The Mjglner BETA System
The Bifrost Graphics System

Reference Manud

Mjelner Informatics Report
MIA 91-13(2.0)
August 1996

Copyright © 1991-96 Mjglner Informatics ApS.
All rights reserved.
No part of this document may be copied or distributed
without the prior written permission of Mjglner Informatics

Table of Contents

Bifrost REfErenCe ManuUalccooueiiiriinineeee et 1
1 INEFOTUCTION ...ttt s sbenae s 2
2 Coordinate Systems and Transformations..........ccccvecereeceseesesieere e 4
21 COOFQINGLES ...cveveviriesiieiesieses ettt ettt e e 4

2.2 CoOrdinate SYSIEIMS.......cceeieeeieseerieeie e ste e ee e re e e e reeaesnee s 4

2.3 TranSforMEatioNScceeeeieieriene s e 5

G T I 1 7= o = S 7
31 SEOMENES ..ttt e e s b e san e s b e e nnn e s re e nes 7

3.2 Orientation of SEgMENTS.......ccceiieiiiieriere e 8

3.3 Fill RUIES ...t 8

3.4 Shape Definition PriMItiVEScccccce e 9

35 SHTOKE e 11

351 Capand Join SEYIESoceeeeeeeeeeeceee e 12

3.6 HOUSDOL ... e 12

3.7 CombiniNg SNAPEScceieeieiieie et 13

3.7.1 APPENTShEPE......ccoi ittt 14

3.7.2 CONNECISNAPEccueeeeereerieeieseeseeee e ste e sre e e sseeae e 15

3.7.3 ConnectShapeSMOOLNccccveveeiiee e 15

3.7.4 CombiNESNPE........ecceeeeeereee e 16

3.8 Segment Definition PrimitiVES........cccooeeieereiiiese e 17

3.8.1 LiNESEgMENToceeieeeee e ne s 17

3.8.2 SPINESEGMENToveeeceee e 17

3.8.3 Adding SegmentSto SNAPESccccereeeieereerieseeeeseereeseeee e 18

A TREPAINT ...t 21
4.1 RBSIEIS ... 21
I R = S <. TSRO 22

412 BitMaD oo 22

G T . (Y = o SO 23

4.2 SOHACOION ..cvieeiiiiiiciesiese ettt 23
4.2.1 Defining Solid COlOrS.......cccevvieeriseereeeseee e 23

4.2.2 EXAMPIES ..ottt 23

4.2.3 Name Color MOdEl ..o 24

4.2.4 TiledSOlACOIOrccoeuirieriiriiririeeee s 25

4.3 RASIEIPAINT ...t e 25

5 TheGraphical ODJECEccceiieiiiieie e ne s 26
o3 R € =0 [ol 0] (> U 26

IV © o - 1 o] 13U 26
521 Geometric Transformations...........ccooeveerereeneeneeriesiesee e 27

5.2.2 QuErY OPEratiONSccceevuereeerieseesieseesieseesseesaesseeseesseessesseessens 27

5.2.3 INEIACHION ...oveveeiieieiisieeeeeeee e 27

5.24 Drawing Graphical ODJECtScceeveviriereeiereeese e 28

5.25 Transforming Graphical ODbJeCtScccveveveveeinnecce e 28

B TREPICIUIE ...t 29
6.1 TREPICIUIE LISt ...eiieeeeiieeese e 29

6.2 SEECUON PICIUIEcoueriiiieeeeeee e 30

6.3 Picture Coordinale SYSteMccocveiereee e 30

6.4 Other Operations 0N PICIUIESccccceeieiieieciese e 30

Bifrost Graphics System

10

11

12

THE CANVES.....ceiiiiiiee e bbb bbb 32
7.1 Drawing and VisiDl@ AT€a.........cveceeeiieie et 32
7.2 TheCanvas PICIUIE ... 32
45 T T o] o] oo S 33
7.4 Updating Damaged AT€aS.........cccueueieereeeeseesieseeseesseseeseeseesseesseseens 33
75 1o W1 o 11 o S 34
Predefined Shapes and Graphical ObJECEScccvevveiecierece e 36
8.1 LINESNAPEviciecieee ettt nreenne e 36
8.2 MUILILINESNEPEoocveeeeeiieeee et 37
8.3 TEXISNAPE ...c.vecieceee et nne e 37
8.4 RECISNAPE ... et sre e enee 38
8.5 EHPSESNEPE ... 38
8.6 PIESNADEve ettt ae e ne s 38
B.7 ATCSNGPE.....c et nne e 39
8.8 DefiNiNg NEW ShapEScoveeeiieieeee e eie st sneens 39

8.8.1 Predefined Paint Operations...........cccoveveieeneerieseeseeee e 40
L 1= ="ox 1 o] ST TR R 41
9.1 INtEraCtion MOGEc.ooiiiiiie s 41
0.2 FEEADACK ..o e 43

9.2.1 CanvasPrimitivesfor Feedbackcccoovvnininininininne 43

9.2.3 Segment Primitivesfor Feedbackccccccevvvcvieiencecieen, 44
9.3 Interaction Facilitiesin the Shape..........ccccvecvveevecce s 44

9.3.1 NeghborNOOod..........cccovieieeeciec e 45

9.3.2 Direct changing of Control POINtSccccooveveveereseeieeseenenn 45

9.3.3 Shape Highlightingccceieerieeereciere e 45

9.34 QUENY FUNCLIONS.....cceiiieeie e 46
9.4 Modifiers and CONSIIAINEScoererererieninereeere e 46

9.4.1 Default constraintSin BifrOStccocovvvevenenieneninenescenene 47
The Modular Design Of BifrOStccveveriererie e 49
101 The AppliCation LEVEccoceeieee e 50
10.2 Device Independent Implementationccccveveveevesieeseesescee s 51
10.3 Implementation of Predefined Shapesccccovvevvveeceseece e, 52
104 X111 Dependent Implementationccoeeveeeerieeeesesieeseseeseeeeseeeens 52
0.5 SUMIMAIY ettt be et nr e sne e e 53
Bifrost and LidSKjalVcceerieieerieiierie e 54
11.1 BifrostCanvas and Lidskjalv Canvas.........ccccccevveeereniieniesieesesieeseenens 54
11.2 Overlapping Data TYPEScceereeeierieseesieseestessee e eeesseeee e eaesseeeesnens 54
11.3 Lidskjalv Graphicsand Figureltems..........cccccceveeceveecesecce e 55
INtErface DESCITPLIONSeecveeierieeie e seesie e s ee et re e ae e s esteeeesneenneennas 56
121 Various SImple DEfINItIONSccccceveerenieresee e 56
122 MENEMELICS....cc.eiieeiiriiiieeeee e 57
12.3 DEELYPES ...ceveeiiieeiiee ettt nee s 59
124 SEOMENE oottt sttt b e e 60
125 Line- and Spline SEgMENEScceevieeeecie e 62
12,6 SPIINESEOMENLc.veceieiiceeeteee et nee e 63
12.7 CircularSplinESEgMENTccovieereeeere e 64
12.8 NoncircularSplineSegmeNtccccveceveeieereeieseee e 64
12,9 ADSITACISNAPEcoveeeieeeec et 65
12,10 ShAPE... ittt 67
12,11 PredefinedShapeccccceieeieiiese st 70
A I 1 g o T O 71
12,13 MUItHINESNGPE....c.ee et 72
N = 0T S 73
1215 PHESNAPE ..ot 74
12,16 ATCSNEPE.......e ot e 74
12,17 Strokeabl€Shapecceeeeiieeceese et 75
12,18 RECISNAPEecieeeeeitieie ettt eee e te ettt ae e e reeeesnae s 75

12,19 EIIPSESNEPEoocvieeeeieeiesieeieseee st sie e te e e e s reeae e nae e nnesneenneas 76

Table of Contents

12.20 RASIEIS ..c.eiiiiiiiciieee et 77
i R = | | SRRSO 79
12,22 SOIACOION ...t 81
12.23 Predefined GraytOnEsS.........cccvieereeiiesieseeieseesesee e see e s saesneesreenes 82
12.24 RASIEIPAINTccueiieeeieieres et 82
12.25 TiledSOlACOIONceeeiiiiesieiesie et 83
12.26 AbstractGraphicalODbJectccccvvievecieecese e 83
12.27 GraphiCalODJECLccvvieeciee e s 87
12.28 PiCtUrESNADE.eecteete e steeie ettt te et e s te e saeeae e e seeeesnee s 88
12,29 PICIUM ettt 88
12.30 BifrOSICANVES.......coiriiriirieriiriesieeese et 91
1231 BiIfTOSE...cceeiiiieieieieeceee ettt 98
12.32 COIOINGIMESveviiriiriiriieieeee et 98
1233 PaAlE....cceiieicieciere e 99
12.34 PredefinedGraphicalObJECtccceveeieiiereee e 100
1235 LINE oottt ettt 101
1236 MUIHINE ..o 101
R Y A €T 1T ol = S 101
L1238 ATC ittt bbb bbb 102
12.39 PUESIICE. ...eiti ettt 103
12,40 RECE oottt et 103
I R L TSRS 104
1242 REBSIEIGIAYS......eie ettt et se e sne e nnee e 105
1243 SEECHONPICIUIEooueieeiiiriicieeieees e 105
1] o] ToTo | "] VS 107
INOEX .ttt bbbttt e e nn et e ns 109

List of Figures

Figure 1.
Figure 2.

Figure 3.
Figure 4.
Figure5.
Figure 6.
Figure7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.

Figure 14
Figure 15
Figure 16

[llustration of a canvasin awindow system displayed on a

OraphiCS WOIKSEAION.......ccveceeeciieiecccee e 2
The graphical object is acomposition of a shape and a

07 1 SRS 3
A pictureisacomposition of graphical Objectscccccevvvcevveveciecenee, 3
The segment NIErarchy ..o 7
EXamples Of SEJMENLSccccociiier e 7
Stroke operation applied to an open shape.........ccccvvceevvveeve e 11
The stroke operation applied to aclosed shape.........cccccveeverceenecrieveeene, 11
Cap and join styles for the Stroke Operationcccceeeeveecereeieseeinens 12
Thepaint NIErarChycccveceieee e 21
Theraster NIErarchy ... 22
A graphical object isacomposition of ashapeand apaint 26
Predefined shape inheritance hierarchy.cccooevevieve e, 36
The appliCatioN [EVELooeeeeee e e 50
Device Independent Implementation............ccceeeveeereseeneseesesee e 51
Implementation of Predefined Shapes...........cccccovvveeiv e 52
X11 Dependent Implementationc.ceceveereeeenesieese e 53

Bifrost Reference Manual

This report presents the library available in the Mjglner BETA system for program-
ming applicationsin version 2.1 of the Bifrost Graphics System. Bifrost is an interac-
tive object oriented device independent graphics system, and is the result of a master
thesiswork as described in [Andersen 91]. Part of the master thesis was implementing
a large part of Bifrost as to prove the soundness of the design. In addition to the
implementation done during the work on the master thesis, more than one man year
has been spend on further development of the design and on implementing the
remaining parts of Bifrost.

Bifrost is currently implemented as alibrary for Lidskjalv; thisis further explained in
chapter 10 and 11. A fairly advanved drawing application, bdraw, is designed and
implemented using Bifrost.

The above mentioned report describes graphics in general using a taxonomy for
graphics systems, and explains why Bifrost is designed as it is. The report also in-
cludes documentation of the implementation.

This manual is split into twelve chapters, starting with an introduction followed by a
chapter describing necessary mathematical concepts. The next five chapters describe
the basic concepts of the Bifrost imaging model—shape, paint, graphical object, pic-
ture and canvas, respectively. Chapter 8 introduces a series of objects defined as an
assistance for the user of Bifrost. The objects define various shapes and graphical ob-
jectsin common use. After the basic concepts have been defined, chapter 9 describes
how Bifrost implements interaction on display devices that support interactive input
and output. Following the interaction chapter is a description of the fragment struc-
ture. The last chapter explains the relationship between Bifrost and Lidskjalv. The
report is concluded by some small examples of using Bifrost, including a small
introduction to bdraw, and an interface description of all patterns and objects defined
in Bifrost.

This manual is primarily a reference manual, that is, it is not recommended to try to
learn how to use Bifrost from reading this manual from one end to another. Instead
the reader should consult the Bifrost Tutorial [MIA 91-19], which contains a stepwise
introduction to the most important parts of Bifrost.

The canvas
picture:

Graphical object:

Picture:

|1A

1 Introduction

This chapter describes the observations of a user running a typical session with a
Bifrost application. Using this strategy, we try to introduce the concepts of Bifrost, as
first seen by anew user.

Imagine a graphics workstation running a window system. One of the windows is a
canvas showing graphics. Seefigure 1.

Graphics workstation display

Figure 1. lllustration of a canvas in a window system displayed on a graphics
workstation

The canvas is a representation of a drawing surface, and is the connection between the
window system and Bifrost. The canvas contains a picture, and all graphics shown in
the canvas must be in the canvas picture. The picture is a collection of graphical
objects, and realize the concept of graphics modelling. The graphical object is the
smallest possible entity that can be drawn, and is complete in the sense, that it
contains all necessary information about how the graphical object appears on the
canvas, and is therefore independent of any other graphical objectsin apicture.

The graphical object concept is a composition of two concepts. shape and paint. The
shape describes the outline of the object, and the paint describes the color or raster to
be pushed through the object when is it displayed on the canvas. The shape of a
graphical object is described by segments. A segment is either a straight line segment
or a spline segment. Spline segments are used to describe curves. The shape is analo-
gous to the stencil in the Stencil & Paint imaging model.

The canvas picture in the margin consists of two objects. one graphical object and one
picture. The gray circle graphical object is composed of a circle shape and a gray
paint asillustrated in figure 2.

Introduction

Graphical object

|
Shape Paint

OGN

Figure 2. The graphical object is a composition of a shape and a paint

The three other graphical objects in the example above are assembled in a picture
consisting of a black frame, a gray half circle, and a black triangle. The picture is
shown in figure 3. The three graphical objects are also, of course, each defined by a
shape and apaint.

Picture

|]
Graphical object Graphical object Graphical object

[l w| A

Figure 3. A picture is a composition of graphical objects

The basic imaging model of Bifrost isthus very simple: define a shape that represents
the outline of the object you like to draw, select a paint as the color for the object,
construct a graphical object with the shape and paint just defined, and draw the object
in acanvas, i.e. insert the graphical object into the canvas picture. If the object must
have different colors the object must be split into more graphical objects and assem-
bled in a picture. The picture is itself a graphical object, and can thus be drawn in a
Canvas.

An application using Bifrost to render graphics, may use many canvases and win-
dows, but each window must have at least one associated canvas to draw graphics.
More than one canvas may be associated to the same window, and the canvases in the
same window may overlap.

| eft
J upper

width

Iheight

2 Coordinate Systems and
Transformations

Before the concepts are considered in detail, a few mathematical concepts must be
defined. That is, coordinates, coordinate system, and transformation between coordi -
nate system. It is assumed that the reader is familiar with concepts like Cartesian co-
ordinate systems and matrix operations.

2.1 Coordinates

When a graphical object is to be drawn, the points that defines the outline of the
graphical object must be specified in some way, i.e. where is the shape supposed to
be. Bifrost uses standard Cartesian coordinates for this purpose. Standard Cartesian
coordinate subtraction and addition are supported. An axis parallel rectangle consists
of one point and a height and a width (or two diagonal points). The figure in the
margin illustrates the coordinate system used.

As shown in the margin, arectangle is described by one point (upperleft) and two in-
tegers (width and height).

2.2 Coordinate Systems

Output devices vary greatly in the built-in coordinate systems they use to address ac-
tual pixels within their display area. Therefore, in a device independent imaging
model, there must exists at least two coordinate systems. One referring to the actual
device, called the Device Coordinate System (DCS), and one coordinate system
completely independent of the device coordinate system, sometimes called the world
coordinate system but here called the Canvas Coordinate System (CCS) sinceit isre-
lated to the canvas (see chapter 7).

The implementation of Bifrost with respect to an actual device defines a transforma-
tion between these two coordinate systems. The user applications can thus draw in the
device independent coordinate system, while Bifrost is making sure that the picture
will be transformed into device coordinates, and that the picture can be drawn
(identically) on different devices.

The transformation between the CCS and the DCS coordinate systems is not an ordi -
nary geometric transformation. The DCS relates to the device and the device coordi -
nates are typically integers. Bifrost does not restrict the CCS coordinates to be integer
values. In cases where CCS is defined in, say, floating point coordinate values, the
transformation includes, beside the normal geometric transformation, a mapping from
real values to integer values. The default unit on the axes of the CCS coordinate sys-
tem is currently dertermined by the pixel size of the DCS, but can be changed as
needed.

In later chapters new coordinate systems will be introduced. The CCS is the world
coordinate system of Bifrost, implying that all coordinate systems are initially defined

4

Coordinate Systems

to be CCS. The next section explains how to obtain geometric transformations by
applying matrices to the coordinates.

2.3 Transformations

Transformation of coordinates from one two-dimensional coordinate system to an-
other can be specified by means of a 3x3 transformation matrix. The matrix specifies
how a point in one coordinate system is transformed into the corresponding point in
another coordinate system.

The subsequent definitions of the geometric transformations are illustrated with the
example polygon in the margin.

A transformation matrix (TM) specifies a transformation of point (x,y) to point (X', y")
in the following way:

Dax+cy+tx]
<, y, 1) =(xYy, 1)*TM:%bx+dy+ty N

1 0
a b 0
wheeTM=c d 0
x ty 1[0

The common transformations: scaling, moving (translation), and rotation can easily
be described by transformation matrices.

Scaling by factor sy inthe x dimension and sy in the y dimension is accomplished by:

0Sx 0 Op
M = [830]

Moving (translation) by a specified displacement (ty,ty) is obtained by

1100,
TMyoe = 20107
7 Byt 1f

Rotating counterclockwise, around the origin of the coordinate system, by an angle 6
is described by the following matrix:

Cos 6 sind 0
TMRotae = CS-sin@ cos @ OL
Ho o 1 0

The most powerful feature of the matrix application, isthat composition of geometric
transformations can be expressed as multiplications of the corresponding matrices.
That is, a combination of a rotate, move, and scale transformation can be combined
into one matrix, and thus reduce the time of calculation of a complex transformation:

Bifrost Reference Manual

O SxCOs® S,sin o 0
TMrotate* TMmove* TMscale = = -SxSIN 9_ . SyCOS 0 0-
Ft,cos 6 - t,Sin 8 txsin 8 +t,cos 6 1

The user must be aware of the order of transformations, since matrix multiplication is
not commutative. For a more thorough explanation of matrix operations and trans-
formations, see e.g. [Newman 81].

3 The Shape

The shape of agraphical object expresses the outlines of the holes in the stencil where
paint can be pushed through. Shapes can be arbitrarily complicated within the Stencil
& Paint model. The basic building blocks of the shape are segments and these are the
subject of the following four sections. Subsequent to the segment sections the shape
concept is described. The most important properties of the shape are the shape con-
structing language and the ability to combine shapes and thereby e.g. making holesin
shapes. Another important property of the shape is the stroke operation, which trans-
forms the shape into a new shape.

3.1 Segments

One can think of a shape as the boundaries of the graphical object, where the bound-
aries are made of segments. Straight line boundaries are made of line segments and
curved boundaries by spline segments. It is possible to combine both line and spline
segments in the construction of a shape, as can be seen in in example in the margin
using four line segments and two spline segments.

As can be seen in figure 4 there are three kinds of segments: line, non-circular spline
and circular spline segments.

Segment

AN

LineSegment SplineSegment

PN

NonCircularSplineSegment CircularSplineSegment

Figure 4. The segment hierarchy

A line segment is a straight line between two end points. A spline segment is spanned
by at least three control points. There are two kinds of spline segments. an non-circu-
lar spline that terminates in its two extreme control points and a circular spline that
does not touch any of its control points and does not have a start nor an ending point.
Except for the two end points of a non-circular spline, the control points of a spline
segment does not lie on the curve. Instead the control points are distant to the curve
and act like ‘magnets pulling the curve. See figure 5, which shows examples of the
three segment types. The quadratic dots are the control points defining the segments.

P

line segment non-circular splinesegment circular spline segment

Figure 5. Examples of Segments

Bifrost Reference Manual

It is possible to construct any kind of shape using the three segment types. Any kind
of shape with non-curved sides such as triangles, rectangles and polygons with an
unlimited number of edges can be constructed from line segments. Circles and el -
lipses can be represented with circular spline segments. Even objects consisting of a
combination of spline and line segments can be constructed. Since shapes represent
the outlines of graphical objects, it is possible to construct any kind of graphical ob-
ject aslong as the object has well defined boundaries.

3.2 Orientation of Segments

A segment defines two specia control points referencing the first and the last control
point of the segment. These points are called FirstPoint and LastPoint, respectively.
Line segments consist, of course, only of a FirstPoint and a LastPoint. Spline seg-
ments consists of at least three control points, where FirstPoint and LastPoint refersto
two of the points. In the case of a circular spline FirstPoint and L astPointare identicd
and refers to an arbitrary control point of the circular spline. In the case of a non-
circular spline FirstPoint and LastPoint refers to the first and last point in the spline,
respectively. The result of this definition is that a segment is said to have a direction
from FirstPoint to LastPoint.

When segments are used in construction of a shape, the segments are connected in
such away that LastPoint of a segment is connected to FirstPoint of the next segment.
In this way the shape gets an orientation. The orientation of the shape is used to de-
termine what is inside and what is outside of the shape. It is the inside of a shape that
isfilled with paint when a graphical object is drawn.

3.3 Fill Rules

Two different approaches can be used to specify what is inside a shape: even-odd fill
rule and (non-)zero winding fill rule. The following examples illustrate the two ap-
proaches.

Non—zero winding rule: Even-odd rule

*00 00

The non-zero winding rule determines whether a given point is inside a shape by
(conceptually) drawing aray from that point to infinity in any direction and then ex-
amine the places where a segment of the shape crosses the ray. Starting with a count
of zero, the count is incremented each time a segment crosses the ray from left to
right and decremented each time a segment crosses from right to left.1 After counting
all the crossings, if the result is zero then the point is outside the shape, otherwiseit is
inside. With this rule, a ssmple convex shape yields inside and outside as would be
expected.

Now consider afive pointed star, drawn with five connected straight line segmentsin-
tersecting each other. The entire area enclosed by the star, including the pentagon in

1 Therule does not specify what to do if a segment coincides with or istangent to the ray. Since any
ray will do, one may simply choose a different ray that does not encounter such problem
intersections.

Fill Rules

the center, is considered inside by the non-zero winding rule. For a shape composed
of two concentric circles, if they are both drawn in the same direction, the areas en-
closed by both circles are inside according to the rule. If they are drawn in opposite
directions, only the area between the two circles is inside according to the rule; the
‘hole’ isoutside.

The even-odd rule determines whether a given point is inside by drawing a ray from
that point in an arbitrary direction and counting the number of segments that the ray
crosses. If the number is odd the point is inside; if even, the point is outside. The
even-odd rule yields the same results as the non-zero winding rule for simple shapes,
but different results for more complex ones. For the five pointed star drawn with five
intersecting lines, the even-odd rule considers the triangular parts to be inside, but the
pentagon in the center to be outside. For the two concentric circles, only the area be-
tween the two circlesisinside, regardless of the directions of the circles.

The non-zero winding rule is more versatile than the even-odd rule and is the default
rule used by Bifrost to determine what is inside and outside of a shape. Since the
even-odd rule is occasionally useful for special effects or for compatibility with other
graphics systems, optionally, this rule may be used instead.

3.4 Shape Definition Primitives

Usually the application programmer does not have to use segments directly when
defining a shape. Instead there are afew operations in the shape that can be perceived
as alanguage for shape definition: Open, Close, LineTo, SplineTo, Stroke, in addition
to several operations for combining shapes. Combining shapes is not a straight-
forward task and is the subject of a subsequent section.

When using these operations, the concept of shape control points is used instead of
segment control points. When looking at control points of the shape, the two control
pointsin ajoining of two segments are seen as one control point of the shape.

The first four operations for shape definition are used for adding control points to the
shape. Depending on which operation is used, the curve between the previously
placed control point and the new control point can be either a line or a non-circular
spline. The Stroke operations is a powerful way of defining shapes illustrating out-
lines of graphical objects. It will be presented in the next section.

Open.

Open takes one argument (a point) and defines this as the first control point of
the shape. After opening the shape, it is prepared to be constructed by means of
a sequence of LineTo and SplineTo messages.

Close.

This places a control point at the same position as the first point hereby closing
the shape. close does not have to be invoked on a shape to make it a legal
shape, but it ensures that the shape is closed, which is necessary when it is used
with apaint in agraphical object. More on thislater.

LineTo.

This operation adds a line segment to the shape, using the last control point of
the shape as the first control point of the line segment, and the specified point
asthe last control point of the line segment.

The following example illustrates the use of the LineTo and Close operations:

Bifrost Reference Manual

aTEi angl e: @hape Resulting triangle:
#
do (0O, 0) -> QOpen;
(100, 100) -> LineTo;
(100, O0) -> LineTo;
Cl ose;
#);

The triangle shape now consists of three line segments, is closed and could be used in
agraphical object.

SplineTo.

This operation adds a control point to the non-circular spline segment under
construction.

Two different cases must be considered: is there currently a non-circular spline under
construction or not. In the former case (the last operation was SplineTo) the specified
point isjust added as a spline control point to that spline segment.

In the latter case (the last operations was LineTo or Open) a spline segment will be
created with the ending point of the shape as the first spline control point and the
specified point as the second spline control point. The following example illustrates
the use of SplineTo:

aShape: @hape Resulting open shape:
(#
do (0, 0) -> Open; '
(100, 50) -> LineTo;
(150, 40) -> SplineTo; « -
(130, 0) -> SplineTo;
(100, 0) -> LineTo;
#);

If a LineTo message follows a spline construction, LastPoint of the spline segment
becomes FirstPoint of the new line segment. The shape in the example above consists
of two line segments and one spline segments with three control points. Notice that
the shapeis not closed.

If a Close message follows a spline construction, the spline will be ended with a con-
trol point in the starting point of the shape:

ny(Shape: @hape Resulting closed shape:
#
do (0, 0) -> Open;)
(0, 50) -> LineTo; =
(25,100) -> SplineTo;
(100, 70) -> SplineTo;
(95, 0) -> SplineTo;
d ose; B
#);

MyShape consists of two segments, one line segment and one spline segment with
five control points. Circular splines can not be constructed with the SplineTo primi-
tive. Circular splines have to be created as circular spline segments and then added to
the shape.

Stroke

11

3.5 Stroke

A very powerful way of defining shapes is by applying a stroke to a previously de-
fined shape. The metaphor for stroke is that a scalpel is moved parallel to the seg-
ments of the shape definition, at a specified distance perpendicular to the segments:

openSt roke: @shape

(#
do (100, 100) -> open;
(150, 50) -> lineTo;
(200, 100) -> lineTo;
(250, 50) -> lineTo;
(300, 100) -> splineTo;
(350, 50) -> splineTo;
(400, 100) -> splineTo;
(10, CapButt, JoinMter) -> stroke;
#);
Resulting Shape:
Start

Figure 6. Stroke operation applied to an open shape

In figure 6 the dashed curve is the original shape which consists of three line
segments and one spline segment with four control points (the control points are not
shown). The resulting shape is the outline made by the scalpel. The scalpel starts (and
ends) in the leftmost top corner. The orientation of the resulting shape is indicated
with arrows along the segments. Notice that the shape is closed af ter the operation has

been applied.

A closed shape is stroked likewise but with no need to make special ends:

cl osedSt roke: @hape

(#
do

#);

(50, 100) -> open;

(200, 100) -> lineTo;

(200, 50) -> lineTo;

(50, 50) -> lineTo;

cl ose;

(10, CapButt, JoinMter) -> stroke;

Resulting Shape:
A

Figure 7. The stroke operation applied to a closed shape

12

Bifrost Reference Manual

Notice the different orientation of the outer and inner shapes, and that the resulting
shape consists of two shapes (or more precisely: the shape consists of four line seg-
ments and one shape—also consisting of four line segments)

When the stroke operation has been applied, the original shape is atered and cannot
be restored but only the new shape can be manipulated (i.e. the segments of the
original shape are irreversibly replaced with the segments that define the new stroked
shape). Thisis different from traditional graphics systems like PostScript, where the
original shape (or path in PostScript terms) is unchanged and the stroke only makes a
temporary outline which is discharged after having been used for filling an area of the
drawing surface. Notice particularly, that the stroke of a spline segment results in two
parallel spline segments. Thisis a completely new idea, since the traditional graphics
systems can avoid calculating new spline control points by approximating the spline
with a polygon before cal culating the temporary outline (the traditional models do not
need the new splines since the temporary outline is immediately discarded without
giving the user the possibility to transform or modify the stroked spline).

