * distribution over 0 − 1 (endpoints of this interval are not
 * returned) using the current generator
 *
 * Method
 * This is a transcription from Pascal to Fortran of routine
 * Uniform_01 from the paper L'Ecuyer, P. and Cote, S. "Implementing
 * a Random Number Package with Splitting Facilities." ACM
 * Transactions on Mathematical Software, 17:98−111 (1991)
 *)
 (# random: @real
 exit random
 #);

genunf: external
 (*
 * GENerate UNiForm real
 * Generates a real uniformly distributed between LOW and HIGH.
 *
 * Arguments low −−> Low bound (exclusive) on real value to be
 * generated high −−> High bound (exclusive) on real value to
 * be generated
 *)
 (# low, high: @real;

random: @real
 enter (low, high)
 exit random
 #);

genbet: external
 (*
 * GeNerate BETa random deviate
 * Returns a single random deviate from the beta distribution
 * with parameters A and B. The density of the beta is x^(a−1) *
 * (1−x)^(b−1) / B(a,b) for 0 < x < 1
 *
 * Arguments
 * aa −−> First parameter of the beta distribution
 * bb −−> Second parameter of the beta distribution Method
 *
 * Method: described in R. C. H. Cheng Generating Beta Variatew with
 * Nonintegral Shape Parameters Communications of the ACM,
 * 21:317−322 (1978) (Algorithms BB and BC)
 *)
 (# aa, bb: @real;

random: @real
 enter (aa,bb)
 exit random

 Basic Libraries − Reference Manual

13.13 Random Interface 158

 #);

genchi: external
 (*
 * GENerate random value of CHIsquare variable
 * Generates random deviate from the distribution of a
 * chisquare with DF degrees of freedom random variable.
 *
 * Arguments
 * df −−> Degrees of freedom of the chisquare (Must be
 * positive)
 *
 * Method:
 * Uses relation between chisquare and gamma.
 *)
 (# df: @real;

random: @real
 enter df
 exit random
 #);

genexp: external
 (*
 * GENerate EXPonential random deviate
 * Generates a single random deviate from an exponential
 * distribution with mean AV.
 *
 * Arguments
 * av −−> The mean of the exponential distribution from which a
 * random deviate is to be generated. Method:
 *
 * Renames SEXPO from TOMS as slightly modified by BWB to use
 * RANF instead of SUNIF.
 * For details see: Ahrens, J.H. and Dieter,
 * U. Computer Methods for Sampling From the Exponential and Normal
 * Distributions. Comm. ACM, 15,10 (Oct. 1972), 873 − 882.
 *)
 (# av: @real;

random: @real
 enter av
 exit random
 #);

genf: external
 (*
 * GENerate random deviate from the F distribution
 * Generates a random deviate from the F (variance ratio)
 * distribution with DFN degrees of freedom in the numerator and DFD
 * degrees of freedom in the denominator.
 *
 * Arguments
 * dfn −−> Numerator degrees of freedom (Must be positive)
 * dfd −−> Denominator degrees of freedom (Must be positive)
 *
 * Method
 * Directly generates ratio of chisquare variates
 *)
 (# dfn, dfd: @real;

random: @real
 enter (dfn, dfd)
 exit random
 #);

 Basic Libraries − Reference Manual

13.13 Random Interface 159

gengam: external
 (* GENerates random deviates from GAMma distribution
 * Generates random deviates from the gamma distribution whose
 * density is (A**R)/Gamma(R) * X**(R−1) * Exp(−A*X)
 *
 * Arguments
 * a −−> Location parameter of Gamma distribution
 * r −−> Shape parameter of Gamma distribution
 *
 * Method
 * Renames SGAMMA from TOMS as slightly modified by BWB to use
 * RANF instead of SUNIF. For details see: (Case R >= 1.0) Ahrens,
 * J.H. and Dieter, U. Generating Gamma Variates by a Modified
 * Rejection Technique. Comm. ACM, 25,1 (Jan. 1982), 47 − 54.
 * Algorithm GD (Case 0.0 <= R <= 1.0) Ahrens, J.H. and Dieter, U.
 * Computer Methods for Sampling from Gamma, Beta, Poisson and
 * Binomial Distributions. Computing, 12 (1974), 223−246/ Adapted
 * algorithm GS.
 *)
 (# a, r: @real;

random: @real
 enter (a, r)
 exit random
 #);

gennch: external
 (* GENerate random value of Noncentral CHisquare variable
 * Generates random deviate from the distribution of a
 * noncentral chisquare with DF degrees of freedom and noncentrality
 * parameter xnonc.
 *
 * Arguments
 * df −−> Degrees of freedom of the chisquare (Must be > 1.0)
 * xnonc −−> Noncentrality parameter of the chisquare (Must be
 * >= 0.0)
 * Method
 * Uses fact that noncentral chisquare is the sum of a
 * chisquare deviate with DF−1 degrees of freedom plus the square of
 * a normal deviate with mean XNONC and standard deviation 1.
 *)
 (# df, xnonc: @real;

random: @real
 enter (df, xnonc)
 exit random
 #);

gennf: external
 (* GENerate random deviate from the Noncentral F distribution
 * Generates a random deviate from the noncentral F (variance
 * ratio) distribution with DFN degrees of freedom in the numerator,
 * and DFD degrees of freedom in the denominator, and noncentrality
 * parameter XNONC.
 *
 * Arguments
 * dfn −−> Numerator degrees of freedom (Must be >= 1.0)
 * dfd −−> Denominator degrees of freedom (Must be positive)
 * xnonc −−> Noncentrality parameter (Must be nonnegative)
 *
 * Method
 * Directly generates ratio of noncentral numerator chisquare
 * variate to central denominator chisquare variate.
 *)
 (# dfn, dfd, xnonc: @real;

 Basic Libraries − Reference Manual

13.13 Random Interface 160

random: @real
 enter (dfn, dfd, xnonc)
 exit random
 #);

gennor: external
 (*
 * GENerate random deviate from a NORmal distribution
 * Generates a single random deviate from a normal distribution
 * with mean, AV, and standard deviation, SD.
 *
 * Arguments
 * av −−> Mean of the normal distribution.
 * sd −−> Standard deviation of the normal distribution.
 *
 * Method
 * Renames SNORM from TOMS as slightly modified by BWB to use
 * RANF instead of SUNIF. For details see: Ahrens, J.H. and Dieter,
 * U. Extensions of Forsythe's Method for Random Sampling from the
 * Normal Distribution. Math. Comput., 27,124 (Oct. 1973), 927 −
 * 937.
 *)
 (# av, sd: @real;

random: @real
 enter (av, sd)
 exit random
 #);

sexpo: external
 (*
 * Standard EXPonential distribution
 *
 * Method
 * For details see: Ahrens, J.H. and Dieter, U. Computer
 * Methods For Sampling From The Exponential And Normal
 * Distributions. COMM. ACM, 15,10 (Oct. 1972), 873 − 882. All
 * statement numbers correspond to the steps of algorithm 'SA' in
 * the above paper (slightly modified implementation) Modified by
 * Barry W. Brown, Feb 3, 1988 to use RANF instead of SUNIF. The
 * argument IR thus goes away.
 *
 * Q(N) = SUM(ALOG(2.0)**K/K!) K=1,..,N , The highest N (here
 * 8) is determined by Q(N)=1.0 within standard precision
 *)
 (# random: @real
 exit random
 #);

sgamma: external
 (*
 * Standard GAMMA distribution
 *
 * Sample from the GAMMA−(A)−distribution coefficients Q(K)
 * − for Q0 = SUM(Q(K)*A**(−K)) coefficients A(K)
 * − for Q = Q0+(T*T/2)*SUM(A(K)*V**K) coefficients E(K)
 * − for EXP(Q)−1 = SUM(E(K)*Q**K)
 *
 * Arguments
 * A −−−> Parameter (mean) of the standard GAMMA distribution
 * Method
 * CASE A >= 1.0 !
 * For details see: Ahrens, J.H. and Dieter, U. Generating
 * GAMMA variates by a modified rejection technique. COMM. ACM,

 Basic Libraries − Reference Manual

13.13 Random Interface 161

 * 25,1 (Jan. 1982), 47 − 54. Step numbers correspond to algorithm
 * 'GD' in the above paper (straightforward implementation) Modified
 * by Barry W. Brown, Feb 3, 1988 to use RANF instead of SUNIF. The
 * argument IR thus goes away.
 * CASE 0.0 < A < 1.0 !
 * For details see: Ahrens, J.H. and Dieter, U. Computer
 * Methods for Sampling from GAMMA, BETA, Poisson and Binomial
 * Distributions. COMPUTING, 12 (1974), 223 − 246. (adapted
 * implementation of algorithm 'GS' in the above paper)
 *)
 (# a: @real;

random: @real
 enter a
 exit random
 #);

snorm: external
 (*
 * Standard NORmal distribution
 *
 * Method
 * For details see: Ahrens, J.H. and Dieter, U. Extensions of
 * Forsythe's method for Random Sampling from the NORMAL
 * distribution. MATH. COMPUT., 27,124 (OCT. 1973), 927 − 937.
 * All statement numbers correspond to the steps of algorithm 'FL'
 * (M=5) in the above paper (slightly modified implementation)
 * Modified by Barry W. Brown, Feb 3, 1988 to use RANF instead of
 * SUNIF. The argument IR thus goes away.
 *)
 (# random: @real
 exit random
 #)

 Basic Libraries − Reference Manual

13.13 Random Interface 162

13.14 Regexp Interface
ORIGIN 'betaenv';
LIB_DEF 'regexp' '../lib';
BODY 'private/regexplib';
(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics, 1992−96
 * All rights reserved.
 *)
−−− textlib: attributes −−−
regexp_operation:
 (* generic superpattern for all regexp text operations:
 * regexp_match, regexp_search, regexp_replace,
 * regexp_replace_literally.
 * regexp_string: text string containing the regexp.
 * start: start position for match in THIS(text).
 * Default: pos
 * limit: end position for match in THIS(text).
 * Default: length
 * posToMatchEnd: if true, move THIS(text).pos to the end of the
 * matched substring.
 * Default: false
 * regs: structure for getting access to the matched substring.
 * noMatch: invoked if no matches are found.
 * regexpError: is invoked if syntax error occurs in the specified
 * regexp.
 *
 * value: true, if any match is found.
 *)
 (# regexp_string: ^text;

start:< integerObject(# do pos −> value; INNER #);
limit:< integerObject(# do length −> value; INNER #);
posToMatchEnd:< booleanObject;
regs: @regexp_registers;
noMatch:< Notification;
regexpError:< Exception(# do 'Syntax error in regular expression'−>msg; INNER #);
value: @boolean;
private: @(* private *)...

 enter (#
 enter regexp_string[]
 do ...
 #)
 do INNER regexp_operation
 exit value
 #);

regexp_match: regexp_operation
(* Takes a regexp as enter parameter (in the form of a reference to a
 * text, containing the regexp. Matches THIS(text) against the
 * regexp. INNER is executed if THIS(text) matches the regexp, and
 * the virtual notification noMatch is invoked otherwise. Returns
 * true if a match is found, false otherwise. The regexp must be
 * found starting at the current position of THIS(text).
 *)
(# do ... #);

regexp_search: regexp_operation
(* Like regexp_match, except that the match is allowed to be found
 * anywhere between the current position and the end of THIS(text).
 *)
(# do ... #);

regexp_replace: regexp_search

13.14 Regexp Interface 163

(* Like regexp_search, except that it takes a second enter parameter,
 * replace_string. Regexp_replace searches for the regexp, and
 * replaces the matched substring of THIS(text) with the replacement
 * string. The replacement string may contain \0, \1, ..., \9,
 * representing the substring matched by the i'th parenthesis in the
 * regexp. \0 represents the entire substring matched. INNER is
 * executed after the replace have taken place.
 *)
(# replace_string: ^text;
enter replace_string[]
do ...
#);

regexp_replace_global:
 (* replaces all occurences of m with r in THIS(text) using
 * regexp_replace, starting from THIS(text).pos.
 *)
 (# m,r: ^Text; more: @boolean;

replaceOp: @regexp_replace
 (# noMatch:: (# do false−>more #);
 posToMatchEnd:: (# do true−>value #)
 #);
 enter (m[],r[])
 do true−>more;
 (m[],r[])−>replaceOp;

loop:
 (if more and not eos then
 replaceOp;
 restart loop
 if)
 #);

regexp_replace_literally: regexp_search
(* Like regexp_replace, except that the replacement string is taken
 * literally (i.e \0, \1, etc. are not substituted with any matched
 * substrings).
 *)
(# replace_string: ^text
enter replace_string[]
do ...
#);

regexp_replace_literally_global:
 (* replaces all occurences of m with r in THIS(text) using
 * regexp_replace_literally, starting from THIS(text).pos.
 *)
 (# m,r: ^Text; more: @boolean;

replaceOp: @regexp_replace_literally
 (# noMatch:: (# do false−>more #);
 posToMatchEnd:: (# do true−>value #)
 #);
 enter (m[],r[])
 do true−>more;
 (m[],r[])−>replaceOp;

loop:
 (if more and not eos then
 replaceOp;
 restart loop
 if)
 #);

