
The Mjølner BETA System
The Bifrost Graphics System

Reference Manual

Mjølner Informatics Report

MIA 91-13(2.0)

August 1996

Copyright © 1991-96 Mjølner Informatics ApS.
All rights reserved.

No part of this document may be copied or distributed
without the prior written permission of Mjølner Informatics

i

Table of Contents

Bifrost Reference Manual ... 1

1 Introduction ... 2

2 Coordinate Systems and Transformations ... 4
2.1 Coordinates ... 4
2.2 Coordinate Systems... 4
2.3 Transformations .. 5

3 The Shape .. 7
3.1 Segments ... 7
3.2 Orientation of Segments.. 8
3.3 Fill Rules ... 8
3.4 Shape Definition Primitives .. 9
3.5 Stroke .. 11

3.5.1 Cap and Join Styles ... 12
3.6 Hotspot .. 12
3.7 Combining Shapes .. 13

3.7.1 AppendShape... 14
3.7.2 ConnectShape .. 15
3.7.3 ConnectShapeSmooth ... 15
3.7.4 CombineShape... 16

3.8 Segment Definition Primitives .. 17
3.8.1 LineSegment .. 17
3.8.2 SplineSegment ... 17
3.8.3 Adding Segments to Shapes .. 18

4 The Paint.. 21
4.1 Rasters ... 21

4.1.1 Raster ... 22
4.1.2 BitMap ... 22
4.1.3 PixMap .. 23

4.2 SolidColor ... 23
4.2.1 Defining Solid Colors .. 23
4.2.2 Examples ... 23
4.2.3 Name Color Model .. 24
4.2.4 TiledSolidColor ... 25

4.3 RasterPaint .. 25

5 The Graphical Object .. 26
5.1 Graphic Context .. 26
5.2 Operations ... 26

5.2.1 Geometric Transformations ... 27
5.2.2 Query Operations .. 27
5.2.3 Interaction .. 27
5.2.4 Drawing Graphical Objects ... 28
5.2.5 Transforming Graphical Objects ... 28

6 The Picture .. 29
6.1 The Picture List ... 29
6.2 Selection Picture ... 30
6.3 Picture Coordinate System .. 30
6.4 Other Operations on Pictures .. 30

ii Bifrost Graphics System

7 The Canvas ... 32
7.1 Drawing and Visible Area ... 32
7.2 The Canvas Picture .. 32
7.3 Clipping ... 33
7.4 Updating Damaged Areas .. 33
7.5 Input Control .. 34

8 Predefined Shapes and Graphical Objects ... 36
8.1 LineShape .. 36
8.2 MultiLineShape ... 37
8.3 TextShape .. 37
8.4 RectShape .. 38
8.5 EllipseShape .. 38
8.6 PieShape .. 38
8.7 ArcShape.. 39
8.8 Defining New Shapes .. 39

8.8.1 Predefined Paint Operations... 40

9 Interaction .. 41
9.1 Interaction Model... 41
9.2 Feedback .. 43

9.2.1 Canvas Primitives for Feedback .. 43
9.2.3 Segment Primitives for Feedback .. 44

9.3 Interaction Facilities in the Shape.. 44
9.3.1 Neighborhood... 45
9.3.2 Direct changing of Control Points ... 45
9.3.3 Shape Highlighting .. 45
9.3.4 Query Functions ... 46

9.4 Modifiers and constraints .. 46
9.4.1 Default constraints in Bifrost ... 47

10 The Modular Design of Bifrost .. 49
10.1 The Application Level ... 50
10.2 Device Independent Implementation ... 51
10.3 Implementation of Predefined Shapes ... 52
10.4 X11 Dependent Implementation .. 52
10.5 Summary .. 53

11 Bifrost and Lidskjalv .. 54
11.1 BifrostCanvas and Lidskjalv Canvas ... 54
11.2 Overlapping Data Types .. 54
11.3 Lidskjalv Graphics and FigureItems .. 55

12 Interface Descriptions .. 56
12.1 Various Simple Definitions ... 56
12.2 Mathematics ... 57
12.3 Datatypes ... 59
12.4 Segment ... 60
12.5 Line- and Spline Segments .. 62
12.6 Splinesegment .. 63
12.7 CircularSplineSegment .. 64
12.8 NoncircularSplineSegment .. 64
12.9 AbstractShape .. 65
12.10 Shape.. 67
12.11 PredefinedShape .. 70
12.12 LineShape .. 71
12.13 MultilineShape ... 72
12.14 TextShape .. 73
12.15 PieShape .. 74
12.16 ArcShape.. 74
12.17 StrokeableShape .. 75
12.18 RectShape .. 75
12.19 EllipseShape .. 76

Table of Contents iii

12.20 Rasters ... 77
12.21 Paint .. 79
12.22 SolidColor ... 81
12.23 Predefined Graytones .. 82
12.24 RasterPaint .. 82
12.25 TiledSolidColor ... 83
12.26 AbstractGraphicalObject ... 83
12.27 GraphicalObject .. 87
12.28 PictureShape.. 88
12.29 Picture ... 88
12.30 BifrostCanvas .. 91
12.31 Bifrost.. 98
12.32 ColorNames .. 98
12.33 Palette .. 99
12.34 PredefinedGraphicalObject ... 100
12.35 Line ... 101
12.36 Multiline .. 101
12.37 GraphicText .. 101
12.38 Arc ... 102
12.39 PieSlice.. 103
12.40 Rect ... 103
12.41 Ellipse.. 104
12.42 RasterGrays ... 105
12.43 SelectionPicture .. 105

Bibliography ... 107

Index ... 109

iv

List of Figures

Figure 1. Illustration of a canvas in a window system displayed on a
graphics workstation... 2

Figure 2. The graphical object is a composition of a shape and a
paint .. 3

Figure 3. A picture is a composition of graphical objects ... 3

Figure 4. The segment hierarchy ... 7

Figure 5. Examples of Segments ... 7

Figure 6. Stroke operation applied to an open shape ... 11

Figure 7. The stroke operation applied to a closed shape .. 11

Figure 8. Cap and join styles for the Stroke operation .. 12

Figure 9. The paint hierarchy ... 21

Figure 10. The raster hierarchy .. 22

Figure 11. A graphical object is a composition of a shape and a paint 26

Figure 12. Predefined shape inheritance hierarchy. ... 36

Figure 13. The application level .. 50

Figure 14 Device Independent Implementation.. 51

Figure 15 Implementation of Predefined Shapes .. 52

Figure 16 X11 Dependent Implementation .. 53

1

Bifrost Reference Manual

This report presents the library available in the Mjølner BETA system for program-
ming applications in version 2.1 of the Bifrost Graphics System. Bifrost is an interac-
tive object oriented device independent graphics system, and is the result of a master
thesis work as described in [Andersen 91]. Part of the master thesis was implementing
a large part of Bifrost as to prove the soundness of the design. In addition to the
implementation done during the work on the master thesis, more than one man year
has been spend on further development of the design and on implementing the
remaining parts of Bifrost.

Bifrost is currently implemented as a library for Lidskjalv; this is further explained in
chapter 10 and 11. A fairly advanved drawing application, bdraw, is designed and
implemented using Bifrost.

The above mentioned report describes graphics in general using a taxonomy for
graphics systems, and explains why Bifrost is designed as it is. The report also in-
cludes documentation of the implementation.

This manual is split into twelve chapters, starting with an introduction followed by a
chapter describing necessary mathematical concepts. The next five chapters describe
the basic concepts of the Bifrost imaging model—shape, paint, graphical object, pic-
ture and canvas, respectively. Chapter 8 introduces a series of objects defined as an
assistance for the user of Bifrost. The objects define various shapes and graphical ob-
jects in common use. After the basic concepts have been defined, chapter 9 describes
how Bifrost implements interaction on display devices that support interactive input
and output. Following the interaction chapter is a description of the fragment struc-
ture. The last chapter explains the relationship between Bifrost and Lidskjalv. The
report is concluded by some small examples of using Bifrost, including a small
introduction to bdraw, and an interface description of all patterns and objects defined
in Bifrost.

This manual is primarily a reference manual, that is, it is not recommended to try to
learn how to use Bifrost from reading this manual from one end to another. Instead
the reader should consult the Bifrost Tutorial [MIA 91-19], which contains a stepwise
introduction to the most important parts of Bifrost.

2

1 Introduction

This chapter describes the observations of a user running a typical session with a
Bifrost application. Using this strategy, we try to introduce the concepts of Bifrost, as
first seen by a new user.

Imagine a graphics workstation running a window system. One of the windows is a
canvas showing graphics. See figure 1.

Graphics workstation display

Canvas

Figure 1. Illustration of a canvas in a window system displayed on a graphics
workstation

The canvas
picture:

The canvas is a representation of a drawing surface, and is the connection between the
window system and Bifrost. The canvas contains a picture , and all graphics shown in
the canvas must be in the canvas picture. The picture is a collection of graphical
objects, and realize the concept of graphics modelling. The graphical object is the
smallest possible entity that can be drawn, and is complete in the sense, that it
contains all necessary information about how the graphical object appears on the
canvas, and is therefore independent of any other graphical objects in a picture.

Graphical object:

Picture:

The graphical object concept is a composition of two concepts: shape and paint. The
shape describes the outline of the object, and the paint describes the color or raster to
be pushed through the object when is it displayed on the canvas. The shape of a
graphical object is described by segments. A segment is either a straight line segment
or a spline segment . Spline segments are used to describe curves. The shape is analo-
gous to the stencil in the Stencil & Paint imaging model.

The canvas picture in the margin consists of two objects: one graphical object and one
picture. The gray circle graphical object is composed of a circle shape and a gray
paint as illustrated in figure 2.

Introduction 3

Shape Paint

Graphical object

Figure 2. The graphical object is a composition of a shape and a paint

The three other graphical objects in the example above are assembled in a picture
consisting of a black frame, a gray half circle, and a black triangle. The picture is
shown in figure 3. The three graphical objects are also, of course, each defined by a
shape and a paint.

Graphical object Graphical object

Picture

Graphical object

Figure 3. A picture is a composition of graphical objects

The basic imaging model of Bifrost is thus very simple: define a shape that represents
the outline of the object you like to draw, select a paint as the color for the object,
construct a graphical object with the shape and paint just defined, and draw the object
in a canvas, i.e. insert the graphical object into the canvas picture. If the object must
have different colors the object must be split into more graphical objects and assem-
bled in a picture. The picture is itself a graphical object, and can thus be drawn in a
Canvas.

An application using Bifrost to render graphics, may use many canvases and win-
dows, but each window must have at least one associated canvas to draw graphics.
More than one canvas may be associated to the same window, and the canvases in the
same window may overlap.

4

2 Coordinate Systems and
Transformations

Before the concepts are considered in detail, a few mathematical concepts must be
defined. That is, coordinates, coordinate system, and transformation between coordi-
nate system. It is assumed that the reader is familiar with concepts like Cartesian co-
ordinate systems and matrix operations.

2.1 Coordinates
upperleft

height

width

When a graphical object is to be drawn, the points that defines the outline of the
graphical object must be specified in some way, i.e. where is the shape supposed to
be. Bifrost uses standard Cartesian coordinates for this purpose. Standard Cartesian
coordinate subtraction and addition are supported. An axis parallel rectangle consists
of one point and a height and a width (or two diagonal points). The figure in the
margin illustrates the coordinate system used.

As shown in the margin, a rectangle is described by one point (upperleft) and two in-
tegers (width and height).

2.2 Coordinate Systems
Output devices vary greatly in the built-in coordinate systems they use to address ac-
tual pixels within their display area. Therefore, in a device independent imaging
model, there must exists at least two coordinate systems: One referring to the actual
device, called the Device Coordinate System (DCS), and one coordinate system
completely independent of the device coordinate system, sometimes called the world
coordinate system but here called the Canvas Coordinate System (CCS) since it is re-
lated to the canvas (see chapter 7).

The implementation of Bifrost with respect to an actual device defines a transforma-
tion between these two coordinate systems. The user applications can thus draw in the
device independent coordinate system, while Bifrost is making sure that the picture
will be transformed into device coordinates, and that the picture can be drawn
(identically) on different devices.

The transformation between the CCS and the DCS coordinate systems is not an ordi-
nary geometric transformation. The DCS relates to the device and the device coordi-
nates are typically integers. Bifrost does not restrict the CCS coordinates to be integer
values. In cases where CCS is defined in, say, floating point coordinate values, the
transformation includes, beside the normal geometric transformation, a mapping from
real values to integer values. The default unit on the axes of the CCS coordinate sys-
tem is currently dertermined by the pixel size of the DCS, but can be changed as
needed.

In later chapters new coordinate systems will be introduced. The CCS is the world
coordinate system of Bifrost, implying that all coordinate systems are initially defined

Coordinate Systems 5

to be CCS. The next section explains how to obtain geometric transformations by
applying matrices to the coordinates.

2.3 Transformations
Transformation of coordinates from one two-dimensional coordinate system to an-
other can be specified by means of a 3x3 transformation matrix. The matrix specifies
how a point in one coordinate system is transformed into the corresponding point in
another coordinate system.

The subsequent definitions of the geometric transformations are illustrated with the
example polygon in the margin.

A transformation matrix(TM) specifies a transformation of point (x,y) to point (x’, y’)
in the following way:

(x’, y’, 1) = (x, y, 1) * TM =






 ax + cy + tx

 bx + dy + ty
1

where TM = 




a b 0

c d 0
tx ty 1

The common transformations: scaling, moving (translation), and rotation can easily
be described by transformation matrices.

Scaling by factor sx in the x dimension and sy in the y dimension is accomplished by:

ys

xs

TM Scale =






sx 0 0

0 sy 0
0 0 1

Moving (translation) by a specified displacement (t x,ty) is obtained by

ty

xt

TMMove =






1 0 0

0 1 0
tx ty 1

Rotating counterclockwise, around the origin of the coordinate system, by an angle θ
is described by the following matrix:

θ
TMRotate =







cos θ sin θ 0

-sin θ cos θ 0
0 0 1

The most powerful feature of the matrix application, is that composition of geometric
transformations can be expressed as multiplications of the corresponding matrices.
That is, a combination of a rotate, move, and scale transformation can be combined
into one matrix, and thus reduce the time of calculation of a complex transformation:

6 Bifrost Reference Manual

TMRotate*TMMove*TMScale =






sxcos θ sysin θ 0

-sxsin θ sycos θ 0
txcos θ − tysin θ txsin θ + tycos θ 1

The user must be aware of the order of transformations, since matrix multiplication is
not commutative. For a more thorough explanation of matrix operations and trans-
formations, see e.g. [Newman 81].

7

3 The Shape

The shape of a graphical object expresses the outlines of the holes in the stencil where
paint can be pushed through. Shapes can be arbitrarily complicated within the Stencil
& Paint model. The basic building blocks of the shape are segments and these are the
subject of the following four sections. Subsequent to the segment sections the shape
concept is described. The most important properties of the shape are the shape con-
structing language and the ability to combine shapes and thereby e.g. making holes in
shapes. Another important property of the shape is the stroke operation, which trans-
forms the shape into a new shape.

3.1 Segments
One can think of a shape as the boundaries of the graphical object, where the bound-
aries are made of segments. Straight line boundaries are made of line segments and
curved boundaries by spline segments. It is possible to combine both line and spline
segments in the construction of a shape, as can be seen in in example in the margin
using four line segments and two spline segments.

As can be seen in figure 4 there are three kinds of segments: line, non-circular spline
and circular spline segments.

Segment

LineSegment SplineSegment

NonCircularSplineSegment CircularSplineSegment

Figure 4. The segment hierarchy

A line segment is a straight line between two end points. A spline segment is spanned
by at least three control points. There are two kinds of spline segments: an non-circu-
lar spline that terminates in its two extreme control points and a circular spline that
does not touch any of its control points and does not have a start nor an ending point.
Except for the two end points of a non-circular spline, the control points of a spline
segment does not lie on the curve. Instead the control points are distant to the curve
and act like ‘magnets’ pulling the curve. See figure 5, which shows examples of the
three segment types. The quadratic dots are the control points defining the segments.

line segment non-circular spline segment circular spline segment

Figure 5. Examples of Segments

8 Bifrost Reference Manual

It is possible to construct any kind of shape using the three segment types. Any kind
of shape with non-curved sides such as triangles, rectangles and polygons with an
unlimited number of edges can be constructed from line segments. Circles and el-
lipses can be represented with circular spline segments. Even objects consisting of a
combination of spline and line segments can be constructed. Since shapes represent
the outlines of graphical objects, it is possible to construct any kind of graphical ob-
ject as long as the object has well defined boundaries.

3.2 Orientation of Segments
A segment defines two special control points referencing the first and the last control
point of the segment. These points are called FirstPoint and LastPoint, respectively.
Line segments consist, of course, only of a FirstPoint and a LastPoint. Spline seg-
ments consists of at least three control points, where FirstPoint and LastPoint refers to
two of the points. In the case of a circular spline FirstPoint and LastPointare identical
and refers to an arbitrary control point of the circular spline. In the case of a non-
circular spline FirstPoint and LastPoint refers to the first and last point in the spline,
respectively. The result of this definition is that a segment is said to have a direction
from FirstPoint to LastPoint.

When segments are used in construction of a shape, the segments are connected in
such a way that LastPoint of a segment is connected to FirstPoint of the next segment.
In this way the shape gets an orientation. The orientation of the shape is used to de-
termine what is inside and what is outside of the shape. It is the inside of a shape that
is filled with paint when a graphical object is drawn.

3.3 Fill Rules
Two different approaches can be used to specify what is inside a shape: even-odd fill
rule and (non-)zero winding fill rule. The following examples illustrate the two ap-
proaches.

Non–zero winding rule: Even-odd rule

The non-zero winding rule determines whether a given point is inside a shape by
(conceptually) drawing a ray from that point to infinity in any direction and then ex-
amine the places where a segment of the shape crosses the ray. Starting with a count
of zero, the count is incremented each time a segment crosses the ray from left to
right and decremented each time a segment crosses from right to left.1 After counting
all the crossings, if the result is zero then the point is outside the shape, otherwise it is
inside. With this rule, a simple convex shape yields inside and outside as would be
expected.

Now consider a five pointed star, drawn with five connected straight line segments in-
tersecting each other. The entire area enclosed by the star, including the pentagon in

1 The rule does not specify what to do if a segment coincides with or is tangent to the ray. Since any
ray will do, one may simply choose a different ray that does not encounter such problem
intersections.

Fill Rules 9

the center, is considered inside by the non-zero winding rule. For a shape composed
of two concentric circles, if they are both drawn in the same direction, the areas en-
closed by both circles are inside according to the rule. If they are drawn in opposite
directions, only the area between the two circles is inside according to the rule; the
‘hole’ is outside.

The even-odd rule determines whether a given point is inside by drawing a ray from
that point in an arbitrary direction and counting the number of segments that the ray
crosses. If the number is odd the point is inside; if even, the point is outside. The
even-odd rule yields the same results as the non-zero winding rule for simple shapes,
but different results for more complex ones. For the five pointed star drawn with five
intersecting lines, the even-odd rule considers the triangular parts to be inside, but the
pentagon in the center to be outside. For the two concentric circles, only the area be-
tween the two circles is inside, regardless of the directions of the circles.

The non-zero winding rule is more versatile than the even-odd rule and is the default
rule used by Bifrost to determine what is inside and outside of a shape. Since the
even-odd rule is occasionally useful for special effects or for compatibility with other
graphics systems, optionally, this rule may be used instead.

3.4 Shape Definition Primitives
Usually the application programmer does not have to use segments directly when
defining a shape. Instead there are a few operations in the shape that can be perceived
as a language for shape definition: Open, Close, LineTo, SplineTo, Stroke, in addition
to several operations for combining shapes. Combining shapes is not a straight-
forward task and is the subject of a subsequent section.

When using these operations, the concept of shape control points is used instead of
segment control points. When looking at control points of the shape, the two control
points in a joining of two segments are seen as one control point of the shape.

The first four operations for shape definition are used for adding control points to the
shape. Depending on which operation is used, the curve between the previously
placed control point and the new control point can be either a line or a non-circular
spline. The Stroke operations is a powerful way of defining shapes illustrating out-
lines of graphical objects. It will be presented in the next section.

Open.

Open takes one argument (a point) and defines this as the first control point of
the shape. After opening the shape, it is prepared to be constructed by means of
a sequence of LineTo and SplineTo messages.

Close.

This places a control point at the same position as the first point hereby closing
the shape. close does not have to be invoked on a shape to make it a legal
shape, but it ensures that the shape is closed, which is necessary when it is used
with a paint in a graphical object. More on this later.

LineTo.

This operation adds a line segment to the shape, using the last control point of
the shape as the first control point of the line segment, and the specified point
as the last control point of the line segment.

The following example illustrates the use of the LineTo and Close operations:

10 Bifrost Reference Manual

aTriangle: @Shape
 (#
 do (0, 0) -> Open;
 (100,100) -> LineTo;
 (100, 0) -> LineTo;
 Close;
 #);

Resulting triangle:

The triangle shape now consists of three line segments, is closed and could be used in
a graphical object.

SplineTo.

This operation adds a control point to the non-circular spline segment under
construction.

Two different cases must be considered: is there currently a non-circular spline under
construction or not. In the former case (the last operation was SplineTo) the specified
point is just added as a spline control point to that spline segment.

In the latter case (the last operations was LineTo or Open) a spline segment will be
created with the ending point of the shape as the first spline control point and the
specified point as the second spline control point. The following example illustrates
the use of SplineTo:

aShape: @Shape
 (#
 do (0, 0) -> Open;
 (100,50) -> LineTo;
 (150,40) -> SplineTo;
 (130, 0) -> SplineTo;
 (100, 0) -> LineTo;
 #);

Resulting open shape:

If a LineTo message follows a spline construction, LastPoint of the spline segment
becomes FirstPoint of the new line segment. The shape in the example above consists
of two line segments and one spline segments with three control points. Notice that
the shape is not closed.

If a Close message follows a spline construction, the spline will be ended with a con-
trol point in the starting point of the shape:

myShape: @Shape
 (#
 do (0, 0) -> Open;
 (0, 50) -> LineTo;
 (25,100) -> SplineTo;
 (100, 70) -> SplineTo;
 (95, 0) -> SplineTo;
 Close;
 #);

Resulting closed shape:

MyShape consists of two segments, one line segment and one spline segment with
five control points. Circular splines can not be constructed with the SplineTo primi-
tive. Circular splines have to be created as circular spline segments and then added to
the shape.

Stroke 11

3.5 Stroke
A very powerful way of defining shapes is by applying a stroke to a previously de-
fined shape. The metaphor for stroke is that a scalpel is moved parallel to the seg-
ments of the shape definition, at a specified distance perpendicular to the segments:

openStroke: @Shape
 (#
 do (100, 100) -> open;
 (150, 50) -> lineTo;
 (200, 100) -> lineTo;
 (250, 50) -> lineTo;
 (300, 100) -> splineTo;
 (350, 50) -> splineTo;
 (400, 100) -> splineTo;
 (10, CapButt, JoinMiter) -> stroke;
 #);

Resulting Shape:

start

 Figure 6. Stroke operation applied to an open shape

In figure 6 the dashed curve is the original shape which consists of three line
segments and one spline segment with four control points (the control points are not
shown). The resulting shape is the outline made by the scalpel. The scalpel starts (and
ends) in the leftmost top corner. The orientation of the resulting shape is indicated
with arrows along the segments. Notice that the shape is closed after the operation has
been applied.

A closed shape is stroked likewise but with no need to make special ends:

closedStroke: @Shape
 (#
 do (50, 100) -> open;
 (200, 100) -> lineTo;
 (200, 50) -> lineTo;
 (50, 50) -> lineTo;
 close;
 (10, CapButt, JoinMiter) -> stroke;
 #);

Resulting Shape:

Figure 7. The stroke operation applied to a closed shape

12 Bifrost Reference Manual

Notice the different orientation of the outer and inner shapes, and that the resulting
shape consists of two shapes (or more precisely: the shape consists of four line seg-
ments and one shape—also consisting of four line segments)

When the stroke operation has been applied, the original shape is altered and cannot
be restored but only the new shape can be manipulated (i.e. the segments of the
original shape are irreversibly replaced with the segments that define the new stroked
shape). This is different from traditional graphics systems like PostScript, where the
original shape (or path in PostScript terms) is unchanged and the stroke only makes a
temporary outline which is discharged after having been used for filling an area of the
drawing surface. Notice particularly, that the stroke of a spline segment results in two
parallel spline segments. This is a completely new idea, since the traditional graphics
systems can avoid calculating new spline control points by approximating the spline
with a polygon before calculating the temporary outline (the traditional models do not
need the new splines since the temporary outline is immediately discarded without
giving the user the possibility to transform or modify the stroked spline).

The advantage of altering the shape is that it then becomes possible to further mani-
pulate the shape, and that the shape can be used for other purposes than just drawing
it, e.g. clip to the shape, detect mouse clicks within the shape etc.

3.5.1 Cap and Join Styles

The Cap parameter to the Stroke operation determines how the resulting shape looks
in the part of it corresponding to the end point of the original shape. The Cap parame-
ter is only relevant for open shapes. The Join parameter determines how the line parts
of the shape are joined. In the example above for an open shape, the Cap parameter is
CapButt specifying a line perpendicular to the shape and the Join parameter in both
examples is JoinMiter. The alternatives are illustrated in figure 8.

JoinMiter

JoinRound

JoinBevel

CapButt

CapRound

CapSquare

Figure 8. Cap and join styles for the Stroke operation

3.6 Hotspot
All shapes contain one special point, called hotspot. The hotspot can be set to any
point in the coordinate system of the shape, but if not explicitly set, the hotspot equals
the last point added to the shape. The hotspot is especially useful when working with
closed splines, e.g. the hotspot could be set to the center of a circle instead of some ir-
relevant control point outside the circle. See the next section for an application of
hotspot. Also, the hotspot is used when the shape is filled with paint involving rasters,
see chapter 4.

Combining Shapes 13

3.7 Combining Shapes
When constructing complex shapes, it is often convenient to define the shape as sim-
pler shapes and then combining the simpler shapes into the complex shape.2 Shape is
a subclass of Segment. This makes it possible to combine simple shapes into more
complex ones in Bifrost: shapes can be treated as segments. Notice, that it was not
shown in the segment hierarchy figure (figure 4) that Shape is a subclass of Segment.3

The shape to be combined with another shape will be called the source shape, and the
shape that receives the source shape will be known as the destination shape . Shapes
inside another shape is referred to as subshapes. Four different semantics are possible
for combining two shapes:

AppendShape.

The source shape is automatically translated in such a way that FirstPoint
comes to coincide with the LastPoint of the destination shape

ConnectShape.

A transformation matrix is supplied that defines how the source shape should
be transformed into the destination shape. LastPoint of the destination shape is
connected to FirstPoint of the source shape with a line segment

ConnectShapeSmooth.

Like ConnectShape except that the two shapes are connected with a spline
segment

CombineShape.

A supplied transformation matrix transforms the source shape into the coordi-
nate system of the destination shape. The two shapes do not become connected

All operations make a copy of the source shape, and use this copy in the operation. It
is important to notice that it is not all kinds of shapes that can be used as source
shapes in all of the above four ways of combining shapes: the first three cannot take
as argument a shape that only consist of circular spline segments. The reason is that a
circular spline segment does not have a well-defined FirstPoint or a LastPoint.
CombineShape cannot take an open shape as argument if it is open itself.

A shape is defined in its own coordinate system, that defaults to the CCS coordinate
system. A shape has only one coordinate system, implying that all subshapes of a
shape are defined in the same coordinate system as the shape itself. This is done by
transforming the control points of the source shape into destination shape coordinates
when shapes are combined.

The reason for only having one coordinate system for a shape is to limit the comput-
ing overhead and complication that would otherwise result by defining shapes with
many coordinate systems within the same shape. This restriction does not reduce the
power of the shape construction language, since nothing is gained by having more
than one coordinate system in the same shape. Shapes in different graphical objects
may each have different coordinate systems related to the graphical objects.

For each combination operation, there are four cases to consider, depending on the
state of the source shape and of the destination shape:

2 This implements a limited form of graphics modelling. Later the concept of picture is defined as a
more powerful way of doing graphics modelling.

3 The discussion of the Shape inheritance hierarchy is deferred until the presentation of predefined
shapes, see Chapter 8.