The advantage of altering the shape is that it then becomes possible to further mani-
pulate the shape, and that the shape can be used for other purposes than just drawing
it, e.g. clip to the shape, detect mouse clicks within the shape etc.

3.5.1 Cap and Join Styles

The Cap parameter to the Stroke operation determines how the resulting shape looks
in the part of it corresponding to the end point of the original shape. The Cap parame-
ter isonly relevant for open shapes. The Join parameter determines how the line parts
of the shape are joined. In the example above for an open shape, the Cap parameter is
CapButt specifying a line perpendicular to the shape and the Join parameter in both
examplesis JoinMiter. The alternatives are illustrated in figure 8.

CapButt A JoinMiter
CapRound (E— /A\ JoinRound
Caquuare A JoinBevel

Figure 8. Cap and join styles for the Stroke operation

3.6 Hotspot

All shapes contain one specia point, called hotspot. The hotspot can be set to any
point in the coordinate system of the shape, but if not explicitly set, the hotspot equals
the last point added to the shape. The hotspot is especially useful when working with
closed splines, e.g. the hotspot could be set to the center of acircle instead of someiir-
relevant control point outside the circle. See the next section for an application of
hotspot. Also, the hotspot is used when the shape isfilled with paint involving rasters,
see chapter 4.

Combining Shapes

13

3.7 Combining Shapes

When constructing complex shapes, it is often convenient to define the shape as sim-
pler shapes and then combining the simpler shapes into the complex shape.2 Shape is
a subclass of Segment. This makes it possible to combine simple shapes into more
complex ones in Bifrost: shapes can be treated as segments. Notice, that it was not
shown in the segment hierarchy figure (figure 4) that Shape is a subclass of Segment.3

The shape to be combined with another shape will be called the source shape, and the
shape that receives the source shape will be known as the destination shape. Shapes
inside another shape is referred to as subshapes. Four different semantics are possible
for combining two shapes:

AppendShape.

The source shape is automatically translated in such a way that FirstPoint
comes to coincide with the LastPoint of the destination shape

ConnectShape.

A transformation matrix is supplied that defines how the source shape should
be transformed into the destination shape. LastPoint of the destination shapeis
connected to FirstPoint of the source shape with aline segment

ConnectShapeSmooth.

Like ConnectShape except that the two shapes are connected with a spline
segment

CombineShape.

A supplied transformation matrix transforms the source shape into the coordi -
nate system of the destination shape. The two shapes do not become connected

All operations make a copy of the source shape, and use this copy in the operation. It
is important to notice that it is not all kinds of shapes that can be used as source
shapesin all of the above four ways of combining shapes: the first three cannot take
as argument a shape that only consist of circular spline segments. The reason isthat a
circular spline segment does not have a well-defined FirstPoint or a LastPoint.
CombineShape cannot take an open shape as argument if it is open itself.

A shape is defined in its own coordinate system, that defaults to the CCS coordinate
system. A shape has only one coordinate system, implying that all subshapes of a
shape are defined in the same coordinate system as the shape itself. This is done by
transforming the control points of the source shape into destination shape coordinates
when shapes are combined.

The reason for only having one coordinate system for a shape is to limit the comput-
ing overhead and complication that would otherwise result by defining shapes with
many coordinate systems within the same shape. This restriction does not reduce the
power of the shape construction language, since nothing is gained by having more
than one coordinate system in the same shape. Shapes in different graphical objects
may each have different coordinate systems related to the graphical objects.

For each combination operation, there are four cases to consider, depending on the
state of the source shape and of the destination shape:

2 Thisimplements a limited form of graphics modelling. Later the concept of picture is defined asa
more powerful way of doing graphics modelling.

3 The discussion of the Shape inheritance hierarchy is deferred until the presentation of predefined
shapes, see Chapter 8.

14

Bifrost Reference Manual

* Open source shape and open destination shape

* Closed source shape and closed destination shape
* Open source shape and closed destination shape
* Closed source shape and open destination shape

Each case is illustrated with examples in the description of each combination opera-
tion below. The underlying philosophy of the four shape combination operationsiis to
have consistent semantics in an operation. This can result in some combinations of
shapes that do not seem useful. The most useful combinations are:

* AppendShape with open shapes
* ConnectShape and ConnectShapeSmooth with any kind of shape
e Combine with closed shapes.

3.7.1 AppendShape

The source shape is automatically translated in such a way that FirstPoint comes to
coincide with the LastPoint of the destination shape. After the operation the following
two statements holds:

» FirstPoint of the source shape is equal to LastPoint of the destination shape
» LastPoint of the resulting shapeis the trandated LastPoint of the source shape

In the examples below, FirstPoint of the source shape, LastPoint of the destination
shape, and LastPoint of the resulting shape are marked with bullets (¢).

state of state of
source dest. source destination result

open open (\ ;‘

cdosed closed Q. S
closed open Q. ;.
[]

open closed (\

iBEE

Notice, that in the two cases where the source shape is closed, FirstPoint and Last-
Point coincide, which means that the LastPoint of the resulting shape remains un-
changed (i.e. the same as L astPoint of the destination shape).

3.7.2 ConnectShape

The supplied transformation matrix transforms the source shape into the coordinate
system of the destination shape. LastPoint of the source shape is connected to the
FirstPoint of the destination shape with a line segment. After the operation the follow-
ing statement holds:

Combining Shapes

15

» LastPoint of the resulting shape is the transformed LastPoint of the source
shape

In the examples below, FirstPoint of the source shape, LastPoint of the destination
shape, and LastPoint of the resulting shape are marked with bullets. In all four cases
the same transformation matrix is used. It performs rotation, scaling, and tranglation
of the source shape.

state of state of
source dest. source destination result

open open

closed closed

closed open

N JAIIS

Il]

open closed (\

Notice, that in the two cases where the source shape is closed, FirstPoint and Last-
Point coincide, which means that LastPoint of the resulting shape remains unchanged
(i.e. the same as LastPoint of the destination shape). Notice also, that when both the
source and the destination shapes are closed the resulting shape is open (FirstPoint #
LastPoint).

3.7.3 ConnectShapeSmooth

The supplied transformation matrix transforms the source shape into the coordinate
system of the destination shape. LastPoint of the source shape is connected to the
FirstPoint of the destination shape with a spline segment. After the operation the fol -
lowing statement becomes true:

» LastPoint of the resulting shape is the transformed LastPoint of the source
shape

In the examples below, FirstPoint of the source shape, LastPoint of the destination
shape, and LastPoint of the resulting shape are marked with bullets. In all four cases
the same transformation matrix is used. It performs rotation, scaling, and translation
of the source shape.

16

Bifrost Reference Manual

State of State of
source dest. source destination result

=

/] ﬁ
K

open closed s
S [~

open open

closed closed

closed open

IN A

Notice, that in the cases where the destination shape is closed, two of the control
points defining the spline segment, that connects the two shapes, are from the desti -
nation shape: LastPoint, and the control point prior to LastPoint. The third and last
control point that defines the spline segment is FirstPoint of the source shape. Notice
also, that when both the source and the destination shapes are closed the resulting
shape is open (FirstPoint # LastPoint).

3.7.4 CombineShape

The supplied transformation matrix transforms the source shape into the coordinate
system of the destination shape. The two shapes do not become connected. Notice,
that it is an error if both source and destination shape are open, since the resulting
shape would otherwise not be connected. After the operation, only one of the follow-
ing statements holds:

» LastPoint of the destination shape is LastPoint of the resulting shape
» LastPoint of the source shape is LastPoint of the resulting shape

The latter statement only holds if the source shape is open and the destination shapeis
closed. The reason for this seemingly strange behavior is that the resulting shape can
then be combined further in a consistent way. One can also think of this situation in
terms of which shape is open after the operation—in this particular situation it is the
source shape that is open.

In the examples below, FirstPoint of the source shape, LastPoint of the destination
shape, and LastPoint of the resulting shape are marked with bullets.

Combining Shapes

17

state of state of
source dest. source destination result

j‘ Error

[

-

[

open open

closed closed

closad open

open closed

BINAIPAINS

S

Notice the last situation that is commented on above.

3.8 Segment Definition Primitives

Segment primitives can be used directly to construct shapes. A shapeis constructed in
this way by generating a number of segments, and adding these segments to the
shape. Segment definition primitives are only meant for internal use in Bifrost. It is
not recommended to use these primitives, except for defining circular spline seg-
ments, but instead to use the shape definition operations described in section 3.4.

3.8.1 LineSegment

A line segment is described by two control points: Begin (= FirstPoint) and End (=
LastPoint). A line segment is constructed by assigning values to the Begin and End
points:

aSeg: @Q.i neSegnent Resulting line segment
(#

do (100, 100) -> begin;
(200, 200) -> end;
#)

3.8.2 SplineSegment

As mentioned earlier there are two different kinds of spline segments: circular and
non-circular splines. A circular spline is always considered closed, and a non-circular
spline is considered closed if the last operation performed is Close. Non-circular
splines are typically used in construction of shapes consisting of both line and spline
segments, and circular splines are useful for making circles and ellipses. Spline seg-
ments have three operations used for creating the spline:

Open.

Takes one point as argument. The point is the first control point of the spline,
and the spline is prepared to be constructed with further control points using
AddControl.

Bifrost Reference Manual

AddControl.
This operation just adds a specified control point to the spline.
Close.

Closes a non-circular spline by adding FirstPoint to the spline definition. The
operation has no effect on acircular spline. Notice, that it is still possible to add
further control points to the spline definition after the Close operation.

The following examples illustrate the use of AddControl and Close for a non-circular
spline:

aBow. @\onGircul ar Spl i neSegnent Open non-circular spline:
(#
do (0,100) -> Open; .
(100, 100) -> AddControl ;
(100, O0) -> AddControl;
(0, 0) -> AddControl; = =
#)
aDrop: @onGi rcul ar Spl i neSegnent Closed non-circular spline:
(#
do (0,100) -> Qpen; =
(100, 100) -> AddControl;
(100, 0) -> AddControl;
(0, 0) -> AddControl; . u
cl ose;

#);

The next examplesillustrate the use of AddControl for circular splines:

: . . Circular spline with three con-
I : I I .
aSE)#l ne: @i rcul ar Spl i neSegnent trolpoints:

do (0,100) -> Open; "]
(100, 100) -> AddControl;
(100, O0) -> AddControl;

#)

aCrcle: @rcul arSplineSegnent CerU|.ar SpllneWIth four con-
(# trolpoints:

do (0,100) -> Open; " L]
(100, 100) -> AddControl ;
(100, 0) -> AddControl;
(0, 0) -> AddControl; . u
#);

Notice that acircular splineisinherently closed.

3.8.3 Adding Segments to Shapes

When the segment is defined it can be added to a shape with two shape primitives:
AddLine and AddSpline.

AddLine.

Adds aline segment to the shape. In case where FirstPoint of the line segment
does not coincide with LastPoint of the shape, the line segment is moved to the
appropriate position.

Segment Definition Primitives

19

AddSpline.

AddSpline adds a spline to the shape in construction. In case where FirstPoint
of the spline segment does not coincide with LastPoint of the shape, the spline
segment is moved to the appropriate position.

The following example illustrates the use of AddLine:

aLi ne: @i neSegnent Two line segments
(#
do (100, 100) -> begin;
(150, 150) -> end:
#) /

anot her Li ne: @i neSegnent
(#
do (200, 200) -> begin;
(200, 100) -> end;

#) ;
aShape: @hape Resulting shape:
(# Y
do alLi ne -> AddLi ne; /
anot her Li ne -> AddLi ne; /
#);

The following example illustrates the use of and AddSpline using the two splines de-
fined previoudly:

aShape: S@ape Resulting shape:
(#
do aCircle -> AddSpli ne;
aDr op -> AddSpli ne;
#);

In the case where the spline is not closed, i.e. FirstPoint does not coincide with Last-
Point of the shape, the spline is moved to the appropriate position by AddSpline:

aLi ne: @i neSegnent Two lines

(# _ .
do (100, 100) -> begin;

(50, 150) -> end;
#); \

anot her Li ne: @.i neSegnent
(#
do (50, 150) -> begin;
(150, 200) -> end;

#);
aspl i ne: @onGi r cul ar Spl i neSegnent A Spline
(#
do (0,200) -> Qpen; =

(50, 250) -> AddControl;]

(100, 200) -> AddControl ;

(100, 100) -> AddControl;

(50, 50) -> AddControl; -
#);

20 Bifrost Reference Manual

aShape: @hape Resulting shape:

(# .
do aLi ne -> AddLi ne;
anot her Li ne -> AddLi ne;

aSpline -> AddSpli ne;
#); \

It should be clear from the examples that it is complicated to use the segment defini -
tion primitives for shape construction. Therefore, for purpose of convenience and to
make the graphics system more powerful, Bifrost also includes the small shape con-

struction language presented earlier.

4 The Paint

The paint describes the color or raster to be pushed through the shape, when the
graphical object is displayed on a canvas. The paint concept in Bifrost supports any
kind of pure colors, as well as more sophisticated features such as hatching, tiling,
and sampled raster images. These various features of paint can be described in two
main paint concepts. solid color and raster paint.

A solid color fills out the entire shape with one particular color. This concept may be
specialized by alowing a repeated pattern, a tile, to be applied to the paint, concep-
tually by only allowing the paint to reach the canvas where this pattern allows it to.
Thisisaway of obtaining various hatching effects.

Raster paint uses araster to fill the shape. The concept Raster is described in section
4.1. In order to use araster to fill the shape severa things must be specified: first, the
raster itself must be specified; secondly, the raster position in the shape must be sup-
plied (by specifying the hotspot of the raster in shape coordinates); third and last, it
must be specified what to do if the raster is too small to fill out the entire shape.
Bifrost supports two approaches when the raster is too small to fill out the entire
shape: repeating the raster over and over again, thus tiling the interior of the shape
with it, or by using a solid color—called a padding color—to fill out any parts of the
shape not covered by the raster, and thus not filled by the raster image.

The paint hierarchy is illustrated in figure 9. This hierarchy may, of course, be
extended if needed.

Paint
SolidColor RasterPaint
TiledSolidColor

Figure 9. The paint hierarchy

Two operations are defined for the general paint concept:
FillShape.
Takes a shape as argument and fills the shape with the paint on a canvas.
Copy.
Makes a (deep) copy of the paint

4.1 Rasters

As described in the previous paragraphs both tiled solid color and the raster paint
concepts use some kind of rasters describing either a tile, or a raster image in the
raster paint. Bifrost defines a class BitMap for using with tiling and a class PixMap to
be used in the RasterPaint. In figure 10 the hierarchy isillustrated.

21

22

Bifrost Reference Manual

Raster
BitMap PixMap
Figure 10. The raster hierarchy

The implementation of bit and pixel maps are inspired by ‘ portable bitmap file format
(PBM)’ and ‘portable pixmap file format (PPM)’ [Poskanzer] available on many Unix
and MS/DOS installations. Since the format of the Bifrost rasters are very close to
this ‘standard’, Bifrost can read and write PBM and PPM files, and thereby get access
to ahuge set of rastersin alot of different formats.

4.1.1 Raster
The Raster class generalizes the raster concept defining the following attributes
 MagicNumber for identifying the type of the raster.

* Hotgpot isapoint used when the raster is used in afill operation: the raster in
positioned so that hotspot coincides with the hotspot of the shape being filled.

e Width and Height of the raster.

* Pixel isvirtually declared as an Object, and must be further bound in special -
izations of Raster.

* Width* Height Values specifying the raster itself, starting at the top-left corner
of the raster, proceeding in normal reading order.

In BETA codeit could look like:

Raster:
(#

Magi cNurber : @ nt eger ;

W dt h, Hei ght: @ nt eger;

Pi xel : < (bj ect;

Val ues: [Wdth*Hei ght] @i xel;
#)

Two operations are supported by all rasters:
PutPixel.

Takes an index (i,j) and a pixel value as argument and sets the pixel value into
the specified position of the Values.

GetPixel.

Takes an index (i,j) as argument and returns the pixel value in the specified
position of the Values.

4.1.2 BitMap
Bifrost defines a bit map in the following way:
. speit)'('el is bound to a Boolean where TRUE means "set" and FALSE means "not
Two operations are defined to read and write BitM aps:
ReadFromPBMFile.
Read a bit map from a PBM fileinto the BitMap.
WriteToPBMFile.
Write the BitMap out on a PBM file.

Rasters

23

4.1.3 PixMap
Bifrost defines a pixel map in the following way:
¢ The maximum color component value, MaxVal .

* Pixel isbound to three decimal values between 0 and the specified maximum
value. The three values for each pixel represent red, green, and blue, respec-
tively. If it is desired to specify the pixel value relative to some other color
space, e.g. HSV (cf. section 4.2), the easiest way is to instantiate a SolidColor
(section 4.2), specify the HSV values to this, and then get the RGB values from
the SolidColor, and use these in the Pixel.

4.2 SolidColor

A solid color is specified relative to some color space. In Bifrost, three color spaces
are supported, namely RGB, CMY and HSV. These are the color spaces that seems to
have the most widespread use in computer graphics (cf., e.g. [Andersen 91], [Foley
90]). The HSV color space is probably the most intuitive of these, since defining a
color in it resembles the way an artist do it. In order to ease the job of the program-
mer, colors can aso be specified using a simple naming model. Of course, it will be
possible to extend the color support in Bifrost for other color spacestoo, if needed.

The number of colors available at the same time depends on the device used. If no
more colors are available, a default color is used.

4.2.1 Defining Solid Colors

The following three operations are used to manipulate the attributes of a SolidColor.
All three operations can be used to both set and get the values of the solid color in the
respective color models:

RGBvalues.

Enters three integers representing red, green, and blue values, and changes the
SolidColor accordingly. Exits the current red, green, and blue values. Red,
green, and blue values ranges from zero to the value determined by the con-
stant MaxRGB.

HSVvalues.

Like RGBvalues this operation enters three integers. These are interpreted as
hue, saturation and value of the solid color. HSVvalues exits the hue, satura-
tion, and value of the SolidColor. HSVvalues has three attributes MaxHue,
MaxSat and MaxVal determining the ranges of hue, saturation and value.
MaxHue, MaxSat and MaxVal is DefaultMaxHue, DefaultMaxSat, and De-
faultMaxVal, respectively, by default, but may be changed by the application
programmer.

CMYvalues

This is like RGBvalues except that the three values entered and exited
constitute the cyan-magenta- yellow representation of the SolidColor.

4.2.2 Examples

The following example illustrates how a column with the complete color spectrum,
can be drawn using the HSV color model. This is done by stacking thin lines upon
each other, having hues 1, 2, ..., MaxHue respectively (that is MaxHue number of
linesin all). Full saturation and values are used.

24

Bifrost Reference Manual

(for h:Default MaxHue repeat
&Line[] -> aLine[];
aLine.init;
1 -> aline.w dth;
((0,h), (100,h)) -> aLine. Coordi nates;

&Sol i dCol or[] -> aSolidColor[] -> aLine. Set Pai nt;
(h, MaxSat, MaxVal) -> aSolidCol or. HSWal ues;

aLi ne[] -> aCanvas. draw,
for);

Notice that it would not suffice to instantiate just one line object and change the color
of this one object, because in Bifrost each part of an image must correspond to some
graphical object that is inserted into the canvas picture (by the canvas operation
Draw). Changing the color of one line object would result in one line with changing
colors being shown. Also notice that an instance of the predefined graphical object
class Lineis used. Predefined graphical objects are defined in chapter 8.

By combining the different color spaces interesting effects can be achieved. The fol -
lowing example is an elaboration of the previous one. The example draws the com-
plementary color spectrum in a column adjacent to the column described in the previ-
ous example.

(for h:Default MaxHue repeat
&Line[] -> aLine[];
aLine.init;
1 -> aline.w dth;
((0,h), (100,h)) -> aLine. Coordi nates;
&Sol i dCol or[] -> aSolidColor[] -> aLine. Set Paint;
(h, MaxSat, MaxVal) -> aSolidCol or. HSWal ues;
aLi ne[] -> aCanvas. draw,

(* draw the line with conplenentary col or *)
&Line[] -> aLine[];
aLine.init;
1 -> alLine.w dth;
((2110,h), (210,h)) -> aLine. Coordi nat es;
&Sol i dCol or[] -> anot her Sol i dCol or -> alLi ne. Set Pai nt ;
aSol i dCol or. RGBval ues -> anot her Sol i dCol or. CMyval ues;
aLi ne[] -> aCanvas. draw,
for);

The result of the last program piece can be seen in the bifrost thesis [Andersen 91],
Appendix A, color plate 3.

4.2.3 Name Color Model

An even more intuitive ‘color space’ than RGB, HSV and CMY is the one used in
everyday life: defining the colors simply by naming them. Bifrost support the possi -
bility of specifying asolid color by name by means of alarge number of patterns exit-
ing RGB values corresponding to different color names. These patterns are located in
thefile ~bet a/ bi frost / current/ Col or Nanes.

Name.

Enters the new RGB values, and is hence just an alias for setting the color us-
ing RGBvalues. Useful when evaluating one of the color defining patterns,
which exits RGB values corresponding to a given color name.

The following example illustrates how to draw a circle with center in (10,10) and
radius 25 and filled with solid pink color, using the simple naming color model.

SolidColor 25

&Ell'ipse[] -> anEllipse[];

anEl lipse.init;

((10, 10), 25,25) -> anEllipse. geonetry;

&Sol i dCol or[] -> aSolidColor[] -> anEllipse. Set Pai nt;
pi nk -> aSol i dCol or. Nare;

anEl | i pse[] -> aCanvas. draw,

4.2.4 TiledSolidColor

A tiled solid color is a solid color extended with a BitMap. The BitMap will be tiled
in the shape before the SolidColor is applied, and only where the pixel values of the
BitMap is true the SolidColor will be visible. This is the normal tiling approach. As
mentioned in section 4.1.1 the hotspots of the BitMap and of the shape being filled,
determine the position of the BitMap within the shape.

Example:

A Shape: The Shape filled
with a TiledSolid-
Color using the
BitMap astile:

A Bitmap: D

4.3 RasterPaint

In aRasterPaint a PixMap is used to describe an image, and this PixMap is positioned
in the shape to befilled. Thisis done by positioning the hotspot of the PixMap at the
hotspot of the shape. Instead of using the PixMap as weights, the pixel values of the
map are used directly, and the shape to be filled determines which parts of the image
in the PixMap will be shown. 4

The application programmer should specify what to do if the PixMap given is not big
enough to fill the shape: either the PixMap should just be repeated (tiled) as needed,
or asolid color to use in the uncovered places of the interior of the shape should be
specified. The RasterPaint has the following additional properties compared to Paint:

ThePixMap.
Refersto the PixMap.
PaddingSolidColor.

If PaddingSolidColor is none then the PixMap will be tiled, otherwise the
PaddingSolidColor will be used where the PixMap does not cover.

4 Notice the difference between RasterPaint and TiledSolidColor: In a RasterPaint, thePixMap is
used directly as Paint, in a TiledSolidColor, the BitMap determines where the SolidColor should
be applied. Possibly "PixmapPaint" or "ImagePaint" would be a better name than "RasterPaint".

5 The Graphical Object

The graphical object is the central concept of the Bifrost imaging model. The graphi -
cal object is central for two reasons. The first reason is that the graphical object isthe
smallest unit that can be drawn. The second reason is that the graphical object con-
tains all necessary information to draw itself. The information necessary to draw a
graphical object, is contained in the description of the shape and the paint, presented
in the previous chapters. Notice, that in traditional systems the smallest unit that can
be drawn does not always contain al necessary information needed to draw itself. The
next section elaborates on the concept of local graphic context.

Graphical object

Shape Paint

Figure 11. A graphical object is a composition of a shape and a paint

5.1 Graphic Context

With the graphical object containing enough information to render itself independent
of its surroundings, Bifrost support local graphic context. Local context is defined as
the ability of graphical objects to draw themselves, [Andersen 91] p. 4. This can very
easily and elegantly be designed in an object oriented imaging model. Using local
graphic context can, however, give rise to overhead if many objects with the same
context are drawn successively: time is wasted by setting the (same) graphics context
each time one of the graphical objects are drawn. The contrary to local context,
global graphic context is not supported in Bifrost. Instead an intermediate approach
between local and global context, called shared graphic context, is designed but not
yet implemented [Andersen 91] p. 80.

5.2 Operations

Most of the operations in the graphical object manipulate, or use operations imple-
mented in the shape or the paint. The only exceptions to this fact is manipulation of
the transformation matrix and some administration (init and copy) operations.

I nit.

Initializes the Graphical Object by instantiating a shape and a transformation
matrix. Init must be called as the first operation on the graphical object. If the
graphical object is evaluated, init is called automatically.

To manipulate the shape and the paint of the graphical object four operations are
given:

SetShape and GetShape.

26

Operations

27

Operations to set and get the shape.
SetPaint and GetPaint.
Operations to set and get the paint.

5.2.1 Geometric Transformations
Six operations support geometric transformations on graphical objects:>

Move.

Enters two displacements (ty,ty) and moves the graphical object relative to its
current position.

MoveTo.
Enters point and moves the hotspot of the graphical object to the point.
Scale.

Enters two scaling factors (sy,sy) and scales the graphical object relative from
its current size.

Rotate.

Enters an angle (in degrees) and rotates the graphical object relative from its
current position.

5.2.2 Query Operations
HitControl.

Takes a point (in CCS) as argument and returns a reference to the exact point
(in Graphical Object coordinates), if it isin the neighborhood® of a control point
of the shape of the graphical object. Otherwise returns NONE.

ContainsPoint:

Takes apoint (in CCS) as argument and returns true if it is inside the shape of
the graphical object.

5.2.3 Interaction
I nter activeCr eateShape.
Calls InteractiveCreate of the shape, see chapter 9.
I nter activeReshape.
Calls InteractiveReshape of the shape, see chapter 9.
I nteractiveCombineShape.
Calls InteractiveCombine of the shape, see chapter 9.
I nteractiveM ove.

Takes a canvas, a starting point and a modifier description as argument and
interactively moves the graphical object using the interaction handler of the
canvas, see chapter 9. Calls Move to do the transformation after the interaction
has ended.

5 Geometric transformations are described in Chapter 2.
6 Seesection 9.3 for adefinition of the concept neighborhood.

28

Bifrost Reference Manual

Hilite.

Makes the graphical object appear highlighted by using the highlighting opera-
tion of the shape. When the graphical object is redrawn by canvas updating the
graphical object will be drawn highlighted.

UnHilite.
Unhighlights the graphical object.

The Hilite and UnHilite operations changes the Canvas drawing mode to be XOR, to
allow for immediate feedback, and invoke an instance of a virtual drawHilite at-
tribute. Thus the feedback may be augmented by further binding this attribute, see
chapter 9 for more details.

5.2.4 Drawing Graphical Objects

A graphical object is drawn on a canvas by calling the Draw operation of the canvas,
see chapter 7. The graphical objects then becomes part of the list of graphical objects
in the canvas, and the canvas asks the graphical object to draw itself on the canvas.
The graphical objects uses its Draw operation to do the actual drawing in the Canvas.

When a canvas must be redrawn, the Canvas knows which graphical objects are
drawn in the canvas, and can therefore ask the graphical objects in question to redraw
themselves on the canvas. Likewise a graphical object is erased by calling the Erase
operation of the canvas. See chapter 7 for a complete description of the Canvas and
when it must be redrawn.

5.2.5 Transforming Graphical Objects

A graphical object can be transformed by manipulating the transformation matrix TM
of the graphical object. Such a transformation will affect the appearance of the
graphical object, if it isdrawn in a Canvas. To simplify transformation of graphical
object, the Transform attribute is present:

Transform.

Applies aamatrix to the transformation mantrix of the graphical object. To be
precise,

aMatri x[] -> anAbstract Graphi cal Obj ect.transform
is equivalent with

(anAbstract G aphi cal Obj ect. TM aMatri x[])
-> MatrixMil -> anAbstract G aphi cal Obj ect. TM

Notice, that in general, only instances of Shape are guarantied to be transformable, in
particular some of the Predefined Graphical Objects (see later) will not respond cor -
rectly to all transformations. Tranglations, i.e. linear moving, however, will work for
al kinds of graphical objects. Pictures (see below) may also be transformed, but if
they contain Predefined Graphical Objects, the restrictions mentioned above apply to
the Picture itself too.

6 The Picture

The picture concept is designed to supports graphics modelling. A pictureis acollec-
tion of graphical objects and pictures. It is therefore possible to make hierarchies of
graphical objects and pictures, leading to the required capability of doing graphics
modelling.

6.1 The Picture List

The concept Picture is a specialization of the concept Graphical Object. The reason for
this specialization is that the picture defines a list attribute consisting of graphical
objects. Due to the specialization, the picture is also a graphical object, and can be
added to the list of graphical objectsin another Picure. The effect of this design is that
every object in the list can be treated in an uniform way, without consideration to the
actual type of the object. Thisis avery elegant foundation for Graphics Modelling.