−−− lib: attributes −−−
regexp_numberOfRegisters: (# exit 10 #);

regexp_registers: Cstruct
 (* Structure for accessing the substrings matched by some regexp. *)

 Basic Libraries − Reference Manual

13.14 Regexp Interface 164

 (# getRegisterValue:
 (# regNr, value: @integer;
 pos:< integerValue;
 thePos: @pos (* private: for efficiency *)
 enter regNr
 do ...
 exit value
 #);

start: @getRegisterValue
 (# pos::< (# do 0 −> value #) #);

end: @getRegisterValue
 (# pos::< (# do 40 −> value #) #);

byteSize::< (* private *) (# do regexp_numberOfRegisters*2*4 −> value #)
 #)

 Basic Libraries − Reference Manual

13.14 Regexp Interface 165

13.15 Pcre Interface
ORIGIN 'betaenv';
BODY 'private/pcrebody';
(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics, 2000,2001,2002
 * All rights reserved.
 * Written by Erik Corry
 *)
−−− lib: attributes −−−

(*
 * Perl compatible regular expressions, based on Philip Hazel's PCRE
 * library. See his documentation and perl documentation for details.
 * To activate the /i /x /m or /s options you can use the inline notation
 * (?x) notation either at the top level of the regular expression or
 * in a subexpression. You can disable the options again with (?−x). You
 * can also use the comments below.
 *
 * See also pcreDemo.bet in the basiclib/demo/pcre directory for some uses
 * for this stuff.
 *)

(* HOW TO DO SOME TYPICAL PERL THINGS
 *
 * Here are a few things that are very easy to do in perl with the
 * equivalent using BETA's perl−compatible regular expression support.
 * As you can see, the BETA version is often a little longer − this is
 * the penalty you pay for having a general purpose language. You can
 * save some space at the expense of readability and perhaps efficiency
 * by initialising the Pcre object inline.
 *
 * Assume
 * pre: @Pcre;
 * ok: @boolean;
 *
 * Desc: Test whether a string matches a pattern
 * Perl: if $sample =~ /trigger/ ...
 * BETA: 'trigger' −> pre;
 * (if sample[] −> pre.match then ... if)
 * Alternative:
 * (if sample[] −> ('trigger' −> Pcre).match then ... if)
 *
 * Desc: Replace a text in a string with another text
 * Perl: $sample =~ s/gun/pistol/;
 * BETA: 'gun' −> pre;
 * (sample[], 'pistol') −> pre.replace −> (ok, sample[]);
 *
 * For /g use replaceAll instead of replace
 * For /e use rep, see HTMLise in pcreDemo in ~beta/basiclib/demo/pcre
 *
 * Desc: Test for case insensitive match
 * Perl: if $sample =~ /trigger/i ...
 * BETA: '(?i)trigger' −> pre;
 * (if sample[] −> pre.match then ... if);
 * Alternative:
 * 'trigger' −> pre (# options:: (# do CASELESS #) #);
 * (if sample[] −> pre.match then ... if);
 * Likewise for /x
 *
 * Desc: Split an input line three ways into fields using : as separator
 * Perl: ($wordone, $wordtwo, $rest) = split(/:/, $sample, 3);
 * BETA: sample[] −> (':' −> Pcre).matchAll

13.15 Pcre Interface 166

 * (#
 * post:: (# do sp1 −> wordone[];
 * sp2 −> wordtwo[];
 * rest3 −> rest[];
 * #)
 * #)
 * Alternative:
 * sample[] −> (':' −> Pcre).matchAll
 * (# post:: (# do ways3 −> (wordone[], wordtwo[], rest[]) #) #);
 *)

Pcre:
 (#
 <<SLOT PcreLib: attributes>>;

compilation_error:< Exception
 (# regexp: ^text;
 errortext: ^text;
 enter (regexp[],errortext[])
 ...
 #);

 (* Options: See pcre.h and doc *)
pcre_CASELESS: (# exit 1 #);
pcre_MULTILINE: (# exit 2 #);
pcre_DOTALL: (# exit 4 #);
pcre_EXTENDED: (# exit 8 #);
pcre_ANCHORED: (# exit 16 #);
pcre_DOLLAR_ENDONLY: (# exit 32 #);
pcre_EXTRA: (# exit 64 #);
pcre_NOTBOL: (# exit 128 #);
pcre_NOTEOL: (# exit 256 #);
pcre_UNGREEDY: (# exit 512 #);
pcre_NOTEMPTY: (# exit 1024 #);

pcre_NONBETAOPTIONS: (# exit 65535 #);

 (* Only in BETA library version *)
 (* Use non−localised English char classes *)
 (* You have to set this when compiling the regexp, not when matching *)

pcre_C_LOCALE: (# exit 65536 #);
 (* Study the regular expression after compiling it *)
 (* You have to set this when compiling the regexp, not when matching *)

pcre_DO_STUDY: (# exit 131072 #);
 (* Give none instead of zero length strings for cases where there is no
 * match. This is more correct, but you have to program more carefully
 * to avoid runtime errors.
 *)

pcre_RETURN_NONE: (# exit 262144 #);

pcre_MATCHOPTIONS: (# exit pcre_NOTBOL %Bor
 pcre_NOTEOL %Bor
 pcre_NOTEMPTY %Bor
 pcre_RETURN_NONE #);

 (* For internal use *)
pcre_INFO_OPTIONS: (# exit 0 #);
pcre_INFO_SIZE: (# exit 1 #);
pcre_INFO_CAPTURECOUNT: (# exit 2 #);
pcre_INFO_BACKREFMAX: (# exit 3 #);
pcre_INFO_FIRSTCHAR: (# exit 4 #);
pcre_INFO_FIRSTTABLE: (# exit 5 #);
pcre_INFO_LASTLITERAL: (# exit 6 #);

 Basic Libraries − Reference Manual

13.15 Pcre Interface 167

pcre_ERROR_NOMATCH: (# exit −1 #);
pcre_ERROR_NULL: (# exit −2 #);
pcre_ERROR_BADOPTION: (# exit −3 #);
pcre_ERROR_BADMAGIC: (# exit −4 #);
pcre_ERROR_UNKNOWN_NODE:(# exit −5 #);
pcre_ERROR_NOMEMORY: (# exit −6 #);
pcre_ERROR_NOSUBSTRING: (# exit −7 #);

 (* Private internal state *)
private: @...;

 (* Read−only for users of pcre. Tells you how many subpatterns your
 * pattern has. Only useful if you are reading regular expressions from
 * a config file or from the user, since otherwise you should know this
 * figure already :−]
 *)

subPatterns: @Integer;

 (* Specialise this in order to give options when compiling the
 * regular expression and default options when matching.
 *)

options:< integerValue
 (#
 (* Options: See above *)
 CASELESS: (# do value %Bor 1 −> value #);
 MULTILINE: (# do value %Bor 2 −> value #);
 DOTALL: (# do value %Bor 4 −> value #);
 EXTENDED: (# do value %Bor 8 −> value #);
 ANCHORED: (# do value %Bor 16 −> value #);
 DOLLAR_ENDONLY: (# do value %Bor 32 −> value #);
 EXTRA: (# do value %Bor 64 −> value #);
 NOTBOL: (# do value %Bor 128 −> value #);
 NOTEOL: (# do value %Bor 256 −> value #);
 UNGREEDY: (# do value %Bor 512 −> value #);
 NOTEMPTY: (# do value %Bor 1024 −> value #);
 C_LOCALE: (# do value %Bor 65536 −> value #);
 DO_STUDY: (# do value %Bor 131072 −> value #);
 RETURN_NONE: (# do value %Bor 262144 −> value #);
 clearCASELESS: (# do value %Band (%Bnot 1) −> value #);
 clearMULTILINE: (# do value %Band (%Bnot 2) −> value #);
 clearDOTALL: (# do value %Band (%Bnot 4) −> value #);
 clearEXTENDED: (# do value %Band (%Bnot 8) −> value #);
 clearANCHORED: (# do value %Band (%Bnot 16) −> value #);
 clearDOLLAR_ENDONLY: (# do value %Band (%Bnot 32) −> value #);
 clearEXTRA: (# do value %Band (%Bnot 64) −> value #);
 clearNOTBOL: (# do value %Band (%Bnot 128) −> value #);
 clearNOTEOL: (# do value %Band (%Bnot 256) −> value #);
 clearUNGREEDY: (# do value %Band (%Bnot 512) −> value #);
 clearNOTEMPTY: (# do value %Band (%Bnot 1024) −> value #);
 clearC_LOCALE: (# do value %Band (%Bnot 65536) −> value #);
 clearDO_STUDY: (# do value %Band (%Bnot 131072) −> value #);
 clearRETURN_NONE: (# do value %Band (%Bnot 262144) −> value #);

 do 0 −> value;
 INNER;
 #);

init:
 (#
 exp: ^Text;

 enter exp[]
 ...
 #);

match:

 Basic Libraries − Reference Manual

13.15 Pcre Interface 168

 (#
 result: @Integer;
 subMatchCounter: @Integer;
 nextSubMatchIndex:
 (#
 do subMatchCounter = subMatchCounter + 1;
 exit subMatchCounter
 #);

 (* Get (as an integer pair) the position of the text that matched
 * the regular expression in the original text.
 *)
 matchPos:
 (#
 start: @Integer;
 end: @Integer;
 ...
 exit (start, end)
 #);

 (* Get (as a text reference) the text that matched the regular
 * expression.
 *)
 matchText:
 (#
 result: ^Text;
 do
 matchPos −> subject.sub −> result[];
 exit result[]
 #);

 (* Get (as a text reference) the text before the text that matched
 * the regular expression.
 *)
 preMatchText:
 (#
 result: ^Text;
 ...
 exit result[]
 #);

 (* Get (as a text reference) the text after the text that matched
 * the regular expression.
 *)
 postMatchText:
 (#
 result: ^Text;
 ...
 exit result[]
 #);

 (* Get (as an integer pair) the position of the nth submatch in the
 * original text. You get (0,0) if the nth subpattern didn't match.
 * (It is possible that the nth subpattern didn't match, even if
 * the pattern as a whole matched. This is different from the
 * subpattern matching an empty string.)
 *)
 subMatchPos:
 (#
 index: @Integer;
 start: @Integer;
 end: @Integer;
 enter index
 ...
 exit (start, end)
 #);

 Basic Libraries − Reference Manual

13.15 Pcre Interface 169

 (* Get (as an integer pair) the position of the next submatch in the
 * original text. You get (0,0) if the next subpattern didn't match.
 * (It is possible that the nth subpattern didn't match, even if
 * the pattern as a whole matched. This is different from the
 * subpattern matching an empty string.)
 *)
 nextSubMatchPos:
 (#
 exit nextSubMatchIndex −> subMatchPos
 #);

 (* Get (as a text reference) the position of the nth submatch in the
 * original text. You get NONE if the nth subpattern didn't match and
 * you set the option.
 * (It is possible that the nth subpattern didn't match, even if
 * the pattern as a whole matched. This is different from the
 * subpattern matching an empty string.)
 *)
 subMatchText:
 (#
 index: @Integer;
 start: @Integer;
 end: @Integer;
 result: ^Text;
 enter index
 ...
 exit result[]
 #);

 (* Get (as a text reference) the position of the next submatch in the
 * original text. You get NONE if the next subpattern didn't match
 * and you set the option.
 * (It is possible that the nth subpattern didn't match, even if
 * the pattern as a whole matched. This is different from the
 * subpattern matching an empty string.)
 *)
 nextSubMatchText:
 (#
 exit nextSubMatchIndex −> subMatchText
 #);

 (*
 * Shorthand methods to get a given matched subpattern
 * You get NONE if the given subpattern didn't match and you set the
 * option.
 * (It is possible that the subpattern didn't match, even if
 * the pattern as a whole matched. This is different from the
 * subpattern matching an empty string.)
 *)
 sub1: (# exit 1 −> subMatchText #);
 sub2: (# exit 2 −> subMatchText #);
 sub3: (# exit 3 −> subMatchText #);
 sub4: (# exit 4 −> subMatchText #);
 sub5: (# exit 5 −> subMatchText #);
 sub6: (# exit 6 −> subMatchText #);
 sub7: (# exit 7 −> subMatchText #);
 sub8: (# exit 8 −> subMatchText #);
 sub9: (# exit 9 −> subMatchText #);

 (* Gets called if there is no match at all. I'm sure you can think
 * of something useful to put here.
 *)
 noMatch:<(# do INNER; #);

 (* Specialise this in order to start at a position other than the

 Basic Libraries − Reference Manual

13.15 Pcre Interface 170

 * start of the string
 *)
 position:< integerValue
 (#
 do 1 −> value;
 INNER;
 #);