14 Bifrost Reference Manual

• Open source shape and open destination shape

• Closed source shape and closed destination shape

• Open source shape and closed destination shape

• Closed source shape and open destination shape

Each case is illustrated with examples in the description of each combination opera-
tion below. The underlying philosophy of the four shape combination operations is to
have consistent semantics in an operation. This can result in some combinations of
shapes that do not seem useful. The most useful combinations are:

• AppendShape with open shapes

• ConnectShape and ConnectShapeSmooth with any kind of shape

• Combine with closed shapes.

3.7.1 AppendShape

The source shape is automatically translated in such a way that FirstPoint comes to
coincide with the LastPoint of the destination shape. After the operation the following
two statements holds:

• FirstPoint of the source shape is equal to LastPoint of the destination shape

• LastPoint of the resulting shape is the translated LastPoint of the source shape

In the examples below, FirstPoint of the source shape, LastPoint of the destination
shape, and LastPoint of the resulting shape are marked with bullets (•).

state of
source

state of
dest. source destination result

open open

closed closed

closed open

open closed

Notice, that in the two cases where the source shape is closed, FirstPoint and Last-
Point coincide, which means that the LastPoint of the resulting shape remains un-
changed (i.e. the same as LastPoint of the destination shape).

3.7.2 ConnectShape

The supplied transformation matrix transforms the source shape into the coordinate
system of the destination shape. LastPoint of the source shape is connected to the
FirstPoint of the destination shape with a line segment. After the operation the follow-
ing statement holds:

Combining Shapes 15

• LastPoint of the resulting shape is the transformed LastPoint of the source
shape

In the examples below, FirstPoint of the source shape, LastPoint of the destination
shape, and LastPoint of the resulting shape are marked with bullets. In all four cases
the same transformation matrix is used. It performs rotation, scaling, and translation
of the source shape.

state of
source

state of
dest. source destination result

open open

closed closed

closed open

open closed

Notice, that in the two cases where the source shape is closed, FirstPoint and Last-
Point coincide, which means that LastPoint of the resulting shape remains unchanged
(i.e. the same as LastPoint of the destination shape). Notice also, that when both the
source and the destination shapes are closed the resulting shape is open (FirstPoint ≠
LastPoint).

3.7.3 ConnectShapeSmooth

The supplied transformation matrix transforms the source shape into the coordinate
system of the destination shape. LastPoint of the source shape is connected to the
FirstPoint of the destination shape with a spline segment. After the operation the fol-
lowing statement becomes true:

• LastPoint of the resulting shape is the transformed LastPoint of the source
shape

In the examples below, FirstPoint of the source shape, LastPoint of the destination
shape, and LastPoint of the resulting shape are marked with bullets. In all four cases
the same transformation matrix is used. It performs rotation, scaling, and translation
of the source shape.

16 Bifrost Reference Manual

state of
source

state of
dest. source destination result

open open

closed closed

closed open

open closed

Notice, that in the cases where the destination shape is closed, two of the control
points defining the spline segment, that connects the two shapes, are from the desti-
nation shape: LastPoint, and the control point prior to LastPoint. The third and last
control point that defines the spline segment is FirstPoint of the source shape. Notice
also, that when both the source and the destination shapes are closed the resulting
shape is open (FirstPoint ≠ LastPoint).

3.7.4 CombineShape

The supplied transformation matrix transforms the source shape into the coordinate
system of the destination shape. The two shapes do not become connected. Notice,
that it is an error if both source and destination shape are open, since the resulting
shape would otherwise not be connected. After the operation, only one of the follow-
ing statements holds:

• LastPoint of the destination shape is LastPoint of the resulting shape

• LastPoint of the source shape is LastPoint of the resulting shape

The latter statement only holds if the source shape is open and the destination shape is
closed. The reason for this seemingly strange behavior is that the resulting shape can
then be combined further in a consistent way. One can also think of this situation in
terms of which shape is open after the operation—in this particular situation it is the
source shape that is open.

In the examples below, FirstPoint of the source shape, LastPoint of the destination
shape, and LastPoint of the resulting shape are marked with bullets.

Combining Shapes 17

state of
source

state of
dest. source destination result

open open Error

closed closed

closed open

open closed

Notice the last situation that is commented on above.

3.8 Segment Definition Primitives
Segment primitives can be used directly to construct shapes. A shape is constructed in
this way by generating a number of segments, and adding these segments to the
shape. Segment definition primitives are only meant for internal use in Bifrost. It is
not recommended to use these primitives, except for defining circular spline seg-
ments, but instead to use the shape definition operations described in section 3.4.

3.8.1 LineSegment

A line segment is described by two control points: Begin (= FirstPoint) and End (=
LastPoint). A line segment is constructed by assigning values to the Begin and End
points:

aSeg:@LineSegment
 (#
 do (100,100) -> begin;
 (200,200) -> end;
 #)

Resulting line segment

3.8.2 SplineSegment

As mentioned earlier there are two different kinds of spline segments: circular and
non-circular splines. A circular spline is always considered closed, and a non-circular
spline is considered closed if the last operation performed is Close. Non-circular
splines are typically used in construction of shapes consisting of both line and spline
segments, and circular splines are useful for making circles and ellipses. Spline seg-
ments have three operations used for creating the spline:

Open.

Takes one point as argument. The point is the first control point of the spline,
and the spline is prepared to be constructed with further control points using
AddControl.

18 Bifrost Reference Manual

AddControl.

This operation just adds a specified control point to the spline.

Close.

Closes a non-circular spline by adding FirstPoint to the spline definition. The
operation has no effect on a circular spline. Notice, that it is still possible to add
further control points to the spline definition after the Close operation.

The following examples illustrate the use of AddControl and Close for a non-circular
spline:

aBow: @NonCircularSplineSegment
 (#
 do (0,100) -> Open;
 (100,100) -> AddControl;
 (100, 0) -> AddControl;
 (0, 0) -> AddControl;
 #);

Open non-circular spline:

aDrop: @NonCircularSplineSegment
 (#
 do (0,100) -> Open;
 (100,100) -> AddControl;
 (100, 0) -> AddControl;
 (0, 0) -> AddControl;
 close;
 #);

Closed non-circular spline:

The next examples illustrate the use of AddControl for circular splines:

aSpline: @CircularSplineSegment
 (#
 do (0,100) -> Open;
 (100,100) -> AddControl;
 (100, 0) -> AddControl;
 #);

Circular spline with three con-
trolpoints:

aCircle: @CircularSplineSegment
 (#
 do (0,100) -> Open;
 (100,100) -> AddControl;
 (100, 0) -> AddControl;
 (0, 0) -> AddControl;
 #);

Circular spline with four con-
trolpoints:

Notice that a circular spline is inherently closed.

3.8.3 Adding Segments to Shapes

When the segment is defined it can be added to a shape with two shape primitives:
AddLine and AddSpline.

AddLine.

Adds a line segment to the shape. In case where FirstPoint of the line segment
does not coincide with LastPoint of the shape, the line segment is moved to the
appropriate position.

Segment Definition Primitives 19

AddSpline.

AddSpline adds a spline to the shape in construction. In case where FirstPoint
of the spline segment does not coincide with LastPoint of the shape, the spline
segment is moved to the appropriate position.

The following example illustrates the use of AddLine:

aLine: @LineSegment
 (#
 do (100,100) -> begin;
 (150,150) -> end;
 #);

anotherLine: @LineSegment
 (#
 do (200,200) -> begin;
 (200,100) -> end;
 #);

aShape: @Shape
 (#
 do aLine -> AddLine;
 anotherLine -> AddLine;
 #);

Two line segments

Resulting shape:

The following example illustrates the use of and AddSpline using the two splines de-
fined previously:

aShape: S@hape
 (#
 do aCircle -> AddSpline;
 aDrop -> AddSpline;
 #);

Resulting shape:

In the case where the spline is not closed, i.e. FirstPoint does not coincide with Last-
Point of the shape, the spline is moved to the appropriate position by AddSpline:

aLine: @LineSegment
 (#
 do (100,100) -> begin;
 (50,150) -> end;
 #);

anotherLine: @LineSegment
 (#
 do (50,150) -> begin;
 (150,200) -> end;
 #);

Two lines

aSpline: @NonCircularSplineSegment
 (#
 do (0,200) -> Open;
 (50,250) -> AddControl;
 (100,200) -> AddControl;
 (100,100) -> AddControl;
 (50, 50) -> AddControl;
 #);

A Spline

20 Bifrost Reference Manual

aShape: @Shape
 (#
 do aLine -> AddLine;
 anotherLine -> AddLine;
 aSpline -> AddSpline;
 #);

Resulting shape:

It should be clear from the examples that it is complicated to use the segment defini-
tion primitives for shape construction. Therefore, for purpose of convenience and to
make the graphics system more powerful, Bifrost also includes the small shape con-
struction language presented earlier.

21

4 The Paint

The paint describes the color or raster to be pushed through the shape, when the
graphical object is displayed on a canvas. The paint concept in Bifrost supports any
kind of pure colors, as well as more sophisticated features such as hatching, tiling,
and sampled raster images. These various features of paint can be described in two
main paint concepts: solid color and raster paint.

A solid color fills out the entire shape with one particular color. This concept may be
specialized by allowing a repeated pattern, a tile, to be applied to the paint, concep-
tually by only allowing the paint to reach the canvas where this pattern allows it to.
This is a way of obtaining various hatching effects.

Raster paint uses a raster to fill the shape. The concept Raster is described in section
4.1. In order to use a raster to fill the shape several things must be specified: first, the
raster itself must be specified; secondly, the raster position in the shape must be sup-
plied (by specifying the hotspot of the raster in shape coordinates); third and last, it
must be specified what to do if the raster is too small to fill out the entire shape.
Bifrost supports two approaches when the raster is too small to fill out the entire
shape: repeating the raster over and over again, thus tiling the interior of the shape
with it, or by using a solid color—called a padding color—to fill out any parts of the
shape not covered by the raster, and thus not filled by the raster image.

The paint hierarchy is illustrated in figure 9. This hierarchy may, of course, be
extended if needed.

TiledSolidColor

Paint

RasterPaintSolidColor

Figure 9. The paint hierarchy

Two operations are defined for the general paint concept:

FillShape.

Takes a shape as argument and fills the shape with the paint on a canvas.

Copy.

Makes a (deep) copy of the paint

4.1 Rasters
As described in the previous paragraphs both tiled solid color and the raster paint
concepts use some kind of rasters describing either a tile, or a raster image in the
raster paint. Bifrost defines a class BitMap for using with tiling and a class PixMap to
be used in the RasterPaint. In figure 10 the hierarchy is illustrated.

22 Bifrost Reference Manual

Raster

PixMapBitMap

Figure 10. The raster hierarchy

The implementation of bit and pixel maps are inspired by ‘portable bitmap file format
(PBM)’ and ‘portable pixmap file format (PPM)’ [Poskanzer] available on many Unix
and MS/DOS installations. Since the format of the Bifrost rasters are very close to
this ‘standard’, Bifrost can read and write PBM and PPM files, and thereby get access
to a huge set of rasters in a lot of different formats.

4.1.1 Raster

The Raster class generalizes the raster concept defining the following attributes

• MagicNumber for identifying the type of the raster.

• Hotspot is a point used when the raster is used in a fill operation: the raster in
positioned so that hotspot coincides with the hotspot of the shape being filled.

• Width and Height of the raster.

• Pixel is virtually declared as an Object, and must be further bound in special-
izations of Raster.

• Width * Height Values specifying the raster itself, starting at the top-left corner
of the raster, proceeding in normal reading order.

In BETA code it could look like:

Raster:
(#
 MagicNumber: @Integer;
 Width,Height: @Integer;
 Pixel:< Object;
 Values: [Width*Height] @Pixel;
#)

Two operations are supported by all rasters:

PutPixel.

Takes an index (i,j) and a pixel value as argument and sets the pixel value into
the specified position of the Values.

GetPixel.

Takes an index (i,j) as argument and returns the pixel value in the specified
position of the Values.

4.1.2 BitMap

Bifrost defines a bit map in the following way:

• Pixel is bound to a Boolean where TRUE means "set" and FALSE means "not
set".

Two operations are defined to read and write BitMaps:

ReadFromPBMFile.

Read a bit map from a PBM file into the BitMap.

WriteToPBMFile.

Write the BitMap out on a PBM file.

Rasters 23

4.1.3 PixMap

Bifrost defines a pixel map in the following way:

• The maximum color component value, MaxVal .

• Pixel is bound to three decimal values between 0 and the specified maximum
value. The three values for each pixel represent red, green, and blue, respec-
tively. If it is desired to specify the pixel value relative to some other color
space, e.g. HSV (cf. section 4.2), the easiest way is to instantiate a SolidColor
(section 4.2), specify the HSV values to this, and then get the RGB values from
the SolidColor, and use these in the Pixel.

4.2 SolidColor
A solid color is specified relative to some color space. In Bifrost, three color spaces
are supported, namely RGB, CMY and HSV. These are the color spaces that seems to
have the most widespread use in computer graphics (cf., e.g. [Andersen 91], [Foley
90]). The HSV color space is probably the most intuitive of these, since defining a
color in it resembles the way an artist do it. In order to ease the job of the program-
mer, colors can also be specified using a simple naming model. Of course, it will be
possible to extend the color support in Bifrost for other color spaces too, if needed.

The number of colors available at the same time depends on the device used. If no
more colors are available, a default color is used.

4.2.1 Defining Solid Colors

The following three operations are used to manipulate the attributes of a SolidColor.
All three operations can be used to both set and get the values of the solid color in the
respective color models:

RGBvalues.

Enters three integers representing red , green, and blue values, and changes the
SolidColor accordingly. Exits the current red, green, and blue values. Red,
green, and blue values ranges from zero to the value determined by the con-
stant MaxRGB.

HSVvalues.

Like RGBvalues this operation enters three integers. These are interpreted as
hue, saturation and value of the solid color. HSVvalues exits the hue, satura-
tion, and value of the SolidColor. HSVvalues has three attributes MaxHue,
MaxSat and MaxVal determining the ranges of hue, saturation and value.
MaxHue, MaxSat and MaxVal is DefaultMaxHue, DefaultMaxSat, and De-
faultMaxVal, respectively, by default, but may be changed by the application
programmer.

CMYvalues

This is like RGBvalues except that the three values entered and exited
constitute the cyan-magenta-yellow representation of the SolidColor.

4.2.2 Examples

The following example illustrates how a column with the complete color spectrum,
can be drawn using the HSV color model. This is done by stacking thin lines upon
each other, having hues 1, 2, …, MaxHue respectively (that is MaxHue number of
lines in all). Full saturation and values are used.

24 Bifrost Reference Manual

(for h:DefaultMaxHue repeat
 &Line[] -> aLine[];
 aLine.init;
 1 -> aLine.width;
 ((0,h), (100,h)) -> aLine.Coordinates;

 &SolidColor[] -> aSolidColor[] -> aLine.SetPaint;
 (h, MaxSat, MaxVal) -> aSolidColor.HSVvalues;

 aLine[] -> aCanvas.draw;
for);

Notice that it would not suffice to instantiate just one line object and change the color
of this one object, because in Bifrost each part of an image must correspond to some
graphical object that is inserted into the canvas picture (by the canvas operation
Draw). Changing the color of one line object would result in one line with changing
colors being shown. Also notice that an instance of the predefined graphical object
class Line is used. Predefined graphical objects are defined in chapter 8.

By combining the different color spaces interesting effects can be achieved. The fol-
lowing example is an elaboration of the previous one. The example draws the com-
plementary color spectrum in a column adjacent to the column described in the previ-
ous example.

(for h:DefaultMaxHue repeat
 &Line[] -> aLine[];
 aLine.init;
 1 -> aLine.width;
 ((0,h), (100,h)) -> aLine.Coordinates;
 &SolidColor[] -> aSolidColor[] -> aLine.SetPaint;
 (h, MaxSat, MaxVal) -> aSolidColor.HSVvalues;
 aLine[] -> aCanvas.draw;

 (* draw the line with complementary color *)
 &Line[] -> aLine[];
 aLine.init;
 1 -> aLine.width;
 ((110,h), (210,h)) -> aLine.Coordinates;
 &SolidColor[] -> anotherSolidColor -> aLine.SetPaint;
 aSolidColor.RGBvalues -> anotherSolidColor.CMYvalues;
 aLine[] -> aCanvas.draw;
for);

The result of the last program piece can be seen in the bifrost thesis [Andersen 91],
Appendix A, color plate 3.

4.2.3 Name Color Model

An even more intuitive ‘color space’ than RGB, HSV and CMY is the one used in
everyday life: defining the colors simply by naming them. Bifrost support the possi-
bility of specifying a solid color by name by means of a large number of patterns exit-
ing RGB values corresponding to different color names. These patterns are located in
the file ~beta/bifrost/current/ColorNames.

Name.

Enters the new RGB values, and is hence just an alias for setting the color us-
ing RGBvalues. Useful when evaluating one of the color defining patterns,
which exits RGB values corresponding to a given color name.

The following example illustrates how to draw a circle with center in (10,10) and
radius 25 and filled with solid pink color, using the simple naming color model.

SolidColor 25

&Ellipse[] -> anEllipse[];
anEllipse.init;
((10,10),25,25) -> anEllipse.geometry;
&SolidColor[] -> aSolidColor[] -> anEllipse.SetPaint;
pink -> aSolidColor.Name;
anEllipse[] -> aCanvas.draw;

4.2.4 TiledSolidColor

A tiled solid color is a solid color extended with a BitMap. The BitMap will be tiled
in the shape before the SolidColor is applied, and only where the pixel values of the
BitMap is true the SolidColor will be visible. This is the normal tiling approach. As
mentioned in section 4.1.1 the hotspots of the BitMap and of the shape being filled,
determine the position of the BitMap within the shape.

Example:

A Shape: The Shape filled
with a TiledSolid-
Color using the
BitMap as tile:

A Bitmap:

4.3 RasterPaint
In a RasterPaint a PixMap is used to describe an image, and this PixMap is positioned
in the shape to be filled. This is done by positioning the hotspot of the PixMap at the
hotspot of the shape. Instead of using the PixMap as weights, the pixel values of the
map are used directly, and the shape to be filled determines which parts of the image
in the PixMap will be shown. 4

The application programmer should specify what to do if the PixMap given is not big
enough to fill the shape: either the PixMap should just be repeated (tiled) as needed,
or a solid color to use in the uncovered places of the interior of the shape should be
specified. The RasterPaint has the following additional properties compared to Paint:

ThePixMap.

Refers to the PixMap.

PaddingSolidColor.

If PaddingSolidColor is none then the PixMap will be tiled, otherwise the
PaddingSolidColor will be used where the PixMap does not cover.

4 Notice the difference between RasterPaint and TiledSolidColor: In a RasterPaint, thePixMap is
used directly as Paint, in a TiledSolidColor, the BitMap determines where the SolidColor should
be applied. Possibly "PixmapPaint" or "ImagePaint" would be a better name than "RasterPaint".

26

5 The Graphical Object

The graphical object is the central concept of the Bifrost imaging model. The graphi-
cal object is central for two reasons. The first reason is that the graphical object is the
smallest unit that can be drawn. The second reason is that the graphical object con-
tains all necessary information to draw itself. The information necessary to draw a
graphical object, is contained in the description of the shape and the paint, presented
in the previous chapters. Notice, that in traditional systems the smallest unit that can
be drawn does not always contain all necessary information needed to draw itself. The
next section elaborates on the concept of local graphic context.

Graphical object

Shape Paint

Figure 11. A graphical object is a composition of a shape and a paint

5.1 Graphic Context
With the graphical object containing enough information to render itself independent
of its surroundings, Bifrost support local graphic context. Local context is defined as
the ability of graphical objects to draw themselves, [Andersen 91] p. 4. This can very
easily and elegantly be designed in an object oriented imaging model. Using local
graphic context can, however, give rise to overhead if many objects with the same
context are drawn successively: time is wasted by setting the (same) graphics context
each time one of the graphical objects are drawn. The contrary to local context,
global graphic context is not supported in Bifrost. Instead an intermediate approach
between local and global context, called shared graphic context , is designed but not
yet implemented [Andersen 91] p. 80.

5.2 Operations
Most of the operations in the graphical object manipulate, or use operations imple-
mented in the shape or the paint. The only exceptions to this fact is manipulation of
the transformation matrix and some administration (init and copy) operations.

Init.

Initializes the GraphicalObject by instantiating a shape and a transformation
matrix. Init must be called as the first operation on the graphical object. If the
graphical object is evaluated , init is called automatically.

To manipulate the shape and the paint of the graphical object four operations are
given:

SetShape and GetShape.

Operations 27

Operations to set and get the shape.

SetPaint and GetPaint.

Operations to set and get the paint.

5.2.1 Geometric Transformations

Six operations support geometric transformations on graphical objects:5

Move.

Enters two displacements (tx,ty) and moves the graphical object relative to its
current position.

MoveTo.

Enters point and moves the hotspot of the graphical object to the point.

Scale.

Enters two scaling factors (sx,sy) and scales the graphical object relative from
its current size.

Rotate.

Enters an angle (in degrees) and rotates the graphical object relative from its
current position.

5.2.2 Query Operations

HitControl.

Takes a point (in CCS) as argument and returns a reference to the exact point
(in GraphicalObject coordinates), if it is in the neighborhood6 of a control point
of the shape of the graphical object. Otherwise returns NONE.

ContainsPoint:

Takes a point (in CCS) as argument and returns true if it is inside the shape of
the graphical object.

5.2.3 Interaction

InteractiveCreateShape.

Calls InteractiveCreate of the shape, see chapter 9.

InteractiveReshape.

Calls InteractiveReshape of the shape, see chapter 9.

InteractiveCombineShape.

Calls InteractiveCombine of the shape, see chapter 9.

InteractiveMove.

Takes a canvas, a starting point and a modifier description as argument and
interactively moves the graphical object using the interaction handler of the
canvas, see chapter 9. Calls Move to do the transformation after the interaction
has ended.

5 Geometric transformations are described in Chapter 2.

6 See section 9.3 for a definition of the concept neighborhood.

28 Bifrost Reference Manual

Hilite.

Makes the graphical object appear highlighted by using the highlighting opera-
tion of the shape. When the graphical object is redrawn by canvas updating the
graphical object will be drawn highlighted.

UnHilite.

Unhighlights the graphical object.

The Hilite and UnHilite operations changes the Canvas' drawing mode to be XOR, to
allow for immediate feedback, and invoke an instance of a virtual drawHilite at-
tribute. Thus the feedback may be augmented by further binding this attribute, see
chapter 9 for more details.

5.2.4 Drawing Graphical Objects

A graphical object is drawn on a canvas by calling the Draw operation of the canvas,
see chapter 7. The graphical objects then becomes part of the list of graphical objects
in the canvas, and the canvas asks the graphical object to draw itself on the canvas.
The graphical objects uses its Draw operation to do the actual drawing in the Canvas.

When a canvas must be redrawn, the Canvas knows which graphical objects are
drawn in the canvas, and can therefore ask the graphical objects in question to redraw
themselves on the canvas. Likewise a graphical object is erased by calling the Erase
operation of the canvas. See chapter 7 for a complete description of the Canvas and
when it must be redrawn.

5.2.5 Transforming Graphical Objects

A graphical object can be transformed by manipulating the transformation matrix TM
of the graphical object. Such a transformation will affect the appearance of the
graphical object, if it is drawn in a Canvas. To simplify transformation of graphical
object, the Transform attribute is present:

Transform.

Applies a a matrix to the transformation mantrix of the graphical object. To be
precise,

aMatrix[] -> anAbstractGraphicalObject.transform;

is equivalent with

(anAbstractGraphicalObject.TM, aMatrix[])
-> MatrixMul -> anAbstractGraphicalObject.TM;

Notice, that in general, only instances of Shape are guarantied to be transformable, in
particular some of the Predefined Graphical Objects (see later) will not respond cor-
rectly to all transformations. Translations , i.e. linear moving, however, will work for
all kinds of graphical objects. Pictures (see below) may also be transformed, but if
they contain Predefined Graphical Objects, the restrictions mentioned above apply to
the Picture itself too.

29

6 The Picture

The picture concept is designed to supports graphics modelling. A picture is a collec-
tion of graphical objects and pictures. It is therefore possible to make hierarchies of
graphical objects and pictures, leading to the required capability of doing graphics
modelling.

6.1 The Picture List
The concept Picture is a specialization of the concept GraphicalObject. The reason for
this specialization is that the picture defines a list attribute consisting of graphical
objects. Due to the specialization, the picture is also a graphical object, and can be
added to the list of graphical objects in another Picure. The effect of this design is that
every object in the list can be treated in an uniform way, without consideration to the
actual type of the object. This is a very elegant foundation for Graphics Modelling.

The graphical objects are stacked (the hexagon being the front most graphical object):

Stacking graphical objects: Resulting image:

When the graphical objects in the list are drawn in a canvas, each object is put on top
of the other objects already drawn. Hence the graphical objects in the list are stacked
relative to each other on the canvas with respect to their positions in the list. In other
words, the last object in the list is the front most object on the canvas and the first
object is the lowest object on the canvas. Objects in the end of the list may therefore
cover other objects earlier in the list, depending of the positions of the objects. The
position in the list is therefore important when a graphical object is manipulated in-
teractively. The subject of interaction is discussed separately to chapter 9.

There are several operations to manipulate the list of graphics objects and pictures.
Two operations are used to add and delete objects in the list:

Add.

Takes a graphical object as argument and adds it to the end of the picture list.

Delete.

Takes a graphical object as argument and deletes it from the picture list.

Two operations support moving the graphical objects relative to the other objects in
the list:

BringForward.

Accomplished by moving the object to the last position in the list.

30 Bifrost Reference Manual

SendBehind.

Takes a graphical object as argument and draws the object at the bottom of the
canvas. Accomplished by moving the object to the first position in the list.

Two operations support queries to the graphical objects in the list.

FirstContaining and LastContaining.

Takes a point (in CCS) as argument, and reports the first or last object contain-
ing the point or none.

Finally, two operations support scanning through the graphical objects of the picture.

ScanGOs

Scans through all the graphical objects in the picture, in the order they were
added.

ScanGOsReverse

Scans through all graphical objects of the picture in the opposite order than
they were added, i.e. from "top" to "bottom" of the picture.

6.2 Selection Picture
In [Andersen 91] pp. 78, a detailed description of how the picture is supposed to sup-
port graphics modelling can be found. Currently only one form of the graphics mod-
elling properties are implemented, that is, a constraining picture called SelectionPic-
ture.

The SelectionPicture specializes the Add and Delete operations. When two or more
graphical objects are selected the Hilite and UnHilite operations of the graphical ob-
jects are changed from HiliteControls to HiliteOutline. Graphical objects then become
highlighted by drawing the outlines of the shapes instead of highlighted control
points. This effect is similar to many graphical editors, e.g. MacDraw.

6.3 Picture Coordinate System
When graphical objects are composed into a picture, it is necessary to have mappings
between the coordinate system of the graphical object and the coordinate system of
the picture, since each graphical object is defined in its own coordinate system and is
placed somewhere in the coordinate system of the picture. The graphical object de-
fines a transformation from its own coordinate system to the coordinate system of the
picture. Since the coordinate system of the shape is identical to the coordinate system
of the graphical object it is part of, the transformation actually defines how to position
the shape of the graphical object in the picture. This transformation is described in a
matrix called TM, inherited from the superpattern AbstractGraphicalObject. See also
the description of the Transform attribute of graphical objects above.

6.4 Other Operations on Pictures
The picture defines several other operations to query and manipulate the graphical ob-
jects in the picture and the picture itself. The most important ones are listed below,
see the interface description for the rest.

Other Operations on Pictures 31

NoOfGOs.

Returns the number of graphical objects in the list.

IsEmpty.

Returns true if the list is empty.

IsMember.

Takes a graphical object as argument and returns true if the graphical object is
in the list.

32 Bifrost Reference Manual

7 The Canvas

The canvas7 is the drawing surface of the Bifrost graphics system and the connection
between Bifrost and the display device. The display device is typically a screen or a
window in a window system. In a window system the canvas is a drawing surface in-
side a window. How the canvas is made a part of a window (borders, scroll bars, close
box, etc.) depends on the specific system.

The canvas is very similar to the canvas of an artist, but has properties not comparable
to the canvas of an artists, described in the next sections.