The graphical objects are stacked (the hexagon being the front most graphical object):
Stacking graphical objects: Resulting image:

-

When the graphical objectsin the list are drawn in a canvas, each object is put on top
of the other objects already drawn. Hence the graphical objectsin the list are stacked
relative to each other on the canvas with respect to their positions in the list. In other
words, the last object in the list is the front most object on the canvas and the first
object is the lowest object on the canvas. Objects in the end of the list may therefore
cover other objects earlier in the list, depending of the positions of the objects. The
position in the list is therefore important when a graphical object is manipulated in-
teractively. The subject of interaction is discussed separately to chapter 9.

There are several operations to manipulate the list of graphics objects and pictures.
Two operations are used to add and delete objectsin the list:

Add.

Takesa graphical object as argument and adds it to the end of the picture list.
Delete.

Takesa graphical object as argument and deletes it from the picture list.

Two operations support moving the graphical objects relative to the other objectsin
thelist:

BringForward.
Accomplished by moving the object to the last position in the list.

—
- 4
<>

29

Bifrost Reference Manual

SendBehind.

Takes a graphical object as argument and draws the object at the bottom of the
canvas. Accomplished by moving the object to the first position in the list.

Two operations support queries to the graphical objectsin thelist.
FirstContaining and L astContaining.

Takes apoint (in CCS) as argument, and reports the first or last object contain-
ing the point or none.

Finally, two operations support scanning through the graphical objects of the picture.
ScanGOs

Scans through all the graphical objects in the picture, in the order they were
added.

ScanGOsReverse

Scans through all graphical objects of the picture in the opposite order than
they were added, i.e. from "top" to "bottom™ of the picture.

6.2 Selection Picture

In [Andersen 91] pp. 78, a detailed description of how the picture is supposed to sup-
port graphics modelling can be found. Currently only one form of the graphics mod-
elling properties are implemented, that is, a constraining picture called SelectionPic-
ture.

The SelectionPicture specializes the Add and Delete operations. When two or more
graphical objects are selected the Hilite and UnHilite operations of the graphical ob-
jects are changed from HiliteControls to HiliteOutline. Graphical objects then become
highlighted by drawing the outlines of the shapes instead of highlighted control
points. This effect is similar to many graphical editors, e.g. MacDraw.

6.3 Picture Coordinate System

When graphical objects are composed into a picture, it is necessary to have mappings
between the coordinate system of the graphical object and the coordinate system of
the picture, since each graphical object is defined in its own coordinate system and is
placed somewhere in the coordinate system of the picture. The graphical object de-
fines atransformation from its own coordinate system to the coordinate system of the
picture. Since the coordinate system of the shape isidentical to the coordinate system
of the graphical object it is part of, the transformation actually defines how to position
the shape of the graphical object in the picture. This transformation is described in a
matrix called TM, inherited from the superpattern AbstractGraphical Object. See also
the description of the Transform attribute of graphical objects above.

6.4 Other Operations on Pictures

The picture defines several other operations to query and manipulate the graphical ob-
jects in the picture and the picture itself. The most important ones are listed below,
see the interface description for the rest.

Other Operations on Pictures

31

NoOfGOs.

Returns the number of graphical objectsin thelist.
ISEmpty.

Returnstrueif thelist is empty.
IsMember.

Takes a graphical object as argument and returns true if the graphical object is
inthelist.

32

Bifrost Reference Manual

7 The Canvas

The canvas’ is the drawing surface of the Bifrost graphics system and the connection
between Bifrost and the display device. The display device is typically a screen or a
window in a window system. In awindow system the canvas is a drawing surface in-
side awindow. How the canvasis made a part of awindow (borders, scroll bars, close
box, etc.) depends on the specific system.

The canvasis very similar to the canvas of an artist, but has properties not comparable
to the canvas of an artists, described in the next sections.

7.1 Drawing and Visible Area

The canvas is a potentially infinitely large drawing area. Hence everything in the
canvasis not necessarily immediately visible on the display device. The canvas there-
fore defines avisible area, defined by means of a shape called the visible shape. The
visible shape is not fixed and can be reshaped even after graphical objects have been
drawn in the canvas. The visible shape is aview to the canvas. By moving the visible
shape it is possible to view other parts of the canvas, hence the visible shape can be
used to implement scrolling. Notice that the visible shape is not effected by the sur-
roundings of the canvas, e.g. by overlapping windows.

In typical drawing applications where the user chooses a part of the canvas to actually
see on the display device, the application programmer should not consider which part
of the canvas is visible, but should regard all the graphical objects in the canvas as
being visible. The canvas will only draw those graphical objects that are visible on the
device. Thisisaccomplished by clipping and updating as described in section 7.3 and
7.4.

7.2 The Canvas Picture

As mentioned in chapter 5, the graphical objects drawn on the canvas are stored in a
picture. When a graphical object isto be shown in acanvas, it is done by invoking the
Draw operation of the canvas, whereby the graphical object is added to the picture of
the canvas and displayed using the draw operation of the graphical object. It is not
allowed, in the current version of Bifrost, to draw objectsin the canvas that is not part
of the canvas picture.8

The following two attributes operate directly on the canvas picture:

7 Asexplained in chapter 11, in the current implementation of Bifrost — based on Lidskjalv — the
pattern Canvas isactually named Bi f r ost Canvas, since thereis another pattern in Lidskjalv with
the name Canvas.

8 For purposes of interaction, it is possible to draw simple objects (lines, rectangles etc) immediately
on the canvas without using the canvas picture, see Chapter 9.

The Canvas Picture

33

scanThePicture.

Invokes the scanGOs on the Canvas picture.
scanThePictureRever se.

Invokes the scanGOsReverse on the Canvas picture.

7.3 Clipping

Clipping is used in graphics system to restrict the area in which graphics operations
have effect. For instance, when some part of a window is damaged, the application
can clip to the damaged part and then draw the whole window. The result of the
clipping is that the system ignores the drawing request outside the clipping area, and
the speed of updating isincreased significantly.

The canvas supports clipping in the situation where some of the graphical objects are
totally or partly outside the visible shape of the canvas. The canvas always clips to the
visible shape. In addition to this clipping area it is possible to set another clipping
area, also defined by a shape—the clip shape. SetClip and GetClip can be used to set
and get the clip shape. The clip shape is especially useful when damaged areas must
be updated, see the next section.

7.4 Updating Damaged Areas

When an area inside the visible area of the canvas has been obscured, e.g. by an
overlapping window, and again becomes visible, parts of the canvas must be redrawn.
The canvas supports redrawing by updating areas that have been damaged. The dam-
aged areais handled by a damaged list in the canvas.

Update events originating from the window system, say, a window overlapping the
canvas is moved, are handled automatically by Bifrost. When Bifrost receives an up-
date event from the window system, the damaged area is in many cases reported
along with the update event. The canvas redraws the damaged area transparently to
the application. In cases where the damaged areas is not reported, the whole visible
area of the canvasis redrawn.

The process of updating damaged areas originating from application dependent ac-
tions, say, removing of agraphical object, is a partly application responsible process;
it is not entirely automatic. In this situation the application is responsible of adding
damaged areas to the damage list. Adding a rectangle to the list is accomplished by
the operation damaged. After the application has called the operation repair, the can-
vas redraws the visible area using an advanced algorithm to determine which objects
must be redrawn.

The traditional way of redrawing is to draw all objects and turn the responsibility of
selecting the objects inside the clipping area to the display device (or basic graphics
library). Although clipping is a very efficient way of reducing the overhead of the
display device in redrawing, it is still necessary to redraw al graphical objectsin the
canvas.

A better idea is to limit the number of graphical objects and pictures that has to be
considered in the redrawing process. When applications use graphics modelling, each
picture typically consists of asmall set of proximate and related objects, expected to
be updated collectively, e.g. by moving the picture. This means, that if a picture is
completely outside the region that should be updated, then it is not necessary to
further consider the graphical objects inside the picture. The following example
illustrates the situation:

34

Bifrost Reference Manual

o .
co | O 1~ 2o T
o '~ s O
o0 o
\O [\: d\ 19 [
ffffff | el O

7@779 777777 | ©l o 7]
O o ol O
| O O | | O |
O | OL ,,,,, |

Given aclipping rectangle T and some pictures (illustrated by dashed rectangles) and
graphical objects (illustrated by small circles) all the graphical objects in pictures that
are completely outside T are never considered.

This approach depends on the assumption that the application is using graphics mod-
elling, and that the graphical objects in each picture are close to each other. Consider
for example two graphical objects in a picture, that are very distant from each other,
the picture becomes very large and it isamore likely that the picture intersects T even
though the graphical objects may be outside T. On the other hand, this update
approach encourage the application programmer or user to apply graphics modelling
to the drawing.

The advanced updating approach in Bifrost does not exclude the possibility to use
other updating mechanisms. In cases where graphics modelling can not be used or
does not make sense, the application programmer can implement a different ap-
proach, e.g. the very advanced method described by Edelsbrunner called ‘dynamic
rectangle intersection search’ [Edelsbrunner 80].

7.5 Input Control

The canvas models the input in two handlers: the event handler and the interaction
handler. The canvas uses the event handler to receive genera events such as window
resizing and updates. Each canvas has exactly one event handler. The interaction
handler is started by request, e.g., when a new graphical objectsis to be created. The
interaction handler is special-purpose event handler, designed for fast interaction with
the user.

The typical situation is that the event handler polls for input from the user, and when
the user e.g. starts creating a new ellipse by clicking on a mouse button, the applica-
tion calls InteractiveCreate for an ellipse graphical object. Interactive create is im-
plemented using an interactionhander.

The event handler is described in this section and the interaction handler is described
in chapter 9.

The event handler models the events originating from the basic graphics system or
from user actions by six virtual operations. The application programmer may then
further bind these operations in an application that uses the Bifrost graphics system.

OnOpen.

Called when the canvasis shown for the first time on the display device.
OnButtonDown.

Called when the user presses a button on the pointing device.
OnKeyDown.

Called when the user hits a key on the keyboard.

Input Control

35

OnRefresh.

Called when the canvas must be redrawn, e.g. when it is exposed after is has
been obscured. The refresh event is typically generated by the basic graphics
system (or by the window manager).

OnActivate and OnDeactivate.

Called when the canvas is (de)activated. The exact definition of activation may
vary with the device. In a window system, the active window will normally
have its title bar highlighted. The activation occurs when the window becomes
the active window.

A Line composed

of aLineSha
and a Paint:

Begin

¥/

pe

End

¥

8 Predefined Shapes and
Graphical Objects

A number of Predefined shapes and corresponding graphical objects are designed to
assist the user of Bifrost. With objects such as lines, circles and text available, the
user can create graphics easier and faster than from scratch. Furthermore, the prede-
fined shapes and graphical objects may utilize the underlying graphics system and
hardware/firmware operations more efficiently.

The predefined shapes currently implemented in Bifrost are described in the first
seven sections of this chapter. In the last section it is outlined how the shapes are
defined in Bifrost, and how to define new “predefined” shapes. The purpose of
defining new “predefined” shapes, is mainly to utilize the underlying graphics
hardware/software. Figure 12 illustrates the predefined shape inheritance hierarchy.

AbstractShape
Shape PredefinedShape

. /T\ TextShape
PieShape MultiLineShape

ArcShape StokeableShape LineShape
RectShape EllipseShape

Figure 12. Predefined shape inheritance hierarchy.

As can be seen in figure 12, some of the predefined shapes can be stroked. The shape
will be stroked with StrokeWidth as the line width in case the attribute Stroked is
true. If StrokeWidth is 0 the line width of the shape will be the smallest possible on
the actual output device.

8.1 LineShape

The line shape is defined by five attributes:
Begin and End.
The beginning and ending points of the line.
Width.

The width of the line. If the width is O, the line will be drawn with the smallest
possible line width of the output device.

Dashes.

List of tuples of integers. The first integer defines the length of the first dash,
the next integer defines the length of the space to the next dash and so on.

36

LineShape 37

(1,2) makes aline dashed like: " mEEEE®m
(4,1,1,1) makes aline dashed like: — e -
Cap.
Specifies how the end of the line looks. See section 3.5.1.

A corresponding Line graphical object is defined with LineShape as the shape. Line
uses FillLine of the Paint to draw itself (see section 8.8.1).

8.2 MultiLineShape

The multi line shape is defined by five attributes: A MultiLine
. composed by a
Points. MultiLineShape
PointArray defining the line. A PointArray, like the name indicates, is an ar- and a Paint:
ray/list of Points. See the interface-description for details. /\/\
Width and Dashes.
Same as for Line above.
Cap.
Specifies how the ends of the line looks. See section 3.5.1.
Join.

Specifies how the lines are joined. See section 3.5.1.

A corresponding MultiLine graphical object is defined with MultiLineShape as the
shape. MultiLine uses FillMultiLine of the Paint to draw itself (see section 8.8.1).

8.3 TextShape

The text shape can show one line of text. No formatting (carriage returns, line feeds, A GraphicText

etc.) is supported. The text shapeis defined by the following attributes: %2212?133% gz a
Begin. Paint:
Specifies where to place the baseline of the text. Helvetica 12
TheFontName. point italic
The name of the font used: Times, Couri er, Or Helvetica.
TheStyle.
The style of the text: bold, italic, or plain.
UnderLine.
Trueif thetext isdrawn underlined.
Size.
The size of thetext in points (1/72 inch).
TheText.

Holds the characters of the text shape.

A corresponding text graphical object (GraphicText) is defined with TextShape as the
shape. GraphicText uses Fill Text of the Paint to draw itself (see section 8.8.1).

38

Bifrost Reference Manual

A Rect composed
of a RectShape
and a Paint:

J

A
Height
v

< >
Width

UpperL eft

An Ellipse
composed by an
EllipseShape and
a Paint:

VerticaRadius

Hori zontaliRadi us

A PieSlice
composed by a
PieShape and a
Paint:

VerticaRadius
Angle2
glel
A
Center

HorizontalRadius

8.4 RectShape

The rectangle shape is defined by the following three attributes:
Upper L eft.
Point specifying the upper left corner of the rectangle.
Width and Height.
The width and height of the rectangle.

A corresponding Rect graphical object is defined with RectShape as the shape. Rect
uses FillRect of the Paint to draw itself (see section 8.8.1).

8.5 EllipseShape

The ellipse shape is defined by the following attributes:
Center.
Point specifying the center of the ellipse.
HorizontalRadius and VerticalRadius.
The horizontal and vertical radius of the ellipse, respectively.

A corresponding Ellipse graphical object is defined with EllipseShape as the shape.
Ellipse uses FillEllipse of the Paint to draw itself (see section 8.8.1).

8.6 PieShape

The pie shape has the following attributes:
Center.
A Point specifying the center of the PieSlice shape.
HorizontalRadius and VerticalRadius.
The width and height of the PieSlice shape.
Anglel and Angle2.
The two angles (in degrees).

A corresponding PieSlice graphical object is defined with PieShape as the shape.
PieSlice uses FillPie of the Paint to draw itself (see section 8.8.1).

ArcShape

39

8.7 ArcShape

The arc shape has the following attributes:
Center.
A Point specifying the center of the arc shape.
HorizontalRadius and VerticalRadius.
The width and height of the arc shape.
Anglel and Angle2.
The two angles (in degrees).
ArcWidth.
The stroke width of the arc.

A corresponding Arc graphical object is defined with ArcShape as the shape. Arc uses
FillArc of the Paint to draw itself (see section 8.8.1).

8.8 Defining New Shapes

Predefined graphical objects are defined by describing a shape that defines the outline
of the object. Thisis done in two steps. First, the additional attributes that specifies
the shape are defined, e.g to define aline shape, the shape defines three attributes: two
end points and a line width. Secondly, the operation GetShape, that calculates the
actual shape in terms of line and spline segments, is defined.

In practice it could be very difficult or impossible to define the GetShape operation,
e.g. for text. In case the application programmer wants to utilize special hard-
ware/firmware operations, the Draw and Erase operations of the graphical object must
be specialized together with a corresponding fill operation of the Paint (cf. section
8.8.1).

In case GetShape is not written for a particular predefined graphical object, the fol -
lowing operations must be further bound in the predefined shape:

GetBounds.

Return the enclosing rectangle of the shape.
ContainsPoint.

Determine whether the entered point is inside the shape.
I nter sects.

Determine whether the shape of the entered graphical object intersects the
shape

Within.

Determine whether the shape of the entered graphical object istotally inside the
shape

Transform.
Transform all points of the shape by the transformation matrix.

An Arc
composed by an
ArcShape and a
Paint:

Vertica Radius

Angle

(o
e

Horizontal Radius
ArcWidth

40 Bifrost Reference Manual

HitControl.

Determine whether the entered point is in the neighborhood of one of the con-
trol points of the shape. See section 9.3 for a definition of neighborhood.

I nteractiveCreate and I nter activeReshape.
Specify how to interactively create and reshape the shape. See also chapter 9.
HiliteControls, HiliteOutline, HiliteBound

Specify how to highlight the shape by using control points, the outline, or the
bounding box, respectively, of the shape. See also chapter 9.

8.8.1 Predefined Paint Operations

When a graphical object is rendered on a drawing surface, it is the responsibility of
the paint of the graphical object to do the actual displaying. As stated in chapter 4, the
rendering is accomplished by filling out a shape. Thus any paint has an operation
Fill Shape that enters the shape to be filled.

To utilize the capacity of the basic graphics system the shape should be drawn using a
different approach. The shapes in question here could be lines with the minimal line
width the output device can display, ellipses, arcs, and text.

To dlow an efficient implementation of the fill operations Bifrost therefore supplies
some additional filling operations for these special cases. These additional operations
are only a supplement, the basic filling operation Fill Shape, must be able to handle all
shapes. Bifrost supply the following additional fill operations:

FillLine and FillMultiLine.

Draws the entered shape using a line drawing primitive of the basic graphics
system.

Fill Text.

Draws the entered TextShape using the character generator of the basic graph-
ics system.

FillPie, FillArc, FillRect, and FillEllipse.

Draws the entered shape using corresponding drawing primitives of the basic
graphics system.

O Interaction

The reader migth prefer to skip this chapter at first reading, in case the user only uses
the basic graphical object, and the predefined graphical objects, and later return to the
chapter when familiar with the basic usage of the Bifrost graphics system.

This chapter explains the design and some implementation details of the interactive
part of Bifrost. The chapter is mainly for the advanced user, who migth be interested
in designing new interaction. As an example of designing special interaction, is when
a new graphical object with a specia shape is defined, as described in the previous
chapter.

9.1 Interaction Model

Bifrost abstracts input devices used in interaction in a general interaction model. The
input device istypically a pointing device like a mouse. The model is defined in pat-
tern InteractionHandler of the canvas. InteractionHandler defines a series of virtual
attributes and a general interaction loop. The usage of the interaction handler is to
execute an instance of a specialization of InteractionHandler with some of the virtual
atributes further bound. The attributes are:

Initialize.

Specify what to do before the interaction loop starts. Also changes the canvas
drawing mode to be XOR, to allow for immediate feedback, see below.

Motion.
Specify what to do when the user moves the pointer.
ButtonPress.

Specify what to do when the user presses a button of the pointer. Buttoninfo is
alocal attribute in ButtonPress that may contain device specific information,
e.g. which button was pressed.

ButtonRelease.

Specify what to do when the user releases a button of the pointer.
KeyPress.

Specify what to do when the user presses a key on the keyboard.
KeyRelease.

Specify what to do when the user releases a key on the keyboard.
TerminateCondition.

Specify a condition for ending the interaction handler. Default is when the
rightmost button on the pointer is released.

Terminated.

Specify what to do when the user has terminated the interaction loop. Also
changes the canvas drawing mode back to normal — see Initialize.

41

Canvas
InteractionHandlel
Pattern

42 Bifrost Reference Manual

In addition to these attributes the handler provides three support functions:
GetPointer L ocation.
Returns the current position of the pointer.
IsModifier On.

Returns True if the modifier entered was ON in last user action (Motion, But-
tonPress, ButtonRelease, KeyPress or KeyRelease).

DoubleClick.
Returns Trueif the last button press was a double click.

The action part of an instance of the pattern InteractionHandler performs the follow-
ing sequence of code:

iteractionHandler

utline (#

do Initialize;
Loop and call Notion, ButtonPress, ButtonRel ease, KeyPress or
KeyRel ease, depending on user action, until
TerminateCondition returns True,
Ter mi nat ed;

#)

As the reader migth have noticed, the interaction handler, when excuted, temporarily
replaces the event handler of the canvas and processes all events until terminated.

The InteractionHandler pattern is used to implement the interaction operations of the
shapes. The following is an example of how the feedback for InteractiveCreate might
be implemented for the predefined shape LineShape, using an InteractionHandler:

iteractionHandler

xample Rubber Li ne: | nteractionHandl er

(# mousePoi nt, anchorPoint: @Point; (* Device coords *)
thenodifier: @uodifier; (* the nodifier used for constrains *)
stopi nteraction: @ool ean; (* stop when true *)

X,y: @nteger; (* tenporary variables *)

Initialize:

(# do (anchorpoint, nousePoint) -> inmmedi atelLine #);
Mot i on: :

(#

do (anchorpoint, nousePoint) -> inmedi at eLi ne;
Get Poi nt er Locati on -> nousePoi nt;
(if thenodifier -> isModifierOn then
(* constrain the angles *)
(rmousepoi nt. x-anchorpoint.x) -> abs -> x;
(rmousepoi nt. y-anchorpoint.y) -> abs -> vy;
(if y >x then (* constrain to vertical *)
anchor poi nt.x -> nousepoi nt. x
el se (* constrain to horizontal *)
anchor point.y -> nousepoint.y
if)

if);
(anchor poi nt, nousePoint) -> i medi at eLi ne;
#);
ButtonPress:: (# do true -> stopinteraction #);
Term nateCondition:: (# do stopinteraction -> res #);
Ter m nat ed: :
(# do (anchorpoint, nousePoint) -> inmedi atelLine #);
enter (anchorpoint, nousepoint, thenodifier)
exit nousepoint
#);

The interaction obtained by the above handler works as follows: a rubberband line is
spanned between the anchor poi nt point and the pointer location, following the
pointer movements. In case the modifier is on (e.g. Shift is down) then the angle of

Interaction Model

43

the lineis constrained to multiples of 90 degrees. The interaction terminates when the
pointer button is pressed again.

9.2 Feedback

Bifrost supports two different forms of feedback. One is the feedback generated when
the user is creating or modifying a graphical object. The primives in Bifrost for this
kind of feedback is presented in section 9.1 and 9.2 below.

The second kind is the feedback used, e.g., to identify a of selection of graphical
objects, e.g. by highlighting of the control points or outlining the shape. This is
elaborated upon in section 9.3, which also presents other interaction facilities of the
Shape pattern.

Finally section 9.4 deals with the notion of modifiers, i.e. pseudo-buttons used to
modify the meaning of another key or a mouse button being pressed.

9.2.1 Canvas Primitives for Feedback

Feedback drawing is done in immediate mode, that is, the feedback is not a graphical
object with a shape and a paint defined. Immediate drawings are not inserted into the
canvas picture.

Immediate mode drawing is supported in the Canvas by the following operations,
which should typically be performed in XOR mode to allow easy erasing (by simply
redrawiingthe feedback a second time). Notice, that the Hilite and Unhilite patterns of
graphical objects, as well as Initialize of the InteractionHandler pattern of Canvas
automatically puts the Canvasinto XOR mode.

SetlmmediateL ineWidth.

Set the line width for subsequent immediate drawings.
Immediateline.

Draw aline between the two points specified as arguments.
ImmediateDot.

Takes one point as argument and draws a dot of the size of one device pixel at
the point.

ImmediateSpot.
Takes one point as argument and draws a small filled square (approx. 2x2mm)
around the point.
ImmediateM ultiLine.
Draw aline between the pointsin the PointArray specified as arguments.
ImmediateRect.

Takes one point, awidth, and a height as arguments and draws a rectangle with
upper left at the point.

I mmediateT ext.

Enters a text, a position, and the text attributes FontName, Style, Size, and
UnderLine, and draws the text at the position in the specified way.

44

Bifrost Reference Manual

9.2.3 Segment Primitives for Feedback

The building blocks of the shape, LineSegment and SplineSegment, defines an opera-
tion DrawRubberBand, constructed by the immediate primitives above, to draw
feedback:

DrawRubber Band.

Enters a point (NewPoint), an index into spline control points (ignored if the
segment is a line segment), and a reference to the next segment (NextSeg) and
draws arubber linein either of the following two ways:

LineShape THIS(LineSegment)
This LineShape example has four line segments NewPoint
where two participate in the interaction. 4
f
>
NextSeg
SplineSegment Control index

Draws a local spline rubberband around the - ' Newksin
control point specified at control index. NextSeg is @ -’

used when the control index is the last index of the
spline.
|

9.3 Interaction Facilities in the
Shape

Since the shape of a graphical object defines the outline of the object, the shape must
define how to, interactively, create and modify itself. This is accomplished in the
operations InteractiveCreate, InteractiveReshape and interactiveCombine. The
operations use the general InteractionHandler and feedback primitives described
above.

I nter activeCr eate.

Takes a beginning point and a modifier as arguments and starts an interaction
loop letting the user define the outline of a shape. When the loop is terminated
the control points of the shape are set accordingly. The operation is most
commonly used from InteractiveCreateShape of a graphical object.

I nter activeReshape.

Takes apoint as argument and starts an interaction loop letting the user reshape
the shape at the control point in the neighborhood of the point (obtained by us-
ing, say, HitControl). The operation is most commonly used from Interac-
tiveReshape of a graphical object.

I nter activeCombine.

Takes a beginning point and a modifier as argument and starts an interaction
loop letting the user create a shape. When the loop is terminated the new shape
is combined with the original shape by using the CombineShape operation. The
operation is most commonly used from InteractiveCombineShape of a graphi -
cal object.

Interaction Facilities in the Shape

45

9.3.1 Neighborhood

The concept of neighborhood is used in some of the operations presented. Neigh-
borhood is defined as follows: a point P is said to be in the neighborhood of another
point Q if Pisinside a square with Q as center and a given side length. The length of
the sides defaults to 2 mm, but may be changed by the programmer.

9.3.2 Direct changing of Control Points

A shape can aso be manipulated by adding a new control point to the shape, or by
deleting a control point from the shape. The following two operations supports ma-
nipulation of control points. They are especially useful in interaction.

Insert.

Takes two points as parameter. If the first point is in the neighborhood of an
existing control point, the second point is added as a new control point between
the neighbor point and the next control point of the neighbor point.

Ddete.

Takes a point as parameter and, if there is one, deletes a control point in the
neighborhood of the parameter point.

9.3.3 Shape Highlighting

Highlighting a graphical object is also part of interaction and interaction feedback,
and is handled by the shape of the graphical object by instances of specializations of a
special HiliteDesc pattern. The HiliteDesc pattern enters three parameters. The canvas
to present the feedback in, a boolean indicating whether the feedback is to be drawn
or erased?, and a transformation matrix, which will be applied to the feedback before
itisdrawn in the canvas. The following three predefined specializations of HiliteDesc
define how to highlight and unhighlight the shape in three standard ways. The actual
way of highlighting the shape is determined by the variable DrawHilite. It references
one of the Hilite operations. The application programmer can easily extend the
highlighting scheme by adding new operations.

HiliteControls.

Draws small sguares at the locations of the control points. The concept of
control points can in this context be a bit different than used earlier. For
example, the control points of an ellipse are the four corners of the bounding
box of the ellipse. These corners can naturally be manipulated interactively to
modify the ellipse, in contrast to the control points that are used to generate the
ellipse shape in the earlier sense.

HiliteOutline.

Highlights the shape by drawing a curve aong the shape. Draws by default the
thinnest possible line, but another line width may be specified in the parameter
Hilitewidth.

HiliteBound.

Highlights the shape by drawing rectangle along the bounding box. Draws by
default the thinnest possible line, but another line width may be specified in the
parameter HiliteWidth.

9 You may have noticed some lack of consequence in defining how to draw and erase feedback: The
Graphical Object defines both Hilite and UnHilite patterns, whereas the Shape uses a boolean to
control this. Also the Canvas defines primitives that allow for XOR drawing, which means, that
there is no need for distinguishing between drawing and erasing of feedback. Besides the fact, that
the Graphical Object needs to know the "state” of the feedback (drawn or ereased), the reasons for
these different views on drawing versus erasing are purely historic.

An ellipse with
highlighted
control points:

46

Bifrost Reference Manual

DrawHilite.

Refers to one of the above Hilite operations, and is the attribute of the shape,
which isinvoked by the Hilite and Unhilite patterns of Graphical Objects.

9.3.4 Query Functions
Four operations are defined as query functions of the shape.
HitControl.

Enters a point and if this point is in the neighborhood of a control point, the
control point is exited. Otherwise NONE is exited.

ContainsPaint.

Takes a point as argument and reports whether the point is inside the shape or
not.

I nter sects and Within.