 (* Specialise this in order to give options when executing the
 * regular expression. Doesn't work for options used to compile
 * the regular expression, you had to give them earlier. If you
 * don't specialise this then you get the global options for this
 * pcre object.
 *)
 options:< integerValue
 (#
 (* Options: See above
 * Only the options that are useful at match−time (as opposed to
 * init−time) are here
 *)
 NOTBOL: (# do value %Bor 128 −> value #);
 NOTEOL: (# do value %Bor 256 −> value #);
 NOTEMPTY: (# do value %Bor 1024 −> value #);
 RETURN_NONE: (# do value %Bor 262144 −> value #);
 clearNOTBOL: (# do value %Band (%Bnot 128) −> value #);
 clearNOTEOL: (# do value %Band (%Bnot 256) −> value #);
 clearNOTEMPTY: (# do value %Band (%Bnot 1024) −> value #);
 clearRETURN_NONE:(# do value %Band (%Bnot 262144) −> value #);
 do THIS(pcre).options %Band pcre_MATCHOPTIONS −> value;
 INNER;
 #);

 (* Called before the first match is attempted
 *)
 pre:<
 (# do INNER; #);

 (* match
 * Enter a text reference into the regular expression. Returns true or
 * false according to whether the text matched the expression. Executes
 * INNER if there is a match.
 *)
 subject: ^Text;
 matched: @Boolean;
 opt: @Integer;
 psn: @Integer;
 enter subject[]
 ...
 exit (matched)
 #);

 (*
 * matchAll: match
 * Keeps matching as many times as possible until there are no more matches
 * or the end of the string is reached. Returns true if at least one match
 * occurs. Calls INNER for each match.
 *)

matchAll: match
 (#
 privatema: @...;

 (* The number og matches we have so far. This can be queried in split
 * (where it is always one less than the number of matches except the
 * last time) or in the INNER part of matchAll, where it is accurate.
 *)
 matches: @Integer;

 Basic Libraries − Reference Manual

13.15 Pcre Interface 171

 pre::<
 (#
 ...
 #);

 (* Get (as a text reference) the text after the previous match (if any)
 * but before the text that matched the regular expression this time
 * around.
 *)
 splitText:
 (#
 result: ^Text;
 do
 splitPos −> subject.sub −> result[];
 exit result[]
 #);

 (* Get (as an integer pair) the position of the text after the previous
 * match (if any) but before the text that matched the regular
 * expression this time around.
 *)
 splitPos:
 (#
 start: @Integer;
 end: @Integer;
 ...
 exit (start, end)
 #);

 (* Gets called once for each split and once at the end. You can call
 * splitText and splitPos from here to do something with the split
 * strings. Gets called only once if the pattern doesn't match at all.
 *)
 split:<
 (#
 thismatch: @Integer;
 ...
 #);

 (* Make sure split and post get called at least once even if there
 * is no match at all. You can add code here if you want to do
 * something whenever there is no match at all.
 *)
 noMatch::<
 (#
 ...
 #);

 (* Gets called once at the end. You can call
 * splitText and splitPos from here to do something with the rest
 * You can also call spn, sp1, sp2, etc to get the first,
 * second etc. split text. Restn, rest1, rest2 are similar, but they
 * get the rest of the string from the start of the nth split text to
 * the end.
 *)
 post:<
 (#
 spn:<
 (#
 num: @Integer;
 result: ^Text;
 enter num
 ...
 exit result[]
 #);

 Basic Libraries − Reference Manual

13.15 Pcre Interface 172

 sp1: (# exit 1−> spn #);
 sp2: (# exit 2−> spn #);
 sp3: (# exit 3−> spn #);
 sp4: (# exit 4−> spn #);
 sp5: (# exit 5−> spn #);
 sp6: (# exit 6−> spn #);
 sp7: (# exit 7−> spn #);
 sp8: (# exit 8−> spn #);
 sp9: (# exit 9−> spn #);
 restn:<
 (#
 num: @Integer;
 result: ^Text;
 enter num
 ...
 exit result[]
 #);
 rest1: (# exit 1−> restn #);
 rest2: (# exit 2−> restn #);
 rest3: (# exit 3−> restn #);
 rest4: (# exit 4−> restn #);
 rest5: (# exit 5−> restn #);
 rest6: (# exit 6−> restn #);
 rest7: (# exit 7−> restn #);
 rest8: (# exit 8−> restn #);
 rest9: (# exit 9−> restn #);
 ways2: (# exit (sp1, rest2) #);
 ways3: (# exit (sp1, sp2, rest3) #);
 ways4: (# exit (sp1, sp2, sp3, rest4) #);
 ways5: (# exit (sp1, sp2, sp3, sp4, rest5) #);
 ways6: (# exit (sp1, sp2, sp3, sp4, sp5, rest6) #);
 ways7: (# exit (sp1, sp2, sp3, sp4, sp5, sp6, rest7) #);
 ways8: (# exit (sp1, sp2, sp3, sp4, sp5, sp6, sp7, rest8) #);
 ways9: (# exit (sp1, sp2, sp3, sp4, sp5, sp6, sp7, sp8, rest9) #);
 do INNER;
 #);

 ...
 #);

 (*
 * Replace: match
 * Enter a reference to a text and a replacement string. Exits a sucess
 * boolean and a text reference to the new string. If there is no match
 * then false, plus a reference to a copy of the original string is exited.
 *)

replace: match
 (#
 (* By overriding this you can put a different value in replacement,
 * so that the replacement text can be calculated dynamically (based
 * on eg. the contents or position of the matched or submatched texts).
 * (You can call matchText to get the text that matched)
 *)
 rep:< textObject;
 replacement: ^Text;
 new: ^Text;
 check:
 (#
 do (if new[] = NONE then subject.copy −> new[] if);
 exit new[]
 #);
 enter replacement[]
 ...
 exit check
 #);

 Basic Libraries − Reference Manual

13.15 Pcre Interface 173

 (*
 * ReplaceAll: matchAll
 * Enter a reference to a text and a replacement string. Exits a sucess
 * boolean and a text reference to the new string. If there is no match
 * then false, plus a reference to a copy of the original string is exited.
 *)

replaceAll: matchAll
 (#
 (* By overriding this you can put a different value in replacement,
 * so that the replacement text can be calculated dynamically (based
 * on eg. the contents or position of the matched or submatched texts).
 * (You can call matchText to get the text that matched)
 *)
 rep:< textObject;

 post::<
 (#
 do (if new[]=NONE then &text[]−>new[] if);
 splitText −> new.append;
 INNER;
 #);

 replacement: ^Text;
 new: ^Text;
 enter replacement[]
 do
 (if new[] = NONE then
 splitText −> new[];
 subject.lgth −> new.extend;
 else
 splitText −> new.append;
 if);
 replacement[] −> rep −> new.append;
 INNER;
 exit
 (#
 do
 (if new[] = NONE then subject.copy −> new[] if);
 exit new[]
 #)
 #);

 (* Pcre itself enters init (which takes a text reference and compiles it
 * to a regular expression) and exits a reference to itself, which lets you
 * dynamically create a regexp and call a method on it in one line
 *)
 enter init
 exit this(Pcre)[]
 #)

 Basic Libraries − Reference Manual

13.15 Pcre Interface 174

13.16 Substreams Interface
ORIGIN 'betaenv';
BODY 'private/substreamsbody'
(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics, 1995−96
 * All rights reserved.
 *
 * This fragment implements a substream and a subtext pattern
 * The operations of substream and subtext are essentially the same
 * as the operations on stream, respectively, text. See these patterns
 * in betaenv for a description of the semantics of the operations.
 *)
−−− lib: attributes −−−
substream: stream
 (# <<SLOT substreamLib: attributes>>;

streamType:< stream;
stm: (* the attached stream *) ^streamType;
high, low: @integer;
init:

 (#
 enter (stm[], low, high)
 do check
 #);

attach:
 (# enter stm[] #);

range:
 (#
 enter (low,high)
 do check; high−low+1−>lgth
 exit (low,high)
 #);

check:
 (#
 do (if true
 // stm[]=NONE then notAttachedError
 // low>high then illegalRangeError
 // low<0 then illegalRangeError
 // low>stm.length then illegalRangeError
 // high>stm.length then illegalRangeError
 if)
 #);

length::<(# ... #);
eos::<

 (# ... #);
empty: booleanValue

 (# ... #);
copy:

 (# theCopy: ^substream;
 copyI: @...
 do copyI
 exit theCopy[]
 #);

notAttachedError:< StreamException
 (* Raised when this(substream) is not attached to any stream.
 * Message: "The substream is not attached to any stream!".
 *)
 (# ... #);

illegalRangeError:< StreamException
 (* Raised when the substream range specified does not lie
 * within the range of the attached stream. Message: "The
 * substream range is not within the attached stream range!".
 *)

13.16 Substreams Interface 175

 (# ... #);
indexError:< StreamException

 (* Raised when the index goes outside the range of the
 * substream. Message: "Index error in stream! (index <num>)".
 *)
 (# inx: @integer
 enter inx ...
 #);

EOSerror::<
 (* Raised from Get and Peek when the end of the substream is
 * passed.
 *)
 (# ... #);

otherError::<
 (* Raised when an error other than the Index−/EOSerror occurs.
 *)
 (# ... #);

setpos::<
 (# ... #);

getpos::<
 (# ... #);

pos, lgth: (* private *) @integer;
 enter (attach,range)
 #);

subtext: substream
 (# <<SLOT subtextLib: attributes>>;

streamType::< text;
put::<

 (# ... #);
putText::<

 (# ... #);
get::<

 (# ... #);
getAtom::<

 (# ... #);
getLine::<

 (# ... #);
peek::<

 (# ... #);
clear:

 (# ... #);
inxGet: charValue

 (# i: @integer
 enter i
 ...
 #);

inxPut:
 (# ch: @char; i: @integer
 enter (ch,i)
 ...
 #);

append:
 (# S1: ^streamType; S1lgt: @integer
 enter S1[]
 ...
 #);

prepend:
 (# S1: ^streamType; S1lgt: @integer
 enter S1[]
 ...
 #);

scanAll:
 (# ch: @char
 ...
 #);

 Basic Libraries − Reference Manual

13.16 Substreams Interface 176

sub:
 (# i,j: @integer
 enter (i,j)
 exit (i,j)−>stm.sub
 #);

insert:
 (# T1: ^streamType;
 inx: @integer;
 P: @integer
 enter (T1[],inx)
 ...
 #);

delete:
 (# i,j: @integer
 enter (i,j)
 ...
 #);

equal: booleanValue
 (# S1: ^streamType;
 S1pos, lgt: @integer;
 NCS:< booleanObject
 enter S1[]
 ...
 #);

equalNCS: equal
 (* As 'equal', except the the comparison will be done Non
 * Case Sensitive
 *)
 (# NCS:: trueObject #);

less: booleanValue
 (# S1: ^streamType;
 S1pos, lgt: @integer; ch, ch1: @char
 enter S1[]
 ...
 #);

greater: booleanValue
 (# S1: ^streamType;
 S1pos, lgt: @integer; ch, ch1: @char
 enter S1[]
 ...
 #);

makeLC:
 (# ... #);

makeUC:
 (# ... #);

find:
 (# ch: @char;
 inx: @integer;
 NCS:< booleanObject;
 from:< integerObject(# do pos−>value; INNER from #)
 enter ch
 ...
 #);

findAll: find
 (# from:: (# do 0−>value #)
 do INNER findAll
 #);

findText:
 (# txt: ^text;
 inx: @integer;
 NCS:< booleanObject;
 from:< integerObject(# do pos−>value; INNER from #)
 enter txt[]
 ...
 #);

findTextAll: findText

 Basic Libraries − Reference Manual

13.16 Substreams Interface 177

 (# from:: (# do 0−>value #)
 do INNER findTextAll
 #);
 exit stm.T[low:high]
 #);

putSubStream: screen.putSubstream(# do INNER putSubstream #)

−−− textLib: attributes −−−
subtxt:
 (# low,high: @integer;

theSubtext: ^subtext
 enter (low,high)
 do &subtext[]−>theSubtext[];
 (this(text)[],(low,high))−>theSubtext;
 theSubtext.init
 exit theSubtext[]
 #)

−−− streamLib: attributes −−−
putSubstream:
 (# stm: ^substream;

p: (*private*)@integer
 enter stm[]
 ...
 #)

 Basic Libraries − Reference Manual

13.16 Substreams Interface 178

13.17 Systemenv Interface
ORIGIN 'basicsystemenv';
BODY 'private/systemenvbody';
(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics, 1984−96
 * All rights reserved.
 *
 * Use this fragment as the ORIGIN for concurrent BETA
 * programs NOT using X libraries or other UI libraries
 * with a central event−loop.
 *
 * Programs should look something like:
 *
 * ORIGIN 'systemenv';
 * −−− program:descriptor −−−
 * systemEnv:
 * (# ...
 * do ...
 * #)
 *
 * For details about the concurrency abstractions,
 * see the file basicsystemenv.bet
 *)

13.17 Systemenv Interface 179

13.18 TextUtils Interface
ORIGIN 'betaenv';
LIB_DEF 'textUtils' '../lib';
INCLUDE 'numberio'
(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics, 1996
 * All rights reserved.
 *)
−−− streamLib: attributes −−−

getBoolean:
 (# trueValue:< (# value: ^text do 'true'−>value[]; INNER exit value[] #);

falseValue:< (# value: ^text do 'false'−>value[]; INNER exit value[] #);
syntaxError:< streamException