7.1 Drawing and Visible Area
The canvas is a potentially infinitely large drawing area. Hence everything in the
canvas is not necessarily immediately visible on the display device. The canvas there-
fore defines a visible area, defined by means of a shape called the visible shape . The
visible shape is not fixed and can be reshaped even after graphical objects have been
drawn in the canvas. The visible shape is a view to the canvas. By moving the visible
shape it is possible to view other parts of the canvas, hence the visible shape can be
used to implement scrolling. Notice that the visible shape is not effected by the sur-
roundings of the canvas, e.g. by overlapping windows.

In typical drawing applications where the user chooses a part of the canvas to actually
see on the display device, the application programmer should not consider which part
of the canvas is visible, but should regard all the graphical objects in the canvas as
being visible. The canvas will only draw those graphical objects that are visible on the
device. This is accomplished by clipping and updating as described in section 7.3 and
7.4.

7.2 The Canvas Picture
As mentioned in chapter 5, the graphical objects drawn on the canvas are stored in a
picture. When a graphical object is to be shown in a canvas, it is done by invoking the
Draw operation of the canvas, whereby the graphical object is added to the picture of
the canvas and displayed using the draw operation of the graphical object. It is not
allowed, in the current version of Bifrost, to draw objects in the canvas that is not part
of the canvas picture.8

The following two attributes operate directly on the canvas picture:

7 As explained in chapter 11, in the current implementation of Bifrost – based on Lidskjalv – the
pattern Canvas is actually named BifrostCanvas, since there is another pattern in Lidskjalv with
the name Canvas.

8 For purposes of interaction, it is possible to draw simple objects (lines, rectangles etc) immediately
on the canvas without using the canvas picture, see Chapter 9.

The Canvas Picture 33

scanThePicture.

Invokes the scanGOs on the Canvas picture.

scanThePictureReverse.

Invokes the scanGOsReverse on the Canvas picture.

7.3 Clipping
Clipping is used in graphics system to restrict the area in which graphics operations
have effect. For instance, when some part of a window is damaged, the application
can clip to the damaged part and then draw the whole window. The result of the
clipping is that the system ignores the drawing request outside the clipping area, and
the speed of updating is increased significantly.

The canvas supports clipping in the situation where some of the graphical objects are
totally or partly outside the visible shape of the canvas. The canvas always clips to the
visible shape. In addition to this clipping area it is possible to set another clipping
area, also defined by a shape—the clip shape. SetClip and GetClip can be used to set
and get the clip shape. The clip shape is especially useful when damaged areas must
be updated, see the next section.

7.4 Updating Damaged Areas
When an area inside the visible area of the canvas has been obscured, e.g. by an
overlapping window, and again becomes visible, parts of the canvas must be redrawn.
The canvas supports redrawing by updating areas that have been damaged. The dam-
aged area is handled by a damaged list in the canvas.

Update events originating from the window system, say, a window overlapping the
canvas is moved, are handled automatically by Bifrost. When Bifrost receives an up-
date event from the window system, the damaged area is in many cases reported
along with the update event. The canvas redraws the damaged area transparently to
the application. In cases where the damaged areas is not reported, the whole visible
area of the canvas is redrawn.

The process of updating damaged areas originating from application dependent ac-
tions, say, removing of a graphical object, is a partly application responsible process;
it is not entirely automatic. In this situation the application is responsible of adding
damaged areas to the damage list. Adding a rectangle to the list is accomplished by
the operation damaged. After the application has called the operation repair, the can-
vas redraws the visible area using an advanced algorithm to determine which objects
must be redrawn.

The traditional way of redrawing is to draw all objects and turn the responsibility of
selecting the objects inside the clipping area to the display device (or basic graphics
library). Although clipping is a very efficient way of reducing the overhead of the
display device in redrawing, it is still necessary to redraw all graphical objects in the
canvas.

A better idea is to limit the number of graphical objects and pictures that has to be
considered in the redrawing process. When applications use graphics modelling, each
picture typically consists of a small set of proximate and related objects, expected to
be updated collectively, e.g. by moving the picture. This means, that if a picture is
completely outside the region that should be updated, then it is not necessary to
further consider the graphical objects inside the picture. The following example
illustrates the situation:

34 Bifrost Reference Manual

T

Given a clipping rectangle T and some pictures (illustrated by dashed rectangles) and
graphical objects (illustrated by small circles) all the graphical objects in pictures that
are completely outside T are never considered.

This approach depends on the assumption that the application is using graphics mod-
elling, and that the graphical objects in each picture are close to each other. Consider
for example two graphical objects in a picture, that are very distant from each other,
the picture becomes very large and it is a more likely that the picture intersects T even
though the graphical objects may be outside T. On the other hand, this update
approach encourage the application programmer or user to apply graphics modelling
to the drawing.

The advanced updating approach in Bifrost does not exclude the possibility to use
other updating mechanisms. In cases where graphics modelling can not be used or
does not make sense, the application programmer can implement a different ap-
proach, e.g. the very advanced method described by Edelsbrunner called ‘dynamic
rectangle intersection search’ [Edelsbrunner 80].

7.5 Input Control
The canvas models the input in two handlers: the event handler and the interaction
handler. The canvas uses the event handler to receive general events such as window
resizing and updates. Each canvas has exactly one event handler. The interaction
handler is started by request, e.g., when a new graphical objects is to be created. The
interaction handler is special-purpose event handler, designed for fast interaction with
the user.

The typical situation is that the event handler polls for input from the user, and when
the user e.g. starts creating a new ellipse by clicking on a mouse button, the applica-
tion calls InteractiveCreate for an ellipse graphical object. Interactive create is im-
plemented using an interactionhander.

The event handler is described in this section and the interaction handler is described
in chapter 9.

The event handler models the events originating from the basic graphics system or
from user actions by six virtual operations. The application programmer may then
further bind these operations in an application that uses the Bifrost graphics system.

OnOpen.

Called when the canvas is shown for the first time on the display device.

OnButtonDown.

Called when the user presses a button on the pointing device.

OnKeyDown.

Called when the user hits a key on the keyboard.

Input Control 35

OnRefresh.

Called when the canvas must be redrawn, e.g. when it is exposed after is has
been obscured. The refresh event is typically generated by the basic graphics
system (or by the window manager).

OnActivate and OnDeactivate.

Called when the canvas is (de)activated. The exact definition of activation may
vary with the device. In a window system, the active window will normally
have its title bar highlighted. The activation occurs when the window becomes
the active window.

36

8 Predefined Shapes and
Graphical Objects

A number of Predefined shapes and corresponding graphical objects are designed to
assist the user of Bifrost. With objects such as lines, circles and text available, the
user can create graphics easier and faster than from scratch. Furthermore, the prede-
fined shapes and graphical objects may utilize the underlying graphics system and
hardware/firmware operations more efficiently.

The predefined shapes currently implemented in Bifrost are described in the first
seven sections of this chapter. In the last section it is outlined how the shapes are
defined in Bifrost, and how to define new “predefined” shapes. The purpose of
defining new “predefined” shapes, is mainly to utilize the underlying graphics
hardware/software. Figure 12 illustrates the predefined shape inheritance hierarchy.

AbstractShape

PredefinedShapeShape

ArcShape

TextShape

LineShape

RectShape EllipseShape

StokeableShape

PieShape MultiLineShape

Figure 12. Predefined shape inheritance hierarchy.

As can be seen in figure 12, some of the predefined shapes can be stroked. The shape
will be stroked with StrokeWidth as the line width in case the attribute Stroked is
true. If StrokeWidth is 0 the line width of the shape will be the smallest possible on
the actual output device.

8.1 LineShape
A Line composed
of a LineShape
and a Paint:

Begin
End

The line shape is defined by five attributes:

Begin and End.

The beginning and ending points of the line.

Width.

The width of the line. If the width is 0, the line will be drawn with the smallest
possible line width of the output device.

Dashes.

List of tuples of integers. The first integer defines the length of the first dash,
the next integer defines the length of the space to the next dash and so on.

LineShape 37

(1,2) makes a line dashed like:

(4,1,1,1) makes a line dashed like:

Cap.

Specifies how the end of the line looks. See section 3.5.1.

A corresponding Line graphical object is defined with LineShape as the shape. Line
uses FillLine of the Paint to draw itself (see section 8.8.1).

8.2 MultiLineShape
A MultiLine
composed by a
MultiLineShape
and a Paint:

The multi line shape is defined by five attributes:

Points.

PointArray defining the line. A PointArray, like the name indicates, is an ar-
ray/list of Points. See the interface-description for details.

Width and Dashes.

Same as for Line above.

Cap.

Specifies how the ends of the line looks. See section 3.5.1.

Join.

Specifies how the lines are joined. See section 3.5.1.

A corresponding MultiLine graphical object is defined with MultiLineShape as the
shape. MultiLine uses FillMultiLine of the Paint to draw itself (see section 8.8.1).

8.3 TextShape
A GraphicText
composed by a
TextShape and a
Paint:

Helvetica 12
point italic

The text shape can show one line of text. No formatting (carriage returns, line feeds,
etc.) is supported. The text shape is defined by the following attributes:

Begin.

Specifies where to place the baseline of the text.

TheFontName.

The name of the font used: Times, Courier, or Helvetica.

TheStyle.

The style of the text: bold , italic , or plain.

UnderLine.

True if the text is drawn underlined.

Size.

The size of the text in points (1/72 inch).

TheText.

Holds the characters of the text shape.

A corresponding text graphical object (GraphicText) is defined with TextShape as the
shape. GraphicText uses FillText of the Paint to draw itself (see section 8.8.1).

38 Bifrost Reference Manual

8.4 RectShape
A Rect composed
of a RectShape
and a Paint:

UpperLeft

Height

Width

The rectangle shape is defined by the following three attributes:

UpperLeft.

Point specifying the upper left corner of the rectangle.

Width and Height.

The width and height of the rectangle.

A corresponding Rect graphical object is defined with RectShape as the shape. Rect
uses FillRect of the Paint to draw itself (see section 8.8.1).

8.5 EllipseShape
An Ellipse
composed by an
EllipseShape and
a Paint:

VerticalRadius

HorizontalRadius

Center

The ellipse shape is defined by the following attributes:

Center.

Point specifying the center of the ellipse.

HorizontalRadius and VerticalRadius.

The horizontal and vertical radius of the ellipse, respectively.

A corresponding Ellipse graphical object is defined with EllipseShape as the shape.
Ellipse uses FillEllipse of the Paint to draw itself (see section 8.8.1).

8.6 PieShape
A PieSlice
composed by a
PieShape and a
Paint:

Center

Angle2

Angle1

HorizontalRadius

VerticalRadius

The pie shape has the following attributes:

Center.

A Point specifying the center of the PieSlice shape.

HorizontalRadius and VerticalRadius.

The width and height of the PieSlice shape.

Angle1 and Angle2.

The two angles (in degrees).

A corresponding PieSlice graphical object is defined with PieShape as the shape.
PieSlice uses FillPie of the Paint to draw itself (see section 8.8.1).

ArcShape 39

8.7 ArcShape
An Arc
composed by an
ArcShape and a
Paint:

Center

Angle2

Angle1

HorizontalRadius

VerticalRadius

ArcWidth

The arc shape has the following attributes:

Center.

A Point specifying the center of the arc shape.

HorizontalRadius and VerticalRadius.

The width and height of the arc shape.

Angle1 and Angle2.

The two angles (in degrees).

ArcWidth.

The stroke width of the arc.

A corresponding Arc graphical object is defined with ArcShape as the shape. Arc uses
FillArc of the Paint to draw itself (see section 8.8.1).

8.8 Defining New Shapes
Predefined graphical objects are defined by describing a shape that defines the outline
of the object. This is done in two steps. First, the additional attributes that specifies
the shape are defined, e.g to define a line shape, the shape defines three attributes: two
end points and a line width. Secondly, the operation GetShape, that calculates the
actual shape in terms of line and spline segments, is defined.

In practice it could be very difficult or impossible to define the GetShape operation,
e.g. for text. In case the application programmer wants to utilize special hard-
ware/firmware operations, the Draw and Erase operations of the graphical object must
be specialized together with a corresponding fill operation of the Paint (cf. section
8.8.1).

In case GetShape is not written for a particular predefined graphical object, the fol-
lowing operations must be further bound in the predefined shape:

GetBounds.

Return the enclosing rectangle of the shape.

ContainsPoint.

Determine whether the entered point is inside the shape.

Intersects.

Determine whether the shape of the entered graphical object intersects the
shape

Within.

Determine whether the shape of the entered graphical object is totally inside the
shape

Transform.

Transform all points of the shape by the transformation matrix.

40 Bifrost Reference Manual

HitControl.

Determine whether the entered point is in the neighborhood of one of the con-
trol points of the shape. See section 9.3 for a definition of neighborhood.

InteractiveCreate and InteractiveReshape.

Specify how to interactively create and reshape the shape. See also chapter 9.

HiliteControls, HiliteOutline, HiliteBound

Specify how to highlight the shape by using control points, the outline, or the
bounding box, respectively, of the shape. See also chapter 9.

8.8.1 Predefined Paint Operations

When a graphical object is rendered on a drawing surface, it is the responsibility of
the paint of the graphical object to do the actual displaying. As stated in chapter 4, the
rendering is accomplished by filling out a shape. Thus any paint has an operation
FillShape that enters the shape to be filled.

To utilize the capacity of the basic graphics system the shape should be drawn using a
different approach. The shapes in question here could be lines with the minimal line
width the output device can display, ellipses, arcs, and text.

To allow an efficient implementation of the fill operations Bifrost therefore supplies
some additional filling operations for these special cases. These additional operations
are only a supplement, the basic filling operation FillShape, must be able to handle all
shapes. Bifrost supply the following additional fill operations:

FillLine and FillMultiLine.

Draws the entered shape using a line drawing primitive of the basic graphics
system.

FillText.

Draws the entered TextShape using the character generator of the basic graph-
ics system.

FillPie, FillArc, FillRect, and FillEllipse.

Draws the entered shape using corresponding drawing primitives of the basic
graphics system.

41

9 Interaction

The reader migth prefer to skip this chapter at first reading, in case the user only uses
the basic graphical object, and the predefined graphical objects, and later return to the
chapter when familiar with the basic usage of the Bifrost graphics system.

This chapter explains the design and some implementation details of the interactive
part of Bifrost. The chapter is mainly for the advanced user, who migth be interested
in designing new interaction. As an example of designing special interaction, is when
a new graphical object with a special shape is defined, as described in the previous
chapter.

9.1 Interaction Model
Bifrost abstracts input devices used in interaction in a general interaction model. The
input device is typically a pointing device like a mouse. The model is defined in pat-
tern InteractionHandler of the canvas. InteractionHandler defines a series of virtual
attributes and a general interaction loop. The usage of the interaction handler is to
execute an instance of a specialization of InteractionHandler with some of the virtual
attributes further bound. The attributes are:

Canvas
InteractionHandler
Pattern

Initialize.

Specify what to do before the interaction loop starts. Also changes the canvas'
drawing mode to be XOR, to allow for immediate feedback, see below.

Motion.

Specify what to do when the user moves the pointer.

ButtonPress.

Specify what to do when the user presses a button of the pointer. ButtonInfo is
a local attribute in ButtonPress that may contain device specific information,
e.g. which button was pressed.

ButtonRelease.

Specify what to do when the user releases a button of the pointer.

KeyPress.

Specify what to do when the user presses a key on the keyboard.

KeyRelease.

Specify what to do when the user releases a key on the keyboard.

TerminateCondition.

Specify a condition for ending the interaction handler. Default is when the
rightmost button on the pointer is released.

Terminated.

Specify what to do when the user has terminated the interaction loop. Also
changes the canvas' drawing mode back to normal – see Initialize.

42 Bifrost Reference Manual

In addition to these attributes the handler provides three support functions:

GetPointerLocation.

Returns the current position of the pointer.

IsModifierOn.

Returns True if the modifier entered was ON in last user action (Motion, But-
tonPress, ButtonRelease, KeyPress or KeyRelease).

DoubleClick.

Returns True if the last button press was a double click.

The action part of an instance of the pattern InteractionHandler performs the follow-
ing sequence of code:

nteractionHandler
outline (#

do Initialize;
 Loop and call Motion, ButtonPress, ButtonRelease, KeyPress or
 KeyRelease, depending on user action, until
 TerminateCondition returns True;
 Terminated;
#)

As the reader migth have noticed, the interaction handler, when excuted, temporarily
replaces the event handler of the canvas and processes all events until terminated.

The InteractionHandler pattern is used to implement the interaction operations of the
shapes. The following is an example of how the feedback for InteractiveCreate might
be implemented for the predefined shape LineShape, using an InteractionHandler:

nteractionHandler
xample RubberLine: InteractionHandler

 (# mousePoint, anchorPoint: @Point; (* Device coords *)
 themodifier: @modifier; (* the modifier used for constrains *)
 stopinteraction: @boolean; (* stop when true *)
 x,y: @integer; (* temporary variables *)

 Initialize::
 (# do (anchorpoint, mousePoint) -> immediateLine #);
 Motion::
 (#
 do (anchorpoint, mousePoint) -> immediateLine;
 GetPointerLocation -> mousePoint;
 (if themodifier -> isModifierOn then
 (* constrain the angles *)
 (mousepoint.x-anchorpoint.x) -> abs -> x;
 (mousepoint.y-anchorpoint.y) -> abs -> y;
 (if y > x then (* constrain to vertical *)
 anchorpoint.x -> mousepoint.x
 else (* constrain to horizontal *)
 anchorpoint.y -> mousepoint.y
 if)
 if);
 (anchorpoint, mousePoint) -> immediateLine;
 #);
 ButtonPress:: (# do true -> stopinteraction #);
 TerminateCondition:: (# do stopinteraction -> res #);
 Terminated::
 (# do (anchorpoint, mousePoint) -> immediateLine #);
enter (anchorpoint, mousepoint, themodifier)
exit mousepoint
#);

The interaction obtained by the above handler works as follows: a rubberband line is
spanned between the anchorpoint point and the pointer location, following the
pointer movements. In case the modifier is on (e.g. Shift is down) then the angle of

Interaction Model 43

the line is constrained to multiples of 90 degrees. The interaction terminates when the
pointer button is pressed again.

9.2 Feedback
Bifrost supports two different forms of feedback. One is the feedback generated when
the user is creating or modifying a graphical object. The primives in Bifrost for this
kind of feedback is presented in section 9.1 and 9.2 below.

The second kind is the feedback used, e.g., to identify a of selection of graphical
objects, e.g. by highlighting of the control points or outlining the shape. This is
elaborated upon in section 9.3, which also presents other interaction facilities of the
Shape pattern.

Finally section 9.4 deals with the notion of modifiers, i.e. pseudo-buttons used to
modify the meaning of another key or a mouse button being pressed.

9.2.1 Canvas Primitives for Feedback

Feedback drawing is done in immediate mode, that is, the feedback is not a graphical
object with a shape and a paint defined. Immediate drawings are not inserted into the
canvas picture.

Immediate mode drawing is supported in the Canvas by the following operations,
which should typically be performed in XOR mode to allow easy erasing (by simply
redrawiingthe feedback a second time). Notice, that the Hilite and Unhilite patterns of
graphical objects, as well as Initialize of the InteractionHandler pattern of Canvas
automatically puts the Canvas into XOR mode.

SetImmediateLineWidth.

Set the line width for subsequent immediate drawings.

ImmediateLine.

Draw a line between the two points specified as arguments.

ImmediateDot.

Takes one point as argument and draws a dot of the size of one device pixel at
the point.

ImmediateSpot.

Takes one point as argument and draws a small filled square (approx. 2×2mm)
around the point.

ImmediateMultiLine.

Draw a line between the points in the PointArray specified as arguments.

ImmediateRect.

Takes one point, a width, and a height as arguments and draws a rectangle with
upper left at the point.

ImmediateText.

Enters a text, a position, and the text attributes FontName, Style, Size, and
UnderLine, and draws the text at the position in the specified way.

44 Bifrost Reference Manual

9.2.3 Segment Primitives for Feedback

The building blocks of the shape, LineSegment and SplineSegment, defines an opera-
tion DrawRubberBand, constructed by the immediate primitives above, to draw
feedback:

DrawRubberBand.

Enters a point (NewPoint), an index into spline control points (ignored if the
segment is a line segment), and a reference to the next segment (NextSeg) and
draws a rubber line in either of the following two ways:

LineShape

 This LineShape example has four line segments
where two participate in the interaction.

NextSeg

THIS(LineSegment)

NewPoint

SplineSegment

Draws a local spline rubberband around the
control point specified at control index. NextSeg is
used when the control index is the last index of the
spline.

NewPoint

Control index

9.3 Interaction Facilities in the
Shape

Since the shape of a graphical object defines the outline of the object, the shape must
define how to, interactively, create and modify itself. This is accomplished in the
operations InteractiveCreate, InteractiveReshape and interactiveCombine. The
operations use the general InteractionHandler and feedback primitives described
above.

InteractiveCreate.

Takes a beginning point and a modifier as arguments and starts an interaction
loop letting the user define the outline of a shape. When the loop is terminated
the control points of the shape are set accordingly. The operation is most
commonly used from InteractiveCreateShape of a graphical object.

InteractiveReshape.

Takes a point as argument and starts an interaction loop letting the user reshape
the shape at the control point in the neighborhood of the point (obtained by us-
ing, say, HitControl). The operation is most commonly used from Interac-
tiveReshape of a graphical object.

InteractiveCombine.

Takes a beginning point and a modifier as argument and starts an interaction
loop letting the user create a shape. When the loop is terminated the new shape
is combined with the original shape by using the CombineShape operation. The
operation is most commonly used from InteractiveCombineShape of a graphi-
cal object.

Interaction Facilities in the Shape 45

9.3.1 Neighborhood

The concept of neighborhood is used in some of the operations presented. Neigh-
borhood is defined as follows: a point P is said to be in the neighborhood of another
point Q if P is inside a square with Q as center and a given side length. The length of
the sides defaults to 2 mm, but may be changed by the programmer.

9.3.2 Direct changing of Control Points

A shape can also be manipulated by adding a new control point to the shape, or by
deleting a control point from the shape. The following two operations supports ma-
nipulation of control points. They are especially useful in interaction.

Insert.

Takes two points as parameter. If the first point is in the neighborhood of an
existing control point, the second point is added as a new control point between
the neighbor point and the next control point of the neighbor point.

Delete.

Takes a point as parameter and, if there is one, deletes a control point in the
neighborhood of the parameter point.

9.3.3 Shape Highlighting

Highlighting a graphical object is also part of interaction and interaction feedback,
and is handled by the shape of the graphical object by instances of specializations of a
special HiliteDesc pattern. The HiliteDesc pattern enters three parameters: The canvas
to present the feedback in, a boolean indicating whether the feedback is to be drawn
or erased9, and a transformation matrix, which will be applied to the feedback before
it is drawn in the canvas. The following three predefined specializations of HiliteDesc
define how to highlight and unhighlight the shape in three standard ways. The actual
way of highlighting the shape is determined by the variable DrawHilite. It references
one of the Hilite operations. The application programmer can easily extend the
highlighting scheme by adding new operations.

HiliteControls.
An ellipse with
highlighted
control points:

Draws small squares at the locations of the control points. The concept of
control points can in this context be a bit different than used earlier. For
example, the control points of an ellipse are the four corners of the bounding
box of the ellipse. These corners can naturally be manipulated interactively to
modify the ellipse, in contrast to the control points that are used to generate the
ellipse shape in the earlier sense.

HiliteOutline.

Highlights the shape by drawing a curve along the shape. Draws by default the
thinnest possible line, but another line width may be specified in the parameter
HiliteWidth.

HiliteBound.

Highlights the shape by drawing rectangle along the bounding box. Draws by
default the thinnest possible line, but another line width may be specified in the
parameter HiliteWidth.

9 You may have noticed some lack of consequence in defining how to draw and erase feedback: The
Graphical Object defines both Hilite and UnHilite patterns, whereas the Shape uses a boolean to
control this. Also the Canvas defines primitives that allow for XOR drawing, which means, that
there is no need for distinguishing between drawing and erasing of feedback. Besides the fact, that
the Graphical Object needs to know the "state" of the feedback (drawn or ereased), the reasons for
these different views on drawing versus erasing are purely historic.

46 Bifrost Reference Manual

DrawHilite.

Refers to one of the above Hilite operations, and is the attribute of the shape,
which is invoked by the Hilite and Unhilite patterns of Graphical Objects.

9.3.4 Query Functions

Four operations are defined as query functions of the shape.

HitControl.

Enters a point and if this point is in the neighborhood of a control point, the
control point is exited. Otherwise NONE is exited.

ContainsPoint.

Takes a point as argument and reports whether the point is inside the shape or
not.

Intersects and Within.

Takes a shape as argument, and reports whether it intersects or is totally inside
this shape, respectively.

9.4 Modifiers and constraints
Several of the interaction methods previously presented take a modifier as one of their
arguments. This section elaborates on modifiers, and presents the constraints they
impose on the interactions.

A keyboard modifier is a "pseudo-key "on the keyboard, that when kept down during
a normal key press, will modify the meaning of the action. Usually there are at least
three modifiers on a keyboard: The Shift key, the Control key, and the Meta key. The
Meta key is often labelled something else than Meta: On some Hewlett Packard
keyboards it is labelled Extend Char, on some Sun workstation keyboards there are
two Meta keys, labelled Left and Right, respectively, on some Sun SPARC keyboards
it is labelled Alt, on most Macintosh keyboards it is labelled Alt, etc…

As mentioned a modifier key is not a normal key, e.g. it will not invoke the onKey-
Down virtual of a Canvas eventhandler, if the modifier key is pressed alone. Instead
the modifier changes (modifies) the meaning of the normal keys, if the modifier is
held down when the normal key is pressed.

Shift

makes the character typed become upper case. Technically 32 is added to the
numerical value of the character, i.e., the 5'th bit of the 7 or 8 bit a character is
represented by, is set.

Control

subtracts 64 from the numerical value of the character, i.e., clears the 7'th bit.

Meta

adds 128 to the numerical value of the character, i.e. sets the 8'th bit.

Modifiers can also be used during interaction with the mouse. This does not change
anything directly, but is usually used to modify the feedback during the interaction.
This is why the onButtonDown virtual of a Canvas eventhandler contains some
booleans, indicating if the corresponding modifier was ON when the mouse button
was pressed. E.g., if shiftmodified is true, it means that the shift modifier was ON
when the mouse button was pressed.

Modifiers and constraints 47

InteractiveCreateShape, InteractiveReshape, and InteractiveMove in the Canvas pat-
tern, and the corresponding methods of graphical objects and shapes all have an enter
parameter called theModifier, that is used to specify what modifier to use to make
the interaction constrained. Thus if ShiftModifier is used, it means that if holding
down the Shift key during the interaction, the interaction will be constrained in some
way, see below. A pseudo modifier called NoModifier has been defined to specify
that all modifiers should be ignored, i.e., the interaction should not be constrainable.

9.4.1 Default constraints in Bifrost
bdrawBifrost contains a small graphical editor, bdraw, residing in the directory ~beta/

bifrost/current/bdraw. Thus the interaction forms of the different graphical
objects, and the constraints the modifiers impose on them can be tried in practice. In
bdraw, Shift is used as the modifier.

Here is a short overview of the interaction forms when creating, moving and reshap-
ing the different graphical objects:

InteractiveCreate

Rect:

The feedback is a "rubber rectangle", defined by the start point and the
position of the mouse. If theModifier is ON, the Rect is constrained to be
a square. The interaction stops when the mouse is clicked.

Ellipse:

The feedback is a "rubber ellipse" defined by the start point and the mouse
position. If theModifier is ON, the Ellipse is constrained to be a circle.
The interaction stops when the mouse is clicked.

GraphicalObject:

Control points are added by clicking the left mouse button. The feedback
is a "rubber line" from the previous control point added to the mouse po-
sition, and another line from the start point to the mouse position. If the-
Modifier is ON, SplineSegment control points are added, otherwise Line-
Segment. The interaction stops when the right mouse button is clicked. On
machines with only one mouse button the interaction is stopped by
double-clicking the mouse button.