Takes a shape as argument, and reports whether it intersects or is totally inside
this shape, respectively.

9.4 Modifiers and constraints

Several of the interaction methods previously presented take a modifier as one of their
arguments. This section elaborates on modifiers, and presents the constraints they
impose on the interactions.

A keyboard modifier is a"pseudo-key "on the keyboard, that when kept down during
anormal key press, will modify the meaning of the action. Usually there are at least
three modifiers on a keyboard: The Shift key, the Control key, and the Metakey. The
Meta key is often labelled something else than Meta: On some Hewlett Packard
keyboards it is labelled Extend Char, on some Sun workstation keyboards there are
two Metakeys, labelled Left and Right, respectively, on some Sun SPARC keyboards
itislabelled Alt, on most Macintosh keyboardsit islabelled Alt, etc...

As mentioned a modifier key is not a normal key, e.g. it will not invoke the onKey-
Down virtual of a Canvas eventhandler, if the modifier key is pressed alone. Instead
the modifier changes (modifies) the meaning of the normal keys, if the modifier is
held down when the normal key is pressed.

Shift
makes the character typed become upper case. Technically 32 is added to the

numerical value of the character, i.e., the 5'th bit of the 7 or 8 bit a character is
represented by, is set.

Control

subtracts 64 from the numerical value of the character, i.e., clears the 7'th bit.
Meta

adds 128 to the numerical value of the character, i.e. sets the 8'th bit.

Modifiers can also be used during interaction with the mouse. This does not change
anything directly, but is usually used to modify the feedback during the interaction.
This is why the onButtonDown virtual of a Canvas eventhandler contains some
booleans, indicating if the corresponding modifier was ON when the mouse button
was pressed. E.g., if shi ftnodified istrue, it means that the shift modifier was ON
when the mouse button was pressed.

Modifiers and constraints

47

InteractiveCreateShape, |nteractiveReshape, and InteractiveMove in the Canvas pat-
tern, and the corresponding methods of graphical objects and shapes all have an enter
parameter called t heModi fi er, that is used to specify what modifier to use to make
the interaction constrained. Thus if ShiftModifier is used, it means that if holding
down the Shift key during the interaction, the interaction will be constrained in some
way, see below. A pseudo modifier called NoModifier has been defined to specify
that all modifiers should be ignored, i.e., the interaction should not be constrainable.

9.4.1 Default constraints in Bifrost

Bifrost contains a small graphical editor, bdr aw, residing in the directory ~bet a/
bi frost/current/bdraw. Thus the interaction forms of the different graphical
objects, and the constraints the modifiers impose on them can be tried in practice. In
bdr aw, Shift is used as the modifier.

Here is a short overview of the interaction forms when creating, moving and reshap-
ing the different graphical objects:

I nteractiveCreate
Rect:

The feedback is a "rubber rectangle”, defined by the start point and the
position of the mouse. If theModifier is ON, the Rect is constrained to be
asquare. The interaction stops when the mouse is clicked.

Ellipse:

The feedback isa"rubber ellipse” defined by the start point and the mouse
position. If theModifier is ON, the Ellipse is constrained to be a circle.
The interaction stops when the mouse is clicked.

Graphical Object:

Control points are added by clicking the left mouse button. The feedback
isa"rubber line" from the previous control point added to the mouse po-
sition, and another line from the start point to the mouse position. If the-
Modifier is ON, SplineSegment control points are added, otherwise Line-
Segment. The interaction stops when the right mouse button is clicked. On
machines with only one mouse button the interaction is stopped by
double-clicking the mouse button.

PieSlice:
The interaction has two phases:. First a rectangle with an inscribed ellipse
is laid out, to define what ellipse the PieSlice should be a dlice of. This
phase is much like InteractiveCreate of an Ellipse. The second phase is
determining the two angles defining the dlice. This is done using "rubber
lines" from the center to the periphery of the ellipse, in direction towards
the mouse position. Each of the two angles are set when the mouse is
clicked. When the last angle is determined, the interaction stops. If the-

Modifier is ON, in the first phase, the ellipse is constrained to be a circle.
In the second phase, angles are constrained to be multiples of 45 degrees.

GraphicsText:

The interaction is done via the keyboard. Characters are typed in the nor-
mal way, and typing Return will end the interaction. A mouse click will
also stop the interaction. During the interaction, the end of the text being
typed is marked with a vertical bar ("insertion point").

Line

The feedback is a"rubber line" from the start point to the mouse position.
If theModifier is ON, the angles of the rubber line is constrained to mul -
tiples of 45 degrees. The interaction is stopped by clicking the mouse.

bdraw

48 Bifrost Reference Manual

MultiLine:

Control points are set using the left mouse button. During this phase, the
interaction is a"rubber line" from the previous control point to the mouse
position. The interaction is stopped by clicking the right mouse button. If
theModifier is ON, the angles of the rubber line is constrained to multiples
of 45 degrees. On machines with only one mouse button the interaction is
stopped by double-clicking the mouse button.

Arc

The interaction is like InteractiveCreate for PieSlice, except that "moving
points* on the periphery is used instead of "rubber lines' from the centre
to the periphery during specification of anglesin the second phase.

I nteractiveM ove

The outline of the graphical object follows the movements of the mouse. If
theModifier is held down, the movement is constrained to horizontal and verti-
cal directions. The interaction stops when the mouse button is rel eased.

I nteractiveReshape

For all kinds of graphical objects!O InteractiveReshape is initiated by grabbing
a control point and dragging it around, thus causing the shape to be altered. In
Graphica Object, the theModifier argument of InteractiveReshape is currently
ignored, but for the other object kinds, if theModifier is ON, the interaction is
constrained in the same way as during InteractiveCreate. When reshaping a
PieSlice or an Arc, grabbing one of the "corners' will change either the hori-
zontal radius or the vertical radius of the object, whereas grabbing one of the
two control points on the periphery defining the angles will change the corre-
sponding angle.

8 Except for GraphicText, for which InteractiveReshape is not yet implemented

10 The Modular Design of
Bifrost

Fragments are used for several purposesin Bifrost: 11
» to separate interface descriptions from implementation details

* to separate machine-specific details of the implementation from machine-inde-
pendent implementation

» to offer extra features that are not necessary for all applications which uses
Bifrost

» for separate compilation

Below the fragments of Bifrost are presented in four sections. The first section de-
scribes the application level of Bifrogt, i.e., the fragments that are visible to an appli-
cation using Bifrost. Section 10.2 describes the device independent implementation of
Bifrost, except the implementation of the predefined shapes. The predefined shapes
and a library of rubberbanding interaction handlers are described in section 10.3.
Finally the X11 dependent level concludes the description. As can be seen, the pre-
sentation is based on the X Windows implementation of Bifrost, but the fragments
for, e.g., the Macintosh implementation is organized in an analogues way.

The notation used for the diagrams used in the presentation is shown below. It is
based on the notation used in the BETA case tool Freja.12

B hasORIGIN in A:

A BODYes B:

&]
[A J+——1 8 |

B has ORIGIN in A and A BODYes B:

[A Je——4 8 |
&]

A INCLUDEs B:

A h

11 The description of the modular design assumes familiarity with the BETA Fragment System. A
description of the fragment system can be found in [Madsen 93] and [MIA 90-02]

12 |nfact the diagrams have been generated by Freja
49

Bifrost Reference Manual

10.1 The Application Level

An application using Bifrost should have ORIGIN in or INCLUDE the Bi f r ost
fragment group. As shown below, this will make several fragments become visible to

the application:
‘ math ‘ ‘ list
guienv ‘
Bifrost
ColorNames ‘ PredefinedGO SelectionPicture
Palette ‘ ‘ RasterGrays

Figure 13. The application level

The way an application uses bifrost can be summarized by the following: Each of the
basic concepts of the Bifrost graphics system, like Graphical Object, Picture, and
Canvas, is described in the Bi f r ost . Besides these, the mat h-, 1i st- and gui env
(Lidskjalv) libraries and of course bet aenv are visible. The application can
INCLUDE additional libraries, in the figure, the additional Bifrost libraries Pal et t e
and Col or Nanes are shown. Pr edefi nedGO (containing the description of the
predefined graphical objects) are INCLUDEd by Pal et t e.

The fragment groups specifying Bifrost are only interface fragments. That is, all do-
parts and all attributes, that should not be visible to the applications are in SLOTSs.

The Bi frost fragment contains the pattern called Bi f r ost . By specializing the
Bi f rost pattern, the application programmer is able to describe an application using
the patterns and objects in Bifrost. An application isinvoked by executing an instance
of the specialization of Bi f r ost . The implementation of Bifrost is actually located in
the directory ~bet a/ bi frost/current. Any BETA application, that uses Bifrost,
should therefore have the following outline:

ORIG@ N '~betal/bifrost/current/Bifrost';
- PROGRAM descriptor --

Bi f r ost
(# ... do ... #)
or aternatively

ORIG@ N '~betal/bifrost/current/Bifrost';
- PROGRAM descriptor --

(#
do Bifrost

(# ... do ... #)
#)

As mentioned above, some parts of Bifrost are located in separate library fragments,
in order to reduce the complexity of simple applications. To utilize these facilities, the

The Application Level

above outline of atypical BETA application that uses Bifrost can be augmented with
inclusion of the appropriate fragments containing the extra facilities. The following
exampleillustrates the use of such fragments:

ORIG@ N ' ~betal/bifrost/current/Bifrost';
| NCLUDE ' ~bet a/ bi frost/current/Predefi nedGO ;
| NCLUDE ' ~bet a/ bi frost/ current/ Col or Names' ;
-- PROGRAM descriptor --
Bi fr ost

(#... do ... #)

Additional attributes may be added to Bifrost by specifying a fragment associated
With <<SLOT BifrostAttributes: attributes>>intheBifrost pattern.

10.2 Device Independent
Implementation

Figure 14 shows the internal dependencies of the device independent implementation
of Bifrost. Fragment groups that has no ORIGIN in the figure, are described above,
except for the fragment group debug, which has ORIGIN in Bi f r ost .

‘ betaenv ‘

Bifrost ‘

‘ objinterface ‘ ‘ guienv

‘ guienvbody ‘

\ Mathimpl ‘ \ stddialogs

‘ Datatypesimpl . ‘ debug

~ Paintimpl
BSplinelmpl ~ N ‘ p ‘

N ‘ Golmpl ‘

N

SegmentList

Picturelmpl ‘

‘ Predefinedimpl ‘

Figure 14 Device Independent Implementation

The organization of the implementation fragments of the Bifrost concepts is centered
around the fragment group Bi f r ost | npl . This group contains various attributes that
need to be visible in several other implementation fragments. Thisis, e.g., the list of
Segments that constitute a Shape: This list needs to be visible in Shapel npl , which
manipulate it. Pai nt | npl aso needs information about the list when the Shape is to
be filled with a Paint. So, as can be seen, most of the implementation fragments have
ORIGIN in Bi frost I npl . On the other hand, to bind it all together, Bi f r ost I npl
BODY es al the implementation fragments.

52

Bifrost Reference Manual

The fragments of the implementation binds some of the SLOTSs in the specification,
but not all. The fragments implementing the predefined shapes will be described be-
low. Also, in most of the implementation fragments additional SLOTs are declared, to
handle device dependent actions. These SLOTs are bound by fragments of the device
dependent implementation described below.

10.3 Implementation of Predefined
Shapes

The implementation of the predefined shapes, which is also device independent, is
centered around the fragment Pr edef i nedl npl shown in Figure 14 above. Also, a
library of commonly used rubberbanding interaction handlers is used. The rubber-
banding interaction handlers have been constructed in a general way, so that most of
them are used in several predefined shapes. Because of this generality of the rubber
library, many INCLUDEs are used, and therefore naturally the figure below is a bit
messy:

Bifrost

Predefinedimpl

RN CenteredRubberRect

|

|
-7 - |
— P Y L
Textimpl 7 / / \
Y] |
|

-

Pielmpl : /

=,

% \
& |
Ellipselmpl | \ N DoubleRubberArc
|

\ \
\
Figure 15 Implementation of Predefined Shapes

Again various of the attributesin Bi fr ost | npl are used, and the fragments thus have
ORIGIN inBi frost | npl .

10.4 X11 Dependent Implementation

The X11 dependent implmentation of Bifrost is centered around the fragment group
Bi frost X11i npl . This fragment group is used at the X11 level in the same way that
Bi frost | npl was used at the device independent level described above. That is, it
contains various attributes, that need to be visible in several X11 implementation
fragments. Each X11 implementation fragment group has ORIGIN in the correspond-
ing device independent group. Thisis because not only SLOTSs in the specification of
Bifrost are bound by the fragments, but also the additional SLOTs declared in the
device independent implementation:

X Toolkit Dependent Implementation 53

‘ Bifrost ‘

Bifrostimpl ‘ ‘ RectangleList ‘

‘ errorhandlerbody ‘ ‘ guienv

‘ AbstractShapelmpl ‘ ‘ > BifrostX11limpl ‘ ‘ guienv_unixprivate ‘

S
callbacks ‘

\
\
\
M
\
AN
N

‘ AbstractShapeX11impl r” /.

Shapelmpl -~ 2 ////
‘ apelmp ‘ s g Y, ‘ Datatypesimpl
~ v
‘ ;h\ el ok '/ / /
apeX1limpl ‘ P)/, DatatypesX1limpl ‘
s /) \
‘ Paintimpl ‘ o)y
V\ T /)
= Vi /
‘ PaintX1limpl ‘ . / // Canvasimpi
/
‘ Rasterimpl ‘ e g //
% - / ‘ CanvasX11impl ‘
‘ RasterX11limpl ‘ , / T
Y, ‘ CanvasXtimpl ‘
| Textimpl ‘ -7 | X11fonts | 4

~ |
- / ‘ XtOpenHandler ‘

‘ TextX1limpl ‘

Figure 16 X11 Dependent Implementation

To bind it al together, Bi f rost X111 npl BODYes all the X11 implementation
fragment groups, which, on the other hand, each INCLUDE Bi f r ost X111 npl to gain
access to the commonly used attributes. Bi f r ost X11i npl INCLUDES cal | backs,
from Lidskjalv (guienv) which includes the BETA interface to the X Window System
Libraries. Bi frost X111 npl also INCLUDES the fragment group Dat at ypesX11i npl
to make it visible to all the fragment groups that INCLUDE Bi f r ost X111 npl .

Text X11i npl has been split into two fragment groups: The interface to the X Win-
dows fonts have been separated in the fragment group X11f ont s which is rather big.
The splitting is done in order to reduce compilation time, and to make this part
separately visible to CanvasX11l npl , which INCLUDEs t.

CanvasXt I npl and Xt OQpenHandl er contain the canvas implementation parts that are
dependent on the X Toolkit (as opposed to the rest of the X11 implementation, which
only relies on the XLib interface). For instance this includes a special handling of the
first expose event, that the X Toolkit widget associated with the canvas receives. This
is used to implement the onpen attribute of the canvas eventhandler.

10.5 Summary

As can be seen from the above description, the Bifrost system consists of a huge
number of fragments, approximately 1000 in all, and the interrelation between them is
somewhat complicated. A complete graphical description can be obtained by joining
the figures above, but thisis not recommended! This large structure is handled by the
fragment system, which the BETA compiler uses to automatically build the
dependency graph. In this situation, it would have been a very tedious job to have to
manually make such a dependency graph, asin traditionel systems.

11 Bifrost and Lidskjalv

As has been mentioned n the previous chapters, the current implementation of Bifrost
is based on the Lidskjalv User Interface Toolkit, also known as guienv, see [MIA94-
27]. As it was aso mentioned in a footnote in the Canvas description, the Canvas
pattern is in the current implementation named Bi f r ost Canvas. This chapter triesto
give an overview of the current situation with respect to such overlaps and
inconsistencies between Lidskjalv and Bifrost.

The Lidskjalv library and the Bifrost library has been designed independently. Thisis
the reason that here is some overlap in functionality, in the implementation of Bifrost
under Lidskjalv.

11.1 BifrostCanvas and Lidskjalv
Canvas

Both Lidskjalv and Bifrost have a Canvas concept. The Lidskjalv Canvasis designed
as a sort of "container" for W ndowl t ems. In this respect it resembles the Bifrost
Canvas, which can be thought of as a sort of "container" for graphical objects.

The current implementation of Canvasin Bifrost isnamed Bi f r ost Canvas, anditisa
specialization of the Canvas pattern in Lidskjalv. This means that you can combine
Bifrost graphics and Lidskjalv window itemsin a Bi f r ost Canvas.

It is being discussed to rename the Lidskjalv Canvas pattern to another name with a
dlightly less "graphical" flavor, and to re-rename the BifrostCanvas to Canvas as in
the previous non-Lidskjalv based Bifrost implementations.

11.2 Overlapping Data Types

The Lidskjalv fragment group gr aphmat h defines, among other things the following
patterns:

i poi nt
which isanalog to the Bifrost Poi nt pattern
i rectangl e
which is analog to the Bifrost Rect angl e pattern
. matri x, | Dmatri x, noveMatri x, scal eMatri x,rotateMatri x

which are almost identical to the correspondingly named patterns in Bifrost
(they originate from Bifrost)

* oval Angleandcircl eAngl e

which are identical to the El | i pseAngl e and Gi r cl eAngl e patterns of Bifrost
(also originating from Bifrost).

54

Bifrost and Lidskjalv

55

These overlaps in names may sometimes lead to "lllegal Assignment™ errors in com-
pilations, and "Qualification Error" at runtime, if you mix Lidskjalv and Bifrost code.
These kind of errors may most times be solved by qualifying the references with
either THI S(Gui env) or THI S(Bi frost).

In a future implementation, these attributes will have been replaced by one common
set of patterns.

11.3 Lidskjalv Graphics and
Figureltems

The Lidskjalv fragment groups gr aphi cs and fi gurei t ens contain asimple set of
graphics routines to allow for some graphics in Lidskjalv. Both fragments are based
on the notation of a Pen, and whereas gr aphi c¢s defines a procedural graphics library
with "draw" and "fill" operation (but with no automatic refresh-handling like imme-
diate drawings in the Bifrost Canvas), thefi gur ei t ems resemble Bifrost predefined
graphical objects somewhat. They can be thought of as a simplified "light-weight"
graphical library to use as an aternative to Bifrost in Lidskjalv.

Notice, however, that the figureitems in Lidskjalv are present mostly for historical
reasons, and that it is being discussed to replace them with the Bifrost equivalents.

56

Bifrost Reference Manual

12 Interface Descriptions

12.1 Various Simple Definitions

-- BifrostAttributes: attributes --

(* Specifications used to test for key and/or pointer nodification *)

@nteger; enter mdo INNER exit m#);

i er

Modi fier:

(# m
NoModi fi er: Modifier

(# ... #);
ShiftMdifier: Mdif

(# ... #);
Control Modifier: Modifier
(# #);

LockModi fier: Mdifier

(# ...

#)

Met aModi fier: Modifi

(# ...
CommandModi fi er:
(# ...

#),

#);

er

Modi fi er

(* Constants used to specify fill rules *)
EvenOddRul e: (# exit
W ndi ngRul e: (# exit

(* Cap
CapStyl

CapBut t

CapSquar e:

styles *)
eDesc: (# s:

0 #);
1 #);

@nteger; enter s do INNER exit s #);

. CapStyleDesc(# ... #);
CapRounded: CapStyl eDesc(# ... #);

(* Join styles *)
Joi nStyl eDesc: (# s:

CapStyl eDesc(# ... #);

@nteger; enter s do INNER exit s #);

JoinMter: JoinStyleDesc(# ... #);
Joi nRound: Joi nStyl eDesc(# ... #);
Joi nBevel : Joi nStyl eDesc(# ... #);

(* Fontnanmes to use in Text Shape and Graphi cText *)
f ont Name: i nteger Qbj

Courier: fontnane(# ...
fontname(# ...

Ti mes:
Hel vet i

ca: fontnanme(

ect (# do I NNER #);
#);

#);
... #);

(* Styles to use in Text Shape and Graphi cText *)

Style: integerQbject(# do | NNER #);

Plain: Style(# ... #);

Italic: Style(# ... #);

Bol d: Style(# ... #);

MaxRGB: (* The upper Iimt for the range of RGB val ues *)

(# max: @nteger
.. (* Device dependent *)

Interface Descriptions

57

exit max
#);

(* Constants specifying the range for hue, saturation and val ue *)

Def aul t MaxHue: (# exit 360 #);
Def aul t MaxSat: (# exit 32768 #); (* (2715) *)
Def aul t MaxVal : (# exit 32768 #); (* (2715) *)

12.2 Mathematics

Poi nt :
(# x, y: @nteger;
enter (Xx,Yy)

exit (x,y)
#);

Vector:
(# x,y: @eal;
enter (X,YVY)
exit (x,y)
#);

Rect angl e:

(# X,y,w dth, height: @ nteger
enter (X,y,w dth, hei ght)
exit (x,y,w dth, hei ght)
#);
Equal Poi nt :
(# pl, p2: @Point;
enter (pil,p2)
exit (pl.x=p2.x) and (pl.y=p2.y)
#) ;
AddPoi nt s:
(# pl, p2: @Point;
enter (pil,p2)
exit (pl.x+p2.x, pl.y+p2.vy)
#) ;
SubPoi nt s:
(# pl, p2: @Point;
enter (pil,p2)
exit (pl.x-p2.x,pl.y-p2.vy)
#);
ExpandRect angl e:
(# r: @ectangle;
e: @nteger;
enter (r,e)
exit (r.x-e, r.y+e, r.w dth+2*e, r.hei ght+2*e)

#);
Poi nt | nRect :
(# p: @oint;

r: @rectangl e;
enter (p,r)

exi t ((r.x <= p.x) and (p.Xx <= r.x+r.wi dth) and

(r.y >=p.y) and (p.y >= r.y-r.height))
#);
Mat ri x:
(# a,b,c,d, tx,ty: @Real;
i nverse: ~Matrix;

(* a b o0
* c d O
* tx ty 1
*)

set:

Bifrost Reference Manual

(# enter (a,b,c,d, tx,ty) #);
transfornPoint: @

(# p,result: @oint;

enter p

exit result
#);

i nverseTransformPoint: @
(# pl, p2: @oint;

enter pl
exit p2
#):

transfornRectangle: @
(# r,result: @rectangl e;

enter r

do ...

exit result
#);

i nver seTr ansf or nRect angl e:
(# r,result: @Rrectangl e;
enter r

exit result
#);
getlnverse: @
(# get: @..;
do get;
exit inverse[]
#)
do | NNER;
exit (a,b,c,d, tx, ty)
#)
| DMVat ri x:
(* Exit an identity matrix *)
(# 1D "Matrix

exit D[]
#);
MoveMatri x: Matri x (* Amatrix specifying a translation *)
(# itx,ity: @nteger;
enter (itx,ity)
#);
Scal eMatrix: Matrix (* A matrix specifying a scaling *)
(#
enter (a,d)
#):;
RotateMatrix: Matrix (* A matrix specifying a rotation *)
(# theta: @real;
enter theta
#):
MatrixMul: (* Multiply two matrices *)
(# A B, res: "Matrix;
enter (A[],B[])

exit res[]
#);
El | i pseAngl e:
(* Returns the angle a (in radians) and cos(a), sin(a),
* assuming that (x,y) is a point on the ellipse with center in
* (cx,cy) and horizontal radius hr and vertical radius vr,
*j.e. (x,y) = (cx,cy) + (hr*cos(a),vr*sin(a))

*)

Interface Descriptions 59

(# cx, cy, hr, vr, X, y: @nteger;
a, cos_a, sin_a @eal;

angle: @..;
enter (cx, cy, hr, vr, x, y)
do angle
exit (a, cos_a, sin_a)
#),
Circl eAngl e:

(* Returns the angle a (in radians) and cos(a), sin(a),
* assuming that (x,y) is a point on the circle with center in
* (cx,cy) and radius r, for sone r
*ji.e. (x,y) = (cx,cy) + (r*cos(a),r*sin(a))
*)
(# cx, cy, X, y: @nteger;
a, cos_a, sin_a: @eal;

angle: @..;
enter (cx, cy, X, V)
do angle
exit (a, cos_a, sin_a)

#);

Unl mpl enent ed:
(* Used to notify the user on features, that are not yet
* inplenented in Bifrost.
*
(# feature: "text
enter feature[]

#)

12.3 Datatypes

Point Array: (* Array of points, extended when needed *)
(# <<SLOT PointArrayAttributes: Attributes >>;

npoi nts: @ nteger
(* Nunmber of points currently in TH S(PointArray) *);

initPoints: (* Must be called first *)
(# initialsize: @nteger;
enter initialsize
do ...;
#)
copy: (* Return a deep copy of THI S(PointArray) *)
(# p: ~PointArray;

exit p[]
#) ;
addPoint: @* Add p as the last point in TH S(PointArray) *)
(# p: @oint;
enter p
do ...;
#);
getPoint: @
(* Return point no i in TH S(PointArray); 1<=i<=npoints *)
(# i: @nteger;
p: @oint;
enter i
exit p
#)
setPoint: @

60 Bifrost Reference Manual

(* Change the value of point noi to p; 1<=i<=npoints *)
(# i1: @nteger;

p: @oint;
enter (p,i)
do ...;

#);

firstPoint: @* Return first point of TH S(PointArray) *)
(# exitPoint: @oint;

exit exitPoint
#);

lastPoint: @* Return last point of THI S(PointArray) *)
(# exitPoint: @proint;

eX| t exitPoint
#);

private: @..;
#)

IntegerList: (* List of integers *)
(#
private: @..;
i,inx: @nteger;
init: (#... #);
| engt h:
(#1: @nteger ... exit | #);
append: (* Append i at the end of THI S(IntegerList) *)
(# enter i ... #);
renove: (* Renobve integer at index inx in TH S(IntegerList) *)
(# enter inx ... #);
insert: (* Insert i at index inx in TH S(IntegerList) *)
(# enter (i,inx) ... #);
copy: (* Return a deep copy of THI S(IntegerlList) *)
(# 1: ~ntegerList ... exit i[] #);
#);

Poi nt ArrayList: (* List of PointArrays, used internally *)
(#

private: @..;

appendPoi nt Arr ay:
(# p: "PointArray;
enter p[]
#):;

scanPoi nt Arr ays:
(# p: ~PointArray;

#);
enpty: bool eanVal ue
(# ... #);

#);

12.4 Segment

Segnment :
(# <<SLOT SegnentAttributes: attributes>>;

firstPoint:< (# p: @oint do INNER exit p #);
lastPoint:< (# p: @%oint do | NNER exit p#);
setFirstPoint:< (# p: @%oint enter p do | NNER #);

Interface Descriptions

setlLastPoint:< (# p: @oint enter p do | NNER #);

next ToFirstPoint:< (# p: @%oint do INNER exit p #);

next ToLastPoint: < (# p: @oint do INNER exit p #);

copy: < (* Returns a deep copy of THI S(Segnent) *)
(# aCopy: "Segnent;

éQ(i.t aCopy[]

tran:sform<
(* Transformall control points in TH S(Segnent) by M *)
(# M ~Matrix enter M] do I NNER #);

reverseOrientation: < object;

(* | NTERACTI ON *)
dr awRubber Band: <
(* Draw an thin curve along THI S(Segnent). Useful when
* drawi ng rubber feedback
*
(# theCanvas: ~Bifrost Canvas
(* The BifrostCanvas to draw the rubberband on *);
newPoi nt: @poi nt ;
t heGOToDevi ce: ~Matri x;
control I ndex: @ nteger;
next Seg: “Segnent;
enter
(theCanvas[], t heGOToDevi ce[],
newPoi nt, control | ndex, next Seg[])
do | NNER
#)
get Control s: <
(* Add all the defining points in TH S(Segnment) to spots. |If
* spots[] is NONE, a PointArray is instantiated. canvasTMis
* applied to all controls before they are appended to spots.
* | f canvasTM] is NONE, IDmatrix is used.
*
(# spots: “PointArray;
canvasTM ~Matri x;
enter (spots[], canvasTM])

.e;<it spot s[]

#);

(* PRIVATE, but virtual and hence cannot be in slots *)
prepar eReshape: < (* private *)
(# theGOToDevi ce: ~Matri x;
control I ndex: @ nteger;
next Seg: “Segnent;
novi ngp: @voi nt;
t heCanvas: ~Bifrost Canvas;
enter (theCanvas[],theGOToDevice[], control | ndex, next Seg[])
do | NNER;
#) ;
endReshape: < (* private *)
(# theGOToDevi ce: ~Matri x;
final Point: @point;
control I ndex: @ nteger;
next Seg: "Segnent;
t heCanvas: ~Bifrost Canvas;
enter (theCanvas[],theGOrloDevice[], final Point, controllndex, next Seg[])

do | NNER;
#);

findSegnents: < (* private *)
(# p: @oint;

sl,s2: ~Segnent;
control I ndex: @ nteger;
enter p

Bifrost Reference Manual

do | NNER
exit (sl[],s2[],controllndex)
#)

cal cul atePoints: < (* private *)
(# thePoints: ~PointArray;
t hePoi ntLi st: “~Poi nt ArraylLi st;
enter (thePoints[],thePointList[])

do | NNER;
exit thePointList[]
#)

makeOf fset: < (* private *)
(# nextPoint: @pPoint;
of fsets: "PointArray;
wi dt h: @nteger;
enter (offsets[], nextPoint)
do | NNER;
#)
makeSecondOF fset: < (* private *)
(# theShape: ~Segnent; (* MJST be a Shape, though ! *)
i ndex: @ nteger;
of fsets: ~PointArray;
enter (theShape[], offsets[],index)
do | NNER;
exit index
#);
witePS: <(# out: “streamenter out[] do INNER #);
do | NNER
exit THI S(Segment) []
#);