 (#
 do 'getBoolean: Syntax Error − looking at: "'−>msg.append;
 t[]−>msg.puttext; '"'−>msg.putline; INNER
 #);

value: @boolean;
t: ^(* private *)text

 do getAtom−>t[];
 (if true
 // t[]−>(trueValue).equalNCS then true−>value
 // t[]−>(falseValue).equalNCS then false−>value
 else syntaxError
 if);
 INNER getBoolean
 exit value
 #);
putBoolean:
 (# trueValue:< (# value: ^text do 'true'−>value[]; INNER exit value[] #);

falseValue:< (# value: ^text do 'false'−>value[]; INNER exit value[] #);
value: @boolean

 enter value
 do (if value then
 trueValue−>puttext
 else
 falseValue−>puttext
 if);
 INNER putBoolean
 #);

−−− lib: attributes −−−

getBoolean: keyboard.getBoolean
 (# do INNER getBoolean #);

putBoolean: screen.putBoolean
 (# do INNER putBoolean #);

−−− textLib: attributes −−−

set: (* makes THIS(stream) contain only the character: ch *)
 (# ch: @char
 enter ch
 do INNER set; clear; ch−>put
 #);
setText:
 (* makes THIS(stream) contain only the text contained in 't' *)
 (# t: ^text
 enter t[]
 do INNER setText; clear; t[]−>puttext

13.18 TextUtils Interface 180

 #);
setInt:
 (* makes THIS(stream) contain only the textual representation of
 * the integer 'i'
 *)
 (# i: @integer
 enter i
 do INNER setInt; clear; i−>putint
 #);
setBased:
 (* makes THIS(stream) contain only the textual representation of
 * the number 'value' in base 'base'
 *)
 (# base, value: @integer
 enter (base, value)
 do INNER setBased; clear; (base,value)−>putBased
 #);
setReal:
 (* makes THIS(stream) contain only the textual representation of
 * the real number 'r'
 *)
 (# r: @real
 enter r
 do INNER setReal; clear; r−>putreal
 #);
setBoolean:
 (* makes THIS(stream) contain only the textual representation of
 * the boolean 'value' (i.e. either 'true' og 'false')
 *)
 (# value: @boolean
 enter value
 do INNER setBoolean; clear; value−>putBoolean
 #)

 Basic Libraries − Reference Manual

13.18 TextUtils Interface 181

13.19 Texthash Interface
ORIGIN '~beta/basiclib/betaenv';
LIB_DEF 'texthash' '../lib';
−−− lib:attributes −−−
(* This is a pattern implementing a hash of a text into an integer.
 *
 * Usage:
 * ph: @honeyman;
 * ...
 * do ph.init;
 * ...
 * 'Some text' −> ph.hash −> hashValue
 *
 * This version is a BETA implementation of a hash function found in:
 *
 * C News Source, which contains the following statement:
 *
 * "dbz.c V3.2
 *
 * Copyright 1988 Jon Zeeff (zeeff@b−tech.ann−arbor.mi.us)
 * You can use this code in any manner, as long as you leave my name on it
 * and don't hold me responsible for any problems with it.
 *
 * Hacked on by gdb@ninja.UUCP (David Butler); Sun Jun 5 00:27:08 CDT 1988
 *
 * Various improvments + INCORE by moraes@ai.toronto.edu (Mark Moraes)
 *
 * Major reworking by Henry Spencer as part of the C News project."
 *
 * The following text is the original comment before the hash function:
 *
 * This is a simplified version of the pathalias hashing function.
 * Thanks to Steve Belovin and Peter Honeyman
 *
 * hash a string into a long int. 31 bit crc (from andrew appel).
 * the crc table is computed at run time by crcinit() −− we could
 * precompute, but it takes 1 clock tick on a 750.
 *
 * This fast table calculation works only if POLY is a prime polynomial
 * in the field of integers modulo 2. Since the coefficients of a
 * 32−bit polynomial won't fit in a 32−bit word, the high−order bit is
 * implicit. IT MUST ALSO BE THE CASE that the coefficients of orders
 * 31 down to 25 are zero. Happily, we have candidates, from
 * E. J. Watson, "Primitive Polynomials (Mod 2)", Math. Comp. 16 (1962):
 * x^32 + x^7 + x^5 + x^3 + x^2 + x^1 + x^0
 * x^31 + x^3 + x^0
 *
 * We reverse the bits to get:
 * 111101010000000000000000000000001 but drop the last 1
 * f 5 0 0 0 0 0 0
 * 010010000000000000000000000000001 ditto, for 31−bit crc
 * 4 8 0 0 0 0 0 0
 *)

honeyman: (* BETA VERSION *)
 (# POLY: (# exit 0x48000000 #);

CrcTable: [128]@Integer;

init:
 (# j,sum: @Integer;
 do
 (for i:128 repeat
 0−>sum; 6−>j;

13.19 Texthash Interface 182

 loop:
 (#
 do (if ((i−1) %Band (1 %sll j)) then
 (sum %Bxor (POLY %srl j))−>sum;
 if);
 (if j>0 then j−1−>j; restart loop if);
 #);
 sum−>CrcTable[i];
 for);
 #);

hash: @
 (# t: ^Text; sum: @Integer;
 enter t[]
 do 0−>sum;
 (for i:t.lgth repeat
 (sum %srl 7) %Bxor CrcTable[((sum %Bxor t.T[i]) %Band 0x7f) + 1]
 −>sum;
 for);
 exit sum
 #);
 #)

 Basic Libraries − Reference Manual

13.19 Texthash Interface 183

13.20 Timedate Interface
ORIGIN '~beta/basiclib/betaenv';
BODY 'private/timedatebody';

(* This library defines a 'time' (and thereby a date) and a 'period'
 * concept.
 *
 * The library defines numerous operations on time and period values,
 * and time objects, including operations for comparisons, addition,
 * subtractions, printing and reading times and periods.
 *
 * Given a time, you can ask for the year, day, etc. components of
 * that time, giving the date−related informations of a time.
 *)

−−− lib:attributes −−−
time:
 (# <<SLOT timeLib:attributes>>;

 (* Get and set the individual attributes of the time.
 *
 * These are normalised, so that you can overflow attributes into
 * each other. If you e.g. add 23 hours to a time representing
 * 7 o'clock one day, it becomes 6 o'clock the next day! If you
 * subtract a day from the 1st of a month, you get the last day
 * of the previous month, and so on.
 *)

year: (* set/get the year−component of this(time) *)
 (#
 enter (# value: @integer enter value ... #)
 exit (# value: @integer ... exit value #)
 #);

month: (* set/get the month−component of this(time). Range: [1−12] *)
 (#
 enter (# value: @integer enter value ... #)
 exit (# value: @integer ... exit value #)
 #);

day: (* set/get the day−component of this(time). Range: [1−31] *)
 (#
 enter (# value: @integer enter value ... #)
 exit (# value: @integer ... exit value #)
 #);

hour: (* set/get the hour−component of this(time) *)
 (#
 enter (# value: @integer enter value ... #)
 exit (# value: @integer ... exit value #)
 #);

minute: (* set/get the minute−component of this(time) *)
 (#
 enter (# value: @integer enter value ... #)
 exit (# value: @integer ... exit value #)
 #);

sec: (* set/get the sec−component of this(time) *)
 (#
 enter (# value: @integer enter value ... #)
 exit (# value: @integer ... exit value #)
 #);

weekday:
 (* Returns the weekday of this(time) as an integer.
 * Monday=1, Tuesday=2, etc.Sunday=7
 *)
 (#

13.20 Timedate Interface 184

 exit (# value: @integer ... exit value #)
 #);

dayOfYear: integerValue
 (* returns the day of yeat of this(time) *)
 (# doy: @...
 do doy
 #);

weekOfYear: integerValue
 (* Returns the number of the week of this(time). Range: [1−53].
 * previousYear is invoked if the week is the last week
 * of the previous year
 * followingYear is invoked if the week is the first week
 * of the following year
 *)
 (# previousYear:< notification;
 followingYear:< notification;
 woy: @...
 do woy
 #);

leapYear: booleanValue
 (* Returns true, iff this(time).year is a leap year *)
 (# ly: @...
 do ly
 #);

timePredicate: booleanValue(# other: @time enter other do INNER #);

sameYear:
 (* returns true, iff this(time).year = other.year *)
 timePredicate(# ... #);

sameMonth:
 (* returns true, if sameYear and this(time).month = other.month *)
 timePredicate(# ... #);

sameDay:
 (* returns true, if sameMonth and this(time).day = other.day *)
 timePredicate(# ... #);

sameHour:
 (* returns true, if sameDay and this(time).hour = other.hour *)
 timePredicate(# ... #);

sameMinute:
 (* returns true, if sameHour and this(time).minute = other.minute *)
 timePredicate(# ... #);

sameSec:
 (* returns true, if sameMinute and this(time).sec = other.sec *)
 timePredicate(# ... #);

equal:
 (* returns true, iff this(time) = other *)
 sameSec(# #);

before: (* returns true, iff this(time) < other *)
 timePredicate(# ... #);

after: (* returns true, iff this(time) > other *)
 timePredicate(# ... #);

between: booleanValue
 (* returns true, iff d1 <= this(time) <= d2 *)
 (# d1,d2: @time
 enter (d1,d2)
 ...
 #);

add: (* moves this(time) forward in time by period 'p' *)
 (# p: @period
 enter p
 ...

 Basic Libraries − Reference Manual

13.20 Timedate Interface 185

 #);

sub: (* moves this(time) backwards in time by period 'p' *)
 (# p: @period
 enter p
 ...
 #);

private: @...;

 enter (# year, month, day, hour, minute, sec: @integer;
 enter (year, month, day, hour, minute, sec)
 ... #)
 exit (# year, month, day, hour, minute, sec: @integer;
 ...
 exit (year, month, day, hour, minute, sec)
 #)
 #);

timeNow: (* get the time right now! *)
 (# t: @time;
 ...
 exit t
 #);

timeNowRef:
 (* as timeNow, except that it returns a time object reference *)
 (# t: ^time
 do &time[]−>t[]; timeNow−>t;
 exit t[]
 #);

timeMin: (* Mon Nov 24 12:00:00 −4713 *)
 (# t: @time;
 ...
 exit t
 #);

timeMax: (* in principle infinity *)
 (# t: @time;
 ...
 exit t
 #);

timeRange: (* the range within which time objects will be normalized *)
 (# exit (timeMin, timeMax) #);

timeDifference:
 (* calculates the time difference (period) between the two times t1 and t2 *)
 (# t1, t2: @time; d: @period
 enter (t1,t2)
 ...
 exit d
 #);

period:
 (* Periods are used to represent a period of time.
 *
 * Periods are measured in days, hours, minutes and seconds, and is
 * as such independent of months and years, since these measurements
 * are not time invariant (the length of a year varies, and the same
 * applies for months (28, 29, 30 or 31 days).
 *
 * Periods can be used to represent the time difference between two
 * times, e.g. between Nov 28 22:45:15 1996 and Dec 3 23:15:30,
 * which is 05#00:30:15.

 Basic Libraries − Reference Manual

13.20 Timedate Interface 186

 *
 * Periods are also used to represent a duration, e.g. the duration
 * of a standard lecture, 00#00:45:00.
 *
 * You can add and subtract periods using pAdd and pSub
 * (e.g. '((0,01,30,00),p1)−>pAdd−>p2' adds one hour and 30 minutes
 * to the period 'p1' and returns the result in 'p2').
 *
 * And you can measure the time difference between two times 't1'
 * and 't2' by '(t1,t2)−>timeDifference−>p'. Finally, you can move
 * a time 't' forward or backwards in time by a given period 'p' by
 * 'p−>t.add' and' p−>t.sub'.
 *)
 (# <<SLOT periodLib: attributes>>;

days, hours, minutes, seconds: @integer;
 enter (days, hours, minutes, seconds)
 exit (days, hours, minutes, seconds)
 #);

pAdd: (* adds two periods and returns the result *)
 (# p1, p2, p3: @period
 enter (p1, p2)
 do p1.days+p2.days−>p3.days;
 p1.hours+p2.hours−>p3.hours;
 p1.minutes+p2.minutes−>p3.minutes;
 p1.seconds+p2.seconds−>p3.seconds;
 exit p3
 #);

pSub: (* subtracts two periods and returns the result *)
 (# p1, p2, p3: @period
 enter (p1, p2)
 do p1.days−p2.days−>p3.days;
 p1.hours−p2.hours−>p3.hours;
 p1.minutes−p2.minutes−>p3.minutes;
 p1.seconds−p2.seconds−>p3.seconds;
 exit p3
 #);

(* Input/Output utilities:
 *
 * Formats:
 * Time: Www Mmm Dd Yyyy Hh:Mm:Ss
 * Date: Www Mmm Dd Yyyy
 * Clock: Hh:Mm:Ss
 * Period: Dd#Hh:Mm:Ss
 *
 * where Www is the weekday (Mon, Tue, etc.)
 * Mmm is the month (Jan, Feb, etc.)
 * Dd is the date
 * Hh is hours
 * Mm is minutes
 * Ss is seconds
 * Yyyy is the year
 *)

putTime: (* prints a time value on screen *)
 screen.putTime(# do INNER #);
getTime: (* reads a time value from the keyboard *)
 keyboard.getTime(# do INNER #);

putDate: (* prints the date portion of a time value on screen *)
 screen.putDate(# do INNER #);
getDate:
 (* reads a date value from the keyboard. The clock part of the
 * time value will be 00:00:00