PieSlice:

The interaction has two phases: First a rectangle with an inscribed ellipse
is laid out, to define what ellipse the PieSlice should be a slice of. This
phase is much like InteractiveCreate of an Ellipse. The second phase is
determining the two angles defining the slice. This is done using "rubber
lines" from the center to the periphery of the ellipse, in direction towards
the mouse position. Each of the two angles are set when the mouse is
clicked. When the last angle is determined, the interaction stops. If the-
Modifier is ON, in the first phase, the ellipse is constrained to be a circle.
In the second phase, angles are constrained to be multiples of 45 degrees.

GraphicsText:

The interaction is done via the keyboard. Characters are typed in the nor-
mal way, and typing Return will end the interaction. A mouse click will
also stop the interaction. During the interaction, the end of the text being
typed is marked with a vertical bar ("insertion point").

Line:

The feedback is a "rubber line" from the start point to the mouse position.
If theModifier is ON, the angles of the rubber line is constrained to mul-
tiples of 45 degrees. The interaction is stopped by clicking the mouse.

48 Bifrost Reference Manual

MultiLine:

Control points are set using the left mouse button. During this phase, the
interaction is a "rubber line" from the previous control point to the mouse
position. The interaction is stopped by clicking the right mouse button. If
theModifier is ON, the angles of the rubber line is constrained to multiples
of 45 degrees. On machines with only one mouse button the interaction is
stopped by double-clicking the mouse button.

Arc

The interaction is like InteractiveCreate for PieSlice, except that "moving
points" on the periphery is used instead of "rubber lines" from the centre
to the periphery during specification of angles in the second phase.

InteractiveMove

The outline of the graphical object follows the movements of the mouse. If
theModifier is held down, the movement is constrained to horizontal and verti-
cal directions. The interaction stops when the mouse button is released.

InteractiveReshape

For all kinds of graphical objects10 InteractiveReshape is initiated by grabbing
a control point and dragging it around, thus causing the shape to be altered. In
GraphicalObject, the theModifier argument of InteractiveReshape is currently
ignored, but for the other object kinds, if theModifier is ON, the interaction is
constrained in the same way as during InteractiveCreate. When reshaping a
PieSlice or an Arc, grabbing one of the "corners" will change either the hori-
zontal radius or the vertical radius of the object, whereas grabbing one of the
two control points on the periphery defining the angles will change the corre-
sponding angle.

8 Except for GraphicText, for which InteractiveReshape is not yet implemented

49

10 The Modular Design of
Bifrost

Fragments are used for several purposes in Bifrost:11

• to separate interface descriptions from implementation details

• to separate machine-specific details of the implementation from machine-inde-
pendent implementation

• to offer extra features that are not necessary for all applications which uses
Bifrost

• for separate compilation

Below the fragments of Bifrost are presented in four sections. The first section de-
scribes the application level of Bifrost, i.e., the fragments that are visible to an appli-
cation using Bifrost. Section 10.2 describes the device independent implementation of
Bifrost, except the implementation of the predefined shapes. The predefined shapes
and a library of rubberbanding interaction handlers are described in section 10.3.
Finally the X11 dependent level concludes the description. As can be seen, the pre-
sentation is based on the X Windows implementation of Bifrost, but the fragments
for, e.g., the Macintosh implementation is organized in an analogues way.

The notation used for the diagrams used in the presentation is shown below. It is
based on the notation used in the BETA case tool Freja.12

A B

A B

A B

B has ORIGIN in A:

B has ORIGIN in A and A BODYes B:

A INCLUDEs B:

A BODYes B:

A B

11 The description of the modular design assumes familiarity with the BETA Fragment System. A
description of the fragment system can be found in [Madsen 93] and [MIA 90-02]

12 In fact the diagrams have been generated by Freja

50 Bifrost Reference Manual

10.1 The Application Level
An application using Bifrost should have ORIGIN in or INCLUDE the Bifrost
fragment group. As shown below, this will make several fragments become visible to
the application:

PredefinedGO

Palette

ColorNames

RasterGrays

Bifrost

betaenv

listmath

guienv

SelectionPicture

Figure 13. The application level

The way an application uses bifrost can be summarized by the following: Each of the
basic concepts of the Bifrost graphics system, like GraphicalObject, Picture, and
Canvas, is described in the Bifrost. Besides these, the math-, list- and guienv
(Lidskjalv) libraries and of course betaenv are visible. The application can
INCLUDE additional libraries, in the figure, the additional Bifrost libraries Palette
and ColorNames are shown. PredefinedGO (containing the description of the
predefined graphical objects) are INCLUDEd by Palette.

The fragment groups specifying Bifrost are only interface fragments. That is, all do-
parts and all attributes, that should not be visible to the applications are in SLOTs.

The Bifrost fragment contains the pattern called Bifrost. By specializing the
Bifrost pattern, the application programmer is able to describe an application using
the patterns and objects in Bifrost. An application is invoked by executing an instance
of the specialization of Bifrost. The implementation of Bifrost is actually located in
the directory ~beta/bifrost/current. Any BETA application, that uses Bifrost,
should therefore have the following outline:

ORIGIN '~beta/bifrost/current/Bifrost';
-- PROGRAM: descriptor --
Bifrost
 (# ... do ... #)

or alternatively

ORIGIN '~beta/bifrost/current/Bifrost';
-- PROGRAM: descriptor --
(#
do Bifrost
 (# ... do ... #)
#)

As mentioned above, some parts of Bifrost are located in separate library fragments,
in order to reduce the complexity of simple applications. To utilize these facilities, the

The Application Level 51

above outline of a typical BETA application that uses Bifrost can be augmented with
inclusion of the appropriate fragments containing the extra facilities. The following
example illustrates the use of such fragments:

ORIGIN '~beta/bifrost/current/Bifrost';
INCLUDE '~beta/bifrost/current/PredefinedGO';
INCLUDE '~beta/bifrost/current/ColorNames';
-- PROGRAM: descriptor --
Bifrost
 (# ... do ... #)

Additional attributes may be added to Bifrost by specifying a fragment associated
with <<SLOT BifrostAttributes: attributes>> in the Bifrost pattern.

10.2 Device Independent
Implementation

Figure 14 shows the internal dependencies of the device independent implementation
of Bifrost. Fragment groups that has no ORIGIN in the figure, are described above,
except for the fragment group debug, which has ORIGIN in Bifrost.

DatatypesImpl BifrostImpl

Bifrost

debug

SegmentList

SegmentImpl

PredefinedImpl

PictureImpl

GoImpl

ShapeImpl

AbstractShapeImpl

BSplineImpl
PaintImpl

CanvasImpl

MathImpl

betaenv

objinterface

stddialogs

guienvbody

guienv

Figure 14 Device Independent Implementation

The organization of the implementation fragments of the Bifrost concepts is centered
around the fragment group BifrostImpl. This group contains various attributes that
need to be visible in several other implementation fragments. This is, e.g., the list of
Segments that constitute a Shape: This list needs to be visible in ShapeImpl, which
manipulate it. PaintImpl also needs information about the list when the Shape is to
be filled with a Paint. So, as can be seen, most of the implementation fragments have
ORIGIN in BifrostImpl. On the other hand, to bind it all together, BifrostImpl
BODYes all the implementation fragments.

52 Bifrost Reference Manual

The fragments of the implementation binds some of the SLOTs in the specification,
but not all. The fragments implementing the predefined shapes will be described be-
low. Also, in most of the implementation fragments additional SLOTs are declared, to
handle device dependent actions. These SLOTs are bound by fragments of the device
dependent implementation described below.

10.3 Implementation of Predefined
Shapes

The implementation of the predefined shapes, which is also device independent, is
centered around the fragment PredefinedImpl shown in Figure 14 above. Also, a
library of commonly used rubberbanding interaction handlers is used. The rubber-
banding interaction handlers have been constructed in a general way, so that most of
them are used in several predefined shapes. Because of this generality of the rubber
library, many INCLUDEs are used, and therefore naturally the figure below is a bit
messy:

ArcImpl

PredefinedImpl

CenteredRubberEllipse

CenteredRubberRectWithArc

DoubleRubberArc

RubberArc

Bifrost

RubberRect

RubberLine

DoubleRubberLine

CenteredRubberRect

PieImpl

LineImpl

MultilineImpl

TextImpl

EllipseImpl

RectImpl

BifrostImpl

Figure 15 Implementation of Predefined Shapes

Again various of the attributes in BifrostImpl are used, and the fragments thus have
ORIGIN in BifrostImpl.

10.4 X11 Dependent Implementation
The X11 dependent implmentation of Bifrost is centered around the fragment group
BifrostX11impl. This fragment group is used at the X11 level in the same way that
BifrostImpl was used at the device independent level described above. That is, it
contains various attributes, that need to be visible in several X11 implementation
fragments. Each X11 implementation fragment group has ORIGIN in the correspond-
ing device independent group. This is because not only SLOTs in the specification of
Bifrost are bound by the fragments, but also the additional SLOTs declared in the
device independent implementation:

X Toolkit Dependent Implementation 53

BifrostX11impl

BifrostImpl

AbstractShapeX11impl

ShapeX11impl

TextX11impl

PaintX11impl

RasterX11impl

CanvasX11impl

callbacks

RectangleList

CanvasImpl

RasterImpl

PaintImpl

TextImpl
X11fonts

ShapeImpl

AbstractShapeImpl guienv_unixprivate

DatatypesX11impl

CanvasXtImpl

XtOpenHandler

errorhandlerbody

Bifrost

DatatypesImpl

guienv

Figure 16 X11 Dependent Implementation

To bind it all together, BifrostX11Impl BODYes all the X11 implementation
fragment groups, which, on the other hand, each INCLUDE BifrostX11Impl to gain
access to the commonly used attributes. BifrostX11impl INCLUDEs callbacks,
from Lidskjalv (guienv) which includes the BETA interface to the X Window System
Libraries. BifrostX11Impl also INCLUDEs the fragment group DatatypesX11impl
to make it visible to all the fragment groups that INCLUDE BifrostX11Impl.

TextX11impl has been split into two fragment groups: The interface to the X Win-
dows fonts have been separated in the fragment group X11fonts which is rather big.
The splitting is done in order to reduce compilation time, and to make this part
separately visible to CanvasX11Impl, which INCLUDEs it.

CanvasXtImpl and XtOpenHandler contain the canvas implementation parts that are
dependent on the X Toolkit (as opposed to the rest of the X11 implementation, which
only relies on the XLib interface). For instance this includes a special handling of the
first expose event, that the X Toolkit widget associated with the canvas receives. This
is used to implement the onOpen attribute of the canvas eventhandler.

10.5 Summary
As can be seen from the above description, the Bifrost system consists of a huge
number of fragments, approximately 1000 in all, and the interrelation between them is
somewhat complicated. A complete graphical description can be obtained by joining
the figures above, but this is not recommended! This large structure is handled by the
fragment system, which the BETA compiler uses to automatically build the
dependency graph. In this situation, it would have been a very tedious job to have to
manually make such a dependency graph, as in traditionel systems.

54

11 Bifrost and Lidskjalv

As has been mentioned n the previous chapters, the current implementation of Bifrost
is based on the Lidskjalv User Interface Toolkit, also known as guienv, see [MIA94-
27]. As it was also mentioned in a footnote in the Canvas description, the Canvas
pattern is in the current implementation named BifrostCanvas. This chapter tries to
give an overview of the current situation with respect to such overlaps and
inconsistencies between Lidskjalv and Bifrost.

The Lidskjalv library and the Bifrost library has been designed independently. This is
the reason that here is some overlap in functionality, in the implementation of Bifrost
under Lidskjalv.

11.1 BifrostCanvas and Lidskjalv
Canvas

Both Lidskjalv and Bifrost have a Canvas concept. The Lidskjalv Canvas is designed
as a sort of "container" for WindowItems. In this respect it resembles the Bifrost
Canvas, which can be thought of as a sort of "container" for graphical objects.

The current implementation of Canvas in Bifrost is named BifrostCanvas, and it is a
specialization of the Canvas pattern in Lidskjalv. This means that you can combine
Bifrost graphics and Lidskjalv window items in a BifrostCanvas.

It is being discussed to rename the Lidskjalv Canvas pattern to another name with a
slightly less "graphical" flavor, and to re-rename the BifrostCanvas to Canvas as in
the previous non-Lidskjalv based Bifrost implementations.

11.2 Overlapping Data Types
The Lidskjalv fragment group graphmath defines, among other things the following
patterns:

• point

which is analog to the Bifrost Point pattern

• rectangle

which is analog to the Bifrost Rectangle pattern

• matrix, IDmatrix, moveMatrix, scaleMatrix, rotateMatrix

which are almost identical to the correspondingly named patterns in Bifrost
(they originate from Bifrost)

• ovalAngle and circleAngle

which are identical to the EllipseAngle and CircleAngle patterns of Bifrost
(also originating from Bifrost).

Bifrost and Lidskjalv 55

These overlaps in names may sometimes lead to "Illegal Assignment" errors in com-
pilations, and "Qualification Error" at runtime, if you mix Lidskjalv and Bifrost code.
These kind of errors may most times be solved by qualifying the references with
either THIS(Guienv) or THIS(Bifrost).

In a future implementation, these attributes will have been replaced by one common
set of patterns.

11.3 Lidskjalv Graphics and
FigureItems

The Lidskjalv fragment groups graphics and figureitems contain a simple set of
graphics routines to allow for some graphics in Lidskjalv. Both fragments are based
on the notation of a Pen, and whereas graphics defines a procedural graphics library
with "draw" and "fill" operation (but with no automatic refresh-handling like imme-
diate drawings in the Bifrost Canvas), the figureitems resemble Bifrost predefined
graphical objects somewhat. They can be thought of as a simplified "light-weight"
graphical library to use as an alternative to Bifrost in Lidskjalv.

Notice, however, that the figureitems in Lidskjalv are present mostly for historical
reasons, and that it is being discussed to replace them with the Bifrost equivalents.

56 Bifrost Reference Manual

12 Interface Descriptions

12.1 Various Simple Definitions
-- BifrostAttributes: attributes --

(* Specifications used to test for key and/or pointer modification *)
Modifier:
 (# m: @Integer; enter m do INNER exit m #);
NoModifier: Modifier
 (# ... #);
ShiftModifier: Modifier
 (# ... #);
ControlModifier: Modifier
 (# ... #);
LockModifier: Modifier
 (# ... #);
MetaModifier: Modifier
 (# ... #);
CommandModifier: Modifier
 (# ... #);

(* Constants used to specify fill rules *)
EvenOddRule: (# exit 0 #);
WindingRule: (# exit 1 #);

(* Cap styles *)
CapStyleDesc: (# s: @integer; enter s do INNER exit s #);

CapButt: CapStyleDesc(# ... #);
CapRounded: CapStyleDesc(# ... #);
CapSquare: CapStyleDesc(# ... #);

(* Join styles *)
JoinStyleDesc: (# s: @integer; enter s do INNER exit s #);
JoinMiter: JoinStyleDesc(# ... #);
JoinRound: JoinStyleDesc(# ... #);
JoinBevel: JoinStyleDesc(# ... #);

(* Fontnames to use in TextShape and GraphicText *)
fontName: integerObject(# do INNER #);
Courier: fontname(# ... #);
Times: fontname(# ... #);
Helvetica: fontname(# ... #);

(* Styles to use in TextShape and GraphicText *)
Style: integerObject(# do INNER #);
Plain: Style(# ... #);
Italic: Style(# ... #);
Bold: Style(# ... #);

MaxRGB: (* The upper limit for the range of RGB values *)
 (# max: @Integer
 ... (* Device dependent *)

Interface Descriptions 57

 exit max
 #);

(* Constants specifying the range for hue, saturation and value *)
DefaultMaxHue: (# exit 360 #);
DefaultMaxSat: (# exit 32768 #); (* (2^15) *)
DefaultMaxVal: (# exit 32768 #); (* (2^15) *)

12.2 Mathematics
Point:
 (# x, y: @integer;
 enter (x,y)
 exit (x,y)
 #);
Vector:
 (# x,y: @Real;
 enter (x,y)
 exit (x,y)
 #);
Rectangle:
 (# x,y,width,height: @Integer
 enter (x,y,width,height)
 exit (x,y,width,height)
 #);
EqualPoint:
 (# p1,p2: @Point;
 enter (p1,p2)
 exit (p1.x=p2.x) and (p1.y=p2.y)
 #);
AddPoints:
 (# p1,p2: @Point;
 enter (p1,p2)
 exit (p1.x+p2.x,p1.y+p2.y)
 #);
SubPoints:
 (# p1,p2: @Point;
 enter (p1,p2)
 exit (p1.x-p2.x,p1.y-p2.y)
 #);
ExpandRectangle:
 (# r: @rectangle;
 e: @integer;
 enter (r,e)
 exit (r.x-e, r.y+e, r.width+2*e, r.height+2*e)
 #);
PointInRect:
 (# p: @Point;
 r: @Rectangle;
 enter (p,r)
 exit ((r.x <= p.x) and (p.x <= r.x+r.width) and
 (r.y >= p.y) and (p.y >= r.y-r.height))
 #);
Matrix:
 (# a,b,c,d,tx,ty: @Real;
 inverse: ^Matrix;
 (* a b 0
 * c d 0
 * tx ty 1
 *)
 set:

58 Bifrost Reference Manual

 (# enter (a,b,c,d,tx,ty) #);
 transformPoint: @
 (# p,result: @Point;
 enter p
 ...
 exit result
 #);
 inverseTransformPoint: @
 (# p1,p2: @Point;
 enter p1
 ...
 exit p2
 #);
 transformRectangle: @
 (# r,result: @Rectangle;
 enter r
 do ...
 exit result
 #);
 inverseTransformRectangle:
 (# r,result: @Rectangle;
 enter r
 ...
 exit result
 #);
 getInverse: @
 (# get: @...;
 do get;
 exit inverse[]
 #);
 do INNER;
 exit (a,b,c,d,tx,ty)
 #);
IDMatrix:
 (* Exit an identity matrix *)
 (# ID: ^Matrix
 ...
 exit ID[]
 #);
MoveMatrix: Matrix (* A matrix specifying a translation *)
 (# itx,ity: @Integer;
 enter (itx,ity)
 ...
 #);
ScaleMatrix: Matrix (* A matrix specifying a scaling *)
 (#
 enter (a,d)
 ...
 #);
RotateMatrix: Matrix (* A matrix specifying a rotation *)
 (# theta: @Real;
 enter theta
 ...
 #);
MatrixMul: (* Multiply two matrices *)
 (# A,B,res: ^Matrix;
 enter (A[],B[])
 ...
 exit res[]
 #);
EllipseAngle:
 (* Returns the angle a (in radians) and cos(a), sin(a),
 * assuming that (x,y) is a point on the ellipse with center in
 * (cx,cy) and horizontal radius hr and verticalradius vr,
 * i.e. (x,y) = (cx,cy) + (hr*cos(a),vr*sin(a))
 *)

Interface Descriptions 59

 (# cx, cy, hr, vr, x, y: @integer;
 a, cos_a, sin_a: @real;
 angle: @...;
 enter (cx, cy, hr, vr, x, y)
 do angle
 exit (a, cos_a, sin_a)
 #);
CircleAngle:
 (* Returns the angle a (in radians) and cos(a), sin(a),
 * assuming that (x,y) is a point on the circle with center in
 * (cx,cy) and radius r, for some r
 * i.e. (x,y) = (cx,cy) + (r*cos(a),r*sin(a))
 *)
 (# cx, cy, x, y: @integer;
 a, cos_a, sin_a: @real;
 angle: @...;
 enter (cx, cy, x, y)
 do angle
 exit (a, cos_a, sin_a)
 #);

UnImplemented:
 (* Used to notify the user on features, that are not yet
 * implemented in Bifrost.
 *)
 (# feature: ^text
 enter feature[]
 ...
 #);

12.3 Datatypes
PointArray: (* Array of points, extended when needed *)
 (# <<SLOT PointArrayAttributes: Attributes >>;

 npoints: @Integer
 (* Number of points currently in THIS(PointArray) *);

 initPoints: (* Must be called first *)
 (# initialsize: @integer;
 enter initialsize
 do ...;
 #);
 copy: (* Return a deep copy of THIS(PointArray) *)
 (# p: ^PointArray;
 ...
 exit p[]
 #);
 addPoint: @(* Add p as the last point in THIS(PointArray) *)
 (# p: @Point;
 enter p
 do ...;
 #);
 getPoint: @
 (* Return point no i in THIS(PointArray); 1<=i<=npoints *)
 (# i: @Integer;
 p: @Point;
 enter i
 ...
 exit p
 #);
 setPoint: @

60 Bifrost Reference Manual

 (* Change the value of point no i to p; 1<=i<=npoints *)
 (# i: @Integer;
 p: @Point;
 enter (p,i)
 do ...;
 #);
 firstPoint: @(* Return first point of THIS(PointArray) *)
 (# exitPoint: @Point;
 ...
 exit exitPoint
 #);
 lastPoint: @(* Return last point of THIS(PointArray) *)
 (# exitPoint: @Point;
 ...
 exit exitPoint
 #);

 private: @...;
 #);

IntegerList: (* List of integers *)
 (#
 private: @...;
 i,inx: @integer;
 init: (# ... #);
 length:
 (# l: @integer ... exit l #);
 append: (* Append i at the end of THIS(IntegerList) *)
 (# enter i ... #);
 remove: (* Remove integer at index inx in THIS(IntegerList) *)
 (# enter inx ... #);
 insert: (* Insert i at index inx in THIS(IntegerList) *)
 (# enter (i,inx) ... #);
 copy: (* Return a deep copy of THIS(IntegerList) *)
 (# i: ^IntegerList ... exit i[] #);
 #);

PointArrayList: (* List of PointArrays, used internally *)
 (#
 private: @...;
 appendPointArray:
 (# p: ^PointArray;
 enter p[]
 ...
 #);
 scanPointArrays:
 (# p: ^PointArray;
 ...
 #);
 empty: booleanValue
 (# ... #);
 #);

12.4 Segment
Segment:
 (# <<SLOT SegmentAttributes: attributes>>;

 firstPoint:< (# p: @Point do INNER exit p #);
 lastPoint:< (# p: @Point do INNER exit p#);
 setFirstPoint:< (# p: @Point enter p do INNER #);

Interface Descriptions 61

 setLastPoint:< (# p: @Point enter p do INNER #);
 nextToFirstPoint:< (# p: @Point do INNER exit p #);
 nextToLastPoint:< (# p: @Point do INNER exit p #);
 copy:< (* Returns a deep copy of THIS(Segment) *)
 (# aCopy: ^Segment;
 ...
 exit aCopy[]
 #);
 transform:<
 (* Transform all control points in THIS(Segment) by M *)
 (# M: ^Matrix enter M[] do INNER #);
 reverseOrientation:< object;

 (* INTERACTION *)
 drawRubberBand:<
 (* Draw an thin curve along THIS(Segment). Useful when
 * drawing rubber feedback
 *)
 (# theCanvas: ^BifrostCanvas
 (* The BifrostCanvas to draw the rubberband on *);
 newPoint: @Point;
 theGOToDevice: ^Matrix;
 controlIndex: @Integer;
 nextSeg: ^Segment;
 enter
 (theCanvas[],theGOToDevice[],
 newPoint,controlIndex,nextSeg[])
 do INNER
 #);
 getControls:<
 (* Add all the defining points in THIS(Segment) to spots. If
 * spots[] is NONE, a PointArray is instantiated. canvasTM is
 * applied to all controls before they are appended to spots.
 * If canvasTM[] is NONE, IDmatrix is used.
 *)
 (# spots: ^PointArray;
 canvasTM: ^Matrix;
 enter (spots[], canvasTM[])
 ...
 exit spots[]
 #);

 (* PRIVATE, but virtual and hence cannot be in slots *)
 prepareReshape:< (* private *)
 (# theGOToDevice: ^Matrix;
 controlIndex: @Integer;
 nextSeg: ^Segment;
 movingp: @Point;
 theCanvas: ^BifrostCanvas;
 enter (theCanvas[],theGOToDevice[],controlIndex,nextSeg[])
 do INNER;
 #);
 endReshape:< (* private *)
 (# theGOToDevice: ^Matrix;
 finalPoint: @Point;
 controlIndex: @Integer;
 nextSeg: ^Segment;
 theCanvas: ^BifrostCanvas;
 enter (theCanvas[],theGOToDevice[],finalPoint,controlIndex,nextSeg[])
 do INNER;
 #);
 findSegments:< (* private *)
 (# p: @point;
 s1,s2: ^Segment;
 controlIndex: @Integer;
 enter p

62 Bifrost Reference Manual

 do INNER
 exit (s1[],s2[],controlIndex)
 #);
 calculatePoints:< (* private *)
 (# thePoints: ^PointArray;
 thePointList: ^PointArrayList;
 enter (thePoints[],thePointList[])
 do INNER;
 exit thePointList[]
 #);
 makeOffset:< (* private *)
 (# nextPoint: @Point;
 offsets: ^PointArray;
 width: @Integer;
 enter (offsets[],nextPoint)
 do INNER;
 #);
 makeSecondOffset:< (* private *)
 (# theShape: ^Segment; (* MUST be a Shape, though ! *)
 index: @Integer;
 offsets: ^PointArray;
 enter (theShape[],offsets[],index)
 do INNER;
 exit index
 #);
 writePS:<(# out: ^stream enter out[] do INNER #);
 do INNER;
 exit THIS(Segment)[]
 #);

12.5 Line- and Spline Segments
LineSegment: Segment
 (#
 begin,end: @Point;
 firstPoint::< (# do begin -> p #);
 lastPoint::< (# do end -> p #);
 setFirstPoint::< (# do p -> begin #);
 setLastPoint::< (# do p -> end #);
 nextToFirstPoint::< (# do end -> p; #);
 nextToLastPoint::< (# do begin -> p #);

 copy::< (# do INNER; ... #);
 transform::< (# ... #);
 reverseOrientation::< (# ... #);

 (* INTERACTION *)
 drawRubberBand::< (# ... #);
 getControls::<(# ... #);

 (* PRIVATE, but virtual and hence cannot be in slots *)
 writePS::<(# do ... #);
 prepareReshape::< (* private *)
 (# ... #);
 endReshape::< (* private *)
 (# ... #);
 findSegments::< (* private *)
 (# ... #);
 calculatePoints::< (* private *)
 (# ... #);
 makeOffset::< (* private *)

Interface Descriptions 63

 (# do ... #);
 makeSecondOffset::< (* private *)
 (# do ... #);
 #);

12.6 Splinesegment
SplineSegment: Segment (* abstract pattern *)
 (# <<SLOT SplineAttributes: Attributes >>;

 controls: ^PointArray;
 smoothness: @Real
 (* default 1.0 decrease to get a smoother spline increase to
 * get a coarser spline
 *);

 firstPoint::< (# ... #);
 lastPoint::< (# ... #);
 setFirstPoint::< (# ... #);
 setLastPoint::< (# ... #);
 nextToFirstPoint::<(# ... #);

 open:<
 (* Prepare THIS(SplineSegment) for adding control points *)
 (# startPoint: @Point;
 enter startPoint
 ...
 #);
 addControl:<
 (* Add p as a control point in THIS(SplineSegment) *)
 (# p: @Point;
 enter p ...
 #);
 insert:<
 (* Insert p as a control point after the control point at
 * position index
 *)
 (# p: @point;
 index: @integer;
 enter (p,index)
 do INNER
 #);
 delete:<
 (* Delete the control point at position index *)
 (# index: @integer;
 enter index
 do INNER
 #);
 copy::< (# do INNER; ... #);
 transform::< (# ... #);
 reverseOrientation::< (# do ... #);

 (* PRIVATE *)
 writePS::<(# do ... #);
 prepareReshape::< (* private *)
 (# ... #);
 endReshape::< (* private *)
 (# ... #);
 DrawRubberSplineDesc:< (* private *)
 (# track: @Point;
 controlIndex: @Integer;

64 Bifrost Reference Manual

 theCanvas: ^BifrostCanvas;
 enter (theCanvas[],track,controlIndex)
 do INNER
 #);
 calculatePoints::< (* private *)
 (# splinePoints: ^PointArray;
 ...
 #);
 splineprivate: @...;

 do INNER;
 #); (* SplineSegment *)

12.7 CircularSplineSegment
CircularSplineSegment: SplineSegment
 (# nextToLastPoint::< (# ... #);
 copy::<(# do ... #);
 drawRubberBand::< (# ... #);