12.5 Line- and Spline Segments

Li neSegnent: Segnent
(#

begi n, end: @oi nt;
firstPoint::< (# do begin -> p #);
lastPoint::< (# do end -> p #);
setFirstPoint::< (# do p -> begin #);
setlLastPoint::< (# do p -> end #);
next ToFirstPoint::< (# do end -> p; #);
next ToLast Point::< (# do begin -> p #);

copy::< (# do INNER;, ... #);
transform:< (# ... #);
reverseOrientation::< (# ... #);

(* | NTERACTI ON *)

drawRubber Band: : < (# ... #);

getControl s::<(# ... #);

(* PRIVATE, but virtual and hence cannot be in slots *)

witePS::<(# do ... #);

prepar eReshape::< (* private *)
(# ... #);

endReshape: : < (* private *)
(# ... #);

findSegments::< (* private *)
(# ... #);

calcul atePoints::< (* private *)
(# ... #);

makeO fset::< (* private *)

Interface Descriptions 63

(# do ... #);
makeSecondOF fset:: < (* private *)
(# do ... #);

#);

12.6 Splinesegment

Spl i neSegnent: Segment (* abstract pattern *)
(# <<SLOT SplineAttributes: Attributes >>;

controls: “~PointArray;

snoot hness: @real
(* default 1.0 decrease to get a snoother spline increase to
* get a coarser spline

*),
firstPoint::< (# ... #);
lastPoint::< (# ... #);
setFirstPoint::< (# ... #);

setLastPoint::< (# ... #);
next ToFirstPoint::<(# ... #);
open: <
(* Prepare THI S(SplineSegnment) for adding control points *)
(# startPoint: @roint;
enter startPoint
#);
addControl : <
(* Add p as a control point in THI S(SplineSegnment) *)
(# p: @oint;
enter p ...
#);
insert: <
(* Insert p as a control point after the control point at
* position index
*
(# p: @oint;
i ndex: @ nteger;
enter (p,index)

do | NNER
#);
del ete: <

(* Delete the control point at position index *)
(# i ndex: @nteger;
enter index

do | NNER

#)
copy::< (# do INNER;, ... #);
transform:< (# ... #);
reverseOrientation::< (# do ... #);

(* PRI VATE *)

witePS::<(# do ... #);

prepar eReshape: : < (* private *)
(# ... #);

endReshape:: < (* private *)
(# ... #);

Dr awRubber Spl i neDesc: < (* private *)
(# track: @roint;
control I ndex: @ nteger;

64 Bifrost Reference Manual

t heCanvas: ~Bifrost Canvas;
enter (theCanvas[],track, control | ndex)
do | NNER
#)
cal cul atePoints::< (* private *)
(# splinePoints: "“PointArray;
#)
splineprivate: @..;
do | NNER
#); (* SplineSegnent *)

12.7 CircularSplineSegment

Circul ar Spl i neSegnent: Spl i neSegnent

(# nextToLastPoint::< (# ... #);
copy::<(# do ... #);
drawRubberBand: : < (# ... #);

(* PRIVATE *)

witePS::<(# do ... #);

Dr awRubber Spl i neDesc: : < (* private *)
(# do ... #);

findSegnents::< (* private *)
(# ... #);

cal cul atePoints::< (* private *)
(# ... #);

getControls::< (* private *)
(# ... #);

makeO fset::< (* private *)
(# do ... #);

makeSecondOffset::< (* private *)
(# do ... #);

do | NNER

#);

12.8 NoncircularSplineSegment

NonCi r cul ar Spl i neSegnent : Spl i neSegment
(# nextToLastPoint::< (# ... #);
copy::< (# do ... #);
cl ose:
(# ... #);
i sCl osed: bool eanVal ue
(# ... #);
open: : <
(#
#) ;
addControl :: <
(#
#),
drawRubberBand: : < (# ... #);

(* PRI VATE *)

Interface Descriptions

65

witePS::<(# do ... #);

private: @..;

Dr awRubber Spl i neDesc: :< (* private *)
(# do ... #);

findSegments::< (* private *)
(# ... #);

cal cul atePoints::< (* private *)
(# ... #);

getControls::< (* private *)
(# ... #);

makeOf fset::< (* private *)
(# do ... #);

makeSecondO fset:: < (* private *)
(# do ...#);

do | NNER,

#);

12.9 AbstractShape

Abst r act Shape: Segnent
(# <<SLOT AShapeAttributes: attributes >>;

copy::< (# do INNER, ... #);
fillRule: @
(* Rule to determine what is inside and what is outside
* THI S(Abstract Shape). Used, e.g. when filling
* THI S(Abstract Shape) with sone Paint. Defaults to
* W ndi ngRul e.
(# r: @nteger;
changed: @ool ean; (* initialized as fal se *)
changeRul e: (# enter r do True -> changed #);
ent er changeRul e
do (if not changed then WndingRule ->r if);
exit r
#)
i nval i date: <
(* invalidate THH S(Abstract Shape), so it will be recal cul ated

* next time used in fill or clip operation.
*)
(# ... #);
i nvalid:

(* Answer true if THI S(Abstract Shape) has been invalidated *)
(# b: @Bool ean;
exit b
#)
get Bounds: <

(* Return the boundi ng box of THI S(Abstract Shape) *)
(# bound: @ectangle;

éQ(i.t bound
#);

(* QUERY *)

cont ai nsPoi nt ;: < bool eanVal ue
(* Answer whet her thePoint is inside TH S(Abstract Shape),
* thePoint is assuned to be in coordinates relative to
* t heCanvas.
*

(# theCanvas: ~BifrostCanvas;

66 Bifrost Reference Manual

t hePoi nt: @Point;
enter (theCanvas[],thePoint)
#);

i ntersects: < bool eanVal ue (* Not Yet |nplemented *)
(* Answer whether theshape intersects with TH S(Abstract Shape)
(# theShape: ~Abstract Shape;
ent er theShape[]

#):

wi t hi n: < bool eanVal ue (* Not Yet |nplenmented *)

(* Answer whether theshape is conmpletely within
* THI S(Abst r act Shape)
*

(# theShape: "Abstract Shape;
ent er theShape[]

#);

hotspot: @
(* The default value of hotspot is firstpoint *)
(# p: @oint;

changed: @Bool ean; (* initialized as false *)
changeHot spot: (# enter p do True -> changed #);
ent er changeHot spot
do (if not changed then firstPoint -> p if);
exit p
#);

(* H GHLI GHTI NG *)
hiliteDesc: (* Qualification for highlighting patterns *)
(# donel nl nner: @ool ean;
theCanvas: "BifrostCanvas
(* The BifrostCanvas to do the highlighting on *);
draw. @ool ean
(* Should the feedback be drawn or erased ? *);
™ ~Matrix
(* TMis applied before the feedback is drawn *);
copy: < (* Return a deep copy of THI S(HiliteDesc) *)
(# aCopy: "hiliteDesc;

ékft aCopy|]
#)
enter (theCanvas[], draw, TM])

#)
(* PREDEFI NED HI GHLI GHTI NG PATTERNS *)

hiliteControls:< hiliteDesc
(* Hghlight control points *)
(# copy::< (# do INNER; ... #);
do INNER, ... #);
hiliteQutline:< hiliteDesc
(* Highlight outline of THI S(Abstract Shape). To be further
* bound
*
(# hilitewdth: @nteger
(* The width of the |ines used when highlighting outline.
* 0 neans as thin as possible (default). Should be the
* sane as the corresponding hilitew dth.
*),
copy::< (# do ... #);
do | NNER
#)
hiliteBound: < hiliteDesc

Interface Descriptions

(* Hi ghlight bounding box *)
(# Wdth: @ nteger;
copy::< (# ... #);
do INNER .. .;
#),

(* The actual highlight patterns used. drawhilite points to one
* of hc, ho, hb or sone user supplied specialization of

* hilitedesc

*

hc: @iliteControls

ho: @liteCutline;

hb: @i |iteBound;

drawH lite: ~hiliteDesc

(* DEFINITI ON LANGUAGE *)
open: < (* Must be called first *)
(# p: @oint enter p ... #);

(* | NTERACTI ON *)
Interaction:
(* Prefix for interaction patterns *)
(# theCanvas: ~BifrostCanvas;
theModifier: @mbdifier;
startPoint: @oint;
enter (theCanvas[], startPoint, theMdifier)
do | NNER;
#)
InteractiveCreate: < Interaction
(* Provide feedback for creating TH S(Abstract Shape)
* interactively. Make the feedback constrained if
* theModifier is on. Start the interaction in startpoint.
*),
I nteractiveConbine: < Interaction
(* Create a Shape interactively and conbi ne that Shape with
* THI S(Abstract Shape). Mke the feedback constrained if
* theModifier is on. Start the interaction in startpoint.
*),
InteractiveReshape: < Interaction
(* Provide feedback for reshapi ng TH S(Abst ract Shape)
* interactively. Make the feedback constrained if
* theModifier is on. Start the interaction in startpoint.

*)’
transform:< (# ... #);
getcontrols::< (# ... #);

(* PRIVATE *)

privatePart: @..;

cal cul atePoints::< (* private *)
(# do ... #);

do | NNER,
#); (* Abstract Shape *)

12.10 Shape

Shape: Abstract Shape
(* For making user defined objects *)
(# <<SLOT ShapeAttributes: attributes >>;
copy::< (# do INNER;, ... #);

68

Bifrost Reference Manual

getBounds::< (# ... #);
containsPoint::< (# do ...; INNER #);
intersects::< (* Not Yet Inplenmented *)
(# ... #);
within::< (* Not Yet |Inplenented *)
(# ... #);
currentPoint:< (* The last control point added *)
(# p: @Point;
do ...; |INNER
exit p
#);
firstPoint::< (# do ...; INNER #);
lastPoint::< (# ... #);
next ToFirstPoint::<(# ... #);
next ToLastPoint::< (# ... #);
open::< (# ... #);

(* DEFI NI TI ON LANGUAGE *)
addSpl i ne:
(* Add Spline beginning at currentpoint. Spline.lastpoint
* becones new current poi nt
*
(# Spline: ~SplineSegment;
enter spline[]
do ...;
#) ;
i neTo:
(* If currentPoint is a control point in a spline being
* defined with splineTo, that spline is ended. Add a
* Li neSegnent begi nning at currentPoint and ending at p. p
* becones new current Point.
*
(# p: @oint;
enter p
do ...;
#);
splineTo:
(* If currentPoint is the end point in a |line segnent, a new
* spline segnent is opened. That spline segnent becones the

* "current spline segrment". Add currenPoint as the first
* control point of the current spline segnment. Add p as a
* control point to the current spline segnment. p beconmes new
* current Point.
*
(# p: @oint;
enter p
#);

close: < (* Should be called after the definition is finished *)
(# ... #);

(* QUERY FUNCTI ONS *)
i sC osed: bool eanVal ue
(* NOTICE: an enpty shape is considered closed!!*)
(# ... #);
i SEnpty: bool eanVal ue
(# ... #);
i sFl at: bool eanVval ue
(* THI S(Abstract Shape) is flat iff it contains no splines *)
(# ... #);

(* MANI PULATI NG THE SHAPE *)
reverseOrientation::< (# do ...; |INNER #);
st roke:
(* Change THI S(Shape) to be the shape obtai ned by stroking a
* "pen" with the witdh Wal ong THI S(Shape). Wen stroking an

Interface Descriptions 69

* open Shape, the look of the "ends" of the resulting shape

* js specified with capStyle. At joining points the joining
* style is specified by joinStyle.
*

(# W @nteger;
capstyle: @apstyl edesc;
joinstyle: @ oinstyledesc;
enter (W capstyle, joinstyle)
do ...;
#);
insert: (* Not Yet Inplemented *)
(* If pl is in the neighborhood of an existing control point,
* P2 is added as a new control point is between the nei ghbor
* point and the next point.
*
(# pl, p2: @oint;
enter (pil,p2)
#);
delete: (* Not Yet Inplenmented *)
(* I'f pis in the neighborhood of an existing control point,

* this control point is deleted
*

(# p: @oint;
enter p
#);

(* COMVBI NI NG SHAPES *)
appendShape: (* Not Yet |nplenented *)

(* Add sourceShape to THI S(Shape). Pl ace

* sourceShape. firstPoint in TH S(Shape). | ast Poi nt by
translating the entire sourceShape. This is the only
transformation involved. After the operation
THI S(Shape) .l astPoint is the translated
sour ceShape. | ast Poi nt. sourceShape cannot consi st of
circul arSplines only.

* % X F F

*

(# sourceShape: “Shape;
ent er sourceShape[]
#);
connect Shape: (* Not Yet Inplenented *)
(* Add sourceShape to THI S(Shape). TMis applied to
* sourceShape before the addition. TH S(Shape).lastpoint is
* connected to sourceShape.firstPoint with a |ine segnent.
* After the operation, TH S(Shape).lastPoint is the
* transl ated sourceShape. | ast Poi nt.
* sourceShape cannot consist of circularSplines only.
*
(# TM ~Matri x;
sour ceShape: ~Shape;
enter (TM], sourceShape[])
#)
connect ShapeSnoot h: (* Not Yet |nplenmented *)
(* Add sourceShape to THI S(Shape). TMis applied to
* sourceShape before the addition. THI S(Shape).lastpoint is
connected to sourceShape.firstPoint with a spline segnent
constructed fromthe last two points in TH S(Shape) and
sourceShape. firstPoint. After the operation
THI S(Shape) .l astPoint is the translated
sour ceShape. | ast Poi nt. sourceShape cannot consist of
circul arSplines only.

EE T

*

(# TM ~Matri x;

Bifrost Reference Manual

sour ceShape: ”Shape;
enter (TM], sourceShape[])
#);
conbi neShape:

(* Add sourceShape to THI S(Shape). TMis applied to
* sourceShape before the addition. sourceShape and

THI S(Shape) do *not* becone connected. At |east one of
THI S(Shape) and sour ceShape nust be closed. |If sourceShape

sour ceShape is open, TH S(Shape).lastPoint is
sour ceshape. | ast Point after the operation

*

(# TM ~Matrix;
sour ceShape: ~Shape;

enter (TM], sourceShape[])

*
*
* is closed, TH S(Shape).lastPoint is unchanged.
*
*

do ...;

#);
(* HI GHLI GHTI NG *)
hiliteQutline::< (# ... #);
(* | NTERACTI ON *)
InteractiveCreate::< (# do ...; INNER #);
InteractiveConbine::< (# do ...; INNER #);
I nteracti veReshape::< (# do ...; INNER #);
transform:< (# do ...; INNER #);
getControl s::<(# do ... #);

(* PRI VATE *)
findSegrments::< (* private *)

(# do ... #);
witePS::<(# do ... #);
do | NNER

#), (* Shape *)

12.11 PredefinedShape

Pr edef i nedShape: Abstract Shape
(#
Cal cul at eShape: <
(* Return (approximating) Shape, if possible *)
(# s: "Shape

do | NNER

exit (# ... exit s[] #)

#);
invalidate::<(# ... #);
containsPoint::<(# ... #);
intersects::<(# ... #);
withini:< (# ... #);
transform:<(# do ...; INNER #);

| f

(* Patterns behaving |like standard "types", but that have the
* side-effect of invalidating TH S(Predefi nedShape) when

* changed.

*

nval i dat ePoi nt :

(# p: @oint; enter (# enter p do Invalidate #) exit p #);

nval i dat el nt eger: integer Val ue

Interface Descriptions

(# enter (# enter value do Invalidate #) #);
i nval i dat eReal :
(# r: @Real; enter (# enter r do Invalidate #) exit r #);
i nval i dat eDash:
(* For instance 1,2,4,2 yields '= ==== = ==== =' etc.
(# d: ~Integerlist;
enter (# enter d[] do invalidate #)
exit d[]
#)
i nval i dat eCapStyl e:
(# c: @apStyl eDesc;
enter (# enter c do invalidate #)
exit ¢
#)
i nval i dat eJoi nStyl e:
(# j: @oinStyl eDesc;
enter (# enter j do invalidate #)

exit j
#);
witePS::<(# do ... #);
prePrivate: @..;
do | NNER;

#);

12.12 LineShape

Li neShape: Predefi nedShape
(# <<SLOT LineShapeAttributes: attributes>>;

firstPoint::<(# do begin -> p #);

begi n: @nval i dat ePoi nt ;

end: @nval i dat ePoi nt;

wi dt h: @ nval i dat el nt eger;

dashes: @nvalidatebDash; (* Not Yet Inplenented *)
cap: @nvalidateCapStyle;

coor di nat es:
(# enter (begin, end) exit (begin, end) #);
open: :<(# ... #);
getBounds::< (# do ...; INNER #);
containsPoint::<(# ... #);
intersects::< (* Not Yet Inplenented *)
(# ... #);
within::< (* Not Yet Inplenented *)
(# ... #);
getControl s::<(# ... #);
copy::< (# do INNER, ... #);

(* H GHLI GHTI NG *)
hiliteQutline::< (# do INNER, ... #);

(* | NTERACTI ON *)
interactiveCreate::<(# do ...; INNER #);
i nteractiveReshape::<(# do ...; INNER #);

witePS::<(# do ... #);

transform:<(# ... #);

Cal cul at eShape: : < (* private *)
(# ... #);

72

Bifrost Reference Manual

do | NNER;
#);

12.13 MultilineShape

Mul ti Li neShape: PredefinedShape
(# <<SLOT Mul tiLineShapeAttributes: attributes>>;

firstPoint::< (# ... #);
points: @
(# p: "PointArray;
enter (# enter p[] do invalidate #)
exit p[]
#)
wi dt h: @nval i dat el nt eger;
dashes: @nvalidatebDash; (* Not Yet Inplenented *)
cap: @nvalidateCapStyl e;
join: @nvalidatedoi nStyl e;

open::< (# ... #);

addPoint: (* Add p at the end of points *)
(# p: @oint;
enter p
#)

del etePoint: (* Delete p at from points *)
(# p: @oint;
enter p
#);

insertPoint: (* Insert p in points at position inx *)
(# p: @oint;

i nX: @ nteger
enter (inx,p)
#) ;
get Bounds: : <(# do ...; INNER #);
containsPoint::<(# ... #);
intersects::< (* Not Yet Inplenmented *)
(# ... #);
within::< (* Not Yet |Inplenented *)
(# ... #);
getControl s::<(# ... #);
copy::< (# do INNER;, ... #);

(* HI GHLI GHTI NG *)
hiliteQutline::< (# do INNER;, ... #);

(* | NTERACTI ON *)

interactiveCreate::<(# do ...; INNER #);
i nteractiveReshape::<(# do ...; INNER #);
witePS::<(# do ... #);

transform:<(# ... #);

cal cul at eShape: : < (* private *)
(# ... #);
do | NNER;
#):

Interface Descriptions 73

12.14 TextShape

Text Shape: Predefi nedShape
(# <<SLOT Text ShapeAttributes: attributes>>;

firstPoint::< (# do position -> p #);
initText: (* Specify several attributes sinmultaneously *)
(#
enter
(position, theFontnane, theStyle, size, underline, theText)
#),
position:
(* Where to place the baseline of the first line of theText *)
(# p: @oint;
enter (# enter p ... #)
exit p
#);
t heFont Nane: (* one of Courier, Times, Helvetica *)
(# nam @ ont nane;

enter (# enter nam... #)
exit nam
#);

theStyle: (* Either Plain, Italic or Bold *)
(# sty: @tyle;

enter (# enter sty ... #)
exit sty
#)

size: (* The size in points (1/72 inch) of the text drawn *)
(# siz: @nteger;

enter (# enter siz ... #)
exit siz
#)

underline: (* Specifies if the text is to be underlined *)
(# ul: @Bool ean;

enter (# enter ul ... #)
exit ul
#)
theText: (* Holds the characters of TH S(Text Shape) *)
(# t: ~Text;
enter (# enter t[] ... #)
exit t
#)
get Bounds: : <(# do ...; INNER #);
contai nsPoint::<(# ... #);
intersects::< (* Not Yet Inplenented *)
(# ... #);
within::< (* Not Yet Inplenmented *)
(# ... #);
getControl s::<(# do ...; INNER #);
copy::< (# do INNER;, ... #);

(* HI GHLI GHTI NG *)
hiliteQutline::< (# do INNER, ... #);

(* | NTERACTI ON *)

interactiveCreate:: <
(# lastCh: @har; (* Last character typed in interaction *)
do ...; INNER
exit lastCh

Bifrost Reference Manual

#);
i nteractiveReshape:: <
(# lastCh: @har; (* Last character typed in interaction *)

exit lastCh

#)
witePS::<(# do ... #);
transform:<(# ... #);

TextPrivate: @...;
cal cul at eShape: : < (* private *)
(# ... #);

do | NNER;
#);

12.15 PieShape

Pi eShape: Predefi nedShape
(# <<SLOT Pi eShapeAttributes: attributes>>;

firstPoint::<(# do center -> p #);

center: @nvalidatePoint;

hori zont al Radi us: @ nval i dat el nt eger;

verti cal Radi us: @nval i dat el nt eger;

(* Use: 0 <= anglel <= 360 al <= angl e2 <= 360+angl el *)
angl el: @nvalidateReal ;

angl e2: @nval i dat eReal ;

open::<(# do ...; INNER #);
get Bounds: : <(# do ...; INNER #);
containsPoint::<(# do ...; INNER #);
intersects::< (* Not Yet |Inplenented *)
(# ... #);
within::< (* Not Yet Inplenmented *)
(# ... #);
getControls::< (# do ...; INNER #);
copy::< (# do INNER, ... #);
(* HI GHLI GHTI NG *)
hiliteQutline::< (# do INNER;, ... #);
(* | NTERACTI ON *)
interactiveCreate::<(# do ...; INNER #);
i nteractiveReshape::<(# do ...; INNER #);
witePS: :<(# do ... #);
transform:<(# ... #);
cal cul at eShape: : < (* private *)
(# ... #);
do | NNER

#);

12.16 ArcShape

ArcShape: Predefi nedShape

Interface Descriptions

75

(# <<SLOT ArcShapeAttributes: attributes>>;
firstPoint::<(# do center -> p #);

center: @nvalidatePoint;

hori zont al Radi us: @ nval i dat el nt eger;

verti cal Radi us: @nval i dat el nt eger;

(* Use: 0 <= anglel <= 360 al <= angl e2 <= 360+angl el
angl el: @nvali dateReal ;

angl e2: @nvali dat eReal ;

arcWdth: @nvalidatel nteger;

open: i <(# ... #);
get Bounds: : <(# do ...; INNER #);
contai nsPoint::<(# do ...; INNER #);
intersects::< (* Not Yet Inplenmented *)
(# ... #);
within::< (* Not Yet Inplenented *)
(# ... #);
getControls::<(# do ...; INNER #);
copy::< (# do INNER, ... #);

(* H GHLI GHTI NG *)
hiliteQutline::< (# do INNER, ... #);

(* | NTERACTI ON *)
interactiveCreate::<(# do ...; INNER #);
i nteractiveReshape::<(# do ...; INNER #);

witePS::<(# do ... #);

transform:<(# ... #);

cal cul at eShape: : < (* private *)
(# ... #);

do | NNER
#),

12.17 StrokeableShape

St rokeabl eShape: Predefi nedShape
(# stroked: @Bool ean;
strokewi dt h: @ nt eger;

witePS::<(# do ... #);

get Bounds: : <(# ... #);

copy ::<(# do INNER;, ... #);
do | NNER

#);

12.18 RectShape

Rect Shape: Strokeabl eShape
(# <<SLOT Rect ShapeAttributes: attributes>>;

firstPoint::<(# do upperleft -> p #);

upperleft: @nvalidatePoint;

*)

76

Bifrost Reference Manual

do
#);

12

wi dt h: @nval i dat el nt eger;
hei ght: @ nval i dat el nt eger;

corners:
(# lowerright: @Point;
changeCor ners:
(# enter (upperleft,|lowerright)
#);
ent er changeCorners
exit
(upperleft,
((upperl eft.p.x+w dth),
(upperleft.p.y+height)))
#);
open: :<(# ... #);
get Bounds: : <(# ... #);
containsPoint::<(# ... #);
intersects::< (* Not Yet |Inplenented *)
(# ... #);
within::< (* Not Yet Inplenmented *)
(# ... #);
getControl s::<(# ... #);
copy::<(# do INNER, ... #);

(* HI GHLI GHTI NG *)
hiliteQutline::< (# do INNER;, ... #);

(* | NTERACTI ON *)
interactiveCreate::<(# do ...; INNER #);
i nteractiveReshape::<(# do ...; INNER #);

witePS: :<(# do ... #);

transform:<(# ... #);

cal cul at eShape: : < (* Private *)
(# ... #);

I NNER;

.19 EllipseShape

El | i pseShape: Strokeabl eShape

(#

<<SLOT EllipseShapeAttributes: attributes>>;
firstPoint::< (# do center -> p #);

center: @nvali datePoint;
hori zont al radi us: @ nval i dat el nt eger;
vertical radius: @nvalidatel nteger;

geonetry:
(#
enter (center, verticalradius, horizontalradius)
exit (center, verticalradius, horizontalradius)

#);
open: :<(# ... #);
get Bounds: : <(# ... #);
containsPoint::<(# ... #);

intersects::< (* Not Yet Inplenmented *)
(# ... #);

Interface Descriptions

77

within::< (* Not Yet Inplenented *)

(# ... #);
getControls::<(# do ...; INNER #);
copy::< (# do INNER;, ... #);
(* H GHLI GHTI NG *)
hiliteQutline::< (# do INNER, ... #);
(* | NTERACTI ON *)
interactiveCreate::<(# ... #);
i nteractiveReshape::<(# do ...; INNER #);
witePS::<(# do ... #);
transform:<(# ... #);
cal cul at eShape: : < (* private *)

(# do ... #);

do | NNER;

#);

12.20 Rasters

Rast er:
(* An abstract superpattern for all Rasters. Araster is a

* rectangul ar grid of pixels.
*

(# <<SLOT RasterAttributes: attributes>>;

hot spot :
(* When used in a filling operation hotspot is placed in
* hotspot of the shape being filled. Defaults to (0,0).
*
(# p: @oint;
enter (# enter p ... #)
exit (# ... exit p #)
#)

pi xel : < Obj ect;

init:<
(# width, height: @nteger;
enter (w dth, height)
#);
copy: < (* Return a deep copy of THI S(Raster) *)
(# aCopy: "Raster;

exit aCopy[]
#)

wi dt h: integerVal ue
(* returns the width set by init or by read operations *)
(# ... #);

hei ght: i ntegerVal ue
(* returns the height set by init or by read operations *)
(# ... #);

put Pi xel : <
(# i, j: @nteger; p: "pixel;
enter (i,j,p[])
#):

get Pi xel : <

78

Bifrost Reference Manual

(#1, j: @nteger; p:
enter (i,j)

exit p[]

#);

(* Private *)
calculate:< (# ... #);

RasterPrivatePart: @...

do I NNER; cal cul at e;
exit TH S(Raster)|[]
#);

Bi t Map: Raster

(* Raster in which the pixels are bool eans *)
(# <<SLOT BitmapAttributes:

pi xel :: < (# b: @ool ean enter

pi xel ;

attri but es>>;

init::< (# do ...; INNER #);

put Pi xel ::< (# do ...;
getPixel::< (# ... #);
copy:: < (# do | NNER;

witeToPBMile: (* Nof“Yet
(# pbnfil enane: ~text;

rawbi ts: @ool ean

(* If true, the RAWBI TS f or mat
enter (pbnfil ename[], rawbits)

#);

readfFronPBMi | e:
(# pbnfil ename: ~text
enter pbnfil enane[]

do ...;
#);
(* Private *)
calculate::< (# ... #);
Bi t MapPrivatePart: @...
do | NNER;
#);

GrayMap: Raster (* Not Yet |nplenmented *)
(# <<SLOT GraymapAttributes:

pi xel ::<(# g: @nteger enter g exit g #);

init::< (# ... #);
put Pixel::< (# ... #);
getPixel ::<(# ... #);

copy: : <(# do | NNER,
witeToPGMil e:

(# pgnfil enane: ~text;

rawbits: @ool ean

(* If true, the RAWBI TS for mat
enter (pgnfilenane[], rawbits)

#)
readFronPGVi | e:

(# pgnfil enane: ~text;

enter pgnfil enane[]
#);
(* Private *)
calculate::< (# ... #);

GrayMapPrivatePart: @...;

| NNER #) ;

#)

#);

b exit b #);

| mpl emrent ed *)

attri but es>>;

is used *);

is used *);

Interface Descr

iptions

79

do | NNER;
#);

Pi xMap: Rast
(* Raster
(# <<SLOT

pi xel ::
init::<

er
in which the pixels are RGB val ues *)
Pi xmapAttri butes: attributes>>;

< (#r,9,b: @nteger enter (r,g,b) exit (r,qg,b) #);

(# maxVal : @nteger; (* Maxi num RGB val ue *)

enter

do ...