 Basic Libraries − Reference Manual

13.20 Timedate Interface 187

 *)
 keyboard.getDate(# do INNER #);

putClock: (* prints the clock portion of a time value on screen *)
 screen.putClock(# do INNER #);
getClock:
 (* reads a clock value from the keyboard. The date part of the
 * time value will be Jan 01, 0000.
 *)
 keyboard.getClock(# do INNER #);

putPeriod: (* prints a period value on screen *)
 screen.putPeriod(# #);
getPeriod: (* reads a period value from the keyboard *)
 keyboard.getPeriod(# #);

−−− streamLib:attributes −−−

putTime: (* prints a time value on this(stream) *)
 (# t: @time;
 enter t
 ...
 #);
getTime: (* reads a time value from this(stream) *)
 (# t: @time;
 ...
 exit t
 #);

putDate: (* prints the date portion of a time value on screen *)
 (# t: @time;
 enter t
 ...
 #);
getDate:
 (* reads a date value from the keyboard. The clock part of the
 * time value will be 00:00:00
 *)
 (# t: @time;
 ...
 exit t
 #);

putClock: (* prints the clock portion of a time value on screen *)
 (# t: @time;
 enter t
 ...
 #);
getClock:
 (* reads a clock value from the keyboard. The date part
 * of the time value will be Jan 01, 0000
 *)
 (# t: @time;
 ...
 exit t
 #);

putPeriod: (* prints a period value on this(stream) *)
 (# p: @period
 enter p
 ...
 #);
getPeriod: (* prints a period value on this(stream) *)
 (# p: @period
 ...
 exit p

 Basic Libraries − Reference Manual

13.20 Timedate Interface 188

 #)

 Basic Libraries − Reference Manual

13.20 Timedate Interface 189

13.21 Timehandler Interface
ORIGIN 'basicsystemenv';
LIB_DEF 'timehandler' '../lib';
BODY 'private/timehandlerbody';
(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics, 1984−96
 * All rights reserved.
 *
 *)
−−− systemLib:attributes −−−
timeHandler:
 (* timeHandler handles the setting and unsetting of timers.
 *
 * register takes a time to wait and an object reference. It returns
 * a unique id identifying the registration. If the registration is
 * not unregistered before the timer goes off, the object will be
 * executed. Due to non−preemptive multitasking, it can only be
 * guaranteed that at least time seconds will elapse before obj is
 * executed.
 *
 * unregister takes a registration id and unregisters the
 * registration. If this happens before the corresponding timer
 * goes off, the registered object will not be executed.
 *
 * init should be called before using the timeHandler.
 *)
 (# register:
 (# obj: ^Object; time: @Integer;
 id: @Integer;
 enter (obj[],time)
 ...
 exit id
 #);

unregister:
 (# id: @Integer;
 enter id
 ...
 #);

init:
 (#
 ...
 #);

timeHandlerPrivate: @...;
 #)

13.21 Timehandler Interface 190

13.22 Wtext Interface
ORIGIN 'betaenv';
BODY 'private/wtextbody'
(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics, 1997−98
 * All rights reserved.
 *
 * This fragment implements a UniCode stream and text concept
 *)

−−−lib:attributes−−−
wStream:
 (# <<SLOT wStreamLib: attributes>>;

length:< integerValue (* returns the length of THIS(wStream) *)
 (#
 do −1−>value; INNER length
 #);

position: (* current position of THIS(wStream) *)
 (#
 enter setPos
 exit getPos
 #);

eos:< (* returns 'true' if THIS(wStream) is at end−of−wStream *)
 booleanValue;

reset: (* sets 'position' to zero *)
 (#
 do 0−>setPos
 exit THIS(wStream)[]
 #);

peek:< (* looks at the next character of THIS(wStream) *)
 (# ch: @wchar
 do INNER peek
 exit ch
 #);

get:< (* reads a character from THIS(wStream) *)
 (# ch: @wchar
 do INNER get
 exit ch
 #);

getNonBlank:
 (* Reads first non−whitespace character from THIS(wStream).
 * If called at end−of−wStream the character 'ascii.fs' is
 * returned
 *)
 (# ch: @wchar;
 skipblanks: @scanWhiteSpace;
 testEOS: @EOS;
 getCh: @get;
 ...
 exit ch
 #);

getint: integerValue
 (* Reads an integer: skips whitespace characters and
 * returns the following digits.
 *
 * See numberio.bet for more numerical output operations
 *)
 (# syntaxError:< wStreamException
 (#
 do 'getint: syntax error − looking at: "'−>msg.append;
 peek−>msg.put; '"'−>msg.putline; INNER syntaxError
 #);

13.22 Wtext Interface 191

 geti: @...
 do geti; INNER getint
 #);

getAtom:<
 (* Returns the next atom (i.e. sequence of non−white
 * characters − skipping leading blanks)
 *)
 (# txt: ^wtext;
 do &wText[]−>txt[]; INNER getAtom;
 exit txt[]
 #);

getline:<
 (* Reads a sequence of characters until nl−character
 * appears and returns the characters read.
 *)
 (# txt: ^wText;
 do &wText[]−>txt[]; INNER getline
 exit txt[]
 #);

asInt:
 (* converts THIS(wText) to an integer value, ignoring
 * leading and trailing whitespace. See numberio.bet for
 * more numerical conversion operations.
 *)
 (# i: @integer;
 syntaxError:< wStreamException
 (# peekCh: @wchar
 enter peekCh
 do 'asInt: syntax error − looking at: "'−>msg.append;
 peekCh−>msg.put; '"'−>msg.put;
 INNER syntaxError
 #)
 ...
 exit i
 #);

put:< (* writes a character to THIS(wStream) *)
 (# ch: @wchar
 enter ch
 do INNER put
 exit THIS(wStream)[]
 #);

newline: (* writes the nl−character *)
 (#
 do ascii.newline−>put
 exit THIS(wStream)[]
 #);

putint:
 (* Writes an integer to THIS(wStream); The format may be
 * controlled by the 'signed', 'blankSign', 'width',
 * 'adjustLeft' and 'zeroPadding' variable attributes.
 * 'width' is extended if it is too small. Examples:
 * '10−>putint' yields: '10'; '10*pi−>putint(# do 10−>width;
 * true−>adjustLeft #)' yields: '10 '; and '10−>putint(# do
 * 10−>width; true−>zeroPadding #)' yields: '0000000010'.
 *
 * See numberio.bet for more numerical output operations
 *)
 (# n: @integer;
 signed: @boolean
 (* If integer is positive, a '+' will always be
 * displayed
 *);
 blankSign: @boolean
 (* If integer is positive, a ' ' space is displayed as
 * the sign. Ignored if 'signed=true'
 *);

 Basic Libraries − Reference Manual

13.22 Wtext Interface 192

 width: @integer
 (* Minimum width *);
 adjustLeft: @boolean
 (* Specifies if the number is to be aligned left or
 * right, if padding of spaces is necessary to fill up
 * the specified width.
 *);
 zeroPadding: @boolean
 (* width is padded with leading zero instead of
 * spaces. Ignored if 'adjustLeft=true'
 *);
 format:< (# do INNER format #);
 puti: @...
 enter n
 do 1−>width; format; INNER putint; puti
 exit THIS(wStream)[]
 #);

putText:< (* Writes a wText to THIS(wStream). *)
 (# txt: ^wText
 enter txt[]
 do (if txt[]<>NONE then INNER puttext if)
 exit THIS(wStream)[]
 #);

putline:
 (* 'puttext' followed by 'newline' *)
 (# T: ^wText; putT: @puttext; newL: @newline
 enter T[]
 do INNER putline; T[]−>putT; newL
 exit THIS(wStream)[]
 #);

scan:
 (* Scan chars from current position in THIS(wStream) while
 * '(ch−>while)=true'; perform INNER for each char being
 * scanned
 *)
 (# while:<
 (# ch: @wchar; value: @boolean
 enter ch
 do true−>value; INNER while
 exit value
 #);
 ch: @wchar;
 whilecondition: @while;
 testEOS: @EOS;
 getPeek: @peek;
 getCh: @get;
 ...
 exit THIS(wStream)[]
 #);

scanWhiteSpace: scan
 (* Scan whitespace characters *)
 (# while::< (# do ch−>ascii.isWhiteSpace−>value #)
 do INNER scanWhiteSpace
 exit THIS(wStream)[]
 #);

scanAtom:
 (* Scan until first non−whitespace char. Scan the next
 * sequence of non−whitespace chars. Stop at first
 * whitespace char. For each non−whitespace char an INNER
 * is performed. Usage: 'scanAtom(# do ch−><destination> #)'
 *)
 (# ch: @wchar;
 ...
 exit THIS(wStream)[]
 #);

scanToNl:

 Basic Libraries − Reference Manual

13.22 Wtext Interface 193

 (* Scan all chars in current line including newline char *)
 (# ch: @wchar; getCh: @get;
 ...
 exit THIS(wStream)[]
 #);

wStreamException: exception
 (# do INNER wStreamException #);

EOSerror:< wStreamException
 (* Raised from 'get' and 'peek' when attempted to read past
 * the end of the wStream.
 *)
 (#
 do 'Attempt to read past end−of−wStream'−>msg.putline;
 INNER EOSerror
 #);

otherError:< wStreamException
 (* Raised when some other kind of wStream error apart from
 * the one mentioned above occurs.
 *);

getPos:< (* returns current position of THIS(wStream) *)
 integerValue;

setPos:< (* sets current position in THIS(wStream) to 'p' *)
 (# p: @integer
 enter p
 do INNER setPos
 exit THIS(wStream)[]
 #)
 #); (* pattern wStream *)

(***** wText pattern **)
wText: wStream
 (* A wText is a sequence of characters. Let 'T: @wText'. The
 * range of 'T' is '[1,T.length]'. A wText can be initialized by
 * executing 'T.clear' or by assigning it another (initialized)
 * wText. A wText−constant has the form 'foo'. The 'wText' pattern
 * is primarily intended for small wTexts but there is no upper
 * limit in the size. However, most of the operations becomes
 * less efficient with larger wTexts.
 *)
 (# <<SLOT wTextLib: attributes>>;

length::< (* Returns the length of THIS(wText) *)
 (# do lgth−>value; INNER length #);

eos::<
 (# ... #);

empty:
 (# exit (lgth = 0) #);

clear: (* Sets the length and position of THIS(wText) to zero *)
 (#
 do 0−>pos−>lgth
 exit THIS(wText)[]
 #);

equal: booleanValue
 (* Tests if THIS(wText) is equal to the entered wText. If
 * 'NCS' is further bound to 'trueObject', the comparison
 * will be done Non Case Sensitive.
 *)
 (# txt: ^wText;
 NCS:< booleanObject
 enter txt[]
 ...
 #);

equalNCS: equal
 (* As 'equal', except the the comparison will be done Non
 * Case Sensitive
 *)
 (# NCS:: trueObject #);

 Basic Libraries − Reference Manual

13.22 Wtext Interface 194

less: booleanValue
 (* Tests whether the entered wText 'T1[1: length]' is less
 * than 'THIS(wText)[1: T1.length]'. The lexicographical
 * ordering is used.
 *)
 (# T1: ^wText
 enter T1[]
 ...
 #);

greater: booleanValue
 (* Tests whether the entered wText 'T1[1: length]' is
 * greater than 'THIS(wText)[1: T1.length]'. The
 * lexicographical ordering is used.
 *)
 (# T1: ^wText
 enter T1[]
 ...
 #);

peek::<
 (* Returns the character at current position; does not
 * update 'position'
 *)
 (# ... #);

get::<
 (* Returns the character at current position; increments
 * 'position'
 *)
 (# ... #);

inxGet: wcharValue
 (* Returns the character at position 'i' *)
 (# i: @integer;
 iget: @...
 enter i
 do iget
 #);

getAtom::<
 (* Returns the next atom (i.e. sequence of non−white
 * characters − skipping leading blanks)
 *)
 (# ... #);

getline::<
 (* Reads a sequence of characters until nl−character
 * appears and returns the characters read.
 *)
 (# ... #);

put::<
 (* writes the character 'ch' at current position in
 * THIS(wText); increments 'position'
 *)
 (# ... #);

inxPut:
 (* Replaces the character at position 'i' *)
 (# ch: @wchar;
 i: @integer;
 iput: @...
 enter (ch,i)
 do iput
 exit THIS(wText)[]
 #);

puttext::<
 (# ... #);

append:
 (* Appends a wText to THIS(wText); does not change 'position'
 *)
 (# T1: ^wText
 enter T1[]