 (* PRIVATE *)
 writePS::<(# do ... #);
 DrawRubberSplineDesc::< (* private *)
 (# do ... #);
 findSegments::< (* private *)
 (# ... #);
 calculatePoints::< (* private *)
 (# ... #);
 getControls::< (* private *)
 (# ... #);
 makeOffset::< (* private *)
 (# do ... #);
 makeSecondOffset::< (* private *)
 (# do ... #);
 do INNER;
 #);

12.8 NoncircularSplineSegment
NonCircularSplineSegment: SplineSegment
 (# nextToLastPoint::< (# ... #);
 copy::< (# do ... #);
 close:
 (# ... #);
 isClosed: booleanValue
 (# ... #);
 open::<
 (#
 ...
 #);
 addControl::<
 (#
 ...
 #);
 drawRubberBand::< (# ... #);

 (* PRIVATE *)

Interface Descriptions 65

 writePS::<(# do ... #);
 private: @...;
 DrawRubberSplineDesc::< (* private *)
 (# do ... #);
 findSegments::< (* private *)
 (# ... #);
 calculatePoints::< (* private *)
 (# ... #);
 getControls::< (* private *)
 (# ... #);
 makeOffset::< (* private *)
 (# do ... #);
 makeSecondOffset::< (* private *)
 (# do ...#);
 do INNER;
 #);

12.9 AbstractShape
AbstractShape: Segment
 (# <<SLOT AShapeAttributes: attributes >>;

 copy::< (# do INNER; ... #);
 fillRule: @
 (* Rule to determine what is inside and what is outside
 * THIS(AbstractShape). Used, e.g. when filling
 * THIS(AbstractShape) with some Paint. Defaults to
 * WindingRule.
 *)
 (# r: @Integer;
 changed: @Boolean; (* initialized as false *)
 changeRule: (# enter r do True -> changed #);
 enter changeRule
 do (if not changed then WindingRule -> r if);
 exit r
 #);
 invalidate:<
 (* invalidate THIS(AbstractShape), so it will be recalculated
 * next time used in fill or clip operation.
 *)
 (# ... #);
 invalid:
 (* Answer true if THIS(AbstractShape) has been invalidated *)
 (# b: @Boolean;
 ...
 exit b
 #);
 getBounds:<
 (* Return the bounding box of THIS(AbstractShape) *)
 (# bound: @rectangle;
 ...
 exit bound
 #);

 (* QUERY *)
 containsPoint:< booleanValue
 (* Answer whether thePoint is inside THIS(AbstractShape),
 * thePoint is assumed to be in coordinates relative to
 * theCanvas.
 *)
 (# theCanvas: ^BifrostCanvas;

66 Bifrost Reference Manual

 thePoint: @Point;
 enter (theCanvas[],thePoint)
 ...
 #);
 intersects:< booleanValue (* Not Yet Implemented *)
 (* Answer whether theshape intersects with THIS(AbstractShape)
 *)
 (# theShape: ^AbstractShape;
 enter theShape[]
 ...
 #);
 within:< booleanValue (* Not Yet Implemented *)
 (* Answer whether theshape is completely within
 * THIS(AbstractShape)
 *)
 (# theShape: ^AbstractShape;
 enter theShape[]
 ...
 #);
 hotspot: @
 (* The default value of hotspot is firstpoint *)
 (# p: @Point;
 changed: @Boolean; (* initialized as false *)
 changeHotspot: (# enter p do True -> changed #);
 enter changeHotspot
 do (if not changed then firstPoint -> p if);
 exit p
 #);

 (* HIGHLIGHTING *)
 hiliteDesc: (* Qualification for highlighting patterns *)
 (# doneInInner: @boolean;
 theCanvas: ^BifrostCanvas
 (* The BifrostCanvas to do the highlighting on *);
 draw: @boolean
 (* Should the feedback be drawn or erased ? *);
 TM: ^Matrix
 (* TM is applied before the feedback is drawn *);
 copy:< (* Return a deep copy of THIS(HiliteDesc) *)
 (# aCopy: ^hiliteDesc;
 ...
 exit aCopy[]
 #);
 enter (theCanvas[], draw, TM[])
 ...
 #);

 (* PREDEFINED HIGHLIGHTING PATTERNS *)

 hiliteControls:< hiliteDesc
 (* Highlight control points *)
 (# copy::< (# do INNER; ... #);
 do INNER; ... #);
 hiliteOutline:< hiliteDesc
 (* Highlight outline of THIS(AbstractShape). To be further
 * bound
 *)
 (# hiliteWidth: @integer
 (* The width of the lines used when highlighting outline.
 * 0 means as thin as possible (default). Should be the
 * same as the corresponding hilitewidth.
 *);
 copy::< (# do ... #);
 do INNER
 #);
 hiliteBound:< hiliteDesc

Interface Descriptions 67

 (* Highlight bounding box *)
 (# Width: @integer;
 copy::< (# ... #);
 do INNER; ...;
 #);

 (* The actual highlight patterns used. drawhilite points to one
 * of hc, ho, hb or some user supplied specialization of
 * hilitedesc
 *)
 hc: @HiliteControls;
 ho: @HiliteOutline;
 hb: @HiliteBound;
 drawHilite: ^hiliteDesc;

 (* DEFINITION LANGUAGE *)
 open:< (* Must be called first *)
 (# p: @Point enter p ... #);

 (* INTERACTION *)
 Interaction:
 (* Prefix for interaction patterns *)
 (# theCanvas: ^BifrostCanvas;
 theModifier: @Modifier;
 startPoint: @Point;
 enter (theCanvas[], startPoint, theModifier)
 do INNER;
 #);
 InteractiveCreate:< Interaction
 (* Provide feedback for creating THIS(AbstractShape)
 * interactively. Make the feedback constrained if
 * theModifier is on. Start the interaction in startpoint.
 *);
 InteractiveCombine:< Interaction
 (* Create a Shape interactively and combine that Shape with
 * THIS(AbstractShape). Make the feedback constrained if
 * theModifier is on. Start the interaction in startpoint.
 *);
 InteractiveReshape:< Interaction
 (* Provide feedback for reshaping THIS(AbstractShape)
 * interactively. Make the feedback constrained if
 * theModifier is on. Start the interaction in startpoint.
 *);

 transform::< (# ... #);
 getcontrols::< (# ... #);

 (* PRIVATE *)
 privatePart: @...;
 calculatePoints::< (* private *)
 (# do ... #);

 do INNER;
 #); (* Abstract Shape *)

12.10 Shape
Shape: AbstractShape
 (* For making user defined objects *)
 (# <<SLOT ShapeAttributes: attributes >>;
 copy::< (# do INNER; ... #);

68 Bifrost Reference Manual

 getBounds::< (# ... #);
 containsPoint::< (# do ...; INNER #);
 intersects::< (* Not Yet Implemented *)
 (# ... #);
 within::< (* Not Yet Implemented *)
 (# ... #);
 currentPoint:< (* The last control point added *)
 (# p: @Point;
 do ...; INNER;
 exit p
 #);
 firstPoint::< (# do ...; INNER #);
 lastPoint::< (# ... #);
 nextToFirstPoint::<(# ... #);
 nextToLastPoint::< (# ... #);
 open::< (# ... #);

 (* DEFINITION LANGUAGE *)
 addSpline:
 (* Add Spline beginning at currentpoint. Spline.lastpoint
 * becomes new currentpoint
 *)
 (# Spline: ^SplineSegment;
 enter spline[]
 do ...;
 #);
 lineTo:
 (* If currentPoint is a control point in a spline being
 * defined with splineTo, that spline is ended. Add a
 * LineSegment beginning at currentPoint and ending at p. p
 * becomes new currentPoint.
 *)
 (# p: @Point;
 enter p
 do ...;
 #);
 splineTo:
 (* If currentPoint is the end point in a line segment, a new
 * spline segment is opened. That spline segment becomes the
 * "current spline segment". Add currenPoint as the first
 * control point of the current spline segment. Add p as a
 * control point to the current spline segment. p becomes new
 * currentPoint.
 *)
 (# p: @Point;
 enter p
 ...
 #);
 close:< (* Should be called after the definition is finished *)
 (# ... #);

 (* QUERY FUNCTIONS *)
 isClosed: booleanValue
 (* NOTICE: an empty shape is considered closed!!*)
 (# ... #);
 isEmpty: booleanValue
 (# ... #);
 isFlat: booleanValue
 (* THIS(AbstractShape) is flat iff it contains no splines *)
 (# ... #);

 (* MANIPULATING THE SHAPE *)
 reverseOrientation::< (# do ...; INNER #);
 stroke:
 (* Change THIS(Shape) to be the shape obtained by stroking a
 * "pen" with the witdh W along THIS(Shape). When stroking an

Interface Descriptions 69

 * open Shape, the look of the "ends" of the resulting shape
 * is specified with capStyle. At joining points the joining
 * style is specified by joinStyle.
 *)
 (# W: @Integer;
 capstyle: @capstyledesc;
 joinstyle: @joinstyledesc;
 enter (W, capstyle, joinstyle)
 do ...;
 #);
 insert: (* Not Yet Implemented *)
 (* If p1 is in the neighborhood of an existing control point,
 * P2 is added as a new control point is between the neighbor
 * point and the next point.
 *)
 (# p1, p2: @point;
 enter (p1,p2)
 ...
 #);
 delete: (* Not Yet Implemented *)
 (* If p is in the neighborhood of an existing control point,
 * this control point is deleted
 *)
 (# p: @point;
 enter p
 ...
 #);

 (* COMBINING SHAPES *)
 appendShape: (* Not Yet Implemented *)
 (* Add sourceShape to THIS(Shape). Place
 * sourceShape.firstPoint in THIS(Shape).lastPoint by
 * translating the entire sourceShape. This is the only
 * transformation involved. After the operation,
 * THIS(Shape).lastPoint is the translated
 * sourceShape.lastPoint. sourceShape cannot consist of
 * circularSplines only.
 *)
 (# sourceShape: ^Shape;
 enter sourceShape[]
 ...
 #);
 connectShape: (* Not Yet Implemented *)
 (* Add sourceShape to THIS(Shape). TM is applied to
 * sourceShape before the addition. THIS(Shape).lastpoint is
 * connected to sourceShape.firstPoint with a line segment.
 * After the operation, THIS(Shape).lastPoint is the
 * translated sourceShape.lastPoint.
 * sourceShape cannot consist of circularSplines only.
 *)
 (# TM: ^Matrix;
 sourceShape: ^Shape;
 enter (TM[],sourceShape[])
 ...
 #);
 connectShapeSmooth: (* Not Yet Implemented *)
 (* Add sourceShape to THIS(Shape). TM is applied to
 * sourceShape before the addition. THIS(Shape).lastpoint is
 * connected to sourceShape.firstPoint with a spline segment
 * constructed from the last two points in THIS(Shape) and
 * sourceShape.firstPoint. After the operation,
 * THIS(Shape).lastPoint is the translated
 * sourceShape.lastPoint. sourceShape cannot consist of
 * circularSplines only.
 *)
 (# TM: ^Matrix;

70 Bifrost Reference Manual

 sourceShape: ^Shape;
 enter (TM[],sourceShape[])
 ...
 #);
 combineShape:
 (* Add sourceShape to THIS(Shape). TM is applied to
 * sourceShape before the addition. sourceShape and
 * THIS(Shape) do *not* become connected. At least one of
 * THIS(Shape) and sourceShape must be closed. If sourceShape
 * is closed, THIS(Shape).lastPoint is unchanged. If
 * sourceShape is open, THIS(Shape).lastPoint is
 * sourceshape.lastPoint after the operation.
 *)
 (# TM: ^Matrix;
 sourceShape: ^Shape;
 enter (TM[],sourceShape[])
 do ...;
 #);

 (* HIGHLIGHTING *)
 hiliteOutline::< (# ... #);

 (* INTERACTION *)
 InteractiveCreate::< (# do ...; INNER #);
 InteractiveCombine::< (# do ...; INNER #);

 InteractiveReshape::< (# do ...; INNER #);
 transform::< (# do ...; INNER #);

 getControls::<(# do ... #);

 (* PRIVATE *)
 findSegments::< (* private *)
 (# do ... #);
 writePS::<(# do ... #);
 do INNER;
 #); (* Shape *)

12.11 PredefinedShape
PredefinedShape: AbstractShape
 (#
 CalculateShape:<
 (* Return (approximating) Shape, if possible *)
 (# s: ^Shape
 do INNER
 exit (# ... exit s[] #)
 #);
 invalidate::<(# ... #);
 containsPoint::<(# ... #);
 intersects::<(# ... #);
 within::< (# ... #);
 transform::<(# do ...; INNER #);

 (* Patterns behaving like standard "types", but that have the
 * side-effect of invalidating THIS(PredefinedShape) when
 * changed.
 *)
 invalidatePoint:
 (# p: @Point; enter (# enter p do Invalidate #) exit p #);
 invalidateInteger: integerValue

Interface Descriptions 71

 (# enter (# enter value do Invalidate #) #);
 invalidateReal:
 (# r: @Real; enter (# enter r do Invalidate #) exit r #);
 invalidateDash:
 (* For instance 1,2,4,2 yields '= ==== = ==== =' etc. *)
 (# d: ^IntegerList;
 enter (# enter d[] do invalidate #)
 exit d[]
 #);
 invalidateCapStyle:
 (# c: @CapStyleDesc;
 enter (# enter c do invalidate #)
 exit c
 #);
 invalidateJoinStyle:
 (# j: @JoinStyleDesc;
 enter (# enter j do invalidate #)
 exit j
 #);
 writePS::<(# do ... #);
 prePrivate: @...;
 do INNER;
 #);

12.12 LineShape
LineShape: PredefinedShape
 (# <<SLOT LineShapeAttributes: attributes>>;

 firstPoint::<(# do begin -> p #);

 begin: @InvalidatePoint;
 end: @InvalidatePoint;
 width: @InvalidateInteger;
 dashes: @InvalidateDash; (* Not Yet Implemented *)
 cap: @InvalidateCapStyle;

 coordinates:
 (# enter (begin, end) exit (begin, end) #);
 open::<(# ... #);
 getBounds::< (# do ...; INNER #);
 containsPoint::<(# ... #);
 intersects::< (* Not Yet Implemented *)
 (# ... #);
 within::< (* Not Yet Implemented *)
 (# ... #);
 getControls::<(# ... #);
 copy::< (# do INNER; ... #);

 (* HIGHLIGHTING *)
 hiliteOutline::< (# do INNER; ... #);

 (* INTERACTION *)
 interactiveCreate::<(# do ...; INNER #);
 interactiveReshape::<(# do ...; INNER #);

 writePS::<(# do ... #);
 transform::<(# ... #);
 CalculateShape::< (* private *)
 (# ... #);

72 Bifrost Reference Manual

 do INNER;
 #);

12.13 MultilineShape
MultiLineShape: PredefinedShape
 (# <<SLOT MultiLineShapeAttributes: attributes>>;

 firstPoint::< (# ... #);
 points: @
 (# p: ^PointArray;
 enter (# enter p[] do invalidate #)
 exit p[]
 #);
 width: @InvalidateInteger;
 dashes: @InvalidateDash; (* Not Yet Implemented *)
 cap: @InvalidateCapStyle;
 join: @InvalidateJoinStyle;

 open::< (# ... #);
 addPoint: (* Add p at the end of points *)
 (# p: @point;
 enter p
 ...
 #);
 deletePoint: (* Delete p at from points *)
 (# p: @point;
 enter p
 ...
 #);
 insertPoint: (* Insert p in points at position inx *)
 (# p: @point;
 inx: @integer
 enter (inx,p)
 ...
 #);
 getBounds::<(# do ...; INNER #);
 containsPoint::<(# ... #);
 intersects::< (* Not Yet Implemented *)
 (# ... #);
 within::< (* Not Yet Implemented *)
 (# ... #);
 getControls::<(# ... #);
 copy::< (# do INNER; ... #);

 (* HIGHLIGHTING *)
 hiliteOutline::< (# do INNER; ... #);

 (* INTERACTION *)
 interactiveCreate::<(# do ...; INNER #);
 interactiveReshape::<(# do ...; INNER #);
 writePS::<(# do ... #);
 transform::<(# ... #);

 calculateShape::< (* private *)
 (# ... #);
 do INNER;
 #);

Interface Descriptions 73

12.14 TextShape
TextShape: PredefinedShape
 (# <<SLOT TextShapeAttributes: attributes>>;

 firstPoint::< (# do position -> p #);
 initText: (* Specify several attributes simultaneously *)
 (#
 enter
 (position, theFontname, theStyle, size, underline, theText)
 #);
 position:
 (* Where to place the baseline of the first line of theText *)
 (# p: @Point;
 enter (# enter p ... #)
 ...
 exit p
 #);
 theFontName: (* one of Courier, Times, Helvetica *)
 (# nam: @fontname;
 enter (# enter nam ... #)
 ...
 exit nam
 #);
 theStyle: (* Either Plain, Italic or Bold *)
 (# sty: @Style;
 enter (# enter sty ... #)
 ...
 exit sty
 #);
 size: (* The size in points (1/72 inch) of the text drawn *)
 (# siz: @Integer;
 enter (# enter siz ... #)
 ...
 exit siz
 #);
 underline: (* Specifies if the text is to be underlined *)
 (# ul: @Boolean;
 enter (# enter ul ... #)
 ...
 exit ul
 #);
 theText: (* Holds the characters of THIS(TextShape) *)
 (# t: ^Text;
 enter (# enter t[] ... #)
 ...
 exit t
 #);
 getBounds::<(# do ...; INNER #);
 containsPoint::<(# ... #);
 intersects::< (* Not Yet Implemented *)
 (# ... #);
 within::< (* Not Yet Implemented *)
 (# ... #);
 getControls::<(# do ...; INNER #);
 copy::< (# do INNER; ... #);

 (* HIGHLIGHTING *)
 hiliteOutline::< (# do INNER; ... #);

 (* INTERACTION *)
 interactiveCreate::<
 (# lastCh: @char; (* Last character typed in interaction *)
 do ...; INNER
 exit lastCh

74 Bifrost Reference Manual

 #);
 interactiveReshape::<
 (# lastCh: @char; (* Last character typed in interaction *)
 ...
 exit lastCh
 #);

 writePS::<(# do ... #);
 transform::<(# ... #);
 TextPrivate: @ ...;
 calculateShape::< (* private *)
 (# ... #);

 do INNER;
 #);

12.15 PieShape
PieShape: PredefinedShape
 (# <<SLOT PieShapeAttributes: attributes>>;

 firstPoint::<(# do center -> p #);

 center: @InvalidatePoint;
 horizontalRadius: @InvalidateInteger;
 verticalRadius: @InvalidateInteger;
 (* Use: 0 <= angle1 <= 360 a1 <= angle2 <= 360+angle1 *)
 angle1: @InvalidateReal;
 angle2: @InvalidateReal;

 open::<(# do ...; INNER #);
 getBounds::<(# do ...; INNER #);
 containsPoint::<(# do ...; INNER #);
 intersects::< (* Not Yet Implemented *)
 (# ... #);
 within::< (* Not Yet Implemented *)
 (# ... #);
 getControls::< (# do ...; INNER #);
 copy::< (# do INNER; ... #);

 (* HIGHLIGHTING *)
 hiliteOutline::< (# do INNER; ... #);

 (* INTERACTION *)
 interactiveCreate::<(# do ...; INNER #);
 interactiveReshape::<(# do ...; INNER #);

 writePS::<(# do ... #);
 transform::<(# ... #);
 calculateShape::< (* private *)
 (# ... #);
 do INNER
 #);

12.16 ArcShape
ArcShape: PredefinedShape

Interface Descriptions 75

 (# <<SLOT ArcShapeAttributes: attributes>>;

 firstPoint::<(# do center -> p #);

 center: @InvalidatePoint;
 horizontalRadius: @InvalidateInteger;
 verticalRadius: @InvalidateInteger;
 (* Use: 0 <= angle1 <= 360 a1 <= angle2 <= 360+angle1 *)
 angle1: @InvalidateReal;
 angle2: @InvalidateReal;
 arcWidth: @InvalidateInteger;

 open::<(# ... #);
 getBounds::<(# do ...; INNER #);
 containsPoint::<(# do ...; INNER #);
 intersects::< (* Not Yet Implemented *)
 (# ... #);
 within::< (* Not Yet Implemented *)
 (# ... #);
 getControls::<(# do ...; INNER #);
 copy::< (# do INNER; ... #);

 (* HIGHLIGHTING *)
 hiliteOutline::< (# do INNER; ... #);

 (* INTERACTION *)
 interactiveCreate::<(# do ...; INNER #);
 interactiveReshape::<(# do ...; INNER #);

 writePS::<(# do ... #);
 transform::<(# ... #);
 calculateShape::< (* private *)
 (# ... #);

 do INNER
 #);

12.17 StrokeableShape
StrokeableShape: PredefinedShape
 (# stroked: @Boolean;
 strokewidth: @Integer;

 writePS::<(# do ... #);
 getBounds::<(# ... #);
 copy ::<(# do INNER; ... #);
 do INNER
 #);

12.18 RectShape
RectShape: StrokeableShape
 (# <<SLOT RectShapeAttributes: attributes>>;

 firstPoint::<(# do upperleft -> p #);

 upperleft: @InvalidatePoint;

76 Bifrost Reference Manual

 width: @InvalidateInteger;
 height: @InvalidateInteger;

 corners:
 (# lowerright: @Point;
 changeCorners:
 (# enter (upperleft,lowerright)
 ...
 #);
 enter changeCorners
 exit
 (upperleft,
 ((upperleft.p.x+width),
 (upperleft.p.y+height)))
 #);
 open::<(# ... #);
 getBounds::<(# ... #);
 containsPoint::<(# ... #);
 intersects::< (* Not Yet Implemented *)
 (# ... #);
 within::< (* Not Yet Implemented *)
 (# ... #);
 getControls::<(# ... #);
 copy::<(# do INNER; ... #);

 (* HIGHLIGHTING *)
 hiliteOutline::< (# do INNER; ... #);

 (* INTERACTION *)
 interactiveCreate::<(# do ...; INNER #);
 interactiveReshape::<(# do ...; INNER #);

 writePS::<(# do ... #);
 transform::<(# ... #);
 calculateShape::< (* Private *)
 (# ... #);

 do INNER;
 #);

12.19 EllipseShape
EllipseShape: StrokeableShape
 (# <<SLOT EllipseShapeAttributes: attributes>>;

 firstPoint::< (# do center -> p #);

 center: @InvalidatePoint;
 horizontalradius: @InvalidateInteger;
 verticalradius: @InvalidateInteger;

 geometry:
 (#
 enter (center, verticalradius, horizontalradius)
 exit (center, verticalradius, horizontalradius)
 #);
 open::<(# ... #);
 getBounds::<(# ... #);
 containsPoint::<(# ... #);
 intersects::< (* Not Yet Implemented *)
 (# ... #);

Interface Descriptions 77

 within::< (* Not Yet Implemented *)
 (# ... #);
 getControls::<(# do ...; INNER #);
 copy::< (# do INNER; ... #);

 (* HIGHLIGHTING *)
 hiliteOutline::< (# do INNER; ... #);

 (* INTERACTION *)
 interactiveCreate::<(# ... #);
 interactiveReshape::<(# do ...; INNER #);

 writePS::<(# do ... #);
 transform::<(# ... #);
 calculateShape::< (* private *)
 (# do ... #);

 do INNER;
 #);

12.20 Rasters
Raster:
 (* An abstract superpattern for all Rasters. A raster is a
 * rectangular grid of pixels.
 *)
 (# <<SLOT RasterAttributes: attributes>>;

 hotspot:
 (* When used in a filling operation hotspot is placed in
 * hotspot of the shape being filled. Defaults to (0,0).
 *)
 (# p: @Point;
 enter (# enter p ... #)
 exit (# ... exit p #)
 #);
 pixel:< Object;

 init:<
 (# width, height: @integer;
 enter (width, height)
 ...
 #);
 copy:< (* Return a deep copy of THIS(Raster) *)
 (# aCopy: ^Raster;
 ...
 exit aCopy[]
 #);
 width: integerValue
 (* returns the width set by init or by read operations *)
 (# ... #);
 height: integerValue
 (* returns the height set by init or by read operations *)
 (# ... #);

 putPixel:<
 (# i, j: @integer; p: ^pixel;
 enter (i,j,p[])
 ...
 #);
 getPixel:<

78 Bifrost Reference Manual

 (# i, j: @integer; p: ^pixel;
 enter (i,j)
 ...
 exit p[]
 #);

 (* Private *)
 calculate:< (# ... #);
 RasterPrivatePart: @ ...;

 do INNER; calculate;
 exit THIS(Raster)[]
 #);

BitMap: Raster
 (* Raster in which the pixels are booleans *)
 (# <<SLOT BitmapAttributes: attributes>>;

 pixel::< (# b: @boolean enter b exit b #);
 init::< (# do ...; INNER #);
 putPixel::< (# do ...; INNER #);
 getPixel::< (# ... #);
 copy::< (# do INNER; ... #);
 writeToPBMfile: (* Not Yet Implemented *)
 (# pbmfilename: ^text;
 rawbits: @boolean
 (* If true, the RAWBITS format is used *);
 enter (pbmfilename[],rawbits)
 ...
 #);
 readFromPBMfile:
 (# pbmfilename: ^text;
 enter pbmfilename[]
 do ...;
 #);

 (* Private *)
 calculate::< (# ... #);
 BitMapPrivatePart: @ ...;
 do INNER;
 #);

GrayMap: Raster (* Not Yet Implemented *)
 (# <<SLOT GraymapAttributes: attributes>>;

 pixel::<(# g: @integer enter g exit g #);
 init::< (# ... #);
 putPixel::< (# ... #);
 getPixel::<(# ... #);
 copy::<(# do INNER; ... #);
 writeToPGMfile:
 (# pgmfilename: ^text;
 rawbits: @boolean
 (* If true, the RAWBITS format is used *);
 enter (pgmfilename[],rawbits)
 ...
 #);
 readFromPGMfile:
 (# pgmfilename: ^text;
 enter pgmfilename[]
 ...
 #);

 (* Private *)
 calculate::< (# ... #);
 GrayMapPrivatePart: @ ...;

Interface Descriptions 79

 do INNER;
 #);

PixMap: Raster
 (* Raster in which the pixels are RGB values *)
 (# <<SLOT PixmapAttributes: attributes>>;

 pixel::< (# r,g,b: @integer enter (r,g,b) exit (r,g,b) #);
 init::<
 (# maxVal: @integer; (* Maximum RGB value *)
 enter maxVal
 do ...; INNER
 #);
 putPixel::< (# do ...; INNER #);
 getPixel::< (# ... #);
 copy::< (# do INNER; ... #);
 writeToPPMfile: (* Not Yet Implemented *)
 (# ppmfilename: ^text;
 rawbits: @boolean
 (* If true, the RAWBITS format is used *);
 enter (ppmfilename[],rawbits)
 ...
 #);
 readFromPPMfile: (* Not Yet Implemented *)
 (# ppmfilename: ^text;
 enter ppmfilename[]
 ...
 #);

 (* Private *)
 calculate::< (# ... #);
 PixMapPrivatePart: @ ...;

 do INNER;
 #);

12.21 Paint
Paint: (* An abstract superpattern for all paint *)
 (# <<SLOT PaintAttributes: attributes>>;

 init:< object;

 copy:< (* Return a deep copy of THIS(Paint) *)
 (# aCopy: ^Paint;
 ...
 exit aCopy[]
 #);
 fill:
 (* Prefix for fill operations *)
 (# theCanvas: ^BifrostCanvas enter theCanvas[] do INNER #);
 fillShape:< fill
 (* Fill theShape with THIS(Paint) in theCanvas. *)
 (# theShape: ^Shape;
 enter (theShape[])
 ...
 #);
 fillLine:< fill
 (* Fill theLine with THIS(Paint) in theCanvas. *)
 (# theLine: ^LineShape;
 enter (theLine[])