#);
put Pi xe
get Pi xe
copy:: <
witeTo

(# pp

maxVal
;I NNER

[::< (# do ...; INNER #);
[:o< (# ... #);

(# do INNER, ... #);

PPMile: (* Not Yet Inplenented *)
nfilenane: “text;

rawbi ts: @ool ean

(* I'f true, the RAWBITS format is used *);

enter (ppnfilenane[], rawbits)
#):;
readFronPPMile: (* Not Yet Inplenented *)
(# ppnfil enane: “text;
enter ppnfil enane[]
#);
(* Private *)
calculate::< (# ... #);

Pi xMapPrivatePart: @...;

do | NNER;
#);

12.21

Paint: (* An
(# <<SLOT

init:<

copy: <

Paint

abstract superpattern for all paint *)
Pai ntAttributes: attributes>>;

obj ect;

(* Return a deep copy of THI S(Paint) *)

(# aCopy: "Paint;

exit
#);
fill:
(* Pr
(# th
fill Sha
(* Fi
(# th
ent er
#)
fillLin
(* Fi
(# th
ent er

aCopy[]

efix for fill operations *)

eCanvas: "BifrostCanvas enter theCanvas[] do INNER #);
pe:< fill

Il theShape with THI S(Paint) in theCanvas. *)
eShape: ~Shape;
(t heShape[])

e:< fill
[l theLine with TH S(Paint) in theCanvas. *)
eLi ne: “Li neShape;

(theLine[])

Bifrost Reference Manual

#)
fillMiltiLine:< fill
(* Fill theMultiLine with THI S(Paint) in theCanvas.
*
(# theMul tiLine: ~MultiLineShape;
enter (theMultilLine[])
#)
Il Text:< fill
(* Fill the specified text with TH S(Paint) in theCanvas *)
(# theText: "Text Shape;
enter (theText[])

f

#)

[Pie:< fill

(* Fill thePie with TH S(Paint) in theCanvas. *)
(# thePie: "pieShape;

enter (thePie[])

f

#)

[TArc:< fill

(* Fill theArc with THI S(Paint) in theCanvas. *)
(# theArc: "arcShape;

enter (theArc[])

f

#)

Il Rect:< fill

(* Fill theRect with THI S(Paint) in theCanvas. *)
(# theRect: "Rect Shape;

enter (theRect[])

f

#)

[TElipse:< fill

(* Fill the theEllipse with TH S(Paint) in theCanvas *)
(# theEl lipse: "“EllipseShape;

enter (theEllipse[])

f

#)

[1Qher:< fill

(* Used to fill other, e.g. user defined, shapes *)
(# theShape: ~Abstract Shape;

ent er theShape[]

do | NNER;

#);

f

(* PRIVATE *)
witePS: <(# out: “~streamenter out[] do I NNER #);
paintprivate: @...;
set Speci al Paint: (* Private *)
(# theCanvas: "BifrostCanvas;
donel nl nner: @ool ean;
enter theCanvas]]
do | NNER
#) ;
set CanvasPaint:< (* Private *) set Speci al Pai nt;
set BorderPaint:< (* Private *) setSpeci al Pai nt;
Set BackgroundPai nt: < (* Private *) set Speci al Pai nt;
do | NNER;
exit THI S(Paint)[]
#);

Interface Descriptions 81

12.22 SolidColor

Sol i dCol or: Pai nt
(* Asolid color specified relative to the RG, HSV, or CW col or
* spaces, or by naming the color, using one of the nane patterns
* in the fragnent Col or Nanes.
*

(# <<SLOT SolidCol orAttributes: attributes>>;

init::<(# ... #);
copy::< (# do INNER, ... #);
Nane:

(* Change THI S(Sol i dColor) to the color specified. The color
* names are define as descriptors in the fragnent
* "ColorNanes'. NOTICE: This is different fromearlier
* versions of Bifrost.
*
(# enter RGBval ues #);
RGBval ues:
(* Set or query the Red-G een-Blue values of THI S(Sol i dCol or)
* r, gand b all ranges fromO0 to MaxRGB.
*
(# r,g9,b: @nteger;
changeRGB:
(# enter (r,g,b) ... #);
get RGB:
(# ... exit (r,g,b) #);
ent er changeRGB
exit Cet RGB
#)
HSWal ues:
(* Set or query the Hue-Saturation-Val ue val ues of
* THI S(SolidColor). h, s and v are taken to range fromO to
* MaxHue, MaxSat and MaxVal respectively. Specializations may
* alter the default bindings of these.
*

(# h,s,v: @nteger;

changeHSV:

(# enter (h,s,v) do ... #);
get HSV:

(# do ... exit (h,s,v) #);

MaxHue: < i nt eger Val ue
(# do Defaul t MaxHue -> val ue; | NNER #);
MaxSat : < i nt eger Val ue
(# do Defaul t MaxSat -> val ue; | NNER #);
MaxVal : < i nt eger Val ue
(# do Defaul t MaxVal -> value; |NNER #);
enter changeHSV
exit get HSV
#)
CMyval ues: (* RGEB conpl enentaries *)
(* Set or query the Cyan-Magenta- Yel | ow val ues of
* TH S(SolidColor). ¢, mand y all ranges fromO to MaxRGB.

*
)
(# c,my: @nteger;
changeCMWy:
(# enter (c,my) do ... #);
get CWY:
(# do ...; exit (c,my) #);
ent er changeCw
exit get QW
#);
fill Shape::<(# ... #);
fillLine::<(# do INNER, ... #);

82

Bifrost Reference Manual

fillMltiLine::<(# ... #);

fillText::<(# do INNER, ... #);

fillPie::<(# do INNER, ... #);

fillArc::<(# do INNER, ... #);

fill Rect::<(# do INNER, ... #);

fillEllipse::<(# do INNER, ... #);

(* PRI VATE *)

witePS: :<(# do ... #);

setBorderPaint::< (* Private *)
(# ...#);

set BackgroundPaint::< (* Private *)
(# ...#);

set CanvasPaint::< (* Private *)
(# ...#);

privatePart: @...;

do | NNER;

#),

12.23 Predefined Graytones

Sol i dGray:
(# g: ~SolidCol or;
per cent age: @ nteger;
enter percentage

exit o]
#)
SolidGey: SolidGay (# do | NNER #);

12.24 RasterPaint

Rast er Pai nt : Pai nt
(* Use thePixmap and optionally paddi ngSolidColor to fill out the
* shape
(#
(* If paddi ngSolidCol or[]=NONE t hePi xmap wi ||l be repeated when
* filling out the shape. If not, paddi ngSolidColor will be used
* to fill out any parts of the shape the pi xmap doesn't cover.

*

paddi ngSol i dCol or: ~Sol i dCol or;

t hePi xMap:

(# p: "Pi xMap;

enter (# enter p[] ... #)
exit (# ... exit p[] #)
#);

init::<(# ... #);
copy::<(# do INNER;, ... #);
fill Shape::<(# do INNER;, ...; #);
fillLine::<(# ... #);
fillMiltiLine::<(# ... #);
fillText::<(# ... #);
fillArc::<(# ... #);
fillPier:<(# ... #);

Interface Descriptions

83

do
#);

12

fillRect::<(# ... #);

fillEllipse::<(# ... #);

(* PRIVATE *)

witePS::<(# do ... #);

private: @..;

setBorderPaint::< (* Private *)
(# do INNER, ... #);

set BackgroundPaint::< (* Private *)
(# do INNER, ... #);

set CanvasPaint::< (* Private *)
(# do INNER; ... #);

| NNER;

.25 TiledSolidColor

Ti | edSol i dCol or: Sol i dCol or

G
*)
(#

do
#);

12

A SolidCol or extended with a BitMap. The BitMap will be tiled in
t he Shape before the SolidColor is applied, and only where the
bits of the BitMap are true, the SolidColor will be visible

t heTil e:
(# t: ~BitMap;
enter (# enter t[] ... #)
exit (# ... exit t[] #)
#);
init::<(# ... #);
copy::<(# do INNER;, ... #);
fill Shape::<(# ... #);
fillLine::<(# ... #);
fillMiltiLine: :<(# ... #);
fillText::<(# ... #);
fillArc::<(# ... #);
fillPier:<(# ... #);
fillRect::<(# ... #);
fillEllipse::<(# ... #);
(* PRIVATE *)
witePS::<(# do ... #);
tiledPrivate: @...;
setBorderPaint::< (* Private *)

(# do INNER; ... #);

set BackgroundPaint::< (* Private *)
(# do INNER, ... #);

set CanvasPaint::< (* Private *)
(# do INNER, ... #);

| NNER;

.26 AbstractGraphicalObject

Abstract G aphi cal Gbject: (* To be further specialized *)

G

*

The graphical object is the smallest entity that can be drawn
in a BifrostCanvas. It is a aggregation of a Paint and a Shape.
ANY graphi cal object MUST be initialized before used (init).

84 Bifrost Reference Manual

After a paint and a shape has been specified, it can be drawn by
giving the reference of it as enter parameter to the nethod
"draw' in a BifrostCanvas. G aphical objects nay al so be
created by using InteractiveCreateShape.

* % X X F

(# <<SLOT Abstract Graphical CbjectAttributes: attributes>>;
shapeDesc: < Abstract Shape
(* Specify actual shape in specializations *);
TMDesc: <
(# m ~Matrix;
transfornpoint: @
(# p: @oint enter p do p->mtransfornpoint->p exit p #);
Cal cCanvasTM <
(# theTM ~Matrix
enter theTM]
#);
enterTM < (# enter mM] ... #);

enterlt: @nterTM
enter enterlt

do | NNER
exit n]
#)

(* TM describes the transfornati on fromthe coordinate system of
* theShape (al so known as GO coordinates) to the the Picture it
* is part of, if any.

*

TM @NMDesc;

init:< (* MUST be called first *)
(# ... #);
setPaint: <
(* Specify the paint to use for THI S(Abstract G aphi cal Qbj ect) *)
(# enter thePaint[] do I NNER #);
get Pai nt: <
(* Qbtain the paint to use *)
(# do INNER exit thePaint[] #);
get Shape: <
(* Qpbtain the shape to use. The specialization
* Predefi nedG aphi cal Cbj ect returns an approxi mati ng Shape.
* Only the specialization Shape has a correspondi ng Set Shape.
(# s: "Shape
do | NNER
exit s[]
#);
draw. <
(* Draw THI S(Abstract Graphi cal Object) in theCanvas.
* Normally this is not used by the user directly. Instead
* THI S(Abstract Graphi cal Object)[] should be given to the draw
* method of a BifrostCanvas.
*
(# donel nl nner: @ool ean;
t heCanvas: 7BifrostCanvas
(* BifrostCanvas to draw THI S(Abst ract Graphi cal Gbj ect) on *);
enter theCanvas|]

#);
erase: <
(* Erase THI S(Abstract G aphi cal Object) fromtheCanvas.
* Normally this is not used by the user directly. Instead

* THI S(Abstract Graphi cal Object)[] should be given to the erase
* met hod of a Bifrost Canvas.
*
(# donel nl nner: @ool ean;
t heCanvas: 7Bifrost Canvas

Interface Descriptions 85

(* BifrostCanvas to erase THI S(Abstract Graphi cal Gbject) from*);
ent er theCanvas|]
#):;
copy: < (* Return a deep copy of THI S(Abstract G aphi cal Gbj ect) *)
(# aCopy: "Abstract Graphi cal Object;

exit aCopy[]
#)
get Bounds: <
(* Exit a Rectangle containing the boundi ng box of
* THI S(Abstract Graphi cal Object) in BifrostCanvas coordi nates.
(# r: @ectangle;
donel nl nner: @ool ean;
exit r
#);
hilite:< (* Highlight TH S(Abstract G aphi cal Obj ect) *)
(# donel nl nner: @ool ean;
t heCanvas: 7BifrostCanvas
(* The BifrostCanvas to do the highlighting on *)
ent er theCanvas|]
#),
unHi lite: < (* Unhighlight TH S(Abstract Graphi cal Cbj ect) *)
(# donel nl nner: @ool ean;
t heCanvas: ~Bifrost Canvas

(* The BifrostCanvas to do the unhighlighting on *)
enter theCanvas|]

#)
(* | NTERACTI ON *)
hitControl: <
(* Answer whether thePoint is inside a 2x2nmm box around a
* control point of THI S(AbstractG aphical Gbject). thePoint is
* in BifrostCanvas coordinates. Exits reference to exact point
* if hit, NONE otherw se.
*
(# thePoint: @oint;
res: “Point;
enter thePoi nt

do ...;

| NNER;
exit res[]
#)

i nteraction:
(* Prefix for interactive operations *)
(# theCanvas: ~BifrostCanvas
(* The BifrostCanvas to show feedback in *);
start Point: @Point;
theModi fier: @bdifier;
donel nl nner: @ool ean;
enter (theCanvas[], startPoint, theMdifier)
do | NNER;
#)
i nteractiveCreateShape: < interaction
(* Initialize the shape of TH S(Abstract G aphi cal Obj ect) by
* providing feedback in a BifrostCanvas. Nornally this is not
* used by the user directly. Instead
* THI S(Abstract Graphi cal Object)[] should be given to the
* interactiveCreat eShape net hod of a Bifrost Canvas.
*

(# ... #);
i nt eractiveConbi neShape: < i nteraction

86

Bifrost Reference Manual

Conbi ne a shape with the shape of

THI S(Abst ract Graphi cal Obj ect) by providi ng feedback for
creating the new shape in a BifrostCanvas, and then conbini ng
the shape of THI S(Abstract G aphi cal Object) with the obtained
shape. Normally this is not used by the user directly.

I nst ead THI S(Abst ract Graphi cal Ghject)[] should be given to
the interactiveConbi neShape nmethod of a BifrostCanvas.

Lo T B A
~

(# ... #);
i nteractiveReshape: < interaction
(* Change the shape of THI S(Abstract G aphi cal Obj ect) by
* providing feedback in a BifrostCanvas. Normally this is not
* used by the user directly. Instead
* THI S(Abstract Graphi cal Object)[] should be given to the
* interactiveReShape nmethod of a BifrostCanvas.
*
(# do ... #);
interactiveMve: < interaction
(* Move the shape of THI S(Abstract Graphi cal Obj ect) using
* theshape. (un)hiliteoutline for feedback in the BifrostCanvas
* THI S(Abstract G aphi cal Gbject) is drawn in. Calls "nove" to
* do the transformation. Normally this is not used by the user
* directly. Instead TH S(Abstract G aphi cal Object)[] should be
* given to the interactiveMve nethod of a BifrostCanvas.
*)
(#
do INNER;, ...;
#)
interactiveScal e:< interaction (* Not Yet |nplenented *)
(* Scal e the shape of TH S(Abstract Graphi cal Gbj ect) using
* theshape. (un)hiliteoutline for feedback in the BifrostCanvas

* THI S(Abstract Graphi cal Gbject) is drawn in. Calls "scale" to
* do the transformation. Normally this is not used by the user
* directly. Instead TH S(Abstract G aphi cal Object)[] should be
* given to the interactiveScal e nethod of a BifrostCanvas.

*)

(# ... #),;

interactiveRotate:< interaction (* Not Yet |nplenmented *)

(* Rotate the shape of THI S(Abstract Graphi cal Obj ect) using

* theshape. (un)hiliteoutline for feedback in the BifrostCanvas
THI S(Abstract G aphi cal Gbject) is drawmn in. Calls "rotate"” to
do the transfornmation. Normally this is not used by the user
directly. Instead TH S(Abstract Graphi cal Object)[] shoul d be
given to the interactiveRotate nethod of a BifrostCanvas.

* Ok X F

*)
(# ... #);

(* TRANSFORMATI ONS *)
transform<
(* Transform TH S(Abstract Graphi cal Gbject) by M by multiplying
* THI S(Abstract Graphi cal Object). TMwith M
*
(# M ~Matri x;
enter M]
#);
nove: < (* Translate TH S(Abstract G aphi cal Obj ect) by of fset *)
(# offset: @oint;
enter offset
do ...; INNER
#),
moveTo: <
(* Move THI S(Abstract Graphi cal Obj ect) . t heShape. hot Spot to pos *)
(# pos: @oint;
enter pos
do ...; INNER

Interface Descriptions

87

#);
scal e: < (* Scal e THI S(Abst ract Graphi cal Cbj ect) by factor *)
(# factor: @ector; (* Real point *)
enter factor
do ...; INNER
#);
rotate: <
(* Rotate THI S(Abstract Graphi cal Object) by angle (degrees) *)
(# angle: @real;
enter angle
do ...; INNER
#);

(* QUERY *)
cont ai nsPoi nt: < bool eanVal ue
(* Answer if thePoint is inside the shape of
* THI S(Abstract Graphi cal Object). thePoint is assuned to be in
* coordinates relative to theCanvas.
*
(# theCanvas: ~BifrostCanvas;
t hePoi nt: @Poi nt;
donel nl nner: @ool ean;
enter (theCanvas[], thePoint)
#);
i ntersects: < bool eanVal ue (* Not Yet |nplenmented *)
(* Answer whet her go.theshape intersects with the shape of
* THI S(Abstract Graphi cal Obj ect)
*

(# go: "Abstract Graphi cal Obj ect;
donel nl nner: @Bool ean;
enter go[]
#)
wi t hi n: < bool eanVal ue (* Not Yet I|nplenmented *)
(* Answer whet her go.theshape is conpletely within the shape of
* THI S(Abstract Graphi cal Obj ect)
(# go: "Abstract Graphi cal Obj ect;
donel nl nner: @Bool ean;
enter go[]

#);
(* The conposition conmponents *)

t heShape: ~ShapeDesc;
t hePai nt: “Paint;

(* PRIVATE *)

witePS: <(# out: ~streamenter out[] do ... #);

private: @...;

recal cul ateShape: < (* private *)

(# theCanvas: ~BifrostCanvas enter theCanvas[] do | NNER #);

do | NNER;
exit THI S(Abstract Graphi cal Object)[]
#);

12.27 GraphicalObject

Graphi cal Obj ect: Abstract Graphi cal Obj ect
(#

Bifrost Reference Manual

shapeDesc::< (* The real shape with Ilines and splines *)
Shape;

set Shape: (* Set the Shape of THI S(G aphical Object) *)
(# enter theShape[] #);

get Shape: : < (* Get the Shape of TH S(G aphi cal Obj ect) *)
(# do theShape[] -> s[] #);

copy::< (# ... #);
draw : < (# ... #);
witePS: :<(# do ... #);
hiliter:< (# ... #);
unHilite::< (# ... #);
recal cul ateShape::< (* private *)
(# ... #);

do | NNER

#);

12.28 PictureShape

Pi ct ur eShape: Abstract Shape (* To be further specialized *)
(# <<SLOT PictureShapeAttributes: attributes>>;

firstpoint::< (# ... #);
copy::< (# do INNER, ... #);
getBounds::< (# do ... #);
containsPoint::<(# ... #);
intersects::< (* Not Yet Inplenmented *)
(# ... #);
within::< (* Not Yet |Inplenented *)
(# ... #);
getControl s::<(# ... #);
hiliteControl s:: < (# ...
hiliteQutline::< (# ... #);
transform:<(# do ...; INNER #);

#);

(* Private *)
witePS: :<(# do ... #);
pictureprivate: @..;
do | NNER
#);

12.29 Picture

Pi cture: Abstract G aphical Obj ect
(* Acollection of graphical objects *)
(# <<SLOT PictureAttributes: attributes >>;

shapeDesc: : < Pi ct ur eShape;

TMDesc: : <(# Cal cCanvasTM : <(# do ...; INNER #);
enterTM:< (# do ...; INNER #);
do | NNER;
#)
init::< (# ... #);
add: <

(* Add go to THI S(Picture) *)
(# go: "Abstract Graphi cal Obj ect;
enter go[]

Interface Descriptions

89

#);
del ete: <
(* Delete go from THI S(Pi cture) *)
(# go: "Abstract Graphi cal Obj ect;
enter go[]
#);
drawOnPi xmap: (* Not Yet |nplenmented *)
(* Draw THI S(Picture) on pm*)
(# pm ~Pi xmap;

enter pni]

do ...;

#);

draw : < (# ... #);
erase::< (# ... #);
copy::< (# do INNER;, ... #);

setPaint::<
(* Specify the paint to use for all Abstract G aphical bjects
* in THI S(Picture). If they are shown on the Canvas, their
* visual appearance is changed instantly.
*
(# theCanvas: ~BifrostCanvas;
ent er theCanvas|]

#);
getBounds::< (# ... #);
hilite::< (# ... #);
unHilite::< (# ... #);

bri ngFor war d:
(* Make aGO the | ast Abstract Gaphical Object of THI S(Picture)
* aG0 nust already be a nenber of TH S(Picture)

*

(# aGO "Abstract G aphi cal Qbj ect ;
enter aGJ|]
#):
sendBehi nd:
(* Make a0 the first Abstract G aphical Object of THI S(Picture)
* a@ nust already be a menber of THI S(Picture)
*
(# aGO "Abstract G aphi cal Qbj ect ;
enter aGJ|]
#);
scan@s:
(* Scan through each Abstract G aphical Gbject in TH S(Picture)
* in order fromthe bottomost to the frontnost one.

*

(# go: "Abstract Graphi cal Obj ect;
#);
scan@xsRever se:
(* Scan through each Abstract G aphical Gbject in TH S(Picture)
* in order fromthe frontnost to the bottomobst one.

*

(# go: "Abstract Graphi cal oj ect;

#);
(* 1 NTERACTI ON *)
i nteractiveCreateShape::<(# ... #);
i nteractiveConbi neShape: :<(# ... #);
interactiveReshape:: <(# ... #);
(* QUERY *)

| ast GO

90 Bifrost Reference Manual

(* Exit reference to |last Abstract Graphical Gbject in
* THI S(Pi cture)

*

(# aGO ~Abstract G aphi cal Qbj ect ;

exit aG]]
#)
firstGO
(* Exit reference to last Abstract Graphical Gbject in
* THI S(Pi cture)
*

(# aGO ~Abstract Gaphi cal bj ect ;

exit aGJ]
#)
noOf GCs: i nt eger Val ue
(* Exit nunmber of Abstract G aphical Gbjects in TH S(Picture) *)
(# ... #);
i SEmpty: bool eanVal ue
(* True iff no graphical objects has been added to
* THI S(Pi cture)
*

(# ... #);
i sMenber: bool eanVal ue
(* True iff aG0O has been added to THI S(Picture) *)
(# aGO "Abstract G aphi cal Obj ect ;
enter aGJ]
#);
contai nsPoint::<
(* Answer if thePoint (canvascoordi nates) is inside the shape
* of any graphical object of TH S(Picture)
*
)
(# ... #);
intersects::< (* Not Yet Inplenmented *)
(* Answer whether go.theshape intersects with the shape of any
* graphi cal object of THI S(Picture)
*)
(# ... #);
within::< (* Not Yet |nplenented *)
(* Answer whether go.theshape is conpletely within the shape
* of any graphical object of THI S(Picture)
(# ... #);
firstContaining: <
(* Returns reference to first Abstract G aphical Object in
* THI S(Abstract) that contains thePoint.
* thePoint is assuned to be in coordinates relative to
* theCanvas.
(# theCanvas: "BifrostCanvas;
t hePoi nt: @Poi nt;
aGO "Abstract Gaphi cal Qbj ect ;
enter (theCanvas[], thePoint)

exit aGJ]
#)
| ast Cont ai ni ng: <
(* Returns reference to | ast Abstract G aphical Gbject in
* THI S(Picture) that contains thePoint.
* thePoint is assuned to be in coordinates relative to
* theCanvas.
*
(# theCanvas: ~BifrostCanvas;
t hePoi nt: @Poi nt;
aG0 ~Abstract Graphi cal Obj ect ;

Interface Descriptions

enter (theCanvas[], thePoint)

exit aGd]
#);
firstintersecting:< (* Not Yet Inplemented *)
(* Returns reference to first Abstract Graphical Ghject in
* THI S(Picture) that intersects with aG0

*

(# aGD, i GO "Abstract Gaphi cal Qbj ect;

enter aGJ|]
exit i GJ]
#);

lastintersecting:< (* Not Yet |Inplenented *)
(* Returns reference to |last Abstract Graphical Gbject in
* THI S(Picture) that intersects with aG0

*

(# aGD, i GO "Abstract Graphi cal Object;
enter aGJ]

exit iG]
#)
firstWthin:< (* Not Yet Inplenented *)

(* Returns reference to first Abstract Graphical Ghject in
* THI S(Picture) that is within aG0

*

(# aGO, waO "Abstract Graphi cal Qbj ect;

enter aGJ|]
exit waJ]
#);

lastWthin:< (* Not Yet |nplenmented *)
(* Returns reference to |l ast Abstract Graphical Gbject in
* THI S(Picture) that is within aGO

*

(# aGO, waO "Abstract Gaphi cal Obj ect;
enter aGJ|]
exit wad]
#)
witePS::<(# do ... #);

do | NNER,
#); (* Picture *)

12.30 BifrostCanvas

(* The BifrostCanvas is the connection between the graphic

* definitions and the device. G aphical objects beconme visible on
* the output device when they are added to a Bifrost Canvas by the
* use of the draw nethod.

*)

Bi frost Canvas: Canvas
(# <<SLOT CanvasAttributes: attributes >>;

t hePi ct ure:
(* Picture holding the graphical objects *)
APicture;
vi sual Shape:
(* The part of THI S(BifrostCanvas) that is visible *)
AShape;

92

Bifrost Reference Manual

cl i pShape:
(* Shape used for clipping in TH S(Bi frost Canvas). Defaults to
* vi sual Shape
*)
AShape;
draw. (* Put GO on THI S(Bifrost Canvas) *)
(# GO "Abstract Graphi cal Obj ect

enter GJ]
#):

erase: (* Erase GO from THI S(Bi frost Canvas) *)
(# aGO ~Abstract Gaphi cal bj ect ;

enter aGJ]
#);
scanThePi ct ur e:
(* Scan through each Abstract Graphical Gbject in thePicture in
* order fromthe bottommbpst to the frontnost one.

*

(# go: "Abstract G aphi cal Obj ect;
#);
scanThePi ct ur eRever se:
(* Scan through each Abstract Graphical Gbject in thePicture in
* order fromthe frontnost to the bottomopst one.