 Basic Libraries − Reference Manual

13.22 Wtext Interface 195

 ...
 exit THIS(wText)[]
 #);

prepend:
 (* Inserts the wText in 'T1' in front of THIS(wText); updates
 * current position to 'position+T1.length' if 'position>0'
 *)
 (# T1: ^wText
 enter T1[]
 ...
 exit THIS(wText)[]
 #);

insert:
 (* Inserts a wText before the character at position 'inx'.
 * Note: inx<1 means inx=1; inx>length means inx=length+1.
 * If 'position>=inx' then 'position+T1.length−>position'.
 *)
 (# T1: ^wText;
 inx: @integer
 enter (T1[],inx)
 ...
 exit THIS(wText)[]
 #);

delete:
 (* Deletes THIS(wText)[i: j]; updates current position:
 * i<=position<j => i−1−>position
 * j<=position => position−(j−i+1)−>position
 *)
 (# i,j: @integer;
 deleteT: @...
 enter (i,j)
 do deleteT
 exit THIS(wText)[]
 #);

makeLC: (* Converts all characters to lower case *)
 (# ...
 exit THIS(wText)[]
 #);

makeUC:
 (* Converts all characters to upper case *)
 (# ...
 exit THIS(wText)[]
 #);

sub:
 (* Returns a copy of THIS(wText)[i:j]. If 'i<1', 'i' is
 * adjusted to 1. If 'j>length', 'j' is adjusted to
 * 'length'. If (after adjustment) 'i>j', an empty wText is
 * returned.
 *)
 (# i,j: @integer; T1: ^wText;
 subI: @...
 enter (i,j)
 do subI
 exit T1[]
 #);

copy:
 (# T1: ^wText;
 copyI: @...
 do copyI
 exit T1[]
 #);

scanAll:
 (* Scans all the elements in THIS(wText). For 'ch' in '[1:
 * THIS(wText).length]' do INNER
 *)
 (# ch: @wchar

 Basic Libraries − Reference Manual

13.22 Wtext Interface 196

 do (for i: lgth repeat T[i]−>ch; INNER scanAll for)
 exit THIS(wText)[]
 #);

find:
 (* find all occurrences of the character 'ch' in
 * THIS(wText), executing INNER for each occurrence found,
 * beginning at 'THIS(wText).position'. 'inx' will contain
 * the position of each 'ch' in THIS(wText). If 'NCS' is
 * further bound to 'trueObject', the comparison will be
 * done Non Case Sensitive. If 'from' is further bound, the
 * search will begin at position 'from'.
 *)
 (# ch: @wchar;
 inx: @integer;
 NCS:< booleanObject;
 from:< integerObject(# do pos−>value; INNER from #)
 enter ch
 ...
 exit THIS(wText)[]
 #);

findAll: find
 (* As 'find', except that the entire wText will be searched.
 * Replaces 'findCh' in previous versions of betaenv (v1.4
 * and earlier)
 *)
 (# from:: (# do 0−>value #)
 do INNER findAll
 #);

findwText:
 (* find all occurrences of the 'txt' in THIS(wText),
 * executing INNER for each occurrence found, beginning at
 * 'THIS(wText).position'. 'inx' will contain the position
 * of the first character of each occurrence found
 * THIS(wText). If 'NCS' is further bound to 'trueObject',
 * the comparison will be done Non Case Sensitive. If
 * 'from' is further bound, the search will begin at
 * position 'from'.
 *)
 (# txt: ^wText;
 inx: @integer;
 NCS:< booleanObject;
 from:< integerObject(# do pos−>value; INNER from #)
 enter txt[]
 ...
 exit THIS(wText)[]
 #);

findwTextAll: findwText
 (* As 'findwText', except that the entire wText will be
 * searched
 *)
 (# from:: (# do 0−>value #)
 do INNER findwTextAll
 #);

extend:
 (* Extend THIS(wText) with 'L' (undefined) chars. Notice
 * that it is only the representation of the THIS(wText),
 * that is extended, the 'length' and 'position' are not
 * changed.
 *)
 (# L: @integer
 enter L do L−>T.extend
 exit THIS(wText)[]
 #);

indexError:< wStreamException
 (* Raised from 'Check' when the index goes outside the
 * range of the wText. Message: "Index error in wText!".

 Basic Libraries − Reference Manual

13.22 Wtext Interface 197

 *)
 (# inx: @integer
 enter inx
 ...
 #);

EOSerror::<
 (* Raised from 'get' and 'peek' when the end of the wStream is
 * passed.
 *)
 (# ... #);

otherError::<
 (* Raised when an error other than the Index−/EOSerror
 * occurs.
 *)
 (# ... #);

setPos::<
 (# ... #);

getPos::<
 (# do pos−>value; INNER getPos #);
 (* Private attributes: !!OBS!! The 3 attributes 'T', 'lgth'
 * and 'pos' declared below MUST be the first data items
 * declared in 'wStream' and 'wText' since their addresses are
 * hardcoded into the compiler.
 *)

T: [16] @wchar;
lgth,pos: (* 16 is default size *) @integer;
setT: (# enter T do T.range−>lgth−>pos #);
setAscii:

 (# t: ^ text
 enter T[]
 do T.scanAll(#do ch −> put #)
 #);

asAscii:
 (# T: @text
 do scanAll(#do ch −> T.put #)
 exit T[]
 #)
 enter setT
 exit T[1: lgth]
 #) (* Pattern wText *);

ascii2wText:
 (# T1: ^text; T2: @wText
 enter T1[]
 do T1.scanAll(#do ch −> T2.put #);
 exit T2[]
 #);
−−−textLib:attributes−−−
aswText:
 (# UT: @wText
 do scanAll(#do ch −> UT.put #)
 exit UT[]
 #)

 Basic Libraries − Reference Manual

13.22 Wtext Interface 198

Index
The entries in the alphabetic index consists of selected words and symbols from the body files of
this manual − these are in bold font − as well as the identifiers defined in the public interfaces of
the libraries − set in regular font.
In the manual, the entries, which can be found in the index are typeset like this. This can help
localizing the identifier, when the link from the index if followed − especially in the case where the
browser does not scroll the line to the top, e.g. because there is less than a page of text left.
In the small table of letters and symbols below, each entry links directly to the section of the index
containing entries starting with the corresponding letter or symbol.

< _ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

<

<programname>.dump

_

_new [2]
_notify

_state
_struc [2]

A

a [2] [3] [4] [5] [6]
aa
abort
abs
AccessError
ack
acos

res
x

add
addr [2]
adjustLeft [2] [3]
advnst

k
after
alt [2] [3]

Anonymous pattern
abs

n
argumentHandler
argumentHandlerType

getArgByNumber
noOfArguments

arguments
argNo
theArg

int32u
int64
int64u
int8
int8u
integer
integerObject
integerValue

value
keyboard
loop

until
untilcondition
while
whilecondition

machine_type
T

max
a
b

MaxInt
MaxInt16
MaxInt16u
MaxInt32
MaxInt32u
MaxInt8

scanToNl
ch
getCh
missing_newline

scanWhiteSpace
while

setPos
p

streamException
Structure
text

1
append

T1
clear
copy

copyI
T1

delete
deleteT
i
j

empty
eos
EOSerror
equal

Index 199

ArgVector
ascii

ack
bel
bs
can
capA
cr
dc1
dc2
dc3
dc4
del
dle
em
enq
eot
esc
etb
etx
fs
gs
ht
init
isDigit
isLetter
isLower
isSpace
isUpper
isWhiteSpace
lowCase
nak
newline
nl
np
nul
private
rs
si
smalla
so
soh
sp
stx
sub
syn
testChar

ch
upCase
us
vt

betaenvPrivate
boolean
booleanObject
booleanValue

MaxInt8u
MaxReal
min

a
b

MinInt
MinInt16
MinInt16u
MinInt32
MinInt32u
MinInt8
MinInt8u
MinReal
newline

newL
noOfArguments
normal
notification
object

_new
_state
_struc

objectPool
get
private
put
scan
strucGet
strucScan

proc
procname

program
put

ch
putC

putint
i
putI

putline
putL
t

puttext
putT
t

qua
as
quaError
R
thisObj

rawArgumentHandler
getArgByNumber
noOfArguments

real
real32
realObject

NCS
txt

equalNCS
NCS

extend
L

find
ch
from
inx
NCS

findAll
from

findText
from
inx
NCS
txt

findTextAll
from

get
getAtom
getline
getPos
greater

T1
indexError

inx
insert

inx
T1

inxGet
i
iget

inxPut
ch
i
iput

length
less

T1
lgth
makeLC
makeUC
otherError
peek
pos
prepend

T1
put
puttext
scanAll

ch
for

setPos

 Basic Libraries − Reference Manual

Index 200

value
char
charObject
charValue

value
class
COM
cons

procname
cStruct

BoundsExceeded
inx

byteSize
chk

inx
R

cycle
data
doGC
dumpStack
errorName
exception

_notify
continue
error
msg
propagate
termCode

expandWildcardsArgumentHandler
getArgByNumber
noOfArguments
private

External
callC
callPascal
callStd
cExternalEntry
pascal
pascalExternalEntry
pascalTrap
stdExternalEntry

ExternalClass
classname

failure
failureTrace
false
falseObject
falseValue
forTo

high
inx
low

get
ch
getC

realValue
value

repetition
extend
new
range

scanAtom
scanA

screen
shortInt
state
static_cons

procname
static_proc

procname
stop

T
termCode

stream
asInt

i
syntaxError

eos
EOSerror
get

ch
getAtom

txt
getint

geti
syntaxError

getline
missing_newline
txt

getNonBlank
ch
getCh
skipblanks
testEOS

getPos
length
newline
otherError
peek

ch
position
put

ch
putint

adjustLeft
blankSign
format
n
puti
signed

setT
sub

i
j
subI
T1

T
textObject
textValue

value
theProgram
theScheduler
throw

current
private

true
trueObject
trueValue
try

finally
handler
name
private

unknown
original

wchar
wcharObject
wcharValue

value
append [2] [3] [4]
argNo
argumentHandler
argumentHandlerType
arguments [2]
ArgVector
as
asAscii
asBased

b
i

Ascii
ascii
ascii2wText

T1
T2

asin
res
x

asInt [2]
asInteger

i
asNumber

baseError
syntaxError
valueError

 Basic Libraries − Reference Manual

Index 201

getAtom
getA
t

getint
getI
i

getline
getL
t

getNonBlank
ch
getNB

Holder
infReal
init
int16
int16u
int32

width
zeroPadding

putline
newL
putT
T

puttext
txt

reset
scan

ch
getCh
getPeek
testEOS
while
whilecondition

scanAtom
ch

asRadix
radix
value

asReal
r

aswText
UT

atan
res
x

atan2
res
x
y

attach
atZero
av [2]

B

b [2] [3] [4] [5] [6] [7] [8]
base [2]
based integers
basedValue [2]
basedValuePtn
baseError [2] [3]
baseWidth
baseZeroPadding
BasicScheduler
basicsystemenv

BasicSystemEnv
bb
before
bel
betaenv
betaenvPrivate
between
binary [2]
binfile

binary

blankSign [2] [3]
boolean [2]
booleanObject [2]
booleanValue [2]
BoundsExceeded
bs
Byte [2]
byte [2]
byteSize [2]

C

C
c [2]
call backs
callC
caller
callPascal
callStd
can
candidate
capA
cb
cbf
ce
ceil

res
x

cExternalEntry
ch [2] [3] [4] [5] [6] [7] [8] [9]

[10] [11] [12] [13] [14] [15] [16]
char [2]

COM
compilation_error
conc [2] [3]
concPriv
concurrency [2]
Condition
cons
continue [2] [3]
copy [2] [3]
copyI
cos

res
x

cosh
res
x

cr
CrcTable
createDir
createFile

s
cyclicQueue

append
elm

delete
elm

first
freeList
getFirst

elm
insert

new
s

insertBefore
new
old

onDel
onDelete
onIns
onInsert

 Basic Libraries − Reference Manual

B 202

charObject [2]
charValue [2]
check
chk
class
classname
clear [2] [3]
close

cStruct [2] [3] [4]
CStructField
current [2]
cycle [2]
cyclicElm

due
next
prev

prepend
elm

remove
elm
s

scan
current

size

D

d [2] [3]
data
day
dayOfYear
days
dc1
dc2
dc3
dc4
deadLocked
dec
del
delete [2] [3] [4] [5] [6]
deleteDir
deleteFile
deleteT
desc
df [2]
dfd [2]
dfn [2]
directory [2] [3]

createDir
createFile
delete
deleteDir
deleteFile
DirEntryException
DirException
DirScanException
DirSearchException
empty
entry
EntryDesc
EntryExistException
findEntry

candidate
error

found
foundDesc
foundDir
foundFile
foundFullPath
notfound
select

error
selectImpl
whenDir
whenFile
whenOther

name
noOfEntries
NoSuchException
NotFoundException
private
scanEntries

error
found
foundDesc
foundDir
foundFile
foundFullPath
longest
select

error
selectImpl
whenDir
whenFile
whenOther

touch
DirEntryException
DirException
DirScanException
DirSearchException
diskEntry