80 Bifrost Reference Manual

 ...
 #);
 fillMultiLine:< fill
 (* Fill theMultiLine with THIS(Paint) in theCanvas.
 *)
 (# theMultiLine: ^MultiLineShape;
 enter (theMultiLine[])
 ...
 #);
 fillText:< fill
 (* Fill the specified text with THIS(Paint) in theCanvas *)
 (# theText: ^TextShape;
 enter (theText[])
 ...
 #);
 fillPie:< fill
 (* Fill thePie with THIS(Paint) in theCanvas. *)
 (# thePie: ^pieShape;
 enter (thePie[])
 ...
 #);
 fillArc:< fill
 (* Fill theArc with THIS(Paint) in theCanvas. *)
 (# theArc: ^arcShape;
 enter (theArc[])
 ...
 #);
 fillRect:< fill
 (* Fill theRect with THIS(Paint) in theCanvas. *)
 (# theRect: ^RectShape;
 enter (theRect[])
 ...
 #);
 fillEllipse:< fill
 (* Fill the theEllipse with THIS(Paint) in theCanvas *)
 (# theEllipse: ^EllipseShape;
 enter (theEllipse[])
 ...
 #);
 fillOther:< fill
 (* Used to fill other, e.g. user defined, shapes *)
 (# theShape: ^AbstractShape;
 enter theShape[]
 do INNER;
 #);

 (* PRIVATE *)
 writePS:<(# out: ^stream enter out[] do INNER #);
 paintprivate: @ ...;
 setSpecialPaint: (* Private *)
 (# theCanvas: ^BifrostCanvas;
 doneInInner: @boolean;
 enter theCanvas[]
 do INNER
 #);
 setCanvasPaint:< (* Private *) setSpecialPaint;
 setBorderPaint:< (* Private *) setSpecialPaint;
 SetBackgroundPaint:< (* Private *) setSpecialPaint;
 do INNER;
 exit THIS(Paint)[]
 #);

Interface Descriptions 81

12.22 SolidColor
SolidColor: Paint
 (* A solid color specified relative to the RGB, HSV, or CMY color
 * spaces, or by naming the color, using one of the name patterns
 * in the fragment ColorNames.
 *)
 (# <<SLOT SolidColorAttributes: attributes>>;

 init::<(# ... #);
 copy::< (# do INNER; ... #);
 Name:
 (* Change THIS(SolidColor) to the color specified. The color
 * names are define as descriptors in the fragment
 * 'ColorNames'. NOTICE: This is different from earlier
 * versions of Bifrost.
 *)
 (# enter RGBvalues #);
 RGBvalues:
 (* Set or query the Red-Green-Blue values of THIS(SolidColor)
 * r, g and b all ranges from 0 to MaxRGB.
 *)
 (# r,g,b: @Integer;
 changeRGB:
 (# enter (r,g,b) ... #);
 getRGB:
 (# ... exit (r,g,b) #);
 enter changeRGB
 exit GetRGB
 #);
 HSVvalues:
 (* Set or query the Hue-Saturation-Value values of
 * THIS(SolidColor). h, s and v are taken to range from 0 to
 * MaxHue, MaxSat and MaxVal respectively. Specializations may
 * alter the default bindings of these.
 *)
 (# h,s,v: @Integer;
 changeHSV:
 (# enter (h,s,v) do ... #);
 getHSV:
 (# do ... exit (h,s,v) #);
 MaxHue:< integerValue
 (# do DefaultMaxHue -> value; INNER #);
 MaxSat:< integerValue
 (# do DefaultMaxSat -> value; INNER #);
 MaxVal:< integerValue
 (# do DefaultMaxVal -> value; INNER #);
 enter changeHSV
 exit getHSV
 #);
 CMYvalues: (* RGB complementaries *)
 (* Set or query the Cyan-Magenta-Yellow values of
 * THIS(SolidColor). c, m and y all ranges from 0 to MaxRGB.
 *)
 (# c,m,y: @Integer;
 changeCMY:
 (# enter (c,m,y) do ... #);
 getCMY:
 (# do ...; exit (c,m,y) #);
 enter changeCMY
 exit getCMY
 #);

 fillShape::<(# ... #);
 fillLine::<(# do INNER; ... #);

82 Bifrost Reference Manual

 fillMultiLine::<(# ... #);
 fillText::<(# do INNER; ... #);
 fillPie::<(# do INNER; ... #);
 fillArc::<(# do INNER; ... #);
 fillRect::<(# do INNER; ... #);
 fillEllipse::<(# do INNER; ... #);

 (* PRIVATE *)
 writePS::<(# do ... #);
 setBorderPaint::< (* Private *)
 (# ...#);
 setBackgroundPaint::< (* Private *)
 (# ...#);
 setCanvasPaint::< (* Private *)
 (# ...#);
 privatePart: @ ...;
 do INNER;
 #);

12.23 Predefined Graytones
SolidGray:
 (# g: ^SolidColor;
 percentage: @Integer;
 enter percentage
 ...
 exit g[]
 #);

SolidGrey: SolidGray (# do INNER #);

12.24 RasterPaint
RasterPaint: Paint
 (* Use thePixmap and optionally paddingSolidColor to fill out the
 * shape
 *)
 (#
 (* If paddingSolidColor[]=NONE thePixmap will be repeated when
 * filling out the shape. If not, paddingSolidColor will be used
 * to fill out any parts of the shape the pixmap doesn't cover.
 *)
 paddingSolidColor: ^SolidColor;

 thePixMap:
 (# p: ^PixMap;
 enter (# enter p[] ... #)
 exit (# ... exit p[] #)
 #);
 init::<(# ... #);
 copy::<(# do INNER; ... #);
 fillShape::<(# do INNER; ...; #);
 fillLine::<(# ... #);
 fillMultiLine::<(# ... #);
 fillText::<(# ... #);
 fillArc::<(# ... #);
 fillPie::<(# ... #);

Interface Descriptions 83

 fillRect::<(# ... #);
 fillEllipse::<(# ... #);

 (* PRIVATE *)
 writePS::<(# do ... #);
 private: @...;
 setBorderPaint::< (* Private *)
 (# do INNER; ... #);
 setBackgroundPaint::< (* Private *)
 (# do INNER; ... #);
 setCanvasPaint::< (* Private *)
 (# do INNER; ... #);
 do INNER;
 #);

12.25 TiledSolidColor
TiledSolidColor: SolidColor
 (* A SolidColor extended with a BitMap. The BitMap will be tiled in
 * the Shape before the SolidColor is applied, and only where the
 * bits of the BitMap are true, the SolidColor will be visible.
 *)
 (#
 theTile:
 (# t: ^BitMap;
 enter (# enter t[] ... #)
 exit (# ... exit t[] #)
 #);
 init::<(# ... #);
 copy::<(# do INNER; ... #);
 fillShape::<(# ... #);
 fillLine::<(# ... #);
 fillMultiLine::<(# ... #);
 fillText::<(# ... #);
 fillArc::<(# ... #);
 fillPie::<(# ... #);
 fillRect::<(# ... #);
 fillEllipse::<(# ... #);

 (* PRIVATE *)
 writePS::<(# do ... #);
 tiledPrivate: @ ...;
 setBorderPaint::< (* Private *)
 (# do INNER; ... #);
 setBackgroundPaint::< (* Private *)
 (# do INNER; ... #);
 setCanvasPaint::< (* Private *)
 (# do INNER; ... #);
 do INNER;
 #);

12.26 AbstractGraphicalObject
AbstractGraphicalObject: (* To be further specialized *)
 (* The graphical object is the smallest entity that can be drawn
 * in a BifrostCanvas. It is a aggregation of a Paint and a Shape.
 * ANY graphical object MUST be initialized before used (init).

84 Bifrost Reference Manual

 * After a paint and a shape has been specified, it can be drawn by
 * giving the reference of it as enter parameter to the method
 * "draw" in a BifrostCanvas. Graphical objects may also be
 * created by using InteractiveCreateShape.
 *)
(# <<SLOT AbstractGraphicalObjectAttributes: attributes>>;
 shapeDesc:< AbstractShape
 (* Specify actual shape in specializations *);
 TMDesc:<
 (# m: ^Matrix;
 transformpoint: @
 (# p: @Point enter p do p->m.transformpoint->p exit p #);
 CalcCanvasTM:<
 (# theTM: ^Matrix
 enter theTM[]
 ...
 #);
 enterTM:< (# enter m[] ... #);
 enterIt: @enterTM;
 enter enterIt
 do INNER;
 exit m[]
 #);
 (* TM describes the transformation from the coordinate system of
 * theShape (also known as GO coordinates) to the the Picture it
 * is part of, if any.
 *)
 TM: @TMDesc;

 init:< (* MUST be called first *)
 (# ... #);
 setPaint:<
 (* Specify the paint to use for THIS(AbstractGraphicalObject) *)
 (# enter thePaint[] do INNER #);
 getPaint:<
 (* Obtain the paint to use *)
 (# do INNER exit thePaint[] #);
 getShape:<
 (* Obtain the shape to use. The specialization
 * PredefinedGraphicalObject returns an approximating Shape.
 * Only the specialization Shape has a corresponding SetShape.
 *)
 (# s: ^Shape
 do INNER
 exit s[]
 #);
 draw:<
 (* Draw THIS(AbstractGraphicalObject) in theCanvas.
 * Normally this is not used by the user directly. Instead
 * THIS(AbstractGraphicalObject)[] should be given to the draw
 * method of a BifrostCanvas.
 *)
 (# doneInInner: @boolean;
 theCanvas: ^BifrostCanvas
 (* BifrostCanvas to draw THIS(AbstractGraphicalObject) on *);
 enter theCanvas[]
 ...
 #);
 erase:<
 (* Erase THIS(AbstractGraphicalObject) from theCanvas.
 * Normally this is not used by the user directly. Instead
 * THIS(AbstractGraphicalObject)[] should be given to the erase
 * method of a BifrostCanvas.
 *)
 (# doneInInner: @boolean;
 theCanvas: ^BifrostCanvas

Interface Descriptions 85

 (* BifrostCanvas to erase THIS(AbstractGraphicalObject) from *);
 enter theCanvas[]
 ...
 #);
 copy:< (* Return a deep copy of THIS(AbstractGraphicalObject) *)
 (# aCopy: ^AbstractGraphicalObject;
 ...
 exit aCopy[]
 #);
 getBounds:<
 (* Exit a Rectangle containing the bounding box of
 * THIS(AbstractGraphicalObject) in BifrostCanvas coordinates.
 *)
 (# r: @rectangle;
 doneInInner: @boolean;
 ...
 exit r
 #);
 hilite:< (* Highlight THIS(AbstractGraphicalObject) *)
 (# doneInInner: @boolean;
 theCanvas: ^BifrostCanvas
 (* The BifrostCanvas to do the highlighting on *)
 enter theCanvas[]
 ...
 #);
 unHilite:< (* Unhighlight THIS(AbstractGraphicalObject) *)
 (# doneInInner: @boolean;
 theCanvas: ^BifrostCanvas
 (* The BifrostCanvas to do the unhighlighting on *)
 enter theCanvas[]
 ...
 #);

 (* INTERACTION *)
 hitControl:<
 (* Answer whether thePoint is inside a 2x2mm box around a
 * control point of THIS(AbstractGraphicalObject). thePoint is
 * in BifrostCanvas coordinates. Exits reference to exact point
 * if hit, NONE otherwise.
 *)
 (# thePoint: @Point;
 res: ^Point;
 enter thePoint
 do ...;
 INNER;
 exit res[]
 #);
 interaction:
 (* Prefix for interactive operations *)
 (# theCanvas: ^BifrostCanvas
 (* The BifrostCanvas to show feedback in *);
 startPoint: @Point;
 theModifier: @Modifier;
 doneInInner: @boolean;
 enter (theCanvas[], startPoint, theModifier)
 do INNER;
 #);
 interactiveCreateShape:< interaction
 (* Initialize the shape of THIS(AbstractGraphicalObject) by
 * providing feedback in a BifrostCanvas. Normally this is not
 * used by the user directly. Instead
 * THIS(AbstractGraphicalObject)[] should be given to the
 * interactiveCreateShape method of a BifrostCanvas.
 *)
 (# ... #);
 interactiveCombineShape:< interaction

86 Bifrost Reference Manual

 (* Combine a shape with the shape of
 * THIS(AbstractGraphicalObject) by providing feedback for
 * creating the new shape in a BifrostCanvas, and then combining
 * the shape of THIS(AbstractGraphicalObject) with the obtained
 * shape. Normally this is not used by the user directly.
 * Instead THIS(AbstractGraphicalObject)[] should be given to
 * the interactiveCombineShape method of a BifrostCanvas.
 *)
 (# ... #);
 interactiveReshape:< interaction
 (* Change the shape of THIS(AbstractGraphicalObject) by
 * providing feedback in a BifrostCanvas. Normally this is not
 * used by the user directly. Instead
 * THIS(AbstractGraphicalObject)[] should be given to the
 * interactiveReShape method of a BifrostCanvas.
 *)
 (# do ... #);
 interactiveMove:< interaction
 (* Move the shape of THIS(AbstractGraphicalObject) using
 * theshape.(un)hiliteoutline for feedback in the BifrostCanvas
 * THIS(AbstractGraphicalObject) is drawn in. Calls "move" to
 * do the transformation. Normally this is not used by the user
 * directly. Instead THIS(AbstractGraphicalObject)[] should be
 * given to the interactiveMove method of a BifrostCanvas.
 *)
 (#
 do INNER; ...;
 #);
 interactiveScale:< interaction (* Not Yet Implemented *)
 (* Scale the shape of THIS(AbstractGraphicalObject) using
 * theshape.(un)hiliteoutline for feedback in the BifrostCanvas
 * THIS(AbstractGraphicalObject) is drawn in. Calls "scale" to
 * do the transformation. Normally this is not used by the user
 * directly. Instead THIS(AbstractGraphicalObject)[] should be
 * given to the interactiveScale method of a BifrostCanvas.
 *)
 (# ... #);
 interactiveRotate:< interaction (* Not Yet Implemented *)
 (* Rotate the shape of THIS(AbstractGraphicalObject) using
 * theshape.(un)hiliteoutline for feedback in the BifrostCanvas
 * THIS(AbstractGraphicalObject) is drawn in. Calls "rotate" to
 * do the transformation. Normally this is not used by the user
 * directly. Instead THIS(AbstractGraphicalObject)[] should be
 * given to the interactiveRotate method of a BifrostCanvas.
 *)
 (# ... #);

 (* TRANSFORMATIONS *)
 transform:<
 (* Transform THIS(AbstractGraphicalObject) by M, by multiplying
 * THIS(AbstractGraphicalObject).TM with M
 *)
 (# M: ^Matrix;
 enter M[]
 ...
 #);
 move:< (* Translate THIS(AbstractGraphicalObject) by offset *)
 (# offset: @Point;
 enter offset
 do ...; INNER;
 #);
 moveTo:<
 (* Move THIS(AbstractGraphicalObject).theShape.hotSpot to pos *)
 (# pos: @Point;
 enter pos
 do ...; INNER;

Interface Descriptions 87

 #);
 scale:< (* Scale THIS(AbstractGraphicalObject) by factor *)
 (# factor: @Vector; (* Real point *)
 enter factor
 do ...; INNER;
 #);
 rotate:<
 (* Rotate THIS(AbstractGraphicalObject) by angle (degrees) *)
 (# angle: @Real;
 enter angle
 do ...; INNER;
 #);

 (* QUERY *)
 containsPoint:< booleanValue
 (* Answer if thePoint is inside the shape of
 * THIS(AbstractGraphicalObject). thePoint is assumed to be in
 * coordinates relative to theCanvas.
 *)
 (# theCanvas: ^BifrostCanvas;
 thePoint: @Point;
 doneInInner: @boolean;
 enter (theCanvas[], thePoint)
 ...
 #);
 intersects:< booleanValue (* Not Yet Implemented *)
 (* Answer whether go.theshape intersects with the shape of
 * THIS(AbstractGraphicalObject)
 *)
 (# go: ^AbstractGraphicalObject;
 doneInInner: @Boolean;
 enter go[]
 ...
 #);
 within:< booleanValue (* Not Yet Implemented *)
 (* Answer whether go.theshape is completely within the shape of
 * THIS(AbstractGraphicalObject)
 *)
 (# go: ^AbstractGraphicalObject;
 doneInInner: @Boolean;
 enter go[]
 ...
 #);

 (* The composition components *)
 theShape: ^ShapeDesc;
 thePaint: ^Paint;

 (* PRIVATE *)
 writePS:<(# out: ^stream enter out[] do ... #);
 private: @ ...;
 recalculateShape:< (* private *)
 (# theCanvas: ^BifrostCanvas enter theCanvas[] do INNER #);
do INNER;
exit THIS(AbstractGraphicalObject)[]
#);

12.27 GraphicalObject
GraphicalObject: AbstractGraphicalObject
 (#

88 Bifrost Reference Manual

 shapeDesc::< (* The real shape with lines and splines *)
 Shape;
 setShape: (* Set the Shape of THIS(GraphicalObject) *)
 (# enter theShape[] #);
 getShape::< (* Get the Shape of THIS(GraphicalObject) *)
 (# do theShape[] -> s[] #);
 copy::< (# ... #);
 draw::< (# ... #);
 writePS::<(# do ... #);
 hilite::< (# ... #);
 unHilite::< (# ... #);
 recalculateShape::< (* private *)
 (# ... #);
 do INNER
 #);

12.28 PictureShape
PictureShape: AbstractShape (* To be further specialized *)
 (# <<SLOT PictureShapeAttributes: attributes>>;

 firstpoint::< (# ... #);
 copy::< (# do INNER; ... #);
 getBounds::< (# do ... #);
 containsPoint::<(# ... #);
 intersects::< (* Not Yet Implemented *)
 (# ... #);
 within::< (* Not Yet Implemented *)
 (# ... #);
 getControls::<(# ... #);
 hiliteControls::< (# ... #);
 hiliteOutline::< (# ... #);
 transform::<(# do ...; INNER #);

 (* Private *)
 writePS::<(# do ... #);
 pictureprivate: @...;
 do INNER
 #);

12.29 Picture
Picture: AbstractGraphicalObject
 (* A collection of graphical objects *)
 (# <<SLOT PictureAttributes: attributes >>;

 shapeDesc::< PictureShape;
 TMDesc::<(# CalcCanvasTM::<(# do ...; INNER #);
 enterTM::< (# do ...; INNER #);
 do INNER;
 #);
 init::< (# ... #);
 add:<
 (* Add go to THIS(Picture) *)
 (# go: ^AbstractGraphicalObject;
 enter go[]
 ...

Interface Descriptions 89

 #);
 delete:<
 (* Delete go from THIS(Picture) *)
 (# go: ^AbstractGraphicalObject;
 enter go[]
 ...
 #);
 drawOnPixmap: (* Not Yet Implemented *)
 (* Draw THIS(Picture) on pm *)
 (# pm: ^Pixmap;
 enter pm[]
 do ...;
 #);
 draw::< (# ... #);
 erase::< (# ... #);
 copy::< (# do INNER; ... #);
 setPaint::<
 (* Specify the paint to use for all AbstractGraphicalObjects
 * in THIS(Picture). If they are shown on the Canvas, their
 * visual appearance is changed instantly.
 *)
 (# theCanvas: ^BifrostCanvas;
 enter theCanvas[]
 ...
 #);
 getBounds::< (# ... #);
 hilite::< (# ... #);
 unHilite::< (# ... #);
 bringForward:
 (* Make aGO the last AbstractGraphicalObject of THIS(Picture)
 * aGO must already be a member of THIS(Picture)
 *)
 (# aGO: ^AbstractGraphicalObject;
 enter aGO[]
 ...
 #);
 sendBehind:
 (* Make aGO the first AbstractGraphicalObject of THIS(Picture)
 * aGO must already be a member of THIS(Picture)
 *)
 (# aGO: ^AbstractGraphicalObject;
 enter aGO[]
 ...
 #);
 scanGOs:
 (* Scan through each AbstractGraphicalObject in THIS(Picture)
 * in order from the bottommost to the frontmost one.
 *)
 (# go: ^AbstractGraphicalObject;
 ...
 #);
 scanGOsReverse:
 (* Scan through each AbstractGraphicalObject in THIS(Picture)
 * in order from the frontmost to the bottommost one.
 *)
 (# go: ^AbstractGraphicalObject;
 ...
 #);

 (* INTERACTION *)
 interactiveCreateShape::<(# ... #);
 interactiveCombineShape::<(# ... #);
 interactiveReshape::<(# ... #);

 (* QUERY *)
 lastGO:

90 Bifrost Reference Manual

 (* Exit reference to last AbstractGraphicalObject in
 * THIS(Picture)
 *)
 (# aGO: ^AbstractGraphicalObject;
 ...
 exit aGO[]
 #);
 firstGO:
 (* Exit reference to last AbstractGraphicalObject in
 * THIS(Picture)
 *)
 (# aGO: ^AbstractGraphicalObject;
 ...
 exit aGO[]
 #);
 noOfGOs: integerValue
 (* Exit number of AbstractGraphicalObjects in THIS(Picture) *)
 (# ... #);
 isEmpty: booleanValue
 (* True iff no graphical objects has been added to
 * THIS(Picture)
 *)
 (# ... #);
 isMember: booleanValue
 (* True iff aGO has been added to THIS(Picture) *)
 (# aGO: ^AbstractGraphicalObject;
 enter aGO[]
 ...
 #);
 containsPoint::<
 (* Answer if thePoint (canvascoordinates) is inside the shape
 * of any graphical object of THIS(Picture)
 *)
 (# ... #);
 intersects::< (* Not Yet Implemented *)
 (* Answer whether go.theshape intersects with the shape of any
 * graphical object of THIS(Picture)
 *)
 (# ... #);
 within::< (* Not Yet Implemented *)
 (* Answer whether go.theshape is completely within the shape
 * of any graphical object of THIS(Picture)
 *)
 (# ... #);
 firstContaining:<
 (* Returns reference to first AbstractGraphicalObject in
 * THIS(Abstract) that contains thePoint.
 * thePoint is assumed to be in coordinates relative to
 * theCanvas.
 *)
 (# theCanvas: ^BifrostCanvas;
 thePoint: @Point;
 aGO: ^AbstractGraphicalObject;
 enter (theCanvas[], thePoint)
 ...
 exit aGO[]
 #);
 lastContaining:<
 (* Returns reference to last AbstractGraphicalObject in
 * THIS(Picture) that contains thePoint.
 * thePoint is assumed to be in coordinates relative to
 * theCanvas.
 *)
 (# theCanvas: ^BifrostCanvas;
 thePoint: @Point;
 aGO: ^AbstractGraphicalObject;

Interface Descriptions 91

 enter (theCanvas[], thePoint)
 ...
 exit aGO[]
 #);
 firstIntersecting:< (* Not Yet Implemented *)
 (* Returns reference to first AbstractGraphicalObject in
 * THIS(Picture) that intersects with aGO
 *)
 (# aGO, iGO: ^AbstractGraphicalObject;
 enter aGO[]
 ...
 exit iGO[]
 #);
 lastIntersecting:< (* Not Yet Implemented *)
 (* Returns reference to last AbstractGraphicalObject in
 * THIS(Picture) that intersects with aGO
 *)
 (# aGO, iGO: ^AbstractGraphicalObject;
 enter aGO[]
 ...
 exit iGO[]
 #);
 firstWithin:< (* Not Yet Implemented *)
 (* Returns reference to first AbstractGraphicalObject in
 * THIS(Picture) that is within aGO
 *)
 (# aGO, wGO: ^AbstractGraphicalObject;
 enter aGO[]
 ...
 exit wGO[]
 #);
 lastWithin:< (* Not Yet Implemented *)
 (* Returns reference to last AbstractGraphicalObject in
 * THIS(Picture) that is within aGO
 *)
 (# aGO, wGO: ^AbstractGraphicalObject;
 enter aGO[]
 ...
 exit wGO[]
 #);
 writePS::<(# do ... #);
 do INNER;
 #); (* Picture *)

12.30 BifrostCanvas
(* The BifrostCanvas is the connection between the graphic
 * definitions and the device. Graphical objects become visible on
 * the output device when they are added to a BifrostCanvas by the
 * use of the draw-method.
 *)

BifrostCanvas: Canvas
 (# <<SLOT CanvasAttributes: attributes >>;

 thePicture:
 (* Picture holding the graphical objects *)
 ^Picture;
 visualShape:
 (* The part of THIS(BifrostCanvas) that is visible *)
 ^Shape;

92 Bifrost Reference Manual

 clipShape:
 (* Shape used for clipping in THIS(BifrostCanvas). Defaults to
 * visualShape
 *)
 ^Shape;
 draw: (* Put GO on THIS(BifrostCanvas) *)
 (# GO: ^AbstractGraphicalObject
 enter GO[]
 ...
 #);
 erase: (* Erase GO from THIS(BifrostCanvas) *)
 (# aGO: ^AbstractGraphicalObject;
 enter aGO[]
 ...
 #);
 scanThePicture:
 (* Scan through each AbstractGraphicalObject in thePicture in
 * order from the bottommost to the frontmost one.
 *)
 (# go: ^AbstractGraphicalObject;
 ...
 #);
 scanThePictureReverse:
 (* Scan through each AbstractGraphicalObject in thePicture in
 * order from the frontmost to the bottommost one.
 *)
 (# go: ^AbstractGraphicalObject;
 ...
 #);
 firstContaining:
 (* Returns reference to first AbstractGraphicalObject in
 * thePicture that contains thePoint.
 * thePoint is assumed to be in coordinates relative to
 * THIS(BifrostCanvas).
 *)
 (# thePoint: @Point;
 enter thePoint
 exit (THIS(BifrostCanvas)[],thePoint)
 ->thePicture.firstContaining
 #);
 lastContaining:
 (* Returns reference to last AbstractGraphicalObject in
 * thePicture that contains thePoint.
 * thePoint is assumed to be in coordinates relative to
 * THIS(BifrostCanvas).
 *)
 (# thePoint: @Point;
 enter thePoint
 exit (THIS(BifrostCanvas)[],thePoint)
 ->thePicture.lastContaining
 #);

 (* EVENT HANDLING *)
 eventHandler::<
 (#
 onOpen:<
 (* Called immediately after the BifrostCanvas has been
 * made visible.
 *)
 (#
 ...
 #);
 onMouseDown::<
 (* Called when a mouse button is pressed *)
 (# mousePos: @Point
 (* the position of the mouse in device coordinates *);

Interface Descriptions 93

 button: (# exit buttonState #);
 shiftModified: (# exit shiftKey #);
 (*lockModified: (# exit capsLock #);*)
 controlModified: (# exit controlKey #);
 metaModified: (# exit metaKey #);
 altModified: (# exit altKey #);
 ...
 #);
 onKeyDown::< (* Called when a key is pressed *)
 (# ... #);
 onRefresh::<
 (* Called when THIS(BifrostCanvas) is being refreshed *)
 (# do ... #);
 onFrameChanged::<
 (* Called when THIS(BifrostCanvas) changes its frame
 * (size).
 *)
 (# ... #);
 onActivate::<
 (* Called when the BifrostCanvas is activated, e.g. by
 * entering it with the mouse.
 *)
 (# ... #);
 onDeactivate::<
 (* Called when the BifrostCanvas is deactivated, e.g. by
 * leaving it with the mouse.
 *)
 (# ... #);
 #);
 borderwidth: @
 (* The width of the border if present. Defaults to 0 *)
 (# value: @integer;
 enter (# enter value ... #)
 exit (# ... exit value #)
 #);
 borderpaint: @
 (* The Paint used to fill the border if present. Defaults to
 * black
 *)
 (# p: ^Paint;
 enter (# enter p[] ... #)
 exit (# ... exit p[] #)
 #);
 backgroundpaint: @
 (* The Paint used as background. Defaults to white *)
 (# p: ^Paint;
 enter (# enter p[] ... #)
 exit (# ... exit p[] #)
 #);

 open::<
 (* Open the BifrostCanvas, i.e. make it visible and start to
 * handle events.
 *)
 (# create::< (# ... #);
 defaultbackground: @boolean
 (* If defaultbackground is set to true,
 * THIS(BifrostCanvas) will appear with the same
 * background color as the surrounding window, otherwise
 * it will be set to white (unless otherwise specified by
 * backgroundpaint
 *);
 ...
 #);
 close::<
 (* Close the BifrostCanvas, i.e. make it disappear and forget