*

(# go: "Abstract Graphi cal Obj ect;
#);
firstContaining:

(* Returns reference to first Abstract G aphical Gbject in
* thePicture that contains thePoint.
* thePoint is assuned to be in coordinates relative to
* THI S(Bi f rost Canvas).
*

(# thePoint: @oint;

enter thePoint

exit (THI S(BifrostCanvas)[],thePoint)

->t hePi cture. firstContaining
#);
| ast Cont ai ni ng:

(* Returns reference to |ast Abstract Graphical Gbject in
* thePicture that contains thePoint.
* thePoint is assuned to be in coordinates relative to
* THI S(Bi f r ost Canvas).
*

(# thePoint: @oint;

ent er thePoi nt

exit (THI S(Bi frostCanvas)[],thePoint)

- >t hePi cture. | ast Cont ai ni ng
#);

(* EVENT HANDLI NG *)
event Handl er: : <
(#
onQOpen: <
(* Called imediately after the BifrostCanvas has been
* made visible.
*

(#
#):
onMbuseDown: : <
(* Called when a nouse button is pressed *)

(# nmousePos: @oi nt
(* the position of the nouse in device coordinates *);

Interface Descriptions

button: (# exit buttonState #);
shiftMdified: (# exit shiftKey #);
(*l ockModified: (# exit capsLock #);*)
control Modified: (# exit control Key #);
met ahMbdi fied: (# exit metaKey #);
altModified: (# exit altKey #);
#)
onKeyDown: : < (* Called when a key is pressed *)
(# ... #);
onRefresh: : <
(* Called when THI S(Bi frost Canvas) is being refreshed *)
(# do ... #);
onFr ameChanged: : <
(* Called when THI S(Bi frost Canvas) changes its frane
* (size)
*
(# ... #);
onActivate:: <
(* Called when the BifrostCanvas is activated, e.g. by
* entering it with the nouse.
*
(# ... #);
onDeactivate:: <
(* Called when the BifrostCanvas is deactivated, e.g. by
* leaving it with the nouse.
*
)
(# ... #);
#)
borderwi dth: @
(* The width of the border if present. Defaults to 0 *)
(# val ue: @ nteger;

enter (# enter value ... #)
exit (# ... exit value #)
#)
borderpaint: @
(* The Paint used to fill the border if present. Defaults to
* bl ack
*
(# p: ~Paint;
enter (# enter p[] ... #)
exit (# ... exit p[] #
#)

backgroundpaint: @
(* The Paint used as background. Defaults to white *)

(# p: ~Paint;
enter (# enter p[] ... #)
exit (# ... exit p[] #
#);
open: : <
(* Open the BifrostCanvas, i.e. make it visible and start to

* handl e events.
*
(# create::< (# ... #);
def aul t background: @ool ean
(* I'f defaul tbackground is set to true,

* THI S(Bi frost Canvas) will appear with the sane
* background col or as the surroundi ng wi ndow, otherw se
* it will be set to white (unless otherw se specified by
* backgr oundpai nt

*),
#);
close:: <
(* Close the BifrostCanvas, i.e. nmake it disappear and forget

94 Bifrost Reference Manual

* all information stored in it.
*)
(# ... #);

witeEPS: <

(* Wite Encapsul ated PostScript to the streamout *)
(# out: ~Stream
pagesi ze: @ ectangl e;
vertical: @ool ean;
noOf Copi es: @ nt eger;
enter (pagesize, vertical, noOf Copies, out[])
do ...
#)

setdip:
(* Make clipShape the new clipping region in
* THI S(Bi f r ost Canvas)
*
(#
enter clipShape[]
do ...;
#) ;
getdip:
(* Exit the clipping region of THI S(BifrostCanvas) *)
(# exit clipShape[] #);
devi ceToCanvas:
(* Transform pl from Device coordinates to BifrostCanvas
* coordi nat es.
*

(# pl, p2: @oint;

enter pl
é;d't p2
#)

canvasToDevi ce:
(* Transform pl from Bi frost Canvas coordi nates to Device
* coordi nat es.

*

(# pl, p2: @oint;

enter pl
exit p2
#)

(* DAMAGE / REPAIR *)
danmaged:
(* I'nform TH S(Bi frost Canvas) that r has been damaged, and
* thus should be a part of the area redrawn upon the next
* repair.
(# r: @Rectangl e;
enter r
do ...;
#)
repair:
(* Redraw all damaged areas in THI S(BifrostCanvas) *)
(# do ... #);

(* | NTERACTI ON *)
i nteracti onHandl er:

(* Specialize TH S(Bifrost Canvas). | nteracti onHandler to

* performan interaction. Specialize the different virtuals

inside TH S(InteractionHandl er) to performactions in
response to various events. O course, using an
I nteracti onHandl er only gives meaning if a pointing device
and/ or a keyboard is connected to the actual device.

* % X x ok

Interface Descriptions

95

* NOTI CE: At npst one InteractionHandl er nmay active at any
* given tine
*
(# initialize:<
(* Called before TH S(InteractionHandl er) is started *)
(# L. #);
noti on: <
(* Called when the the pointing device has been noved *)
obj ect;
butt onPress: <
(* Called when a button of the pointing device has been
* pressed.
*
(# button: @nteger enter button do | NNER, #);
but t onRel ease: < obj ect
(* Called when a button of the pointing device has been
* rel eased
*),
keyPress: <
(* Called when a key on the keyboard has been pressed *)
(# ch: @har; enter ch do I NNER #);
keyRel ease: <
(* Called when a key on the keyboard has been rel eased *)
(# ch: @char; enter ch do I NNER #);
term nat eCondi ti on: < bool ean(hj ect
(* Specifies under what condition to stop
* TH S(I nteracti onHandl er)
*
(# ... #);
term nated: <
(* Called just before THI S(InteractionHandl er) ends *)
(# ... #);
get Poi nterLocation: @
(* Returns the current pointer location in device
* coordi nates
*
(# thePoint: @oint;
do ...;
exit thePoint
#)
i shModi fierOn: @ool eanVal ue
(* Tell if theModifier is currently being pressed *)
(# theModi fier: @bdifier;
enter theMdifier
do ...;
#);
doubl ed i ck: @ool eanVal ue
(* Answer if the last button press on the pointing device
* was a double click
*
g (# ... #);
o ...;
#)
i nteractiveCreat eShape:
(* Tell GO to start an interaction for creation on
* THI S(Bi f r ost Canvas)
*
(# GO ~"NAbstract Graphi cal Obj ect;
p: @woint (* start interaction at p *);
theModifier: @mbdifier;
enter (GJ], p,theMdifier)
#)
i nt eracti veConbi neShape:
(* Tell GO to start an interaction for conbination on
* THI S(Bi frost Canvas)

96 Bifrost Reference Manual

*

(# GO "Abstract Graphi cal Obj ect;
p: @oint (* start interaction at p *);
theModifier: @bdifier;
enter (GJ],p,theMdifier)
#);
i nteractiveReshape:

(* Tell GO to start an interaction for reshaping on
* THI S(Bi f r ost Canvas)
*

(# GO "Abstract Graphi cal Obj ect;
p: @oint (* start interaction at p *);
theModifier: @bdifier;
enter (GJ], p,theMdifier)
#);
i nteractivehMve:
(* Tell GO to start an interaction for notion on
* THI S(Bi f rost Canvas).
*
(# GO ~"Abstract Graphi cal Obj ect;
p: @oint (* start interaction at p *);
t heModi fier: @bdifier;
enter (GJ], p,theMdifier)
#)
interactiveRotate: (* Not Yet |nplenmented *)
(* Tell pict to start an interaction for rotation on
* THI S(Bi f r ost Canvas)
(# GO "Abstract Graphi cal Obj ect;
p: @oint (* start interaction at p *);
theModi fier: @bdifier;
enter (GJ],p,theMdifier)
#);
i nteractiveScale: (* Not Yet I|nplenmented *)
(* Tell pict to start an interaction for scaling on
* THI S(Bi f r ost Canvas)
*
(# GO "Abstract Graphi cal Obj ect;
p: @%oint (* start interaction at p *);
theModifier: @bdifier;
enter (GJ], p,theMdifier)
#);
bri ngFor war d:
(* Bring a0 forward in THI S(Bi frost Canvas).thePicture *)
(# aGO ~Abstract G aphi cal Obj ect ;
enter aGJ]
#)
sendBehi nd:
(* Send aGO behind in TH S(Bi frost Canvas).thePicture *)
(# aGO ~Abstract G aphi cal Obj ect ;
enter aGJ]
#)

hi t Control :
(* Answer whether p is within 2 mmof a control point of aGO
* Exits exact point if hit, NONE otherw se

*

(# aGO ~Abstract G aphi cal Obj ect ;
p: @oint;

Interface Descriptions 97

res: “~Point;

enter (aG]J], p)

exit res[]
#)
hilite:
(* Tell GO to highlight itself on TH S(BifrostCanvas) *)
(# GO "Abstract Graphi cal Obj ect

enter GJ]
#):
unHilite:

(* Tell GO to unhighlight itself on THI S(BifrostCanvas) *)
(# GO "Abstract Gaphi cal Obj ect

enter GJ]

#);

Prinmtives for inmedi ate drawi ng (sonetines al so known as
transient drawing). For efficiency all of these use DEVICE
coordi nates. Nothing drawn by neans of these prinitives can
be repaired automatically by TH S(BifrostCanvas). Uses an
arbitrary color, that is guarentied to be different to what
is underneath. May be erased by repeating the drawrequest,
and is thus very useful for feedback in interaction.

* %k Xk kX F

~—

set | mredi at eLi neW dt h:
(* Set the width used for imediate |lines and arcs *)
(# lineWdth: @nteger;
enter linewWdth
#)
i medi at espot :
(* Draw a small filled rectangl e around center *)
(# center: @oint;
enter (center)
#)
i medi at eLi ne:
(* Draw an imediate line frompl to p2 *)
(# pl, p2: @Point;
enter (pil,p2)
#)
i medi at eDot :
(* Draw a dot of the size of one device-pixel at p *)

(# pl: @Point;
enter (pl)
#);

i medi at eMul ti Li ne:
(* Draw an immedi ate multiline specified by the points in p.
* |f close is true, the nultiline will be closed by a line
* fromthe first point to the last point.
*
(# p: ~PointArray;
cl ose: @Bool ean;
enter (p[], close)
do ...;
#);
i mredi at eArc:
(# cx, cy: @nteger; (* Center coordinates *)
hr, vr: @nteger; (* Horizontal/vertical radius *)
al, a2: @nteger; (* Defining angles in degrees *)
enter (cx, cy, hr, vr, al, a2)

98

Bifrost Reference Manual

#);
i mredi at erect:
(* Draw the outline of r *)
(# r: @Rectangl e;
enter r
#);
i mredi at eText :
(* Draw theString at pos, with appearance as specified with
* theFont Nane, theStyle, theSize, and underline
*
(# pos: @oint;
t heFont Nane: @-ont Nane;
theStyle: @tyle;
theSi ze: @ nt eger;
under |l i ne: @ool ean;
theString: “text;
enter (pos, theFontNane, theStyle, theSize,
underline, theString[])
do ...
#);

(* Wility functions to convert between pixels and
*mlinmeter.

*

MMIoPi xel : (* Exits p scaled fromnmmto pixels *)

(# p: @oint;
enter p

do ...

exit p

#);

pi xel ToMM (* Exits p scaled frompixels to nm *)

(# p: @oint;
enter p

do ...

exit p

#);

(* PRI VATE *)

privatePart: @...;
™ ~Matrix
(* Transformation from THI S(Bi frost Canvas) to the actual
* devi ce
*);
#);

12.31 Bifrost

Bi

LIB: attributes --
frost: Quienv(# do | NNER #)

12.32 ColorNames

ORIA@ N ' ~betal/ basiclib/vl.5/betaenv';

LIB: attributes --

Interface Descriptions

(* Patterns used as enter paraneters for SolidCol or.nane *)

al i cebl ue: (# exit (61440, 63488, 65280) #);
anti quewhite: (# exit (64000, 60160, 55040) #);
anti quewhi t el: (# exit (65280, 61184, 56064) #);
yel | ows: (# exit (52480, 52480, 0) #);
yel | ow4: (# exit (35584, 35584, 0) #);
yel | owgr een: (# exit (39424, 52480, 12800) #);

12.33 Palette

ORIA@N "Bifrost';
BODY 'private/lnpl/Palettel ml';
| NCLUDE ' Predefi nedGO ;

-- BifrostAttributes: attributes --

Pal ette: BifrostCanvas
(* A canvas showi ng an either vertical or horizontal sequence of
* graphical objects. At any tinme exactly one of these are
* highlighted by a black frane. This default highlight nay be
* changed by furtherbinding "hiliteitent. G aphical objects are
* added to THI S(Pal ette) by using "append'. The nunber of the
* currently selected graphical object is in "selection".
*
(# eventhandler::<
(# onOpen::<(# ... #);
onMouseDown: : < (# ... #);
#);

bl ackpai nt: @bol i dColor; (* A black solid color *)

sel ection: @ ntegerVal ue
(* Nunber of currently selected item?*)
(# checknew. @
(# ns: @nteger;
enter ns ...
#),
enter checknew
#),
noCf I tens: integerVal ue
(* Exit the nunber of graphical objects in TH S(Palette) *)
(# ... #);
framePaint: @
(* The paint used in the frane and default hilite *)
(# f: ~Paint;
newFr anePai nt: @
(#
enter f[]
do ...
#)
ent er newkr amePai nt
exit f[]
#);
goPaint: @
(* The paint used in the Abstract G aphi cal Objects *)
(# g: "Paint;
newCGoPai nt: @
(# b: @ool ean
enter g[]
do ...;

100 Bifrost Reference Manual

#)
ent er newGoPai nt
exit g[]

#);

open: : <
(* Open THI S(Pal ette). Place it at position. deltax,
* deltay gives the step-lengths in horizontal and vertica
* direction, respectively. |If vertical is true, it will be a
* vertical palette, otherwi se a horizontal one.
*
(# deltax, deltay: @nteger;
vertical: @ool ean;
enter (deltax, deltay, vertical)
#);
si ze:
(* Hides BifrostCanvas.size. The size of THI S(Pal ette) should
* not be set directly, since it will adjust itself depending

* on the nunber of itens.
*

(# s: @oint
exit (# ... exit s #)
#)
close::<(# ... #);
append: <

(* Append go as a selectable itemin TH S(Palette). go will
* be centered in a box with di nensions deltax and deltay (as
* gpecified to init)

*

(# go: "Abstract Graphi cal Obj ect;

enter go[]
do ...; |INNER
#)

hiliteitem<
(* Highlight itemno i instead of the currently highlighted
* item Does not change the current selection
*
(# donei ni nner: @ool ean;
i: @nteger;
enter i
do | NNER
#)
changed: <
(* Called when the selection changes *)
(# ... #);

pal etteprivate: @..;
#)

12.34 PredefinedGraphicalObject

ORIG N "Bifrost';
BODY ' private/lnpl/Predefi nedGol npl"’

-- BifrostAttributes: attributes --

Pr edef i nedGr aphi cal bj ect: Abstract G aphi cal Obj ect
(# shapeDesc:: <
Pr edef i nedShape;
TMDesc: : < (# enterTM:< (# do ...; INNER #)#);
init::< (# ... #);

Interface Descriptions 101

get Shape: : < (# do theShape. cal cul at eShape -> s[] #);
do | NNER;
#)

12.35 Line

Li ne: Predefi nedG aphi cal Obj ect
(# shapeDesc: : < Li neShape;

begi n: (# enter theShape.begin exit theShape.begin #);
end: (# enter theShape.end exit theShape.end #);
width: (# enter theShape.width exit theShape.w dth #);
dashes: (# enter theShape.dashes exit theShape.dashes #);
cap: (# enter theShape.cap exit theShape.cap #);

coor di nat es:
(# enter theShape.coordi nates exit theShape.coordinates #);

draw : < (# ... #);
copy::<(# do INNER, ... #);
do | NNER;

#),

12.36 Multiline

Mul ti Li ne: Predefi nedG aphi cal Obj ect
(# shapeDesc:: < Ml ti Li neShape;

wi dth: (# enter theShape.width exit theShape.w dth #);
points: (# enter theShape.points exit theShape.points #);
dashes: (* Not Yet |nplenented *)

(# enter theShape.dashes exit theShape.dashes #);
cap: (# enter theShape.cap exit theShape.cap #);
join: (# enter theShape.join exit theShape.join #);

draw : < (# ... #);
copy::< (# do INNER;, ... #);
do | NNER;

#);

12.37 GraphicText

Graphi cal Text: GraphicText (# #); (* Alias *)

Graphi cText: Predefi nedG aphi cal Obj ect
(# shapeDesc: : < Text Shape;

inittext: (# enter theShape.inittext #);

position:
(# enter theShape.position
exit theShape. position
#)
t hef ont nane:
(#

102 Bifrost Reference Manual

ent er theShape. t hef ont nane
exit theShape. t hef ont nane
#);

theStyl e:
(#
ent er theShape.theStyle
exit theShape.theStyl e
#),

si ze:
(#
ent er theShape. si ze
exit theShape. size
#)

underli ne:
(#
ent er theShape. underline
exit theShape.underline
#);

t heText:
(#
ent er theShape.theText
exit theShape.theText

#)
draw. : < (# ... #);
copy::< (# ... #);

i nteractiveCreateShape:: <
(# lastCh: @har; (* Last character typed in interaction *)

exit lastCh
#);
i nteractiveReshape:: <
(# lastCh: @char; (* Last character typed in interaction *)

exit lastCh
#)

do | NNER

#);

12.38 Arc

Arc: PredefinedG aphi cal Obj ect
(# shapeDesc: : < ArcShape;

center: (# enter theShape.center exit theShape.center #);
hori zont al Radi us:
(#
enter theShape. horizontal radi us
exit theShape. hori zont al radi us
#),
verti cal Radi us:
(#
ent er theShape. vertical radi us
exit theShape.vertical radi us
#);
angl el:
(#
ent er theShape. angl el
exit theShape. angl el
#)
angl e2:

Interface Descriptions

103

(#

enter theShape. angl e2
exit theShape. angl e2
#);

ar cW dt h:

(#

ent er theShape.arcWdth
exit theShape.arcWdth

#)
draw : < (# ... #);
copy::< (# do INNER;, ... #);
do | NNER

#);

12.39 PieSlice

Pi eSlice: PredefinedG aphi cal Obj ect
(# shapeDesc:: < Pi eShape;

center:
(#
ent er theShape. center
exit theShape. center
#)
hori zont al Radi us:
(#
ent er theShape. hori zont al radi us
exit theShape. horizontal radi us
#)
verti cal Radi us:
(#
ent er theShape. verticalradius
exit theShape.vertical radi us
#)
angl el:
(#
ent er theShape. angl el
exit theShape. angl el
#)
angl e2:
(#
ent er theShape. angl e2
exit theShape. angl e2

#);
draw. : < (# ... #);
copy::< (# do INNER, ... #);
do | NNER

#);

12.40 Rect

Rect: Predefi nedG aphi cal Obj ect
(# shapeDesc: : < Rect Shape;

upperl eft:
(#

104

Bifrost Reference Manual

ent er theShape. upperl eft
exit theShape. upperleft
#);

wi dt h:
(#
ent er theShape.w dth
exit theShape.w dth
#);

hei ght :
(#
ent er theShape. hei ght
exit theShape. hei ght
#)

corners:
(#
ent er theShape. corners
exit theShape. corners

#);
draw : < (# ... #);
copy::< (# do INNER, ... #);
do | NNER

#);

12.41 Ellipse

El |l i pse: PredefinedG aphi cal Obj ect
(# shapeDesc:: < EllipseShape;

center:
(#
ent er theShape. center
exit theShape. center
#)
hori zont al radi us:
(#
ent er theShape. hori zont al radi us
exit theShape. horizontal radi us
#)
verti cal radi us:
(#
ent er theShape. vertical radi us
exit theShape.verti cal radi us
#)
geonetry:
(#
ent er theShape. geonetry
exit theShape. geonetry

#);
draw. : < (# ... #);
copy::< (# do INNER;, ... #);
do | NNER

#);

Interface Descriptions

105

12.42 RasterGrays

ORIG N 'Bifrost';
BODY 'private/lnpl/RasterGaylnpl';

-- BifrostAttributes: Attributes --

Raster Gray: Til edSolidCol or
(* Abstract superpattern for the ten patterns bel ow. Each of these
* use one of the bitmaps in the fragnent Hal ftonePatterns to nake
* an illusion of a shade of gray even on a black & white device.
* See the pattern RasterG ays below for a conveni ent use.
*

(# do init; (0, 0, 0) -> RGBval ues; #);

Raster G ay0: Raster G ay
(#init:: (# ... #)#);
Raster G ayll: RasterG ay
(# init:: (# ... #)#);
Raster G ay22: RasterG ay
(# init:: (# ... ##);
Raster G ay33:. RasterG ay
(#init:: (# ... #)#);
Raster G ay44: RasterG ay
(# init:: (# ... #)#);
Raster G ay56: Raster G ay
(# init:: (# ... ##);
Raster G ay67: RasterG ay
(#init:: (# ... #)#);
Raster G ay78: RasterG ay
(# init:: (# ... #)#);
Raster G ay89: Raster G ay
(# init:: (# ... ##);
Raster G ay1l00: Raster G ay
(#init:: (# ... #)#);

Rast er G ays:
(* A convenient alternative to using the above patterns directly is
* using an instance of RasterGays: RasterGrays enters a
* percentage, and exits a reference to an initialized RasterGay
* yielding a approxi mati ng shade of gray: percentage=0 yields
* white, percentage=100 yields black, other percentages yields one
* of eight internediate shades of gray.
*

(# private: @..;
percent age: @ nteger;
t hegray: "Raster G ay;
init:

(# ... #)

enter percentage

do ...;

exit thegray[]

#);

12.43 SelectionPicture

-- BifrostAttributes: attributes --

Sel ectionPicture: Picture
(* Apicture used to hilite a group of graphical objects.
* Sel ectionPicture automatically highlights the graphical objects
* added to it.

106

Bifrost Reference Manual

*

(# thecanvas: "Canvas

#)

(* The Canvas the GOs are shown in *);

init::< (# enter theCanvas[] ... #);

copy::<(# do ... #);

draw. : < (# ... #);

erase::< (# ... #);

add: : < (# ... #);

delete::< (# ... #);

cl ear:
(* Remove all graphical objects from THI S(Sel ecti onPicture) *)
(# ... #);

onOneGO: < obj ect

(* Called when noOF G0s becones 1 *);
onTwoG0s: < obj ect

(* Called when noOF G0s changes from1l to 2 *);
onEnpty: < obj ect

(* Called when noOFGOs becones 0 *);

Bibliography

[Andersen 91]

[Edel sbrunner 80]

[Foley 90]

[Madsen 93]

[MIA 90-2]

[MIA 90-10]

[MIA 91-16]

[MIA 91-19]

[MIA 94-27]

[Newman 81]

[Poskanzer]

Peter Andersen, Kim Jensen Mgller, and Jargen Rask:
Bifrost—An Interactive Object Oriented Device Indepen-
dent Graphics System, Master’s thesis, DAIMI Internal
Report IR-100, Aarhus University, January 1991.

H. Edelsbrunner: Dynamic Rectangle Intersection Search-
ing. Technische Universitét Graz. February 1980.

James D. Foley, Andries van Dam, Steven K. Feiner, and
John F. Hughes: Computer Graphics—Principles and
Practice, Addison-Wesley, The System Programming Se-
ries, 2, 1990.

O. L. Madsen, B. Mdller-Pedersen, K. Nygaard: Object-
Oriented Programming in the BETA Programming Lan-
guage, Addison-Wesley, 1993, ISBN 0-201-62430-3

Mjealner Informatics. The Mjglner BETA System: BETA
Compiler Reference Manual Mjglner Informatics Report
MIA 90-2.

Mjgalner Informatics: The Mjglner BETA System — The
Macintosh Libraries, Mjglner Informatics Report MIA 90-
10.

Mjeglner Informatics: The Mjglner BETA System—X Win-
dow System Libraries, Mjglner Informatics Report MIA
91-16.

Mjalner Informatics: Lidskjalv: User Interface Framework
- Reference Manual. Mjainer Informatics Report MIA 94-
27.

Mjealiner Informatics. The Bifrost Graphics System, Tuto-
rial. Mjelner Informatics Report MIA 91-109.

William M. Newman and Robert F. Sproull: Principles of
Interactive Computer Graphics, McGraw-Hill Book Com-
pany, 1981.

Jef Poskanzer: Portable BitMap, GrayMap, and PixMap,
Unix Manual Pages.

107

Index

The entries in the index with italic pagenumbers are the identifiers defined in
the public interface of the libraries:

The minor level entries refer to identifiers defined local to the identifier of the
major level entry. For those index entries referring to patterns with super- or
subpatterns within the library, these patterns are specified in special sections of
the minor level index for that identifier.

Entries with plain pagenumbers refer to the text of this manual.

Externally defined:

... interactiveMove 86

. booleanObject .. . interactiveReshape 86
. . Subpatterns: . interactiveCombineShape 85
... terminateCondition 95 .. Superpattern:

. booleanVaue ... interaction 85

. . Subpatterns: . interactiveCreateShape 85
... containsPoint 65, 87 .. Superpattern:

... empty 60 ... interaction 85

... 1sClosed 64, 68 . interactiveMove 86
... ISEmpty 68, 90 .. Superpattern:
...isFlat 68 ... interaction 85

... isMember 90 . interactiveReshape 86
. integerValue .. Superpattern:

. . Subpatterns: ... interaction 85

... height 77 . interactiveRotate 86
... invalidatel nteger 70 . interactiveScale 86
... noOfGOs 90 . intersects 87

... noOfltems 99 . move 86

... width 77 . moveTo 86

ab7 . private 87
AbstractGraphical Object 83 . recal culateShape 87

. Subpatterns: . rotate 87

.. Graphical Object 87 . scale 87

.. Picture 88 . setPaint 84

.. PredefinedGraphi cal Object 100 . shapeDesc 84

. containsPoint 87 . thePaint 87

. . superpattern: . theShape 87

... booleanVaue 106 .TM 84

. copy 85 . TMDesc 84

. draw 84 . transform 86

. erase 84 . unHilite 85

. getBounds 85 . within 87

. getPaint 84 . writePS 87

. getShape 84 AbstractShape 65

. hilite 85 . Super pattern:

. hitControl 85 .. Segment 65

.init 84 . Subpatterns:

. interaction 85 .. PictureShape 88

. . Subpatterns: .. PredefinedShape 70
. .. interactiveCombineShape 85 .. Shape 67

. .. interactiveCreateShape 85 . calculatePoints 67

109

110

Bifrost Reference Manual

. containsPoint 65

.. Superpattern:

... booleanVaue 106

. copy 65

. drawHilite 67

. fillRule 65

. getBounds 65

. getcontrols 67

. hb 67

. hc 67

. hiliteBound 66

.. Superpattern:

... hiliteDesc 66

. hiliteControls 66

.. Superpattern:

... hiliteDesc 66

. hiliteDesc 66

.. Subpatterns:

... hiliteBound 66

... hiliteControls 66
... hiliteOutline 66

. hiliteOutline 66

.. Superpattern:

... hiliteDesc 66

. ho 67

. hotspot 66

. Interaction 67

. InteractiveCombine 67
. InteractiveCreate 67

. InteractiveReshape 67
. Intersects 66

. invalid 65

. invalidate 65

. open 67

. privatePart 67

. transform 67

. within 66

add 29, 88, 106
addControl 63, 64
addLine 18

addPoint 59, 72
AddPoints 57
addSpline 19, 68
aliceblue 99

anglel 74, 75, 102, 103
angle2 74, 75, 102, 103
antiquewhite 99
antigquewhitel 99
append 60, 100
appendPointArray 60
appendShape 13, 14, 69
Arc 102

. Super pattern:

.. PredefinedGraphical Object 102
.anglel 102

.angle2 102

. arcWidth 103

. center 102

. copy 103

. draw 103

. horizontalRadius 102
. shapeDesc 102

. vertica Radius 102
ArcShape 39, 74

. Super pattern:

.. PredefinedShape 74
.anglel 75

.angle2 75

. arcWidth 75

. calculateShape 75

. center 75

. containsPoint 75

. copy 75

. firstPoint 75

. getBounds 75

. getControls 75

. hiliteOutline 75

. horizontalRadius 75
. interactiveCreate 75
. interactiveReshape 75
. intersects 75

.open 75

. transform 75

. verticaRadius 75

. within 75

. writePS 75
arcWidth 75, 103

b 57
backgroundpaint 93
bdraw 47

begin 62, 71, 101
Bifrost 98

. Super pattern:

.. Guienv 98
BifrostCanvas 54, 91
. Super pattern:

.. Canvas 91

. Subpatterns:

.. Palette 99

. backgroundpaint 93
. borderpaint 93

. borderwidth 93

. bringForward 96

. canvasToDevice 94
. clipShape 92

. close 93

. damaged 94

. deviceToCanvas 94
. draw 92

. erase 92

. eventHandler 92

.. OnActivate 93

.. onDeactivate 93

.. onFrameChanged 93
.. onKeyDown 93

.. onMouseDown 92
.. onOpen 92

.. onRefresh 93

. firstContaining 92

. getClip 94

Index 111
. hilite 97 . Super pattern:

. hitControl 96 .. Style 56

. immediateArc 97 borderpaint 93

. immediateDot 97 borderwidth 93

. immediateLine 97

. immediateMultiLine 97
. immediaterect 98

. immediatespot 97

. immediateText 98

. interactionHandler 94
.. buttonPress 95

.. buttonRelease 95

.. doubleClick 95

. . getPointerL ocation 95
.. initialize 95

.. isModifierOn 95

.. keyPress 95

.. keyRelease 95

.. motion 95

.. terminateCondition 95
... Superpattern:

... . booleanObject 106
.. terminated 95

. interactiveCombineShape 95
. interactiveCreateShape 95
. interactiveMove 96

. interactiveReshape 96

. interactiveRotate 96

. interactiveScale 96

. lastContaining 92

. MMToPixel 98

. open 93

. pixelToMM 98

. privatePart 98

. repair 94

. scanThePicture 92

. scanThePictureReverse 92
. sendBehind 96

. setClip 94

. setimmediateLineWidth 97
. thePicture 91

.TM 98

. unHilite 97

. visual Shape 91

. writeEPS 94

BitMap 22, 78

. Super pattern:

.. Raster 78

. BitMapPrivatePart 78

. calculate 78

. copy 78

. getPixel 78

.init 78

. pixel 78

. putPixel 78

. readFromPBMfile 78

. writeToPBMfile 78
BitMapPrivatePart 78
blackpaint 99

Bold 56

bringForward 29, 89, 96
buttonPress 95
buttonRelease 95

c57

caculate 78, 79
calculatePoints 62, 64, 65, 67

CalculateShape 70, 71, 72, 74, 75, 76,

77

Canvas 32

. Subpatterns:

.. BifrostCanvas 91
. Clipping 33

. Drawing Area 32

. Event Handler 34

. thePicture 32

. Visible Area 32

. Visible Shape 32
Canvas Coordinate System 4
canvasToDevice 94
cap 71, 72, 101
Cap Styles 12
CapButt 56

. Superpattern:

.. CapStyleDesc 56
CapRounded 56

. Superpattern:

.. CapStyleDesc 56
CapSguare 56

. Superpattern:

.. CapStyleDesc 56
CapStyleDesc 56

. Subpatterns:

.. CapButt 56

.. CapRounded 56
.. CapSquare 56
CCs4

center 74, 75, 76, 102, 103, 104

changed 100

circleAngle 54, 59
CircularSplineSegment 7, 64
. Superpattern:

.. SplineSegment 64

. calculatePoints 64

. copy 64

. drawRubberBand 64

. DrawRubberSplineDesc 64
. findSegments 64

. getControls 64

. makeOffset 64

. makeSecondOffset 64

. nextToLastPoint 64

. writePS 64

clear 106

Clip Shape 33

Clipping 33

clipShape 92

112

Bifrost Reference Manual

close 9, 64, 68, 93, 100
CMYvalues 23, 81

combineShape 13, 16, 70
Combining Shapes 13
CommandModifier 56

. Superpattern:

.. Modifier 56

Complex Shapes 13

Complex Transformation 5
connectShape 13, 15, 69
connectShapeSmooth 13, 15, 69
Constraining Pictures 30
containsPoint 27, 65, 68, 70, 71, 72,
73,74,75, 76, 87, 88, 90
ControlModifier 56

. Superpattern:

.. Modifier 56

controls 63

Coordinate 4

Coordinate System 4, 30
coordinates 71, 101

copy 21, 59, 60, 61, 62, 63, 64, 65, 67,
71,72,73,74,75, 76, 77, 78, 79, 81,
82, 83, 85, 88, 89, 101, 102, 103, 104,
106

corners 76, 104

Courier 56

. Superpattern:

.. fontname 56

currentPoint 68

d57

damaged 33, 94

dashes 71, 72, 101

DCS4

DefaultMaxHue 57

DefaultMaxSat 57

DefaultMaxVal 57

delete 29, 63, 69, 89, 106
deletePoint 72

Device Coordinate System 4
deviceToCanvas 94

doubleClick 95

draw 28, 84, 88, 89, 92, 101, 102, 103,
104, 106

drawHilite 67

drawOnPixmap 89
drawRubberBand 61, 62, 64
DrawRubberSplineDesc 63, 64, 65
Ellipse 104

. Superpattern:

.. PredefinedGraphica Object 104
. center 104

. copy 104

. draw 104

. geometry 104

. horizontalradius 104

. shapeDesc 104

. verticalradius 104

EllipseAngle 54, 58

EllipseShape 38, 76

. Superpattern:

.. StrokeableShape 76

. calculateShape 77

. center 76

. containsPoint 76

. copy 77

. firstPoint 76

. geometry 76

. getBounds 76

. getControls 77

. hiliteOutline 77

. horizontalradius 76

. interactiveCreate 77

. interactiveReshape 77

. intersects 76

.open 76

. transform 77

. verticalradius 76

. within 77

. writePS 77

empty 60

end 62, 71, 101
endReshape 61, 62, 63
Equal Point 57

erase 28, 84, 89, 92, 106
Even-Odd Rule 9
EvenOddRule 56
eventHandler 92, 99
ExpandRectangle 57
feature 59

figureitems 55

fill 79

Fill Rules8

fillArc 80, 82, 83
fillEllipse 80, 82, 83
fillLine 79, 81, 82, 83
fillMultiLine 80, 82, 83
fillOther 80

fillPie 80, 82, 83
fillRect 80, 82, 83
fillrule 65

. Even-Odd Rule 9

. Non-Zero Winding rule 8
fillShape 21, 79, 81, 82, 83
fillText 80, 82, 83
findSegments 61, 62, 64, 65, 70
firstContaining 30, 90, 92
firstGO 90
firstintersecting 91
firstPoint 60, 62, 63, 68, 71, 72, 73, 74,
75, 76, 88

firstWithin 91
fontName 56

. Super pattern:

.. integerObject 56

. Subpatterns:

.. Courier 56

.. Helvetica 56

.. Times 56

framePaint 99

Index

113

g 82
geometry 76, 104

getBounds 65, 68, 71, 72, 73, 74, 75,

76, 85, 88, 89
GetClip 33, 94

getControls 61, 62, 64, 65, 67, 70, 71,

72,73,74,75,76, 77,88
getinverse 58

getPaint 84

getPixel 77, 78, 79
getPoint 59

getPointerL ocation 95
getShape 84, 88, 101
goPaint 99

Graphic Context 26

. Global 26

. Local 26

. Shared 26

Graphical Object

.init 26

Graphical Object 26, 87

. Super pattern:

.. AbstractGraphica Object 87
. containsPoint 27

. copy 88

. draw 28, 88

. erase 28

. Geometric Transformations 27
. getShape 88

. Graphic Context 26

. hilite 28, 88

. hitControl 27

. interactiveCombineShape 27
. interactiveCreateShape 27
. interactiveMove 27

. interactiveReshape 27

. recal culateShape 88

. SetShape 88

. shapeDesc 88

. transform 28

. unHilite 28, 88

. writePS 88

Graphical Text 101

. Super pattern:

.. GraphicText 101
graphics 55

Graphics Modelling 29
GraphicText 101

. Superpattern:

.. PredefinedGraphical Object 101
. Subpatterns:

.. Graphical Text 101

. copy 102

. draw 102

.inittext 101

. interactiveCreateShape 102
. interactiveReshape 102

. position 101

. shapeDesc 101

.Size 102

. thefontname 101

. theStyle 102

. theText 102

. underline 102
graphmath 54
GrayMap 78

. Super pattern:

.. Raster 78

. caculate 78

. copy 78

. getPixel 78

. GrayMapPrivatePart 78
.1nit 78

. pixel 78

. putPixel 78

. readFromPGMfile 78
. writeToPGMfile 78
GrayMapPrivatePart 78
guienv 54

. Subpatterns:

.. Bifrost 98

hb 67

hc 67

height 57, 76, 77, 104
Helvetica 56

. Super pattern:

.. fontname 56
Highlighting 45

hilite 28, 85, 88, 89, 97
hiliteBound 66
hiliteControls 66, 88
HiliteDesc 45, 66
hiliteitem 100
hiliteOutline 66, 70, 71, 72, 73, 74, 75,
76, 77, 88

hitControl 27, 85, 96
ho 67

horizontalRadius 74, 75, 76, 102, 103,
104

hotspot 12, 66, 77
HSVvalues 23, 81

i 60

IDmatrix 54, 58
immediateArc 97
immediateDot 97
immediateLine 97
immediateMultiLine 97
immediaterect 98
immediatespot 97
immediateText 98

init 60, 77, 78, 79, 81, 82, 83, 84, 88,
100, 105, 106

initialize 95

initPoints 59

initText 73, 101

Input Control 34

insert 60, 63, 69
insertPoint 72
IntegerList 60

. append 60

114

Bifrost Reference Manual

. copy 60

.160

. 1nit 60

. insert 60

. 1nx 60

. length 60

. private 60

. remove 60

integerObject

. Subpatterns:

.. fontName 56

.. Style 56

Interaction 41, 67, 85

. Feedback 43

. Modd 41

InteractionHandler 41, 94
interactiveCombine 44, 67, 70
interactiveCombineShape 27, 85, 89,
95

interactiveCreate 44, 67, 70, 71, 72, 73,
74, 75, 76, 77
interactiveCreateShape 27, 85, 89, 95,
102

interactiveMove 27, 86, 96
interactiveReshape 27, 44, 67, 70, 71,
72,74, 75, 76, 77, 86, 89, 96, 102
interactiveRotate 86, 96
interactiveScale 86, 96

intersects 66, 68, 70, 71, 72, 73, 74, 75,
76, 87, 88, 90

invalid 65

invalidate 65, 70
invalidateCapStyle 71
invalidateDash 71

invalidatel nteger 70
invalidateJoinStyle 71
invalidatePoint 70

invalidateReal 71

inverse 57
inverseTransformPoint 58
inverseTransformRectangle 58
inx 60

isClosed 64, 68

isEmpty 31, 68, 90

isFlat 68

isMember 31, 90

isModifierOn 95

Italic 56

. Super pattern:

.. Style 56

join 72, 101

Join Styles 12

JoinBevel 56

. Super pattern:

.. JoinStyleDesc 56

JoinMiter 56

. Super pattern:

.. JoinStyleDesc 56

JoinRound 56

. Super pattern:

.. JoinStyleDesc 56
JoinStyleDesc 56

. Subpatterns:

.. JoinBevel 56

.. JoinMiter 56

.. JoinRound 56
keyPress 95
keyRelease 95
lastContaining 30, 90, 92
lastGO 89
lastIntersecting 91
lastPoint 60, 62, 63, 68
lastWithin 91

length 60

Lidskjalv User Interface Toolkit 54
Line 101

. Super pattern:

.. PredefinedGraphical Object 101
. begin 101

. cap 101

. coordinates 101

. copy 101

. dashes 101

. draw 101

.end 101

. shapeDesc 101

. width 101
LineSegment 7, 17, 62
. Super pattern:

.. Segment 62

. begin 62

. calculatePoints 62

. copy 62

. drawRubberBand 62
. end 62

. endReshape 62

. findSegments 62

. firstPoint 62

. getControls 62

. lastPoint 62

. makeOffset 62

. makeSecondOffset 63
. nextToFirstPoint 62

. nextToL astPoint 62

. prepareReshape 62

. reverseOrientation 62
. setFirstPoint 62

. setLastPoint 62

. transform 62

. writePS 62
LineShape 36, 71

. Superpattern:

.. PredefinedShape 71
. begin 71

. CalculateShape 71
.cap 71

. containsPoint 71

. coordinates 71

.copy 71

. dashes 71

Index 115
.end 71 .. PredefinedGraphica Object 101
. firstPoint 71 .cap 101

. getBounds 71 . copy 101

. getControls 71 dashes 101

. hiliteOutline 71 . draw 101

. interactiveCreate 71 .join 101

. interactiveReshape 71 . points 101

. intersects 71 . shapeDesc 101
.open71 . width 101

. transform 71 MultiLineShape 37, 72
.width 71 . Super pattern:

. within 71 .. PredefinedShape 72

. writePS 71 . addPoint 72

lineTo 9, 68 . calculateShape 72
LockModifier 56 .cap 72

. Super pattern: . containsPoint 72

.. Modifier 56 . copy 72

makeOffset 62, 64, 65 . dashes 72
makeSecondOffset 62, 63, 64, 65 . deletePoint 72

matrix 54, 57 . firstPoint 72

. Subpatterns: . getBounds 72

.. MoveMatrix 58 . getControls 72

.. RotateMatrix 58 . hiliteOutline 72

.. ScaleMatrix 58 . insertPoint 72

.ab57 . interactiveCreate 72
.b57 . interactiveReshape 72
.c57 . intersects 72

.d57 .join 72

. getinverse 58 .open 72

.inverse 57 . points 72

. inverseTransformPoint 58 . transform 72

. inverseTransformRectangle 58 . width 72

.set 57 . within 72

. transformPoint 58 . WritePS 72

. transformRectangle 58 Name 81

.tx 57 Neighborhood 45

.ty 57 nextToFirstPoint 61, 62, 63, 68
MatrixMul 58 nextToLastPoint 61, 62, 64, 68
MaxRGB 56 NoModifier 56

MetaM odifier 56 . Super pattern:

. Super pattern: .. Modifier 56

.. Modifier 56 Non-Zero Winding rule 8
MMToPixel 98 NonCircularSplineSegment 7, 64
Modifier 56 . Super pattern:

. Subpatterns: .. SplineSegment 64

.. CommandModifier 56 . addControl 64

.. ControlModifier 56 . calculatePoints 65

.. LockModifier 56 .Cclose 64

.. MetaModifier 56 . copy 64

.. NoModifier 56 . drawRubberBand 64

.. ShiftModifier 56 . DrawRubberSplineDesc 65
motion 95 . findSegments 65

move 86 . getControls 65

Move Transformation 5 . isClosed 64
moveMatrix 54, 58 .. Superpattern:

. Super pattern: ... booleanVaue 106

.. Matrix 58 . makeOffset 65

moveTo 86 . makeSecondOffset 65
MultiLine 101 . nextToLastPoint 64

. Superpattern: . open 64

116

Bifrost Reference Manual

. private 65
. writePS 65
noOfGOs 31, 90
noOfltems 99
npoints 59
onActivate 93
onDeactivate 93
onEmpty 106
onFrameChanged 93
onKeyDown 93
onMouseDown 92
onONneGO 106
onOpen 92
onRefresh 93
onTwoGOs 106
open 9, 63, 64, 67, 68, 71, 72, 74, 75,
76, 93, 100
ovaAngle 54
paddingSolidColor 82
Paint 21, 79
. Subpatterns:
.. RasterPaint 82
.. SolidColor 81
.copy 21, 79
ill 79
.. Subpatterns:
... fillArc 80
... fillEllipse 80
... fillLine 79
... fillMultiLine 80
... fillOther 80
... fillPie 80
... fillRect 80

.. fillShape 79
... fillText 80
.fillArc 80
. . Superpattern:
... fill 79
. fillEllipse 80
. . Superpattern:
... fill 79
.fillLine 79
. . Superpattern:
... fill 79
. fillMultiLine 80
. . Superpattern:
... fill 79
. fillOther 80
. . Superpattern:
... fill 79
.fillPie 80
. . Superpattern:
... fill 79
. fillRect 80
. . Superpattern:
... fill 79
. fillShape 21, 79
. . Superpattern:
... fill 79
.fillText 80

. . Superpattern:

il 79

.init 79

. paintprivate 80

. SetBackgroundPaint 80
. setBorderPaint 80

. setCanvasPaint 80

. setSpecialPaint 80

. writePS 80
paintprivate 80

Palette 99

. Super pattern:

.. BifrostCanvas 99

. append 100

. blackpaint 99

. changed 100

. close 100

. eventhandler 99

. framePaint 99

. goPaint 99

. hiliteitem 100

. noOfltems 99

. . Superpattern:

... integerVaue 106

. open 100

. paletteprivate 100

. selection 99

. Size 100

pal etteprivate 100
percentage 82, 105
Picture 838

. Superpattern:

.. AbstractGraphica Object 88
. Subpatterns:

.. SelectionPicture 105
.add 29, 88

. bringForward 29, 89

. Constraining 30

. containsPoint 90

. Coordinate System 30
. copy 89

. delete 29, 89

. draw 89

. drawOnPixmap 89

. erase 89

. firstContaining 30, 90
firstGO 90

. firstIntersecting 91

. firstWithin 91

. getBounds 89

. hilite 89

.init 88

. interactiveCombineShape 89
. interactiveCreateShape 89
. interactiveReshape 89
. intersects 90

. iIsEmpty 31, 90

. . Super pattern:

... booleanVaue 106

. isMember 31, 90

Index

117

. . Superpattern:

... booleanVaue 106
. lastContaining 30, 90
. lastGO 89

. lastIntersecting 91

. lastWithin 91

. noOfGOs 31, 90

. . Superpattern:

... integerVaue 106
. ScanGOs 30, 89

. ScanGOsReverse 30, 89
. sendBehind 30, 89

. setPaint 89

. shapeDesc 88

. TMDesc 88

. unHilite 89

. within 90

. writePS 91
pictureprivate 838
PictureShape 88

. Superpattern:

.. AbstractShape 88

. containsPoint 88

. copy 88

. firstpoint 88

. getBounds 88

. getControls 88

. hiliteControls 88

. hiliteOutline 88

. intersects 88

. pictureprivate 88

. transform 88

. within 88

. writePS 88
PieShape 38, 74

. Superpattern:

.. PredefinedShape 74
.anglel 74

.angle2 74

. calculateShape 74

. center 74

. containsPoint 74

. copy 74

. firstPoint 74

. getBounds 74

. getControls 74

. hiliteOutline 74

. horizontalRadius 74
. interactiveCreate 74
. interactiveReshape 74
. intersects 74

.open 74

. transform 74

. verticaRadius 74

. within 74

. writePS 74

PieSlice 103

. Superpattern:

.. PredefinedGraphical Object 103
.anglel 103

.angle2 103

. center 103

. copy 103

. draw 103

. horizontal Radius 103
. shapeDesc 103

. verticalRadius 103
pixel 77,78, 79
pixelToMM 98
PixMap 23, 79

. Superpattern:

.. Raster 79

. calculate 79

. copy 79

. getPixel 79

.init 79

. pixd 79

. PixMapPrivatePart 79
. putPixel 79

. reedFromPPMfile 79
. writeToPPMfile 79
PixMapPrivatePart 79
Plain 56

. Superpattern:

.. Style 56

point 54, 57

. X 57

.y 57

PointArray 59

. addPoint 59

. copy 59

. firstPoint 60

. getPoint 59

. initPoints 59

. lastPoint 60

. Npoints 59

. private 60

. setPoint 59
PointArrayList 60

. appendPointArray 60
. empty 60

. . Superpattern:

... booleanVaue 106
. private 60

. scanPointArrays 60
PointInRect 57

points 72, 101

position 73, 101
Predefined Graphical Objects 39
Predefined Shapes 36
PredefinedGraphical Object 100
. Superpattern:

.. AbstractGraphical Object 100
. Subpatterns:

.. Arc 102

.. Ellipse 104

.. GraphicText 101

.. Line 101

.. MultiLine 101

.. PieSlice 103

118

Bifrost Reference Manual

.. Rect 103

. getShape 101

.init 100

. shapeDesc 100

. TMDesc 100
PredefinedShape 70

. Superpattern:

.. AbstractShape 70

. Subpatterns:

.. ArcShape 74

.. LineShape 71

.. MultiLineShape 72
.. PieShape 74

.. StrokeableShape 75
.. TextShape 73

. CalculateShape 70

. containsPoint 70

. intersects 70

. invalidate 70

. invalidateCapStyle 71
.invaidateDash 71

. invalidatel nteger 70
.. Superpattern:

... integerVaue 106

. invalidateJoinStyle 71
. invalidatePoint 70
.invalidateReal 71

. prePrivate 71

. transform 70

. within 70

. writePS 71
prepareReshape 61, 62, 63
prePrivate 71

private 60, 65, 83, 87, 105
privatePart 67, 82, 98
putPixel 77,78, 79
Raster 22, 77

. Subpatterns:

.. BitMap 78

.. GrayMap 78

.. PixMap 79

. calculate 78

. copy 77

. getPixel 77

. height 77

.. Superpattern:

... integerVaue 106

. hotspot 77

Linit 77

. pixel 77

. putPixel 77

. RasterPrivatePart 78
. width 77

.. Superpattern:

... integerVaue 106
RasterGray 105

. Superpattern:

.. TiledSolidColor 105
. Subpatterns:

.. RasterGray0 105

. . RasterGray100 105

.. RasterGray11 105

.. RasterGray22 105

.. RasterGray33 105

.. RasterGray44 105

.. RasterGray56 105

.. RasterGray67 105
. RasterGray 78 105

.. RasterGray89 105

RasterGray0 105

. Super pattern:

.. RasterGray 105

.init 105

RasterGray100 105

. Super pattern:

.. RasterGray 105

.init 105

RasterGray11l 105

. Super pattern:

.. RasterGray 105

.init 105

RasterGray22 105

. Super pattern:

.. RasterGray 105

.init 105

RasterGray33 105

. Super pattern:

.. RasterGray 105

.init 105

RasterGray44 105

. Super pattern:

.. RasterGray 105

.init 105

RasterGray56 105

. Super pattern:

.. RasterGray 105

.init 105

RasterGray67 105

. Super pattern:

.. RasterGray 105

.init 105

RasterGray78 105

. Super pattern:

.. RasterGray 105

.init 105

RasterGray89 105

. Super pattern:

.. RasterGray 105

.init 105

RasterGrays 105

.init 105

. percentage 105

. private 105

. thegray 105

RasterPaint 25, 82

. Super pattern:

.. Paint 82

. copy 82

fillArc 82

. fillEllipse 83

Index

119

.fillLine 82
.fillMultiLine 82
fillPie 82

. fillRect 83

. fillShape 82

Cfill Text 82

.init 82

. paddingSolidColor 82
. private 83

. setBackgroundPaint 83
. setBorderPaint 83

. setCanvasPaint 83

. thePixMap 82

. writePS 83
RasterPrivatePart 78
Rasters 21
readFromPBMfile 78
readFromPGMfile 78
readFromPPMfile 79
recal cul ateShape 87, 838
Rect 103

. Super pattern:

.. PredefinedGraphical Object 103
. copy 104

. corners 104

. draw 104

. height 104

. shapeDesc 103

. upperleft 103

. width 104

rectangle 54, 57

. height 57

. width 57

. X 57

.y 57

RectShape 38, 75

. Super pattern:

.. StrokeableShape 75
. calculateShape 76

. containsPoint 76

. copy 76

. corners 76

. firstPoint 75

. getBounds 76

. getControls 76

. height 76

. hiliteOutline 76

. interactiveCreate 76

. interactiveReshape 76
. intersects 76

. open 76

. transform 76

. upperleft 75

. width 76

. within 76

. WritePS 76

remove 60

repair 33, 94
reverseOrientation 61, 62, 63, 68
RGBvaues 23, 81

rotate 87

Rotate Transformation 5
rotateMatrix 54, 58

. Super pattern:

.. Matrix 58

scae 87

scaleMatrix 54, 58

. Super pattern:

.. Matrix 58

Scaling Transformation 5
ScanGOs 30, 89
ScanGOsReverse 30, 89
scanPointArrays 60
scanThePicture 92
scanThePictureReverse 92
Segment 7, 60

. Subpatterns:

.. AbstractShape 65

.. LineSegment 62

.. SplineSegment 63

. caculatePoints 62

. circular spline 7

. copy 61

. drawRubberBand 61

. endReshape 61

. findSegments 61

. firstPoint 60

. getControls 61

. lastPoint 60

line7

. makeOffset 62

. makeSecondOffset 62
. hextToFirstPoint 61

. hextToLastPoint 61

. hon-circular spline 7

. prepareReshape 61

. reverseQOrientation 61

. setFirstPoint 60

. SetLastPoint 61

. transform 61

. writePS 62

Segment Definition Primitives 17
selection 99
SelectionPicture 105

. Super pattern:

.. Picture 105

. add 106

. clear 106

. copy 106

. delete 106

. draw 106

. erase 106

. 1nit 106

. onEmpty 106

. onOneGO 106

. onTwoGOs 106

. thecanvas 106
sendBehind 30, 89, 96
set 57
SetBackgroundPaint 80, 82, 83

120

Bifrost Reference Manual

setBorderPaint 80, 82, 83
setCanvasPaint 80, 82, 83
SetClip 33,94
setFirstPoint 60, 62, 63
setlmmediatel ineWidth 97
setLastPoint 61, 62, 63
setPaint 84, 89

setPoint 59

setShape 88
setSpecialPaint 80

Shape 7, 67

. Super pattern:

.. AbstractShape 67
.addLine 18

. addSpline 19, 68

. appendShape 14, 69
.close 9, 68

. combineShape 16, 70

. Combining 13

. connectShape 15, 69

. connectShapeSmooth 15, 69
. containsPoint 68

. copy 67

. currentPoint 68

. delete 69

. findSegments 70

. firstPoint 68

. getBounds 68

. getControls 70

. Highlighting 45

. hiliteOutline 70

. hotspot 12

. insert 69

. interactiveCombine 44, 70
. interactiveCreate 44, 70
. interactiveReshape 44, 70
. Intersects 68

. 1sClosed 68

.. Superpattern:

... booleanVaue 106

. ISEmpty 68

.. Superpattern:

... booleanVaue 106

. IsFlat 68

.. Superpattern:

... booleanVaue 106

. lastPoint 68

.lineTo 9, 68

. nextToFirstPoint 68

. hextToL astPoint 68
.open 9, 68

. reverseOrientation 68

. splineTo 10, 68

. stroke 11, 68

. transform 70

. within 68

. writePS 70

Shape Definition Primitives 9
.close9

.lineTo 9

.open9
. splineTo 10
. stroke 11

shapeDesc 84, 88, 100, 101, 102, 103,

104

ShiftModifier 56

. Super pattern:

.. Modifier 56

size 73, 100, 102
smoothness 63
SolidColor 23, 81

. Super pattern:

.. Paint 81

. Subpatterns:

.. TiledSolidColor 83
.CMYvalues 23, 81

. copy 81

.fillArc 82

. fillEllipse 82
.fillLine 81

. fillMultiLine 82
.fillPie 82

. fillRect 82

. fillShape 81

fill Text 82
.HSVvalues 23, 81
.init 81

. Name 81

. privatePart 82

. RGBvalues 23, 81

. setBackgroundPaint 82
. setBorderPaint 82

. setCanvasPaint 82

. writePS 82
SolidGray 82

. Subpatterns:

.. SolidGrey 82
.g82

. percentage 82
SolidGrey 82

. Superpattern:

.. SolidGray 82
splineprivate 64
SplineSegment 7, 17, 63
. Super pattern:

.. Segment 63

. Subpatterns:

.. CircularSplineSegment 64
.. NonCircularSplineSegment 64
. addControl 63

. calculatePoints 64

. controls 63

. copy 63

. delete 63

. DrawRubberSplineDesc 63
. endReshape 63

. firstPoint 63

.insert 63

. lastPoint 63

. nextToFirstPoint 63

Index

121

. open 63

. prepareReshape 63

. reverseOrientation 63
. setFirstPoint 63

. setLastPoint 63

. sSmoothness 63

. splineprivate 64

. transform 63

. writePS 63
splineTo 10, 68
stroke 11, 68
StrokeableShape 75

. Superpattern:

.. PredefinedShape 75
. Subpatterns:

.. EllipseShape 76

.. RectShape 75

. copy 75

. getBounds 75

. stroked 75

. strokewidth 75

. writePS 75

stroked 75
StrokeWidth 36, 75
Style 56

. Superpattern:

.. integerObject 56

. Subpatterns:

.. Bold 56

.. Itaic 56

.. Plain 56
SubPoints 57
terminateCondition 95
terminated 95
TextPrivate 74
TextShape 37, 73

. Superpattern:

.. PredefinedShape 73
. calculateShape 74

. containsPoint 73

. copy 73

. firstPoint 73

. getBounds 73

. getControls 73

. hiliteOutline 73
.initText 73

. interactiveCreate 73

. interactiveReshape 74

. intersects 73

. position 73
.Sze 73

. TextPrivate 74
. theFontName 73
. theStyle 73
.theText 73

. transform 74

. underline 73
.within 73

. writePS 74
thecanvas 106

theFontName 73, 101
thegray 105

thePaint 87
thePicture 91
thePixMap 82
theShape 87

theStyle 73, 102
theText 73, 102
theTile 83
tiledPrivate 83

TiledSolidColor 25, 83

. Super pattern:

.. SolidColor 83
. Subpatterns:

.. RasterGray 105
. copy 83
.fillArc 83

. fillEllipse 83
.fillLine 83

. fillMultiLine 83
.fillPie 83

. fillRect 83

. fillShape 83
fillText 83

.init 83

. setBackgroundPaint 83

. SsetBorderPaint 83

. setCanvasPaint 83

. theTile 83

. tiledPrivate 83

. writePS 83

Times 56

. super pattern:

.. fontname 56

TM 84, 98

TMDesc 84, 88, 100

transform 28, 61, 62, 63, 67, 70, 71,
72,74,75, 76,77, 86, 88

Transformation 5
. Complex 5

. Matrix 5

. Moving 5

. Rotating 5

. Scaling 5
transformPoint 58

transformRectangle 58

tx 57
ty 57
underline 73, 102

unHilite 28, 85, 88, 89, 97

Unimplemented 59
. feature 59

Updating Damaged Areas 33

upperleft 75, 103
Vector 57

. X 57

.y 57

verticalRadius 74, 75, 76, 102, 103,

104
Visible Shape 32

122

Bifrost Reference Manual

visual Shape 91

width 57, 71, 72, 76, 77, 101, 104
WindingRule 56

Windowltems 54

within 66, 68, 70, 71, 72, 73, 74, 75,
76, 77, 87, 88, 90

writeEPS 94

writePS 62, 63, 64, 65, 70, 71, 72, 74,
75, 76, 77, 80, 82, 83, 87, 83, 91
writeToPBMfile 78
writeToPGMfile 78
writeToPPMfile 79

x 57

XOR mode 28, 41, 43

y 57

yellow3 99

yellow4 99

yellowgreen 99