DiskEntry
DiskEntryException
DiskEntryExistsException
DiskEntryModtimeException
DiskEntryRenameException
DiskEntryTouchException
exists
isDirectory
isFile
modtime
path
pathDesc

get
head
name
nameDesc

extension
get
prefix
suffix

set
private
readable
rename
size
touch
writeable

DiskEntryException
DiskEntryExistsException
DiskEntryModtimeException
DiskEntryRenameException
DiskEntryTouchException
dle
doGC
DoubleLong
due
dumpStack

E

e [2] [3]
elementSize
elm [2] [3] [4] [5]

esc
etb
etx

GetShort
GetSignedShort
Long

 Basic Libraries − Reference Manual

D 203

em
empty [2] [3] [4]
end
enq
entry
Entry
EntryDesc [2]
EntryExistException
eos [2] [3]
Eos
eos [2]
EOSerror [2] [3] [4]
EOSError
EOSerror [2]
eot
equal [2] [3] [4]
equalNCS [2] [3]
error [2] [3] [4] [5]
errorName

exception [2]
exists
exp

res
x

exp [2]
expandWildcardsArgumentHandler
extend [2] [3] [4] [5]
extension
external [2] [3]
External
ExternalClass
externalRecord
ExternalRecord [2]

Byte
DoubleLong
ExternalRecordField
GetByte
GetLong

ptr
PutByte
PutLong
PutShort
Short
SignedShort

ExternalRecordField
ExternalRepetition

elementSize
extend
free
init
inxCopy
inxGet
inxPut
new
range

extra [2] [3] [4] [5] [6] [7]

F

f [2] [3]
fabs

res
x

failure
failureTrace
false [2]
falseObject [2]
falseText
falseValue [2] [3]
file [2] [3]
File

AccessError
binary
close
delete
Entry
EntryDesc
Eos
EOSerror
FileException
FileExistsError
flush
Get
GetAtom
GetLine
GetPos
Length
name
NoSpaceError
NoSuchFileError
openAppend

openWrite
OtherError
Peek
private
Put
PutText
ReadError
SetPos
touch
WriteError

FileException
FileExistsError
fileRep
FileRep

R
Restore
Save
top

finally
find [2] [3]
findAll [2] [3]
findEntry
findText [2]
findTextAll [2]
findwText
findwTextAll
first
floor

res
x

flush
fmax

b
fmod

f
x
y

for
fork [2]
format [2] [3] [4] [5] [6]
formatio
formatStr
formatter

formatStr
illegalFormat
inputError
match
missingField
missingMarker
private
scanForMarker

forTo [2]
found [2]
foundDesc [2]
foundDir [2]
foundFile [2]
foundFullPath [2]
free
freeCBF

cbf
freeList
from [2] [3] [4]
FromBeginning
FromCurrent

 Basic Libraries − Reference Manual

F 204

OpenException
openRead
openReadAppend
openReadWrite

a
b

fmin
a

FromEnd
fs

G

g [2] [3]
genbet

aa
bb
random

genchi
df
random

genexp
av
random

genf
dfd
dfn
random

gengam
a
r
random

gennch
df
random
xnonc

gennf
dfd
dfn
random
xnonc

gennor
av
random
sd

genunf
high
low
random

get [2] [3] [4]
Get
get [2] [3] [4] [5]
getA
getArgByNumber [2] [3]
getAtom [2] [3] [4]
GetAtom
getAtom [2]
getB
getBased [2]

b

getCharRep
extra
num
R

getClock [2]
t

getDate [2]
t

getDouble
i

getFirst
getFormat [2] [3]

b
c
d
e
f
g
i
marker
match
n
o
precision
r
s
uB
uE
uG
uR
uX
width
x

getH
getHex [2]

getH
noNumberError
x

getI
geti
getint [2] [3]
getInt16Rep

extra
num
R

getInt16uRep
extra

getL
getLine
getline [2] [3]
GetLine
getline [2]
getLong
GetLong

i
GetLong
getn
getNB
getNonBlank [2] [3]
getNumber [2] [3]

basedValue
basedValuePtn
baseError
EOSError
getn
integerValue
integerValuePtn
overflow
realValue
realValuePtn
syntaxError
underflow
valueError

getO
getOctal [2]

getO
noNumberError
x

getPeek
getPeriod [2]

p
getpos
getPos [2]
GetPos
getPos [2]
getr
getRadix [2]

getr
radix
radixError
value

getReal [2]
r
realValue

 Basic Libraries − Reference Manual

G 205

basedValue
i

getBinary [2]
getB
noNumberError
x

getBoolean [2] [3]
falseValue
syntaxError
t
trueValue
value

getByte
GetByte

i
GetByte
getBytes

addr
num

getC
getCh [2] [3]

num
R

getInt32Rep
extra
num
R

getInt32uRep
extra
num
R

getInt8Rep
extra
num
R

getInt8uRep
extra
num
R

getInteger [2]
i
integerValue

getRegisterValue
getsd

iseed1
iseed2

getset
getShort
GetShort

i
GetShort
GetSignedShort [2]
getSystemEnv

systemEnvType
theSystemEnv

getTime [2]
t

greater [2] [3]
gs
gscgn

g
getset

guienvsystemenv

H

handler
hash
head
high [2] [3] [4] [5]
Holder

honeyman [2]
CrcTable
hash
init
POLY

hour
hours
ht

I

i [2] [3] [4] [5] [6] [7] [8] [9]
[10] [11] [12] [13] [14] [15] [16] [17] [18] [19]
[20] [21] [22]

i1 [2]
i2 [2]
iget

ch
iget
ignbin

n
p
random

ignlgi
random

ignnbn
n
p
random

ignpoi
mu
random

ignuin

random
illegalFormat
illegalRangeError
indexError [2] [3]
infReal
init [2] [3] [4] [5] [6] [7] [8]
initBeforeScheduler
initgn

isdtyp
input and output
input/output
inputError
insert [2] [3] [4]
insertBefore
int16
int16u
int32
int32u
int64
int64u
int8
int8u

integerValue [2] [3] [4]
integerValuePtn
ints2real

i1
i2
r

inx [2] [3] [4] [5] [6] [7]
inxCopy
inxGet [2] [3] [4]
inxPut [2] [3] [4]
ipPtr
iput
isDigit
isDirectory
isdtyp
iseed1 [2] [3]
iseed2 [2] [3]
isFile
isLetter
isLower
isSpace
isUpper

 Basic Libraries − Reference Manual

H 206

high
low

integer [2] [3]
integerObject [2]

isWhiteSpace

J

j [2]

K

k keyboard [2] kill

L

L
lc
ldexp

exp
res
x

leapYear
length [2] [3]
Length
length [2]

less [2] [3]
lgth [2] [3]
lib slot
limit
ln10
ln2
log

res
x

log10

res
x

log10e
log2e
Long [2]
longest
loop [2] [3] [4]
low [2] [3] [4] [5] [6]
lowCase

M

m [2]
machine_type
major
makeCBF

cb
pat

makeLC [2] [3]
makeUC [2] [3]
malloc

ptr
size

marker [2]
match [2] [3] [4]
matchAll
math
mathematical patterns
max
MaxInt
MaxInt16
MaxInt16u
MaxInt32

MaxInt32u
MaxInt8
MaxInt8u
MaxReal
mbs_version

desc
major
minor
release
revision

memcpy
nbytes
s1
s2

min
MinInt
MinInt16
MinInt16u
MinInt32
MinInt32u
MinInt8

MinInt8u
minor
MinReal
minute
minutes
missing_newline [2]
missingField
missingMarker
modf

ipPtr
res
x

modtime
monitor
Monitor
month
more [2]
msg
mu
mutex

N

n [2] [3] [4] [5] [6]
nak

noBasePrefix
noexp

notfound
NotFoundException

 Basic Libraries − Reference Manual

J 207

name [2] [3] [4]
nameDesc
nbytes
NCS [2] [3] [4]
new [2] [3] [4] [5]
newL [2]
newline [2] [3] [4]
next
nl

noMatch
noNumberError [2] [3]
noOfArguments [2] [3] [4] [5]
noOfEntries
normal
NoSpaceError
NoSuchException
NoSuchFileError
notAttachedError

notification [2]
np
nul
num [2] [3] [4] [5] [6] [7] [8] [9]

[10] [11] [12] [13] [14] [15] [16]
Numberio
numberio

O

o [2]
object [2]
objectPool [2]
ObjectPort
old
onDel
onDelete
onIns

onInsert
onKilled
openAppend
OpenException
openRead
openReadAppend
openReadWrite
openWrite

options
original
otherError [2] [3]
OtherError
otherError [2]
overflow

P

p [2] [3] [4] [5] [6]
p1 [2]
p2 [2]
p3 [2]
pAdd

p1
p2
p3

Pascal
pascal
pascalExternalEntry
pascalTrap
pat
path
pathDesc
pause
Pcre

compilation_error
init
match
matchAll
options
pcre_ANCHORED
pcre_C_LOCALE
pcre_CASELESS
pcre_DO_STUDY
pcre_DOLLAR_ENDONLY
pcre_DOTALL
pcre_ERROR_BADMAGIC
pcre_ERROR_BADOPTION
pcre_ERROR_NOMATCH

piforth
pihalf
plain
POLY
Port
pos [2] [3]
position [2]
posToMatchEnd
pow

res
x
y

precision [2] [3]
prefix
prepend [2] [3] [4]
prev
private [2] [3] [4] [5] [6] [7] [8] [9]

[10] [11] [12] [13]
proc
procname [2] [3] [4]
program slot
program
propagate [2]
ProtectedInt
pSub

p1
p2
p3

ptr [2]
put [2] [3] [4]
Put

i
marker
match
n
o
precision
r
s
trueText
tv
uB
uE
uG
uR
uX
width
x
y

putH
putHex [2]

format
putH
uppercase
width
x
zeroPadding

putI
puti
putint [2] [3]
putInt16Rep

num

 Basic Libraries − Reference Manual

O 208

pcre_ERROR_NOMEMORY
pcre_ERROR_NOSUBSTRING
pcre_ERROR_NULL
pcre_ERROR_UNKNOWN_NODE
pcre_EXTENDED
pcre_EXTRA
pcre_INFO_BACKREFMAX
pcre_INFO_CAPTURECOUNT
pcre_INFO_FIRSTCHAR
pcre_INFO_FIRSTTABLE
pcre_INFO_LASTLITERAL
pcre_INFO_OPTIONS
pcre_INFO_SIZE
pcre_MATCHOPTIONS
pcre_MULTILINE
pcre_NONBETAOPTIONS
pcre_NOTBOL
pcre_NOTEMPTY
pcre_NOTEOL
pcre_RETURN_NONE
pcre_UNGREEDY
private
replace
replaceAll
subPatterns

pcre_ANCHORED
pcre_C_LOCALE
pcre_CASELESS
pcre_DO_STUDY
pcre_DOLLAR_ENDONLY
pcre_DOTALL
pcre_ERROR_BADMAGIC
pcre_ERROR_BADOPTION
pcre_ERROR_NOMATCH
pcre_ERROR_NOMEMORY
pcre_ERROR_NOSUBSTRING
pcre_ERROR_NULL
pcre_ERROR_UNKNOWN_NODE
pcre_EXTENDED
pcre_EXTRA
pcre_INFO_BACKREFMAX
pcre_INFO_CAPTURECOUNT
pcre_INFO_FIRSTCHAR
pcre_INFO_FIRSTTABLE
pcre_INFO_LASTLITERAL
pcre_INFO_OPTIONS
pcre_INFO_SIZE
pcre_MATCHOPTIONS
pcre_MULTILINE
pcre_NONBETAOPTIONS
pcre_NOTBOL
pcre_NOTEMPTY
pcre_NOTEOL
pcre_RETURN_NONE
pcre_UNGREEDY

put [2] [3]
putb
putB
putBased [2]

adjustLeft
base
baseError
baseWidth
baseZeroPadding
blankSign
format
noBasePrefix
putb
signed
upcase
uppercase
value
width
zeroPadding

putBB
putBH
putBinary [2]

format
putB
width
x
zeroPadding

putBoolean [2] [3]
falseValue
trueValue
value

putbyte
PutByte

i
PutByte
putByteBinary [2]

byte
putBB
x

putByteHex [2]
byte
putBH
x

putBytes
addr
num

putC
putCharRep

num
R

putClock [2]
t

putDate [2]
t

putdouble

R
putInt16uRep

num
R

putInt32Rep
num
R

putInt32uRep
num
R

putInt8Rep
num
R

putInt8uRep
num
R

putL
putline [2] [3]
putlong
PutLong

i
PutLong
putO
putOctal [2]

format
putO
width
x
zeroPadding

putPeriod [2]
p

putr
putRadix [2]
putReal [2]

adjustLeft
blankSign
exp
format
noexp
plain
precision
putr
r
signed
style
upcase
width
zeroPadding

putshort
PutShort

i
PutShort
putSubStream
putSubstream

p

 Basic Libraries − Reference Manual

O 209

peek [2] [3]
Peek
peek [2]
period

days
hours
minutes
seconds

pi

i
putFormat [2] [3]

b
c
d
e
f
falseText
g

stm
putT [2]
putText [2]
puttext [2]
PutText
puttext [2]
putTime [2]

t

Q

q
qua

quaError
QualifiedPort

qvalue

R

r [2] [3] [4] [5] [6]
R [2] [3] [4] [5] [6] [7] [8] [9]