94 Bifrost Reference Manual

 * all information stored in it.
 *)
 (# ... #);
 writeEPS:<
 (* Write Encapsulated PostScript to the stream out *)
 (# out: ^Stream;
 pagesize: @rectangle;
 vertical: @boolean;
 noOfCopies: @integer;
 enter (pagesize, vertical, noOfCopies, out[])
 do ...
 #);

 setClip:
 (* Make clipShape the new clipping region in
 * THIS(BifrostCanvas)
 *)
 (#
 enter clipShape[]
 do ...;
 #);
 getClip:
 (* Exit the clipping region of THIS(BifrostCanvas) *)
 (# exit clipShape[] #);
 deviceToCanvas:
 (* Transform p1 from Device coordinates to BifrostCanvas
 * coordinates.
 *)
 (# p1,p2: @Point;
 enter p1
 ...
 exit p2
 #);
 canvasToDevice:
 (* Transform p1 from BifrostCanvas coordinates to Device
 * coordinates.
 *)
 (# p1,p2: @Point;
 enter p1
 ...
 exit p2
 #);

 (* DAMAGE / REPAIR *)
 damaged:
 (* Inform THIS(BifrostCanvas) that r has been damaged, and
 * thus should be a part of the area redrawn upon the next
 * repair.
 *)
 (# r: @Rectangle;
 enter r
 do ...;
 #);
 repair:
 (* Redraw all damaged areas in THIS(BifrostCanvas) *)
 (# do ... #);

 (* INTERACTION *)
 interactionHandler:
 (* Specialize THIS(BifrostCanvas).InteractionHandler to
 * perform an interaction. Specialize the different virtuals
 * inside THIS(InteractionHandler) to perform actions in
 * response to various events. Of course, using an
 * InteractionHandler only gives meaning if a pointing device
 * and/or a keyboard is connected to the actual device.
 *

Interface Descriptions 95

 * NOTICE: At most one InteractionHandler may active at any
 * given time
 *)
 (# initialize:<
 (* Called before THIS(InteractionHandler) is started *)
 (# ... #);
 motion:<
 (* Called when the the pointing device has been moved *)
 object;
 buttonPress:<
 (* Called when a button of the pointing device has been
 * pressed.
 *)
 (# button: @Integer enter button do INNER; #);
 buttonRelease:< object
 (* Called when a button of the pointing device has been
 * released
 *);
 keyPress:<
 (* Called when a key on the keyboard has been pressed *)
 (# ch: @Char; enter ch do INNER #);
 keyRelease:<
 (* Called when a key on the keyboard has been released *)
 (# ch: @Char; enter ch do INNER #);
 terminateCondition:< booleanObject
 (* Specifies under what condition to stop
 * THIS(InteractionHandler)
 *)
 (# ... #);
 terminated:<
 (* Called just before THIS(InteractionHandler) ends *)
 (# ... #);
 getPointerLocation: @
 (* Returns the current pointer location in device
 * coordinates
 *)
 (# thePoint: @Point;
 do ...;
 exit thePoint
 #);
 isModifierOn: @booleanValue
 (* Tell if theModifier is currently being pressed *)
 (# theModifier: @Modifier;
 enter theModifier
 do ...;
 #);
 doubleClick: @booleanValue
 (* Answer if the last button press on the pointing device
 * was a double click
 *)
 (# ... #);
 do ...;
 #);
 interactiveCreateShape:
 (* Tell GO to start an interaction for creation on
 * THIS(BifrostCanvas)
 *)
 (# GO: ^AbstractGraphicalObject;
 p: @Point (* start interaction at p *);
 theModifier: @Modifier;
 enter (GO[],p,theModifier)
 ...
 #);
 interactiveCombineShape:
 (* Tell GO to start an interaction for combination on
 * THIS(BifrostCanvas)

96 Bifrost Reference Manual

 *)
 (# GO: ^AbstractGraphicalObject;
 p: @Point (* start interaction at p *);
 theModifier: @Modifier;
 enter (GO[],p,theModifier)
 ...
 #);
 interactiveReshape:
 (* Tell GO to start an interaction for reshaping on
 * THIS(BifrostCanvas)
 *)
 (# GO: ^AbstractGraphicalObject;
 p: @Point (* start interaction at p *);
 theModifier: @Modifier;
 enter (GO[],p,theModifier)
 ...
 #);
 interactiveMove:
 (* Tell GO to start an interaction for motion on
 * THIS(BifrostCanvas).
 *)
 (# GO: ^AbstractGraphicalObject;
 p: @Point (* start interaction at p *);
 theModifier: @Modifier;
 enter (GO[],p,theModifier)
 ...
 #);
 interactiveRotate: (* Not Yet Implemented *)
 (* Tell pict to start an interaction for rotation on
 * THIS(BifrostCanvas)
 *)
 (# GO: ^AbstractGraphicalObject;
 p: @Point (* start interaction at p *);
 theModifier: @Modifier;
 enter (GO[],p,theModifier)
 ...
 #);
 interactiveScale: (* Not Yet Implemented *)
 (* Tell pict to start an interaction for scaling on
 * THIS(BifrostCanvas)
 *)
 (# GO: ^AbstractGraphicalObject;
 p: @Point (* start interaction at p *);
 theModifier: @Modifier;
 enter (GO[],p,theModifier)
 ...
 #);
 bringForward:
 (* Bring aGO forward in THIS(BifrostCanvas).thePicture *)
 (# aGO: ^AbstractGraphicalObject;
 enter aGO[]
 ...
 #);
 sendBehind:
 (* Send aGO behind in THIS(BifrostCanvas).thePicture *)
 (# aGO: ^AbstractGraphicalObject;
 enter aGO[]
 ...
 #);

 hitControl:
 (* Answer whether p is within 2 mm of a control point of aGO
 * Exits exact point if hit, NONE otherwise
 *)
 (# aGO: ^AbstractGraphicalObject;
 p: @Point;

Interface Descriptions 97

 res: ^Point;
 enter (aGO[],p)
 ...
 exit res[]
 #);
 hilite:
 (* Tell GO to highlight itself on THIS(BifrostCanvas) *)
 (# GO: ^AbstractGraphicalObject
 enter GO[]
 ...
 #);
 unHilite:
 (* Tell GO to unhighlight itself on THIS(BifrostCanvas) *)
 (# GO: ^AbstractGraphicalObject
 enter GO[]
 ...
 #);

 (* Primitives for immediate drawing (sometimes also known as
 * transient drawing). For efficiency all of these use DEVICE
 * coordinates. Nothing drawn by means of these primitives can
 * be repaired automatically by THIS(BifrostCanvas). Uses an
 * arbitrary color, that is guarentied to be different to what
 * is underneath. May be erased by repeating the draw-request,
 * and is thus very useful for feedback in interaction.
 *)

 setImmediateLineWidth:
 (* Set the width used for immediate lines and arcs *)
 (# lineWidth: @Integer;
 enter lineWidth
 ...
 #);
 immediatespot:
 (* Draw a small filled rectangle around center *)
 (# center: @Point;
 enter (center)
 ...
 #);
 immediateLine:
 (* Draw an immediate line from p1 to p2 *)
 (# p1,p2: @Point;
 enter (p1,p2)
 ...
 #);
 immediateDot:
 (* Draw a dot of the size of one device-pixel at p *)
 (# p1: @Point;
 enter (p1)
 ...
 #);
 immediateMultiLine:
 (* Draw an immediate multiline specified by the points in p.
 * If close is true, the multiline will be closed by a line
 * from the first point to the last point.
 *)
 (# p: ^PointArray;
 close: @Boolean;
 enter (p[], close)
 do ...;
 #);
 immediateArc:
 (# cx, cy: @integer; (* Center coordinates *)
 hr, vr: @integer; (* Horizontal/vertical radius *)
 a1, a2: @integer; (* Defining angles in degrees *)
 enter (cx, cy, hr, vr, a1, a2)

98 Bifrost Reference Manual

 ...
 #);
 immediaterect:
 (* Draw the outline of r *)
 (# r: @Rectangle;
 enter r
 ...
 #);
 immediateText:
 (* Draw theString at pos, with appearance as specified with
 * theFontName, theStyle, theSize, and underline
 *)
 (# pos: @Point;
 theFontName: @FontName;
 theStyle: @Style;
 theSize: @integer;
 underline: @boolean;
 theString: ^text;
 enter (pos, theFontName, theStyle, theSize,
 underline, theString[])
 do ...
 #);

 (* Utility functions to convert between pixels and
 * milimeter.
 *)
 MMToPixel: (* Exits p scaled from mm to pixels *)
 (# p: @Point;
 enter p
 do ...
 exit p
 #);
 pixelToMM: (* Exits p scaled from pixels to mm *)
 (# p: @Point;
 enter p
 do ...
 exit p
 #);

 (* PRIVATE *)

 privatePart: @ ...;
 TM: ^Matrix
 (* Transformation from THIS(BifrostCanvas) to the actual
 * device
 *);
 #);

12.31 Bifrost
-- LIB: attributes --
Bifrost: Guienv(# do INNER #)

12.32 ColorNames
ORIGIN '~beta/basiclib/v1.5/betaenv';
-- LIB: attributes --

Interface Descriptions 99

(* Patterns used as enter parameters for SolidColor.name *)

aliceblue: (# exit (61440, 63488, 65280) #);
antiquewhite: (# exit (64000, 60160, 55040) #);
antiquewhite1: (# exit (65280, 61184, 56064) #);
...
yellow3: (# exit (52480, 52480, 0) #);
yellow4: (# exit (35584, 35584, 0) #);
yellowgreen: (# exit (39424, 52480, 12800) #);

12.33 Palette
ORIGIN 'Bifrost';
BODY 'private/Impl/PaletteImpl';
INCLUDE 'PredefinedGO' ;

-- BifrostAttributes: attributes --

Palette: BifrostCanvas
 (* A canvas showing an either vertical or horizontal sequence of
 * graphical objects. At any time exactly one of these are
 * highlighted by a black frame. This default highlight may be
 * changed by furtherbinding "hiliteitem". Graphical objects are
 * added to THIS(Palette) by using "append". The number of the
 * currently selected graphical object is in "selection".
 *)
 (# eventhandler::<
 (# onOpen::<(# ... #);
 onMouseDown::< (# ... #);
 #);

 blackpaint: @SolidColor; (* A black solid color *)

 selection: @integerValue
 (* Number of currently selected item *)
 (# checknew: @
 (# ns: @integer;
 enter ns ...
 #);
 enter checknew
 #);
 noOfItems: integerValue
 (* Exit the number of graphical objects in THIS(Palette) *)
 (# ... #);
 framePaint: @
 (* The paint used in the frame and default hilite *)
 (# f: ^Paint;
 newFramePaint: @
 (#
 enter f[]
 do ...
 #)
 enter newFramePaint
 exit f[]
 #);
 goPaint: @
 (* The paint used in the AbstractGraphicalObjects *)
 (# g: ^Paint;
 newGoPaint: @
 (# b: @boolean
 enter g[]
 do ...;

100 Bifrost Reference Manual

 #)
 enter newGoPaint
 exit g[]
 #);

 open::<
 (* Open THIS(Palette). Place it at position. deltax,
 * deltay gives the step-lengths in horizontal and vertical
 * direction, respectively. If vertical is true, it will be a
 * vertical palette, otherwise a horizontal one.
 *)
 (# deltax, deltay: @integer;
 vertical: @boolean;
 enter (deltax, deltay, vertical)
 ...
 #);
 size:
 (* Hides BifrostCanvas.size. The size of THIS(Palette) should
 * not be set directly, since it will adjust itself depending
 * on the number of items.
 *)
 (# s: @point
 exit (# ... exit s #)
 #);
 close::<(# ... #);
 append:<
 (* Append go as a selectable item in THIS(Palette). go will
 * be centered in a box with dimensions deltax and deltay (as
 * specified to init)
 *)
 (# go: ^AbstractGraphicalObject;
 enter go[]
 do ...; INNER;
 #);
 hiliteitem:<
 (* Highlight item no i instead of the currently highlighted
 * item. Does not change the current selection
 *)
 (# doneininner: @boolean;
 i: @integer;
 enter i
 do INNER; ...
 #);
 changed:<
 (* Called when the selection changes *)
 (# ... #);

 paletteprivate: @...;
 #);

12.34 PredefinedGraphicalObject
ORIGIN 'Bifrost';
BODY 'private/Impl/PredefinedGoImpl'

-- BifrostAttributes: attributes --

PredefinedGraphicalObject: AbstractGraphicalObject
 (# shapeDesc::<
 PredefinedShape;
 TMDesc::< (# enterTM::< (# do ...; INNER #)#);
 init::< (# ... #);

Interface Descriptions 101

 getShape::< (# do theShape.calculateShape -> s[] #);
 do INNER;
 #);

12.35 Line
Line: PredefinedGraphicalObject
 (# shapeDesc::< LineShape;

 begin: (# enter theShape.begin exit theShape.begin #);
 end: (# enter theShape.end exit theShape.end #);
 width: (# enter theShape.width exit theShape.width #);
 dashes: (# enter theShape.dashes exit theShape.dashes #);
 cap: (# enter theShape.cap exit theShape.cap #);

 coordinates:
 (# enter theShape.coordinates exit theShape.coordinates #);
 draw::< (# ... #);
 copy::<(# do INNER; ... #);
 do INNER;
 #);

12.36 Multiline
MultiLine: PredefinedGraphicalObject
 (# shapeDesc::< MultiLineShape;

 width: (# enter theShape.width exit theShape.width #);
 points: (# enter theShape.points exit theShape.points #);
 dashes: (* Not Yet Implemented *)
 (# enter theShape.dashes exit theShape.dashes #);
 cap: (# enter theShape.cap exit theShape.cap #);
 join: (# enter theShape.join exit theShape.join #);
 draw::< (# ... #);
 copy::< (# do INNER; ... #);
 do INNER;
 #);

12.37 GraphicText
GraphicalText: GraphicText(# #); (* Alias *)

GraphicText: PredefinedGraphicalObject
 (# shapeDesc::< TextShape;

 inittext: (# enter theShape.inittext #);

 position:
 (# enter theShape.position
 exit theShape.position
 #);
 thefontname:
 (#

102 Bifrost Reference Manual

 enter theShape.thefontname
 exit theShape.thefontname
 #);
 theStyle:
 (#
 enter theShape.theStyle
 exit theShape.theStyle
 #);
 size:
 (#
 enter theShape.size
 exit theShape.size
 #);
 underline:
 (#
 enter theShape.underline
 exit theShape.underline
 #);
 theText:
 (#
 enter theShape.theText
 exit theShape.theText
 #);

 draw::< (# ... #);
 copy::< (# ... #);
 interactiveCreateShape::<
 (# lastCh: @Char; (* Last character typed in interaction *)
 ...
 exit lastCh
 #);
 interactiveReshape::<
 (# lastCh: @Char; (* Last character typed in interaction *)
 ...
 exit lastCh
 #);
 do INNER;
 #);

12.38 Arc
Arc: PredefinedGraphicalObject
 (# shapeDesc::< ArcShape;

 center: (# enter theShape.center exit theShape.center #);
 horizontalRadius:
 (#
 enter theShape.horizontalradius
 exit theShape.horizontalradius
 #);
 verticalRadius:
 (#
 enter theShape.verticalradius
 exit theShape.verticalradius
 #);
 angle1:
 (#
 enter theShape.angle1
 exit theShape.angle1
 #);
 angle2:

Interface Descriptions 103

 (#
 enter theShape.angle2
 exit theShape.angle2
 #);
 arcWidth:
 (#
 enter theShape.arcWidth
 exit theShape.arcWidth
 #);

 draw::< (# ... #);
 copy::< (# do INNER; ... #);
 do INNER
 #);

12.39 PieSlice
PieSlice: PredefinedGraphicalObject
 (# shapeDesc::< PieShape;

 center:
 (#
 enter theShape.center
 exit theShape.center
 #);
 horizontalRadius:
 (#
 enter theShape.horizontalradius
 exit theShape.horizontalradius
 #);
 verticalRadius:
 (#
 enter theShape.verticalradius
 exit theShape.verticalradius
 #);
 angle1:
 (#
 enter theShape.angle1
 exit theShape.angle1
 #);
 angle2:
 (#
 enter theShape.angle2
 exit theShape.angle2
 #);
 draw::< (# ... #);
 copy::< (# do INNER; ... #);
 do INNER
 #);

12.40 Rect
Rect: PredefinedGraphicalObject
 (# shapeDesc::< RectShape;

 upperleft:
 (#

104 Bifrost Reference Manual

 enter theShape.upperleft
 exit theShape.upperleft
 #);
 width:
 (#
 enter theShape.width
 exit theShape.width
 #);
 height:
 (#
 enter theShape.height
 exit theShape.height
 #);
 corners:
 (#
 enter theShape.corners
 exit theShape.corners
 #);

 draw::< (# ... #);
 copy::< (# do INNER; ... #);
 do INNER;
 #);

12.41 Ellipse
Ellipse: PredefinedGraphicalObject
 (# shapeDesc::< EllipseShape;

 center:
 (#
 enter theShape.center
 exit theShape.center
 #);
 horizontalradius:
 (#
 enter theShape.horizontalradius
 exit theShape.horizontalradius
 #);
 verticalradius:
 (#
 enter theShape.verticalradius
 exit theShape.verticalradius
 #);
 geometry:
 (#
 enter theShape.geometry
 exit theShape.geometry
 #);

 draw::< (# ... #);
 copy::< (# do INNER; ... #);
 do INNER;
 #);

Interface Descriptions 105

12.42 RasterGrays
ORIGIN 'Bifrost';
BODY 'private/Impl/RasterGrayImpl';

-- BifrostAttributes: Attributes --

RasterGray: TiledSolidColor
 (* Abstract superpattern for the ten patterns below: Each of these
 * use one of the bitmaps in the fragment HalftonePatterns to make
 * an illusion of a shade of gray even on a black & white device.
 * See the pattern RasterGrays below for a convenient use.
 *)
 (# do init; (0, 0, 0) -> RGBvalues; #);

RasterGray0: RasterGray
 (# init:: (# ... #)#);
RasterGray11: RasterGray
 (# init:: (# ... #)#);
RasterGray22: RasterGray
 (# init:: (# ... #)#);
RasterGray33: RasterGray
 (# init:: (# ... #)#);
RasterGray44: RasterGray
 (# init:: (# ... #)#);
RasterGray56: RasterGray
 (# init:: (# ... #)#);
RasterGray67: RasterGray
 (# init:: (# ... #)#);
RasterGray78: RasterGray
 (# init:: (# ... #)#);
RasterGray89: RasterGray
 (# init:: (# ... #)#);
RasterGray100: RasterGray
 (# init:: (# ... #)#);

RasterGrays:
 (* A convenient alternative to using the above patterns directly is
 * using an instance of RasterGrays: RasterGrays enters a
 * percentage, and exits a reference to an initialized RasterGray
 * yielding a approximating shade of gray: percentage=0 yields
 * white, percentage=100 yields black, other percentages yields one
 * of eight intermediate shades of gray.
 *)
 (# private: @...;
 percentage: @integer;
 thegray: ^RasterGray;
 init:
 (# ... #)
 enter percentage
 do ...;
 exit thegray[]
 #);

12.43 SelectionPicture
-- BifrostAttributes: attributes --

SelectionPicture: Picture
 (* A picture used to hilite a group of graphical objects.
 * SelectionPicture automatically highlights the graphical objects
 * added to it.

106 Bifrost Reference Manual

 *)
 (# thecanvas: ^Canvas
 (* The Canvas the GOs are shown in *);
 init::< (# enter theCanvas[] ... #);
 copy::<(# do ... #);
 draw::< (# ... #);
 erase::< (# ... #);
 add::< (# ... #);
 delete::< (# ... #);
 clear:
 (* Remove all graphical objects from THIS(SelectionPicture) *)
 (# ... #);
 onOneGO:< object
 (* Called when noOfGOs becomes 1 *);
 onTwoGOs:< object
 (* Called when noOfGOs changes from 1 to 2 *);
 onEmpty:< object
 (* Called when noOfGOs becomes 0 *);
 #)

107

Bibliography

[Andersen 91] Peter Andersen, Kim Jensen Møller, and Jørgen Rask:
Bifrost—An Interactive Object Oriented Device Indepen-
dent Graphics System, Master’s thesis, DAIMI Internal
Report IR-100, Aarhus University, January 1991.

[Edelsbrunner 80] H. Edelsbrunner: Dynamic Rectangle Intersection Search-
ing. Technische Universität Graz. February 1980.

[Foley 90] James D. Foley, Andries van Dam, Steven K. Feiner, and
John F. Hughes: Computer Graphics—Principles and
Practice , Addison-Wesley, The System Programming Se-
ries, 2, 1990.

[Madsen 93] O. L. Madsen, B. Møller-Pedersen, K. Nygaard: Object-
Oriented Programming in the BETA Programming Lan-
guage, Addison-Wesley, 1993, ISBN 0-201-62430-3

[MIA 90-2] Mjølner Informatics: The Mjølner BETA System: BETA
Compiler Reference Manual Mjølner Informatics Report
MIA 90-2.

[MIA 90-10] Mjølner Informatics: The Mjølner BETA System – The
Macintosh Libraries, Mjølner�Informatics Report MIA 90-
10.

[MIA 91-16] Mjølner Informatics: The Mjølner BETA System—X Win-
dow System Libraries , Mjølner�Informatics Report MIA
91-16.

[MIA 91-19] Mjølner Informatics: Lidskjalv: User Interface Framework
- Reference Manual. Mjølner Informatics Report MIA 94-
27.

[MIA 94-27] Mjølner Informatics: The Bifrost Graphics System, Tuto-
rial. Mjølner Informatics Report MIA 91-19.

[Newman 81] William M. Newman and Robert F. Sproull: Principles of
Interactive Computer Graphics, McGraw-Hill Book Com-
pany, 1981.

[Poskanzer] Jef Poskanzer: Portable BitMap, GrayMap, and PixMap ,
Unix Manual Pages.

109

Index

The entries in the index with italic pagenumbers are the identifiers defined in
the public interface of the libraries:

The minor level entries refer to identifiers defined local to the identifier of the
major level entry. For those index entries referring to patterns with super- or
subpatterns within the library, these patterns are specified in special sections of
the minor level index for that identifier.

Entries with plain pagenumbers refer to the text of this manual.

Externally defined:
. booleanObject
. . subpatterns:
. . . terminateCondition 95
. booleanValue
. . subpatterns:
. . . containsPoint 65, 87
. . . empty 60
. . . isClosed 64, 68
. . . isEmpty 68, 90
. . . isFlat 68
. . . isMember 90
. integerValue
. . subpatterns:
. . . height 77
. . . invalidateInteger 70
. . . noOfGOs 90
. . . noOfItems 99
. . . width 77
a 57
AbstractGraphicalObject 83
. subpatterns:
. . GraphicalObject 87
. . Picture 88
. . PredefinedGraphicalObject 100
. containsPoint 87
. . superpattern:
. . . booleanValue 106
. copy 85
. draw 84
. erase 84
. getBounds 85
. getPaint 84
. getShape 84
. hilite 85
. hitControl 85
. init 84
. interaction 85
. . subpatterns:
. . . interactiveCombineShape 85
. . . interactiveCreateShape 85

. . . interactiveMove 86

. . . interactiveReshape 86

. interactiveCombineShape 85

. . superpattern:

. . . interaction 85

. interactiveCreateShape 85

. . superpattern:

. . . interaction 85

. interactiveMove 86

. . superpattern:

. . . interaction 85

. interactiveReshape 86

. . superpattern:

. . . interaction 85

. interactiveRotate 86

. interactiveScale 86

. intersects 87

. move 86

. moveTo 86

. private 87

. recalculateShape 87

. rotate 87

. scale 87

. setPaint 84

. shapeDesc 84

. thePaint 87

. theShape 87

. TM 84

. TMDesc 84

. transform 86

. unHilite 85

. within 87

. writePS 87
AbstractShape 65
. superpattern:
. . Segment 65
. subpatterns:
. . PictureShape 88
. . PredefinedShape 70
. . Shape 67
. calculatePoints 67

110 Bifrost Reference Manual

. containsPoint 65

. . superpattern:

. . . booleanValue 106

. copy 65

. drawHilite 67

. fillRule 65

. getBounds 65

. getcontrols 67

. hb 67

. hc 67

. hiliteBound 66

. . superpattern:

. . . hiliteDesc 66

. hiliteControls 66

. . superpattern:

. . . hiliteDesc 66

. hiliteDesc 66

. . subpatterns:

. . . hiliteBound 66

. . . hiliteControls 66

. . . hiliteOutline 66

. hiliteOutline 66

. . superpattern:

. . . hiliteDesc 66

. ho 67

. hotspot 66

. Interaction 67

. InteractiveCombine 67

. InteractiveCreate 67

. InteractiveReshape 67

. intersects 66

. invalid 65

. invalidate 65

. open 67

. privatePart 67

. transform 67

. within 66
add 29, 88, 106
addControl 63, 64
addLine 18
addPoint 59, 72
AddPoints 57
addSpline 19, 68
aliceblue 99
angle1 74, 75, 102, 103
angle2 74, 75, 102, 103
antiquewhite 99
antiquewhite1 99
append 60, 100
appendPointArray 60
appendShape 13, 14, 69
Arc 102
. superpattern:
. . PredefinedGraphicalObject 102
. angle1 102
. angle2 102
. arcWidth 103
. center 102
. copy 103
. draw 103

. horizontalRadius 102

. shapeDesc 102

. verticalRadius 102
ArcShape 39, 74
. superpattern:
. . PredefinedShape 74
. angle1 75
. angle2 75
. arcWidth 75
. calculateShape 75
. center 75
. containsPoint 75
. copy 75
. firstPoint 75
. getBounds 75
. getControls 75
. hiliteOutline 75
. horizontalRadius 75
. interactiveCreate 75
. interactiveReshape 75
. intersects 75
. open 75
. transform 75
. verticalRadius 75
. within 75
. writePS 75
arcWidth 75, 103
b 57
backgroundpaint 93
bdraw 47
begin 62, 71, 101
Bifrost 98
. superpattern:
. . Guienv 98
BifrostCanvas 54, 91
. superpattern:
. . Canvas 91
. subpatterns:
. . Palette 99
. backgroundpaint 93
. borderpaint 93
. borderwidth 93
. bringForward 96
. canvasToDevice 94
. clipShape 92
. close 93
. damaged 94
. deviceToCanvas 94
. draw 92
. erase 92
. eventHandler 92
. . onActivate 93
. . onDeactivate 93
. . onFrameChanged 93
. . onKeyDown 93
. . onMouseDown 92
. . onOpen 92
. . onRefresh 93
. firstContaining 92
. getClip 94

Index 111

. hilite 97

. hitControl 96

. immediateArc 97

. immediateDot 97

. immediateLine 97

. immediateMultiLine 97

. immediaterect 98

. immediatespot 97

. immediateText 98

. interactionHandler 94

. . buttonPress 95

. . buttonRelease 95

. . doubleClick 95

. . getPointerLocation 95

. . initialize 95

. . isModifierOn 95

. . keyPress 95

. . keyRelease 95

. . motion 95

. . terminateCondition 95

. . . superpattern:

. . . . booleanObject 106

. . terminated 95

. interactiveCombineShape 95

. interactiveCreateShape 95

. interactiveMove 96

. interactiveReshape 96

. interactiveRotate 96

. interactiveScale 96

. lastContaining 92

. MMToPixel 98

. open 93

. pixelToMM 98

. privatePart 98

. repair 94

. scanThePicture 92

. scanThePictureReverse 92

. sendBehind 96

. setClip 94

. setImmediateLineWidth 97

. thePicture 91

. TM 98

. unHilite 97

. visualShape 91

. writeEPS 94
BitMap 22, 78
. superpattern:
. . Raster 78
. BitMapPrivatePart 78
. calculate 78
. copy 78
. getPixel 78
. init 78
. pixel 78
. putPixel 78
. readFromPBMfile 78
. writeToPBMfile 78
BitMapPrivatePart 78
blackpaint 99
Bold 56

. superpattern:

. . Style 56
borderpaint 93
borderwidth 93
bringForward 29, 89, 96
buttonPress 95
buttonRelease 95
c 57
calculate 78, 79
calculatePoints 62, 64, 65, 67
CalculateShape 70, 71, 72, 74, 75, 76,
77
Canvas 32
. subpatterns:
. . BifrostCanvas 91
. Clipping 33
. Drawing Area 32
. Event Handler 34
. thePicture 32
. Visible Area 32
. Visible Shape 32
Canvas Coordinate System 4
canvasToDevice 94
cap 71, 72, 101
Cap Styles 12
CapButt 56
. superpattern:
. . CapStyleDesc 56
CapRounded 56
. superpattern:
. . CapStyleDesc 56
CapSquare 56
. superpattern:
. . CapStyleDesc 56
CapStyleDesc 56
. subpatterns:
. . CapButt 56
. . CapRounded 56
. . CapSquare 56
CCS 4
center 74, 75, 76, 102, 103, 104
changed 100
circleAngle 54, 59
CircularSplineSegment 7, 64
. superpattern:
. . SplineSegment 64
. calculatePoints 64
. copy 64
. drawRubberBand 64
. DrawRubberSplineDesc 64
. findSegments 64
. getControls 64
. makeOffset 64
. makeSecondOffset 64
. nextToLastPoint 64
. writePS 64
clear 106
Clip Shape 33
Clipping 33
clipShape 92

112 Bifrost Reference Manual

close 9, 64, 68, 93, 100
CMYvalues 23, 81
combineShape 13, 16, 70
Combining Shapes 13
CommandModifier 56
. superpattern:
. . Modifier 56
Complex Shapes 13
Complex Transformation 5
connectShape 13, 15, 69
connectShapeSmooth 13, 15, 69
Constraining Pictures 30
containsPoint 27, 65, 68, 70, 71, 72,
73, 74, 75, 76, 87, 88, 90
ControlModifier 56
. superpattern:
. . Modifier 56
controls 63
Coordinate 4
Coordinate System 4, 30
coordinates 71, 101
copy 21, 59, 60, 61, 62, 63, 64, 65, 67,
71, 72, 73, 74, 75, 76, 77, 78, 79, 81,
82, 83, 85, 88, 89, 101, 102, 103, 104,
106
corners 76, 104
Courier 56
. superpattern:
. . fontname 56
currentPoint 68
d 57
damaged 33, 94
dashes 71, 72, 101
DCS 4
DefaultMaxHue 57
DefaultMaxSat 57
DefaultMaxVal 57
delete 29, 63, 69, 89, 106
deletePoint 72
Device Coordinate System 4
deviceToCanvas 94
doubleClick 95
draw 28, 84, 88, 89, 92, 101, 102, 103,
104, 106
drawHilite 67
drawOnPixmap 89
drawRubberBand 61, 62, 64
DrawRubberSplineDesc 63, 64, 65
Ellipse 104
. superpattern:
. . PredefinedGraphicalObject 104
. center 104
. copy 104
. draw 104
. geometry 104
. horizontalradius 104
. shapeDesc 104
. verticalradius 104
EllipseAngle 54, 58
EllipseShape 38, 76

. superpattern:

. . StrokeableShape 76

. calculateShape 77

. center 76

. containsPoint 76

. copy 77

. firstPoint 76

. geometry 76

. getBounds 76

. getControls 77

. hiliteOutline 77

. horizontalradius 76

. interactiveCreate 77

. interactiveReshape 77

. intersects 76

. open 76

. transform 77

. verticalradius 76

. within 77

. writePS 77
empty 60
end 62, 71, 101
endReshape 61, 62, 63
EqualPoint 57
erase 28, 84, 89, 92, 106
Even-Odd Rule 9
EvenOddRule 56
eventHandler 92, 99
ExpandRectangle 57
feature 59
figureitems 55
fill 79
Fill Rules 8
fillArc 80, 82, 83
fillEllipse 80, 82, 83
fillLine 79, 81, 82, 83
fillMultiLine 80, 82, 83
fillOther 80
fillPie 80, 82, 83
fillRect 80, 82, 83
fillrule 65
. Even-Odd Rule 9
. Non-Zero Winding rule 8
fillShape 21, 79, 81, 82, 83
fillText 80, 82, 83
findSegments 61, 62, 64, 65, 70
firstContaining 30, 90, 92
firstGO 90
firstIntersecting 91
firstPoint 60, 62, 63, 68, 71, 72, 73, 74,
75, 76, 88
firstWithin 91
fontName 56
. superpattern:
. . integerObject 56
. subpatterns:
. . Courier 56
. . Helvetica 56
. . Times 56
framePaint 99

Index 113

g 82
geometry 76, 104
getBounds 65, 68, 71, 72, 73, 74, 75,
76, 85, 88, 89
GetClip 33, 94
getControls 61, 62, 64, 65, 67, 70, 71,
72, 73, 74, 75, 76, 77, 88
getInverse 58
getPaint 84
getPixel 77, 78, 79
getPoint 59
getPointerLocation 95
getShape 84, 88, 101
goPaint 99
Graphic Context 26
. Global 26
. Local 26
. Shared 26
Graphical Object
. init 26
GraphicalObject 26, 87
. superpattern:
. . AbstractGraphicalObject 87
. containsPoint 27
. copy 88
. draw 28, 88
. erase 28
. Geometric Transformations 27
. getShape 88
. Graphic Context 26
. hilite 28, 88
. hitControl 27
. interactiveCombineShape 27
. interactiveCreateShape 27
. interactiveMove 27
. interactiveReshape 27
. recalculateShape 88
. setShape 88
. shapeDesc 88
. transform 28
. unHilite 28, 88
. writePS 88
GraphicalText 101
. superpattern:
. . GraphicText 101
graphics 55
Graphics Modelling 29
GraphicText 101
. superpattern:
. . PredefinedGraphicalObject 101
. subpatterns:
. . GraphicalText 101
. copy 102
. draw 102
. inittext 101
. interactiveCreateShape 102
. interactiveReshape 102
. position 101
. shapeDesc 101
. size 102

. thefontname 101

. theStyle 102

. theText 102

. underline 102
graphmath 54
GrayMap 78
. superpattern:
. . Raster 78
. calculate 78
. copy 78
. getPixel 78
. GrayMapPrivatePart 78
. init 78
. pixel 78
. putPixel 78
. readFromPGMfile 78
. writeToPGMfile 78
GrayMapPrivatePart 78
guienv 54
. subpatterns:
. . Bifrost 98
hb 67
hc 67
height 57, 76, 77, 104
Helvetica 56
. superpattern:
. . fontname 56
Highlighting 45
hilite 28, 85, 88, 89, 97
hiliteBound 66
hiliteControls 66, 88
HiliteDesc 45, 66
hiliteitem 100
hiliteOutline 66, 70, 71, 72, 73, 74, 75,
76, 77, 88
hitControl 27, 85, 96
ho 67
horizontalRadius 74, 75, 76, 102, 103,
104
hotspot 12, 66, 77
HSVvalues 23, 81
i 60
IDmatrix 54, 58
immediateArc 97
immediateDot 97
immediateLine 97
immediateMultiLine 97
immediaterect 98
immediatespot 97
immediateText 98
init 60, 77, 78, 79, 81, 82, 83, 84, 88,
100, 105, 106
initialize 95
initPoints 59
initText 73, 101
Input Control 34
insert 60, 63, 69
insertPoint 72
IntegerList 60
. append 60

114 Bifrost Reference Manual

. copy 60

. i 60

. init 60

. insert 60

. inx 60

. length 60

. private 60

. remove 60
integerObject
. subpatterns:
. . fontName 56
. . Style 56
Interaction 41, 67, 85
. Feedback 43
. Model 41
InteractionHandler 41, 94
interactiveCombine 44, 67, 70
interactiveCombineShape 27, 85, 89,
95
interactiveCreate 44, 67, 70, 71, 72, 73,
74, 75, 76, 77
interactiveCreateShape 27, 85, 89, 95,
102
interactiveMove 27, 86, 96
interactiveReshape 27, 44, 67, 70, 71,
72, 74, 75, 76, 77, 86, 89, 96, 102
interactiveRotate 86, 96
interactiveScale 86, 96
intersects 66, 68, 70, 71, 72, 73, 74, 75,
76, 87, 88, 90
invalid 65
invalidate 65, 70
invalidateCapStyle 71
invalidateDash 71
invalidateInteger 70
invalidateJoinStyle 71
invalidatePoint 70
invalidateReal 71
inverse 57
inverseTransformPoint 58
inverseTransformRectangle 58
inx 60
isClosed 64, 68
isEmpty 31, 68, 90
isFlat 68
isMember 31, 90
isModifierOn 95
Italic 56
. superpattern:
. . Style 56
join 72, 101
Join Styles 12
JoinBevel 56
. superpattern:
. . JoinStyleDesc 56
JoinMiter 56
. superpattern:
. . JoinStyleDesc 56
JoinRound 56
. superpattern:

. . JoinStyleDesc 56
JoinStyleDesc 56
. subpatterns:
. . JoinBevel 56
. . JoinMiter 56
. . JoinRound 56
keyPress 95
keyRelease 95
lastContaining 30, 90, 92
lastGO 89
lastIntersecting 91
lastPoint 60, 62, 63, 68
lastWithin 91
length 60
Lidskjalv User Interface Toolkit 54
Line 101
. superpattern:
. . PredefinedGraphicalObject 101
. begin 101
. cap 101
. coordinates 101
. copy 101
. dashes 101
. draw 101
. end 101
. shapeDesc 101
. width 101
LineSegment 7, 17, 62
. superpattern:
. . Segment 62
. begin 62
. calculatePoints 62
. copy 62
. drawRubberBand 62
. end 62
. endReshape 62
. findSegments 62
. firstPoint 62
. getControls 62
. lastPoint 62
. makeOffset 62
. makeSecondOffset 63
. nextToFirstPoint 62
. nextToLastPoint 62
. prepareReshape 62
. reverseOrientation 62
. setFirstPoint 62
. setLastPoint 62
. transform 62
. writePS 62
LineShape 36, 71
. superpattern:
. . PredefinedShape 71
. begin 71
. CalculateShape 71
. cap 71
. containsPoint 71
. coordinates 71
. copy 71
. dashes 71

Index 115

. end 71

. firstPoint 71

. getBounds 71

. getControls 71

. hiliteOutline 71

. interactiveCreate 71

. interactiveReshape 71

. intersects 71

. open 71

. transform 71

. width 71

. within 71

. writePS 71
lineTo 9, 68
LockModifier 56
. superpattern:
. . Modifier 56
makeOffset 62, 64, 65
makeSecondOffset 62, 63, 64, 65
matrix 54, 57
. subpatterns:
. . MoveMatrix 58
. . RotateMatrix 58
. . ScaleMatrix 58
. a 57
. b 57
. c 57
. d 57
. getInverse 58
. inverse 57
. inverseTransformPoint 58
. inverseTransformRectangle 58
. set 57
. transformPoint 58
. transformRectangle 58
. tx 57
. ty 57
MatrixMul 58
MaxRGB 56
MetaModifier 56
. superpattern:
. . Modifier 56
MMToPixel 98
Modifier 56
. subpatterns:
. . CommandModifier 56
. . ControlModifier 56
. . LockModifier 56
. . MetaModifier 56
. . NoModifier 56
. . ShiftModifier 56
motion 95
move 86
Move Transformation 5
moveMatrix 54, 58
. superpattern:
. . Matrix 58
moveTo 86
MultiLine 101
. superpattern:

. . PredefinedGraphicalObject 101

. cap 101

. copy 101

. dashes 101

. draw 101

. join 101

. points 101

. shapeDesc 101

. width 101
MultiLineShape 37, 72
. superpattern:
. . PredefinedShape 72
. addPoint 72
. calculateShape 72
. cap 72
. containsPoint 72
. copy 72
. dashes 72
. deletePoint 72
. firstPoint 72
. getBounds 72
. getControls 72
. hiliteOutline 72
. insertPoint 72
. interactiveCreate 72
. interactiveReshape 72
. intersects 72
. join 72
. open 72
. points 72
. transform 72
. width 72
. within 72
. writePS 72
Name 81
Neighborhood 45
nextToFirstPoint 61, 62, 63, 68
nextToLastPoint 61, 62, 64, 68
NoModifier 56
. superpattern:
. . Modifier 56
Non-Zero Winding rule 8
NonCircularSplineSegment 7, 64
. superpattern:
. . SplineSegment 64
. addControl 64
. calculatePoints 65
. close 64
. copy 64
. drawRubberBand 64
. DrawRubberSplineDesc 65
. findSegments 65
. getControls 65
. isClosed 64
. . superpattern:
. . . booleanValue 106
. makeOffset 65
. makeSecondOffset 65
. nextToLastPoint 64
. open 64

116 Bifrost Reference Manual

. private 65

. writePS 65
noOfGOs 31, 90
noOfItems 99
npoints 59
onActivate 93
onDeactivate 93
onEmpty 106
onFrameChanged 93
onKeyDown 93
onMouseDown 92
onOneGO 106
onOpen 92
onRefresh 93
onTwoGOs 106
open 9, 63, 64, 67, 68, 71, 72, 74, 75,
76, 93, 100
ovalAngle 54
paddingSolidColor 82
Paint 21, 79
. subpatterns:
. . RasterPaint 82
. . SolidColor 81
. copy 21, 79
. fill 79
. . subpatterns:
. . . fillArc 80
. . . fillEllipse 80
. . . fillLine 79
. . . fillMultiLine 80
. . . fillOther 80
. . . fillPie 80
. . . fillRect 80
. . . fillShape 79
. . . fillText 80
. fillArc 80
. . superpattern:
. . . fill 79
. fillEllipse 80
. . superpattern:
. . . fill 79
. fillLine 79
. . superpattern:
. . . fill 79
. fillMultiLine 80
. . superpattern:
. . . fill 79
. fillOther 80
. . superpattern:
. . . fill 79
. fillPie 80
. . superpattern:
. . . fill 79
. fillRect 80
. . superpattern:
. . . fill 79
. fillShape 21, 79
. . superpattern:
. . . fill 79
. fillText 80

. . superpattern:

. . . fill 79

. init 79

. paintprivate 80

. SetBackgroundPaint 80

. setBorderPaint 80

. setCanvasPaint 80

. setSpecialPaint 80

. writePS 80
paintprivate 80
Palette 99
. superpattern:
. . BifrostCanvas 99
. append 100
. blackpaint 99
. changed 100
. close 100
. eventhandler 99
. framePaint 99
. goPaint 99
. hiliteitem 100
. noOfItems 99
. . superpattern:
. . . integerValue 106
. open 100
. paletteprivate 100
. selection 99
. size 100
paletteprivate 100
percentage 82, 105
Picture 88
. superpattern:
. . AbstractGraphicalObject 88
. subpatterns:
. . SelectionPicture 105
. add 29, 88
. bringForward 29, 89
. Constraining 30
. containsPoint 90
. Coordinate System 30
. copy 89
. delete 29, 89
. draw 89
. drawOnPixmap 89
. erase 89
. firstContaining 30, 90
. firstGO 90
. firstIntersecting 91
. firstWithin 91
. getBounds 89
. hilite 89
. init 88
. interactiveCombineShape 89
. interactiveCreateShape 89
. interactiveReshape 89
. intersects 90
. isEmpty 31, 90
. . superpattern:
. . . booleanValue 106
. isMember 31, 90

Index 117

. . superpattern:

. . . booleanValue 106

. lastContaining 30, 90

. lastGO 89

. lastIntersecting 91

. lastWithin 91

. noOfGOs 31, 90

. . superpattern:

. . . integerValue 106

. ScanGOs 30, 89

. ScanGOsReverse 30, 89

. sendBehind 30, 89

. setPaint 89

. shapeDesc 88

. TMDesc 88

. unHilite 89

. within 90

. writePS 91
pictureprivate 88
PictureShape 88
. superpattern:
. . AbstractShape 88
. containsPoint 88
. copy 88
. firstpoint 88
. getBounds 88
. getControls 88
. hiliteControls 88
. hiliteOutline 88
. intersects 88
. pictureprivate 88
. transform 88
. within 88
. writePS 88
PieShape 38, 74
. superpattern:
. . PredefinedShape 74
. angle1 74
. angle2 74
. calculateShape 74
. center 74
. containsPoint 74
. copy 74
. firstPoint 74
. getBounds 74
. getControls 74
. hiliteOutline 74
. horizontalRadius 74
. interactiveCreate 74
. interactiveReshape 74
. intersects 74
. open 74
. transform 74
. verticalRadius 74
. within 74
. writePS 74
PieSlice 103
. superpattern:
. . PredefinedGraphicalObject 103
. angle1 103

. angle2 103

. center 103

. copy 103

. draw 103

. horizontalRadius 103

. shapeDesc 103

. verticalRadius 103
pixel 77, 78, 79
pixelToMM 98
PixMap 23, 79
. superpattern:
. . Raster 79
. calculate 79
. copy 79
. getPixel 79
. init 79
. pixel 79
. PixMapPrivatePart 79
. putPixel 79
. readFromPPMfile 79
. writeToPPMfile 79
PixMapPrivatePart 79
Plain 56
. superpattern:
. . Style 56
point 54, 57
. x 57
. y 57
PointArray 59
. addPoint 59
. copy 59
. firstPoint 60
. getPoint 59
. initPoints 59
. lastPoint 60
. npoints 59
. private 60
. setPoint 59
PointArrayList 60
. appendPointArray 60
. empty 60
. . superpattern:
. . . booleanValue 106
. private 60
. scanPointArrays 60
PointInRect 57
points 72, 101
position 73, 101
Predefined Graphical Objects 39
Predefined Shapes 36
PredefinedGraphicalObject 100
. superpattern:
. . AbstractGraphicalObject 100
. subpatterns:
. . Arc 102
. . Ellipse 104
. . GraphicText 101
. . Line 101
. . MultiLine 101
. . PieSlice 103

118 Bifrost Reference Manual

. . Rect 103

. getShape 101

. init 100

. shapeDesc 100

. TMDesc 100
PredefinedShape 70
. superpattern:
. . AbstractShape 70
. subpatterns:
. . ArcShape 74
. . LineShape 71
. . MultiLineShape 72
. . PieShape 74
. . StrokeableShape 75
. . TextShape 73
. CalculateShape 70
. containsPoint 70
. intersects 70
. invalidate 70
. invalidateCapStyle 71
. invalidateDash 71
. invalidateInteger 70
. . superpattern:
. . . integerValue 106
. invalidateJoinStyle 71
. invalidatePoint 70
. invalidateReal 71
. prePrivate 71
. transform 70
. within 70
. writePS 71
prepareReshape 61, 62, 63
prePrivate 71
private 60, 65, 83, 87, 105
privatePart 67, 82, 98
putPixel 77, 78, 79
Raster 22, 77
. subpatterns:
. . BitMap 78
. . GrayMap 78
. . PixMap 79
. calculate 78
. copy 77
. getPixel 77
. height 77
. . superpattern:
. . . integerValue 106
. hotspot 77
. init 77
. pixel 77
. putPixel 77
. RasterPrivatePart 78
. width 77
. . superpattern:
. . . integerValue 106
RasterGray 105
. superpattern:
. . TiledSolidColor 105
. subpatterns:
. . RasterGray0 105

. . RasterGray100 105

. . RasterGray11 105

. . RasterGray22 105

. . RasterGray33 105

. . RasterGray44 105

. . RasterGray56 105

. . RasterGray67 105

. . RasterGray78 105

. . RasterGray89 105
RasterGray0 105
. superpattern:
. . RasterGray 105
. init 105
RasterGray100 105
. superpattern:
. . RasterGray 105
. init 105
RasterGray11 105
. superpattern:
. . RasterGray 105
. init 105
RasterGray22 105
. superpattern:
. . RasterGray 105
. init 105
RasterGray33 105
. superpattern:
. . RasterGray 105
. init 105
RasterGray44 105
. superpattern:
. . RasterGray 105
. init 105
RasterGray56 105
. superpattern:
. . RasterGray 105
. init 105
RasterGray67 105
. superpattern:
. . RasterGray 105
. init 105
RasterGray78 105
. superpattern:
. . RasterGray 105
. init 105
RasterGray89 105
. superpattern:
. . RasterGray 105
. init 105
RasterGrays 105
. init 105
. percentage 105
. private 105
. thegray 105
RasterPaint 25, 82
. superpattern:
. . Paint 82
. copy 82
. fillArc 82
. fillEllipse 83

Index 119

. fillLine 82

. fillMultiLine 82

. fillPie 82

. fillRect 83

. fillShape 82

. fillText 82

. init 82

. paddingSolidColor 82

. private 83

. setBackgroundPaint 83

. setBorderPaint 83

. setCanvasPaint 83

. thePixMap 82

. writePS 83
RasterPrivatePart 78
Rasters 21
readFromPBMfile 78
readFromPGMfile 78
readFromPPMfile 79
recalculateShape 87, 88
Rect 103
. superpattern:
. . PredefinedGraphicalObject 103
. copy 104
. corners 104
. draw 104
. height 104
. shapeDesc 103
. upperleft 103
. width 104
rectangle 54, 57
. height 57
. width 57
. x 57
. y 57
RectShape 38, 75
. superpattern:
. . StrokeableShape 75
. calculateShape 76
. containsPoint 76
. copy 76
. corners 76
. firstPoint 75
. getBounds 76
. getControls 76
. height 76
. hiliteOutline 76
. interactiveCreate 76
. interactiveReshape 76
. intersects 76
. open 76
. transform 76
. upperleft 75
. width 76
. within 76
. writePS 76
remove 60
repair 33, 94
reverseOrientation 61, 62, 63, 68
RGBvalues 23, 81

rotate 87
Rotate Transformation 5
rotateMatrix 54, 58
. superpattern:
. . Matrix 58
scale 87
scaleMatrix 54, 58
. superpattern:
. . Matrix 58
Scaling Transformation 5
ScanGOs 30, 89
ScanGOsReverse 30, 89
scanPointArrays 60
scanThePicture 92
scanThePictureReverse 92
Segment 7, 60
. subpatterns:
. . AbstractShape 65
. . LineSegment 62
. . SplineSegment 63
. calculatePoints 62
. circular spline 7
. copy 61
. drawRubberBand 61
. endReshape 61
. findSegments 61
. firstPoint 60
. getControls 61
. lastPoint 60
. line 7
. makeOffset 62
. makeSecondOffset 62
. nextToFirstPoint 61
. nextToLastPoint 61
. non-circular spline 7
. prepareReshape 61
. reverseOrientation 61
. setFirstPoint 60
. setLastPoint 61
. transform 61
. writePS 62
Segment Definition Primitives 17
selection 99
SelectionPicture 105
. superpattern:
. . Picture 105
. add 106
. clear 106
. copy 106
. delete 106
. draw 106
. erase 106
. init 106
. onEmpty 106
. onOneGO 106
. onTwoGOs 106
. thecanvas 106
sendBehind 30, 89, 96
set 57
SetBackgroundPaint 80, 82, 83

120 Bifrost Reference Manual

setBorderPaint 80, 82, 83
setCanvasPaint 80, 82, 83
SetClip 33, 94
setFirstPoint 60, 62, 63
setImmediateLineWidth 97
setLastPoint 61, 62, 63
setPaint 84, 89
setPoint 59
setShape 88
setSpecialPaint 80
Shape 7, 67
. superpattern:
. . AbstractShape 67
. addLine 18
. addSpline 19, 68
. appendShape 14, 69
. close 9, 68
. combineShape 16, 70
. Combining 13
. connectShape 15, 69
. connectShapeSmooth 15, 69
. containsPoint 68
. copy 67
. currentPoint 68
. delete 69
. findSegments 70
. firstPoint 68
. getBounds 68
. getControls 70
. Highlighting 45
. hiliteOutline 70
. hotspot 12
. insert 69
. interactiveCombine 44, 70
. interactiveCreate 44, 70
. interactiveReshape 44, 70
. intersects 68
. isClosed 68
. . superpattern:
. . . booleanValue 106
. isEmpty 68
. . superpattern:
. . . booleanValue 106
. isFlat 68
. . superpattern:
. . . booleanValue 106
. lastPoint 68
. lineTo 9, 68
. nextToFirstPoint 68
. nextToLastPoint 68
. open 9, 68
. reverseOrientation 68
. splineTo 10, 68
. stroke 11, 68
. transform 70
. within 68
. writePS 70
Shape Definition Primitives 9
. close 9
. lineTo 9

. open 9

. splineTo 10

. stroke 11
shapeDesc 84, 88, 100, 101, 102, 103,
104
ShiftModifier 56
. superpattern:
. . Modifier 56
size 73, 100, 102
smoothness 63
SolidColor 23, 81
. superpattern:
. . Paint 81
. subpatterns:
. . TiledSolidColor 83
. CMYvalues 23, 81
. copy 81
. fillArc 82
. fillEllipse 82
. fillLine 81
. fillMultiLine 82
. fillPie 82
. fillRect 82
. fillShape 81
. fillText 82
. HSVvalues 23, 81
. init 81
. Name 81
. privatePart 82
. RGBvalues 23, 81
. setBackgroundPaint 82
. setBorderPaint 82
. setCanvasPaint 82
. writePS 82
SolidGray 82
. subpatterns:
. . SolidGrey 82
. g 82
. percentage 82
SolidGrey 82
. superpattern:
. . SolidGray 82
splineprivate 64
SplineSegment 7, 17, 63
. superpattern:
. . Segment 63
. subpatterns:
. . CircularSplineSegment 64
. . NonCircularSplineSegment 64
. addControl 63
. calculatePoints 64
. controls 63
. copy 63
. delete 63
. DrawRubberSplineDesc 63
. endReshape 63
. firstPoint 63
. insert 63
. lastPoint 63
. nextToFirstPoint 63

Index 121

. open 63

. prepareReshape 63

. reverseOrientation 63

. setFirstPoint 63

. setLastPoint 63

. smoothness 63

. splineprivate 64

. transform 63

. writePS 63
splineTo 10, 68
stroke 11, 68
StrokeableShape 75
. superpattern:
. . PredefinedShape 75
. subpatterns:
. . EllipseShape 76
. . RectShape 75
. copy 75
. getBounds 75
. stroked 75
. strokewidth 75
. writePS 75
stroked 75
StrokeWidth 36, 75
Style 56
. superpattern:
. . integerObject 56
. subpatterns:
. . Bold 56
. . Italic 56
. . Plain 56
SubPoints 57
terminateCondition 95
terminated 95
TextPrivate 74
TextShape 37, 73
. superpattern:
. . PredefinedShape 73
. calculateShape 74
. containsPoint 73
. copy 73
. firstPoint 73
. getBounds 73
. getControls 73
. hiliteOutline 73
. initText 73
. interactiveCreate 73
. interactiveReshape 74
. intersects 73
. position 73
. size 73
. TextPrivate 74
. theFontName 73
. theStyle 73
. theText 73
. transform 74
. underline 73
. within 73
. writePS 74
thecanvas 106

theFontName 73, 101
thegray 105
thePaint 87
thePicture 91
thePixMap 82
theShape 87
theStyle 73, 102
theText 73, 102
theTile 83
tiledPrivate 83
TiledSolidColor 25, 83
. superpattern:
. . SolidColor 83
. subpatterns:
. . RasterGray 105
. copy 83
. fillArc 83
. fillEllipse 83
. fillLine 83
. fillMultiLine 83
. fillPie 83
. fillRect 83
. fillShape 83
. fillText 83
. init 83
. setBackgroundPaint 83
. setBorderPaint 83
. setCanvasPaint 83
. theTile 83
. tiledPrivate 83
. writePS 83
Times 56
. superpattern:
. . fontname 56
TM 84, 98
TMDesc 84, 88, 100
transform 28, 61, 62, 63, 67, 70, 71,
72, 74, 75, 76, 77, 86, 88
Transformation 5
. Complex 5
. Matrix 5
. Moving 5
. Rotating 5
. Scaling 5
transformPoint 58
transformRectangle 58
tx 57
ty 57
underline 73, 102
unHilite 28, 85, 88, 89, 97
UnImplemented 59
. feature 59
Updating Damaged Areas 33
upperleft 75, 103
Vector 57
. x 57
. y 57
verticalRadius 74, 75, 76, 102, 103,
104
Visible Shape 32

122 Bifrost Reference Manual

visualShape 91
width 57, 71, 72, 76, 77, 101, 104
WindingRule 56
WindowItems 54
within 66, 68, 70, 71, 72, 73, 74, 75,
76, 77, 87, 88, 90
writeEPS 94
writePS 62, 63, 64, 65, 70, 71, 72, 74,
75, 76, 77, 80, 82, 83, 87, 88, 91
writeToPBMfile 78
writeToPGMfile 78
writeToPPMfile 79
x 57
XOR mode 28, 41, 43
y 57
yellow3 99
yellow4 99
yellowgreen 99