[10] [11] [12] [13] [14] [15]
r [2] [3] [4] [5]
R [2]
radix integers
radix [2]
radixError
random [2] [3] [4] [5] [6] [7] [8] [9]

[10] [11] [12] [13] [14] [15] [16] [17] [18] [19]
[20]

ranf
random

range [2] [3] [4]
rawArgumentHandler
readable
ReadError
real [2]
real2ints

i1
i2
r

real32
realObject [2]
realValue [2] [3] [4]
realValuePtn
regexp [2]
regexp_match [2]
regexp_numberOfRegisters

regexp_operation
limit
noMatch
posToMatchEnd
private
regexp_string
regexpError
regs
start
value

regexp_registers
byteSize
end
getRegisterValue
start

regexp_replace [2]
replace_string

regexp_replace_global
loop
m
more
r
replaceOp

regexp_replace_literally [2]
replace_string

regexp_replace_literally_global
loop
m
more

r
replaceOp

regexp_search
regexp_string
regexpError
register
regs
regular expression
release
remove
rename
rendezvous
repetition [2]
replace
replace_string [2]
replaceAll
replaceOp [2]
repStream
res [2] [3] [4] [5] [6] [7] [8] [9]

[10] [11] [12] [13] [14] [15] [16] [17] [18] [19]
[20]

reset [2]
Restore
RestrictedPort
retry
revision
rs

S

s [2] [3] [4] [5]
s1
s2
sameDay

res
x

sinh
res

getLine
greater
insert
inxGet

 Basic Libraries − Reference Manual

Q 210

sameHour
sameMinute
sameMonth
sameSec
sameYear
Save
scan [2] [3] [4]
scanA
scanAll [2] [3]
scanAtom [2] [3]
scanEntries
scanForMarker
scanToNl [2]
scanWhiteSpace [2]
screen [2]
sd
SE_KILLED
SE_READY
SE_RUNNING
SE_SLEEPING
SE_WAITING
sec
seconds
select [2]
selectImpl [2]
semaphore [2]
set [2]

ch
set
setall

iseed1
iseed2

setant
qvalue

setAscii
setBased [2]

base
value

setBoolean [2]
value

setInt [2]
i

setpos
setPos [2]
SetPos
setPos [2]
setReal [2]

r
setsd

iseed1
iseed2

setT [2]
setText [2]

t
setWindowEnv

x
size [2] [3]
skipblanks
sleep
sleepUntil
smalla
snorm

random
so
soh
sp
sqrt

res
x

start [2] [3]
state
static_cons
static_proc
stdExternalEntry
stm [2]
Stop
stop
stream [2] [3]
streamException
streamType [2]
strucGet
strucScan
Structure
stx
style
sub [2] [3] [4] [5]
subI
subPatterns
substream

attach
check
copy
empty
eos
EOSerror
getpos
high
illegalRangeError
indexError
init
length
lgth
low
notAttachedError
otherError
pos
range
setpos
stm
streamType

inxPut
less
low
makeLC
makeUC
peek
prepend
put
putText
scanAll
streamType
sub

subtxt
high
low
theSubtext

suffix
syn
syntaxError [2] [3] [4] [5]
SysHead

ce
lc
q
shstatus

System [2]
systemEnv [2]
SystemEnv

alt
BasicScheduler
conc

concPriv
start

deadLocked
BasicSystemEnv

fork
initBeforeScheduler
kill
Monitor

Condition
Wait

pause
private
ProtectedInt

atZero
dec
init
mutex
waitForZero

semaphore
setWindowEnv
sleep
sleepUntil
System

alt
caller

 Basic Libraries − Reference Manual

Q 211

sexpo
random

sgamma
a
random

Short [2]
shortInt
shstatus
si
signed [2] [3]
SignedShort [2]
sin

subtext
append
clear
delete
equal
equalNCS
find
findAll
findText
findTextAll
get
getAtom

conc
ObjectPort
onKilled
Port
QualifiedPort
RestrictedPort

theActive
theWindowEnv
timeStamp
windowEnvType

systemEnvType

T

t [2] [3] [4] [5] [6] [7] [8] [9]
[10] [11] [12]

T
t [2] [3] [4]
T [2] [3] [4]
t1
T1 [2] [3] [4] [5] [6] [7] [8]
t2
T2
tan

res
x

tanh
res
x

termCode [2]
testChar
testEOS [2]
text [2] [3]
textObject
textValue
theActive
theArg
theProgram
theScheduler
theSubtext
theSystemEnv
theWindowEnv
thisObj

throw
time

add
after
before
between
day
dayOfYear
equal
hour
leapYear
minute
month
private
sameDay
sameHour
sameMinute
sameMonth
sameSec
sameYear
sec
sub
timePredicate
weekday
weekOfYear
year

timeDifference
d
t1

t2
timeHandler

init
register
timeHandlerPrivate
unregister

timeHandlerPrivate
timeMax

t
timeMin

t
timeNow

t
timeNowRef

t
timePredicate
timeRange
timeStamp
top
touch [2] [3]
Transferring
true [2]
trueObject [2]
trueText
trueValue [2] [3]
try
tv
txt [2] [3] [4] [5]

U

uB [2]
uE [2]
uG [2]
underflow
unknown

unregister
until
untilcondition
upcase [2]
upCase

uppercase [2]
uR [2]
us
UT
uX [2]

 Basic Libraries − Reference Manual

T 212

V

value [2] [3] [4] [5] [6] [7] [8] [9]
[10] [11] [12] [13] [14]

valueError [2]
vt

W

Wait
waitForZero
wchar
wcharObject
wcharValue
weekday
weekOfYear
whenDir [2]
whenFile [2]
whenOther [2]
while [2] [3]
whilecondition [2]
width [2] [3] [4] [5] [6] [7] [8]
windowEnvType
writeable
WriteError
wStream

asInt
eos
EOSerror
get
getAtom
getint
getline
getNonBlank
getPos
length
newline
otherError

peek
position
put
putint
putline
putText
reset
scan
scanAtom
scanToNl
scanWhiteSpace
setPos
wStreamException

wStreamException
wText

1
append
asAscii
clear
copy
delete
empty
eos
EOSerror
equal
equalNCS
extend
find
findAll

findwText
findwTextAll
get
getAtom
getline
getPos
greater
indexError
insert
inxGet
inxPut
length
less
lgth
makeLC
makeUC
otherError
peek
pos
prepend
put
puttext
scanAll
setAscii
setPos
setT
sub
T

X

x [2] [3] [4] [5] [6] [7] [8] [9]
[10] [11] [12] [13] [14] [15] [16] [17] [18] [19]

[20] [21] [22] [23] [24] [25] [26] [27] [28] [29]
[30] [31]

xnonc [2]
xsystemenv

Y

y [2] [3] [4] year

Z

zeroPadding [2] [3] [4] [5] [6]

 Basic Libraries − Reference Manual

V 213

	Table of Contents
	List of Programs
	1 The Basic Libraries
	1.1 The betaenv Library
	1.1.1 Mjølner System Version
	1.1.2 Backward compatability

	1.2 Using the betaenv Library
	1.3 Basic Patterns
	1.3.1 Simple types
	1.3.2 The Integer Pattern
	1.3.3 Arithmetical operators
	1.3.4 The Boolean Pattern
	1.3.5 The Real Pattern
	1.3.6 The Char Pattern
	1.3.7 The Repetition Pattern

	1.4 Basic Object Patterns
	1.4.1 The Object Pattern
	1.4.2 Objects of simple types
	1.4.3 The charValue, integerValue, booleanValue and realValue Patterns
	1.4.4 The charObject, integerObject, booleanObject, trueObject, falseObject and realObject Patterns

	1.5 The Streams Patterns
	1.5.1 The Stream Pattern
	1.5.2 Substreams
	1.5.3 The Text Pattern
	1.5.4 Text utilities
	1.5.5 Using Text
	1.5.6 UniCode Text

	1.6 Exceptions and Program Termination
	1.6.1 Static Exceptions
	1.6.2 Dynamic Exceptions

	1.7 Various Other Patterns
	1.7.1 Control Patterns
	1.7.2 Input/Output Patterns
	1.7.3 Command Line Arguments
	1.7.4 Object Pool
	1.7.5 Concurrency - SystemEnv
	1.7.6 External Language Interface

	1.8 Time and Date Library

	2 The math Library
	2.1 Using the math Fragment

	3 The numberio Library
	3.1 Based integers and reals
	3.2 Using the numberio Fragment
	3.2.1 Reading numbers from standard input

	4 The formatio Library
	4.1 Formatted input/output
	4.2 Format string
	4.3 Marker type
	4.4 Using the formatio Fragment
	4.4.1 Illustrating putFormat
	4.4.2 Illustrating getFormat

	5 The random Library
	5.1 simple random generators: ignlgi and ranf
	5.2 Using the random Fragment
	5.2.1 Illustrating Integer Random Generator

	6 The regexp Library
	6.1 Regular expression
	6.2 regexp_match
	6.3 regexp_search
	6.4 regexp_replace
	6.5 regexp_replace_literally
	6.6 Syntax of Regular Expressions
	6.7 List of special characters
	6.8 Table of '\' constructs
	6.9 A complicated regexp
	6.10 Regular Expression Registers
	6.11 Known bugs or Inconveniences
	6.12 Using the regexp Fragment
	6.13 Regexp Demos
	6.13.1 Search for regexp
	6.13.2 Replace with a regexp

	7 The file Library
	7.1 File and diskEntry
	7.2 Disk entry attributes
	7.3 File attributes
	7.4 The FileRep Library
	7.5 The BinFile Library
	7.5.1 Using the file Fragment
	7.5.2 Using diskEntry

	7.6 Using File

	8 The directory Library
	8.1 Directory attributes
	8.2 Using the directory Fragment
	8.2.1 Listing a directory

	9 The systemEnv Libraries
	9.1 basicsystemenv
	9.2 systemenv
	9.3 timehandler
	9.4 The basicSystemEnv Library
	9.4.1 Basic concepts
	9.4.2 Changes from original design
	9.4.3 New facilities
	9.4.4 The Concurrency is Simulated
	9.4.5 Concurrency and User Interface Environments

	9.5 Using the SystemEnv Fragment
	9.5.1 The Monitor Example
	9.5.2 The Monitor with Wait Example
	9.5.3 The Ports Example
	9.5.4 The ObjectPort Example

	10 The external Library
	10.1 Interfacing to C and Pascal
	10.2 Using the external Fragment
	10.2.1 Interfacing to External C Functions
	10.2.2 Using call back from C
	10.2.3 Interfacing to External Pascal Procedures
	10.2.4 Example Interfacing to Pascal
	10.2.5 Using call backs from Pascal
	10.2.6 Interfacing to External Data Structures
	10.2.7 cStruct
	10.2.8 ExternalRecord
	10.2.9 Example Using cStruct
	10.2.10 Example Using externalRecord

	11 The Perl Compatible Regular Expression Library
	11.1 Regular Expressions
	11.2 pcre
	11.3 init
	11.4 options
	11.5 match
	11.6 match.options
	11.7 match.pre
	11.8 match.matchPos
	11.9 match.matchText
	11.10 match.preMatchText and match.postMatchText
	11.11 match.subMatchPos
	11.12 match.subMatchText
	11.13 match.sub1, match.sub2, match.sub3...
	11.14 match.noMatch
	11.15 match.position
	11.16 replace
	11.17 replace.rep
	11.18 matchAll
	11.19 replaceAll
	11.20 subPatterns
	11.21 compilationError

	12 PCRE specification
	12.1 Name
	12.2 Description
	12.3 Compiling a Pattern
	12.4 Studying a Pattern
	12.5 Locale Support
	12.6 Information About a Pattern
	12.7 Matching a Pattern
	12.8 Extracting Captured Substrings
	12.9 Limitations
	12.10 Differences from perl
	12.11 Regular Expression Details
	12.12 Backslash
	12.13 Circumflex and Dollar
	12.14 Full Stop (Period, Dot)
	12.15 Square Brackets
	12.16 Posix Character Classes
	12.17 Vertical Bar
	12.18 Internal Option Setting
	12.19 Subpatterns
	12.20 Repetition
	12.21 Back References
	12.22 Assertions
	12.23 Once-Only Subpatterns
	12.24 Conditional Subpatterns
	12.25 Comments
	12.26 Recursive Patterns
	12.27 Performance
	12.28 Author

	13.1 Basicsystemenv Interface
	13.2 Betaenv Interface
	13.3 Binfile Interface
	13.4 Directory Interface
	13.5 External Interface
	13.6 File Interface
	13.7 Filerep Interface
	13.8 Formatio Interface
	13.9 Iget Interface
	13.10 Math Interface
	13.11 Mbs_version Interface
	13.12 Numberio Interface
	13.13 Random Interface
	13.14 Regexp Interface
	13.15 Pcre Interface
	13.16 Substreams Interface
	13.17 Systemenv Interface
	13.18 TextUtils Interface
	13.19 Texthash Interface
	13.20 Timedate Interface
	13.21 Timehandler Interface
	13.22 Wtext Interface
	Index
	<
	_
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

